American Mineralogist, Volume 63, pages 180-185, 1978 The crystal structureof paramelaconite,CunOs M . O ' K r n r r E l A N DJ . - O . B o v l N Inorganic Chemistry 2, Chemical Centre P. O. Box 740, S-220 07 Lund, Sweden Abstract The structureof paramelaconite, idealcompositionCuoOr,has beensolvedutilizingtl3 i n d e p e n d e rnet f l e c t i o nR s , = 0 . 0 3 5T. h e s p a c e g r o uips I 4 r / a m d ; a : 5 . 8 3 7 , c : 9 . 9 3 2A . T h e structurecontainsinterpenetrating rods of Cu+-O (Cu* forming two colinearbondswith oxygen)andCu'?+-O (Cu2+formingfour bondsto oxygenatomsat thecornersofa rectangle). The structureis simplyrelatedto thoseof cupriteand tenorite. Introduction Paramelaconite is an oxideof copperintermediate betweenCurO and CuO. It was first describedby Koenig (1891),and more completelyby Frondel (1941). Frondel's analysisgave the composition CuOo,r.. He determined the spacegroupof the crystal to be I4r/amd but did not resolvethe structure. Authenticspecimens are rare.2However,of the two magnificentexamples(thoseexaminedby Frondel) from the CopperQueenmine,Bisbee, Arizona,oneis in the Smithsonian Institutionand onein the American Museumof Natural History. A fragmentfrom the Smithsonian Institution specimen, #112878 (shownon the left in Fig. I of Frondel'spaper),was kindly madeavailableto us by J. S. White,Associate Curator. Experimental A powderpatternof a crushedfragmentwastaken with a Guinier-Hiiggfocussingcamera,with KCI (a : 6.2929A) as an internalstandard.This revealed the presenceof some tenoritein addition to lines ascribedto paramelaconite. The paramelaconite lines couldbe indexedwith a tetragonalcellwith q : 5.837 and c : 9.932A (Table l). We did not observethe ll0 reflection(not allowed in l4r/qmd) with d : 4.027A, reportedby Frondel (l9al); it is possible I Permanent address: Chemistry Department, Arizona State University,Tempe, Arizona 85281 2 We have examined a number of samples purported to be paramelaconite, all of which proved to be aggregates of cuprite and tenorite. However specimens have been reported from Algomah mine, Ontonagon County, Michigan by Williams (1962). 00 0003-004x/78l0t02-0180s02 that thisis a transcription errorfor d:5.027 closeto for l0l. d : 5.032A calculated The chip selectedfor structureanalysiswas an irregular tetrahedronbounded approximatelyby (100),(010),(001),and (ll3), and measuring 0.25X Data 0.27 X 0.17mm alonga, b and c respectively. werecollectedusingan automaticfour-circlediffractometer, CAD4 using graphite-monochromatized A) and a take-offangle MoKa radiation(I : 0.70930 of 6o. The os-20scantechniquewasusedwith Aco: l.lo + l.0"tand.A minimumnet countof 3000for each reflectionwas attainedwithin the maximum measuringtime of 5 min. One octant of reciprocal space(includingdependent reflections hkl, khl) outto After every40 measurements 0 : 35" wasexamined. werechecked.For all threestandards threestandards during the courseof the experimentR(: )l1o I ^l /> I ) < 0.008(1- is the meanof all observations), lessthanthree so no scalingwasnecessary. Intensities from countingstatisstandarddeviations(estimated tics) were rejectedas unobserved.The reflections werecorrectedfor polarisationand absorption.The rangeof transmission factorswas0.16-0.24(1t: 259 '). The absorptioncorrectionwas checkedby cm comparingthe deviation betweendependentreflections (hkl and khl) which fell from 25 percentbefore correctionfor absorptionto lessthan 10percentafter wereusedin reflections correction.ll3 independent the subsequent refinementof the structure.The unitfrom a leastsquares weredetermined cell dimensions rangingfrom 6.4oto refinementof twentyd-values, 25", collectedfrom the singlecrystalon the automaticdiffractometer usingMoKa radiation.Crystallographicdata are given in Table 2. 180 O'KEEFFE AND l8l PARAMELACONITE BOVIN Table l. Powder data for a mixture of paramelaconite and tenorite Table 2. Crystallographic data Ce11 volune: 1 4r.' / a n d (- n o l 4 1 l a = s.837(1) A c = 9.932(2) A 338 A3 Ce11 content: 4 [ C u4 ,J O - ] Space group: Present t/lt Frondel work d(obs) I ,llcaLc)'*' h 3.1'74 101 110 112 2.912 2.880 200 103 5.014 ',r 51 k I 10 3. 20 2.929 12 2.757 51 2.52A 2.525 211 ?a 54 2.508 2.475 2.516 2.443 202 004 59 2'7 ?1 2.328 2 - 313 2.057 2.064 2 0 14 s 31 2 .04'l r.900 1.885 2.050 1. 9 0 9 'I . B9r 't3 3'7 22 f00 1 .869 1.112 1.542 1.587 34 95 10 1.508 1. 4 5 5 1.450 1. 4 5 9 1. : 1 5 4 92 1'7 36 1.436 1.419 1.409 39 1'7 24 1.3'77 1.305 1.267 85 7A 22 1.259 1,255 1. 2 3 8 ' not ** ^'" t/It d(obs) w vs w Tenorite" 't n Fornula 2, BBB 12 2 . ' 75 1 49 100 2.530 2 -523 04 w , u ( M o , ( c) 2. 3 1 2 2.050 * Koenig (1891) ** FrondeL (1941) t -t)14 400 32 3 1. 4 4 9 20 1- 4 3 0 6 422 4O 4 008 1.254 1.241 indered aith 302.18 * = 5.83 s cm " nD **= 6.04 e cm =5.93qcmD T. r 259 cn- 25oC: 01 .440 in weight: Density, 2.490 2.464 25 B r.866 1. 7 1 4 12 1.418 1.410 19 '7 1.375 1.304 '| .265 6 Cmittee ce11: Unit d 96 30 allooed Joint f (194'l) isotropic temperature factors and a scale factor convergedtoR:0.06. On the basis of chemical analysis and measured density, Frondel (1941) proposed a unit-coll content of Cu,.Orn; accordingly,the possibility of partial occupancy by oxygen of positions 4a, 4b, and 8e was investigated. Least-squares refinement led to the 4b sitesbeing empty and the 8e and 4b sitescompletely occupied, so that unit-cell content is Cu'.Orz (i.e. CuoO.). The difference between this formula and that determined by. analysis must surely be due to the presence of admixed CuO in analyzed samples. The calculated density (Table 2) is bracketed by two experimental values. A final refinementwas carried out with anisotropic thermal vibration factors for the copper atoms, and scatteringfactors for Cu'+, Cu+ and O- were taken from the International Tablesfor X-ray Crystallography (vol. IV, 1974). The secondary extinction coemcient (Coppensand Hamilton, 1970)was also refined. T h e f u n c t i o n m i n i m i s e dw a s > l r , ( l F o l - l F " l ) ' w i t t t w e i g h t s w - L : 6 ' ( l r . l ) + ( 0 . 0 0 4 . 1 F o 1 f I. n t h e l a s t 7 s w 1. 2 5 1 1. 2 3 3 14 -,tanvl I Stqndards, 5-0661 of Pouder Diffraction the tetragonal unit eeLL: a=5.837 dnd c=9.932 A Solutionand refinementof the structure Systematicabsencesconfirmed the spacegroup Pattersonsynthesis led I4r/amd.A three-dimensional directlyto placingcopper atomsin 8c and 8d and oxygenin 4a and 8e: 0 l/4 z etc. wilh z : 0.12. A preliminaryfull-matrixleast-squares with refinement Table 3. Atom coordinates and thermal vibration parameters (B,j X lS)* B(A2) Cu(1) Cu(z) 0(1) 0(2) 8c 8d 8e 4a Estimated foLloued by tenpe"atu"e 0 0 0 0 00 0 r/4 r/4 standard the r/2 0.1173(9) 3/8 erpops Wykoff facton is in notation erp(-gl. Btt Bss '22 6 6( 6 ) qqrct Btz z 1( z ) e3(6) 38(s) o Bts o 3(1) Bzs -23(4) r(3) 0.8(2) 0.7(3) parentheses refer for the equipotnt h2 - g* u' - g, to the of Lt Last digit, 14../and. - ,i, The atoms designated The forn of hk - 2B1s hL - the anisotropie zgzs kL). az'e 182 O'KEEFFE AND BOVIN PARAMELACONITE cycle all atom parameterschangedby lessthan 0.02 standard deviations. The extinction coefficient was 4.2(6).10' and the final agreementindicesR, (: [)w; (lF.l - lF,l)"/2r,lFol"l'''):0.039, R : 0.035ands = ([)w, (lF,l - lF"l)'/(m- n))''' = 3.9.Thepositional and thermal parametersare given in Table 3, and observed and calculated structure amplitudes compared in Table 4. Distancesand bond anglesare presentedin Table 5. Discussionof the structure The chemical formula of paramelaconite is Cu+rCu!+Or.It is clear from the interatomic distances and angles (Table 5) that Cu(l) is cuprous copper Table 4. Observed and calculated structure amplitudes h ?0 40 60 2? 42 62 44 64 84 66 DE 2E 18 54 34 14 E3 3? 1? 30 10 60 71 31 11 02 t,? E2 t3 66 35 23 63 7? 32 ?'l 61 30 10 00 20 t0 E2 42 22 E1 64 44 04 66 46 26 06 16 56 E3 k tFol 0 0 n 0 0 0 n 0 0 0 0 2 2 2 z 2 z ? ) 2 ) 3 3 3 1 3 3 I I 4 4 4 4 4 4 4 l. 4 4 4 4 4 4 5 5 5 11 6. 1 3 592.56 4A,?4 5?5,07 59.0s ?71,56 122,34 33.4E ?02,77 1 8 3, 3 4 249.25 ?1,84 25.?o 16.4E 24.78 ?2,83 18.51 16.16 14.94 23.59 3 0 ,E 2 323,?3 14,80 15.35 47,23 730.40 46?.95 19 t . 6 2 27,15 2rtr,79 16.6E 3E.02 2?.?3 2?,39 34rE9 37.76 26.09 3 ?, 4 7 41.0E 6 2 6, 4 4 10 5 . 5 0 167r66 24,3? 56,0E 653.12 J4 4 . 0 1 26.?6 2 9 1. 3 E 395,5? 211.95 29'4? 324tt0 ? 8 .5 0 ?0.79 2 1, 5 4 . 1 8. 4 2 tFcl 14E.55 6 0 7, 7 ? 46,?3 552.1E 64,93 2 74 , 6 5 414,66 34.3E 19 9 . 5 1 t 66.86 244,6E 2 5 .E 0 24,55 16.13 2 4r ? 6 26,54 23.55 16.32 26'15 25.30 33,24 33?,70 13.05 53.09 47,L4 7?6,94 465,t9 201.37 27,8E 252,63 1?.38 34,95 2E,96 ? 0 .E 0 34.96 36.66 2 E .1 6 3 ' l. 0 7 42,35 6 0 1. ? E 10 u . 0 7 1 7 7, ? o ?6.7E 56.02 659.19 14 4 . 0 E 3 0 .2 0 293,1E 107,77 2 0 E .19 3 0 .1 9 3 2 7, 0 8 3 7, 3 9 2 3 ,5 8 ?2.44 16.34 h k 4t5 215 606 116 0?6 646 ?46 356 2E6 1E7 14? 347 54? 5?7 217 017 .307 507 60E 70E 004 31E 6?E 228 648 44E 24E 04E 08E 169 t49 039 ?19 6 0 2 0 3 3 4 6 4 2 6 I 3 2 5 2 6 1 2 1 4 0 2 0 0 0 2 2 4 4 5 ? 4 3 3 0 2 1 1 0 2 0 2 0 5 0 1 0 tFol 10 10 10 10 10 11 11 11 11 11 1? 12 12 12 12 13 13 13 13 13 14 14 t5 15 13 . 7 9 33.07 282,?9 30.14 569.93 2 2 0 .O 5 3E8.82 21.66 176.27 2 6. 8 0 35.59 2 t ,, 5 7 30.52 1 7, O ' l 22,76 14,52 23,92 35.46 3 2 .t 9 5?.99 560.98 14.6E 205,88 376.99 2 5 .! 3 304.87 t7 ,21 401.63 t 90.40 19.2E 22.69 1E . 4 6 16.50 22E.01 363.82 ' t 7, 5 6 182,49 ?E4,06 t4,27 40.59 ? ' 1, E 2 23.99 t4,ZZ ?19,14 2 7. 3 2 265.12 305.79 18 7 . 9 6 23,23 25,16 23.49 1E . 3 0 20.09 ??1,76 ?21,7E 2 ' lt ? l 3E.35 tFct 12,76 ?2,e7 2E3.45 31,79 5 4 3 .E 0 ???,37 3 7 7, 7 0 13.35 rE1.67 29.0E 36.45 2 2, ' l ' l 33,44 I 5.E4 15,74 43.6E 2 2 .0 6 36,12 29.4E 52,50 565,72 12.E5 2 0 9 .13 360.29 24,47 297,37 3 7 . ' l1 3EE.5E 1 9 7, ' l E 16,44 Z5r1E ?6,1? 1?,49 2?0.23 55E.70 24,19 18 1, 1 1 274,56 3a,?5 4 1, 6 1 14.61 27.86 3 1. 6 ! 219.31 29,59 277,90 3 0 1. ? 5 1?E,94 ?7,52 ?6.17 ?E,49 22,61 16.9E 23E.00 ? 3 7 .E 3 23,92 3E.6! r83 O'KEEFFE AND BOVIN, PARAMELACONITE T a b l e 5 . l n t e r a t o m i c d i s t a n c e s( A ) a n d a n g l e s( ' ) Angles Distances The Cu'-oxygen rod. Cu(1) - 0(1) o(1) - 0(1) 1 . 8 6 7( 6 ) (2x) 73s(r1) 0(1) cu(1) c u (t ) 0 (] t - 0(1) Cu(1) 180.0 102.8(4) The cu2*-oxygen rod. cu(2) - 0(2) cu(2) - 0(1) 0(r) - 0(2) 0(1) - 0(2) (2xl (2x) (2x) (2x) r.e16(1) 1.e66(6) 2.sse(s) 2.920(1) 0(I) - cu(2) - 0(11 o(2)-cu(2)-0(21 0(1) - cu(2) - 0(2) 0(1) - cu(2) - 0(2) 180.0 r80.0 e7.s(2) 82.s(z) 1.867(6) 1.966(6) 2.919(1) 3 . 2 2 e( r ) Cu(1)-0(1)-Cu(1) cu(r)-0(1)-cu(2) Cu[2)-0(1)-Cu(2) r02.8(4) 1.916(1) 2.e1e(1) 3 . 2 2 9( r ) Cu(2)-0(2)-cu(2) cu(2)-o(z)-Cu(z) Cu(2)-0(2)-cu(21 ee.2(1) 1r4.8(1) ee.2(1) The 0(1) - Cu tetrahedron. 0(I) - cu(1) o(1) - cu(2) cu(1) - cu(2) Cu(1)- Cu(2) ( 2x) (2x) (2x) (2x) 114.7(1) es.8i4) The O(2) - Cu tetrahedron. 0(2) - cu(2) Cu(2)- cu(2) Cu(2)- Cu(2) *Standard (4x) deoiations are gioen in paz'entheses The CuoO, structure. Open circles are oxygen atoms and filled circles are copper atoms. See also Fig 3. 184 O'KEEFFE AND BOVIN' PARAMELACONITE Fig 2. Stereo view down the a axis of the structure of paramelaconite, Cuoog and Cu(2)is cupriccopper.ThusCu(1)hastwo O(l) nearestneighborsforming colinearbondsof length 1.87A, as found in cuprite,CurO (in whichthe bond lengthis l 85A). LikewiseCu(2),surrounded by four oxygenatomsin a plane(almostat the cornersof a square),is clearly Cu'+-the bond lengths 11.92 A(2X), 1.97A(2x)l and anglesbeingvery closeto thoseobservedin tenorite,CuO [bond lengths1.95 A(2X), 1.96A(2X), Asbrinkand Norrby, 19701. In fact, the structureof paramelaconite is simply and elegantlyrelatedto the structures both of cupriteand of tenorite. The structureis illustratedin FisuresI and 2. It is composed of two kinds of rods of atoms running through the structure parallel to [00] and [010]. The two kinds of rod are illustrated in Figure 3, and are (a) zig-zag strings of O-Cu+-O-Cu*, and (b) strings of Cu2+On rectanglesjoined by sharing opposite edges.The packing of each kind of rod is as in the body-centeredtetragonal cylinder packing shown in Figure 4, which also has symmetry I4r/qmd (O'Keeffe a n d A n d e r s s o n .1 9 7 7 ) . 3 We use the term rod in the general sense of a figure with a s i n g u l a r a x i s b u t w i t h o u t s i n g u l a r p o i n t s o r p l a n e s( S h u b n i k o v a n d Kopstik, 1974). (bt Fig 3. (a) The Cu*-O rod. Filled circles Cu(l), open circles O ( l ) . T h e b r o k e n c i r c l e s a r e t h e 4 b p o s i t i o n s o f 1 4 , / a m d .( b ) T h e C u 2 + - O r o d . F i l l e d c i r c l e sC u ( 2 ) , o p e n c i r c l e sO ( l ) , c i r c l e d c r o s s o(2). Fig 4. Body-centered tetragonal cylinder packing with symmetry 14,/amd. O'KEEFFE AND BOVIN.' PARAMELACONITE Table 6. The structuresof Cu,O, Cu.Or, and "CuO" (PdO) referredto a commontetraeonalcell equipoints e/a CurO* C u0 0 , r fC u o ' f * * I .414 I . 70 2 1,.?54 * sAnnetvy Pnsn ** Dith structure 4a 4b of 8c 8d Cu o 0 of I4y/and + Cu 1+ Cu' 8e Cu 7+ Cu- 1+ Cu- PdA, sAnnetrA P4r/nne O,z=I/8 O, a = 0.117 O, z = l/8 185 approximates that of cubic the copperarrangement closepacking(it is exactlythat in the cuprite)and oxygenis in the tetrahedralintersticesof that packwaysin which represent ing. The observed structures oxygencan be insertedso that Cu+ hastwo colinear bonds and Cu2+forms four directedbonds to the It is an intriguingtopological cornersof a rectangle. problemto determinewhetherother waysof doing this are possible-wethink not. This descriptionallows us to understandthe magnitudeof the axial (c/a : 1.702)as a comratio in paramelaconite promisebetweenthat for tetrahedralbondsfrom oxygen(c/a : 2) and squarecoordinationfor Cu2+(c/a Referenceto Figure 3(a) showsthat addition of : \/z). oxygenatomsat sitesshownby brokencircles(correAcknowledgments spondingto the 4b positions)convertsa rod of Cu+ by theSwedish NationalScience ReThisworkwassupported and oxygeninto a rod identicalto the rod of Cu2+ and oxygen.The structurewouldthenbe that ofPdO s e a r c hC o u n c i l . or, with a smalltopologicaldistortion(Wells,1976), References that of CuO. Conversely, removingthe O(2) atoms of thecrystal (in position4a) from the rods of Figure3(b) would Asbrink,S. and L. J. Norrby(1970)A refinement s t r u c t u r e o f c o p p e r ( I l ) o x i d e w i t h a d i s c u s s i o no f s o m e e x convert them into the Cu+-oxygenrods Of Figure c e p t i o n a l e s . d ' s A c t a C r y s t a l l o g r . ,8 2 6 , 8 - 1 5 . 3(a), and the resultingstructureis topologicallythe C o p p e n s , P . a n d W . C . H a m i l t o n ( 1 9 7 0 ) A n i s o t r o p i c e x t i n c t i o n sameasthat of CurO [to makeit exactlythat of CurO corrections in the Zachariasen approximation. Acta C rystallogr., A26, 7 1-83. would requirechangingc/a from 1.70to f2 and changing thez parameter of O(l) from 0.117to l/81. F r o n d e l , C . ( 1 9 4 1 ) P a r a m e l a c o n i t e a: t e t r a g o n a lo x i d e o f c o p p e r . Am Mineral.. 26. 657-672. Thus the paramelaconite structurecan be described K o e n i g , G . A . ( 1 8 9 1 ) O n p a r a m e l a c o n i t ea, n d t h e a s s o c i a t e dm i n either as derivedfrom the CuO (PdO) structureby erals. Proc Acad. Nat. Sci. Philadelphia,2S4. orderedremovalof oxygenatomsor asderivedfrom O ' K e e f f e , M . a n d S . A n d e r s s o n ( 1 9 7 7 ) R o d p a c k i n g s a n d c r y s t a l chemistry. Acta Ctystallogr., A33, 914-923. the CurO structureby orderedinsertionof oxygen Shubnikov, A V. and V. A. Kopstik (1974) Symmetry in Science These atoms. relationships aresummarized in Table6 a n d A r t P l e n u m P r e s s ,N e w Y o r k . by referringall three structuresto a common tet- T e s k e , C . L . a n d H . M i i l l e r - B u s c h b a u m( 1 9 7 0 ) Z u r K e n n t n i s v o n ragonalcell. SrCu,O,. Z Anorg. Allgem. Chem., 379, Il3-124. The paramelaconite structureis closelyrelatedto Wells, A. F. (1976) Structural Inorganic Chemistry,4th ed. Oxford that of SrCurO, (Teske and Miiller-Buschbaum, U n i v e r s i t y P r e s s . 1970),whichhasthe sarnesymmetryand similarcell W i l l i a m s , S . A . ( 1 9 6 2 ) P a r a m e l a c o n i t ea n d a s s o c i a t e dm i n e r a l s from the Algomah mine, Ontonagon County, Michigan. Am. dimensions. The Cu+-O rods areidenticalin the two Mineral 47,778-9. compounds,and Sr replacesthe O(2) of paramelaconite. An alternativeand complementary way of describManuscript receiued, March 15, 1977; accepted ing the structures of the copperoxidesis to notethat for publication, July 25, 1977.
© Copyright 2026 Paperzz