Section 2.6 Section 1. Derivatives of Inverse Functions Derivatives of Inverse Functions 2.6 f(x) = X3+ 2x - 1, f(1) = 2 = a f'(x) = 3x2+ 2 1 1 1 1 (j-l)'(2) = f'(j-l(2)) = 1'(1) = 3(1)2+ 2 = "5 2. f(x) = 2x5+x3 + 1, f(-I)=-2=a f'(x) = lOx4+ 3X2 1 (j-l)'(-2) 3. 1 = f'(j-l(-2)) = 1'(-1) 1 1 = 10(-1)4 + 3(_1)2 = 13 f(x) = sinx, f(~) = ~ = a f'(x) = cos X -) ' (j 4. 1. - 1 ) ~ - ) (2 - f'(j-l(1/2)) - 1 - ~ - f'(n/6) - cos(7T/6)- ~/2 - 2~ - 3 f(x) = cos 2x, f(O) = 1 = a f'(x) = - 2 sin2x (j-l)'(1) = 5. 1 f'(j-l(1)) 4 f(x) = x3 - -, x =~ 1'(0) = 1 - 1 -2 sin 0 - . . 0 WhICh IS undefined. f(2) = 6 = a f'(x) = 3x2 + .! X2 1 1 1 1 (j-l)'(6) = f'(j-l(6)) = f'(2) = 3(2)2+ (4/22) = 6. f(x) =~, f'(x) = f(8) = 2 = a 1 2~ 1 1 1 (j-l)'(2) = f'(j-l(2)) = 1'(8) = 1/(2~) 7. 13 f(x) = x3, G,) - 1 - 1/4 - 4 8. f(x) = 3 - 4x, (1,-1) f'(x) = - 4 f'(x) = 3X2 1'(1) = -4 3-x f-l(X) = ~' f'G)= r1(x) = 4'x, 1 (j-l)'(x) = 3W (,) 1 (j-l)'(X) = -4 1 (j-l)'( -1) = -4 (j-l)'(i) = (-1,1) 159 160 Chapter 2 9. Differentiation (5,1) f(x) = h"-=4, 10. f(x) = 1 1 f'(x) = 2h"-=4 : x2' (1,~) -2x f'(x) = (1 + x2)2 1'(5) =.!.2 1 1'(1) = -2 (1,5) f-l(X) = x2 + 4, ~ U-l)'(X) = 2x f-l(X) 1 (2' 1) = -..J~' U-l)/(1) = 2 lr--x U-l)/(X) =- 2x2-..J ~ U-l)'(4) = -2 11. f(x) = 2 arcsin(x- 1) 2 2 f'(x) = ""1 - (x - 1)2= ""2x - x2 x 13. g(x) x 15. f(x) = arctan-a 1 -1 -1 g/(x)= -J1=X )( 2.Jx) = 2.Jx""1 - x ( f'(x) = C ~ JC~J = 2.Jx(~ + x) 18. h(x) = x arctan x 17. g(x) = arcsin3x x x(3/~) gx= f'(x) = g=7 16. f(x) = arctan.Jx l/a - ~ f'(x) = 1 + (x2/a2)- a2 + x2 ( ) 2t 14. g(x) = arccos.Jx = 3 arccos 2 -3(1/2) -3 g/(x) = ""1 - (x2/4) = ""4 - x2 / , 12. f(t) = arcsin t2 - arcsin3x x2 X h'(x) = 1 + x2 + arctan x - 3x - ~ arcsin3x x2""1- 9X2 20. f(x) = arcsec2x 19. h(x) = arccot 6x -6 h'(x) = 1 + 36x2 21. h(t) = sin(arccost) = f'(x) = 22. g(t) 1 h'(t) = -(1 2 - t2)-1/2(- 2t) Ixl""4x2 - 1 = tan(arcsin t) = ""1 - t2 ~-t(-t/~) g/(t) = =~ ~ f'(x) = 0 12x1""4x2- 1 1 =- t ~ 23. f(x) = arcsinx + arccosx = 2 - 1 - t2 1 - O-=-t2)3/2 f 7r 24. f(x) = arcsec x f'(x) = 0 + arccsc x = "2 Section 2.6 I I 25. Y = 2 x+ I I + arctanx (21nx - f = ~C ~ I )= 4'[ln(x + 1) -In(x Derivatives of Inverse Functions I - I)] + 2 arctanx I - x ~ I) + 112r = I ~ X4 26. Y = i(x~ + arcsinx) -x dy =l x dx 2[ (~ ) + ~+ ]= ~ I ~ 27. Y = x arcsinx + ~ dy 1 (~ dx=x . x )+arcsmx- . ~=arcsmx 1 28. y = x arctan2x - 4'ln(I + dy dx 4X2) 2x I ( 8x ) = I + 4r + arctan(2x)- 4' I + 4r = arctan(2x) 29. f(x) = arccosx f'(x) = -I .J3 = -2 whenx = :i:-. 2 ~ Whenx = .J3/2, f( .J3/Z) = 7T/6.Whenx = - .J3/2,f( - .J3/Z) = 57T/6. Tangent lines: ~ = -2(X- ~) y - y - 5; = -2(X + ~) I 30. g(x) = arctan x, g'(x) Tangent line: y y ~ = -2x + (~+ .J3) ~ y = -2x + e67T- .J3) I = I + r' g'(1) = 2 - ~ = i(x - I) I 31. f(x) = arcsin x, I 7T y=-x+--2 4 2 1 a =2 I.S I f'(x) = ~I - 1.0 r x r(x) = (I - p; x2)3/2 ' 1 iI =J\2 + f 2)( x I 'IT 2.J3 I ) ( - 2)= 6"+ 3 (x - 2) I I 1 I 1 z.J3 2.J3 I "1 ,(1 )+Tx-2 ( ) P2(x)=f2( ) +f\2 )( x-2 ) +2f (2)(x-2 ) =6"+3x-2 ( p.(x) 2 'IT 2 161 162 Differentiation Chapter 2 32. f(x) = arctan x, a = 1 1 f'(x) = -1 + X2 -2x f"(x) = (1 + x2)2 PI (x) = f(1) + f'(1)(x 'TT 1 - 1) = 4" + 2(x - 1) , 1 'TT 1 1 P2(x) = f(1) + f (1)(x - 1) + -2 f"(1)(x - 1)2 = -4 + -(x 2 - 1) - -(x 4 - 1)2 h(t) = - 16t2 + 256 33. (a) -16t2 + 256 = 0 (b) tan 0 = ~ 500 when t = 4 sec. = -16t2500+ 256 0 = arctan[51~ (- t2 + 16)] dO - 8t/125 -1000t dt - 1 + [(4/125)(-t2 + 16)]2 - 15,625 + 16(16 - t2)2 .~ 500 When t = 1, dO/dt = -0.0520 rad/sec. Whent= 2, dO/dt= -0.1l16rad/sec. h 34. tan 0 = 300 300 dh = 5 ftlsec dt 0 200 100 = arctan(3~) dh 300 dO 1/300 dt = 1 + (h2/3002) dt = 3002 + h2(5) () 100 200 300 1500 3 = 3002 + h2 = 200 rad/sec when h = 100. 35. (a) Let y = arctan u. Then tany = u 2::J 2 dy = u' see y dx dy_~_~ dx - sec2y - 1 + U2' (b) Let y = arcsec u. Then secy=u secytany: = u' dyu' -~ dx - secytany - lulg=}' ~R Note: The absolute value sign in the fonnula for the derivative of arcsec u is necessary because the inverse secant function has a positive slope at every value in its domain. -CONTINUED- . Section 2.6 Derivatives of Inverse Functions 35.-CONTINUED(c) Let Y = arccos u. Then cosy = u ~~ -siny dy dx = u' - -~- dy - dx (d) Let y u' ,Jf=U2' sin y - = arccotu. Then coty -CSC2Ydy dx =u ~, = u' dy- u' - u' u dx - -csc2y - -I + u2" (e) Let y = arccsc u. Then cscy=u dy , -csc Ycotydx = u dy=~ dx -cscycoty ~, u' ../u2-1 lul~' Note: The absolute value sign in the formula for the derivative of arccsc u is necessary because the inverse cosecant function has a negative slope at every value in its domain. 36. = kx + f(x) sin x f'(x) = k + cos x ~ 0 for k ~ I f'(x) = k + cos x :0;0 for k :0;-I Therefore, f(x) = kx + sin x is strictly monotonic and has an inverse for k :0;- I or k ~ 1. 37. f(x) g(x) = sin x 38. f(x) = cosx = arcsin(sin x) (a) The range of y - = arcsin x is 7r/2 :0;Y :0; 7r/2. (b) Maximum:7r/2 Minimum:-7r/2 g(x) = arccos(cosx) (a) The range of y.= arccos x is 0:0; Y :0; 7r, (b) Maximum: Minimum: 7r 0 3 ~3~~ -3 -2 f -3 39. y = 19.14- (a) 15 0.18t- 37,10arccot(t) (b) y' = -0.18 - 37.1O--=L I + t2 = -0.18 + I37.10 + t2 y'(20) = -0.087 millionlyr ,[5]0 y'(60) = -0.170 millionlyr 163
© Copyright 2026 Paperzz