HCAL performance studies and software integration FCC-hh detector meeting February 2017 C. Neubüser, A. Henriques, C. Helsens, J. Faltova, A. Zaborowska, M. Aleksa CERN 08.02.2017 08.02.2017 Coralie Neubüser 1 FCC HCAL barrel based on ATLAS TileCal Design until FCC week 2016: • 12m bore solenoid (6T) • Active HCAL depth ≈2m • 10𝜆 + 2𝜆 ECAL ≈ 12𝜆 HCAL modules Current baseline: • 10m bore solenoid (4T) • Active HCAL depth 1.8m within (2.85 − 4.65)𝑚 • 9.0𝜆 + 2𝜆 ECAL = 11𝜆 08.02.2017 Coralie Neubüser 2 Old FCC-hh detector design Study of impact of containment by increasing HCAL depth à 12𝜆 favourable master Single pion resolution 2016 JINST 11 P09012 08.02.2017 Coralie Neubüser 3 New FCC-hh HCAL requirements Current baseline: • 10m bore solenoid (4T) • Active HCAL depth 1.8m • 9.0𝜆 + 2𝜆 ECAL = 11𝜆 Idea Increase of #interaction lengths by increasing Fe/Sci ratio from 4.7 to 6 (master thickness from 5 to 7mm) Fe/Sci ratio 4.7 6.0 𝛌eff 20.6cm 19.8cm Active depth (𝜂 = 0) 180cm 180cm 8.7 9.1 #𝝀 (𝜂 = 0) 08.02.2017 Coralie Neubüser 4 • from (2.5 - 6)m to (3.6 - 5.4)m from 35 to 22 layers Master thickness: • from 5 to 7mm à sequence from 18 to 22mm 3 mm master air tile air • 5/7mm Radius: • spacer Changes to earlier study: 4 mm • master • FTFP_BERT physics list No ECAL • 5/7 mm HCAL Geant4 standalone 10cm 20˚ • Fe/Sci ratio 𝛌eff 4.7 20.6cm Effective depth 180cm * arccos(20˚) 𝒆𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆#𝝀 9.3 10,20,100 and 2000GeV single 𝜋’s 08.02.2017 Coralie Neubüser 5 Validation 4.7 Master th. 5mm Scintillator th. 3mm Sampling fraction 2.5% 20.6cm Effective depth 174.2cm * 1.06 𝒆𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆#𝝀 9.0 42.6% ⊕ 3.9% √𝐸 𝛔? 𝐄 0.14 5mm master, 9.0λ HCAL 0.12 rec 𝛌eff Single pion resolution 2016 JINST 11 P09012 σE / 〈 Erec〉 Fe/Sci ratio Containment of hadron showers in FCChh paper Carlos JINST(5mm) 9.0λ 0.1 0.08 0.06 Close to perfect agreement 0.04 0.02 10 08.02.2017 Coralie Neubüser 103 E [GeV] 102 6 Impact of larger Fe/Sci ratio 1. 2. à Decreased sampling fraction 2.5% à 1.8% Increased #interaction lengths 9.3 à 9.7 Check of impact of increased #𝜆E on linearity: • Leakage is visible > 100GeV beam (〈Erec 〉-Ebeam)/E By increasing Fe/Sci ratio 0.05 0 −0.05 −0.1 0.14 σErec/ 〈 Erec〉 • 0.1 102 0.12 103 104 Ebeam [GeV] 5mm master (9.7#λ) 5mm master (9.3#λ) 0.1 5mm master (9.0#λ) 0.08 0.06 0.04 0.02 The non-linearity of pion response affected by e/h > 1 and leakage 08.02.2017 0 𝐸FGH = 1?𝛼 J 𝐸KLM 𝛼 = 0.023 102 Coralie Neubüser 103 104 E [GeV] 7 Impact of larger Fe/Sci ratio 1. 2. Decreased sampling fraction 2.5% à 1.8% Increased #interaction lengths 9.3 à 9.7 beam By increasing Fe/Sci ratio (〈Erec 〉-Ebeam)/E • 0.1 0.05 0 −0.05 −0.1 à Impact of decreased sampling fraction: • Worse resolution and linearity σErec/ 〈 Erec〉 0.14 102 0.12 103 104 Ebeam [GeV] 5mm master (9.7#λ) 5mm master (9.3#λ) 0.1 7mm master (9.7#λ) 0.08 0.06 𝐸FGH = 1?𝛼 J 𝐸KLM 0.02 𝛼 = 0.023(5𝑚𝑚) 𝛼 = 0.018(7𝑚𝑚) 0.04 Larger non-linearity for higher Fe/Sci ratio, surprising since e/h~1 08.02.2017 0 102 Coralie Neubüser 103 104 E [GeV] 8 Summary electrons 6 Master th. 5mm 7mm Scintillator th. 3mm 3mm Sampling fraction 2.5% 1.8% 0.05 0 −0.05 −0.1 0.14 27.8% √𝐸 ⊕ 0.6% 36.3% √𝐸 ⊕ 2.4% σErec/ 〈 Erec〉 𝛔? 𝐄 0.1 beam 4.7 (〈Erec 〉-Ebeam)/E Fe/Sci ratio 102 103 E [GeV] beam 5mm master 0.12 7mm master 0.1 0.08 • ATLAS TileCal electron OP.Q% resolution √R ⊕ 2.8% à increased 𝜂 dependence due to worse sampling frequency à investigation on-going! 08.02.2017 0.06 0.04 0.02 0 Coralie Neubüser 102 103 E [GeV] 9 Summary pions Fe/Sci ratio 4.7 4.7 4.7 6 Master th. 5mm 5mm 5mm 7mm Scintillator th. 3mm 3mm 3mm 3mm Sampling fraction 2.5% 2.5% 2.5% 1.8% 𝛌eff 20.6cm 20.6cm 20.6cm 19.8cm Effective depth 174cm * 1.06 180cm * 1.06 189cm * 1.06 180cm * 1.06 #𝝀 9.0 42.6% 43.5% 9.7 43.6% 9.7 44.1% √𝐸 ⊕ 3.9% √𝐸 ⊕ 3.3% √𝐸 ⊕ 3.0% √𝐸 ⊕ 5.0% 𝛔? 𝐄 𝒆? 𝒉 9.3 1.2 08.02.2017 ~1 Coralie Neubüser 10 Summary à Keep as baseline the original design with Fe/Sci ratio of 4.7 (as in ATLAS) 08.02.2017 10 190cm - 10.5 10 9.5 9 8.5 8 7.5 7 6.5 6 5.5 #λn • Larger sampling fraction preferred over larger #𝜆E Profit of smaller Fe/Sci ratio questionable (study postponed) 180cm 8 170cm 6 4 2 1 2 σE/〈E〉 of 2TeV π [%] • 3 4 Coralie Neubüser 5 6 7 8 Fe/Sci ratio 11 0 HCAL geometry in FCCSW “subWedge” • • Check of geometry implementation HCalBarrel_geo.cpp – done Birks law for the scintillator included 08.02.2017 Tile Steel absorber Coralie Neubüser 12 Validation of HCAL in FCCSW • • larger response slight degradation of resolution à Under investigation! electrons, 𝜂 dependence, bugs in the code… 0.1 beam (〈Erec〉-Ebeam)/E First glimpse into single pions revealed 0.05 0 −0.05 −0.1 0.14 σErec/ 〈 Erec〉 • 102 0.12 103 104 Ebeam [GeV] Standalone Fe/Sci 4.7 (9.3# λ) FCCSW Fe/Sci 4.7 (9.3#λ) 0.1 𝐸KLM 2.8% 𝐸KLM = 2.3% 0.08 𝐸FGH = 0.06 𝐸FGH 0.04 0.02 0 08.02.2017 work in progress 102 Coralie Neubüser 103 104 E [GeV] 13 Software for calorimeter system Goal is a combined reconstruction • Reconstruction tools (generalized for different technologies/geometries) • • • • Merging of energy deposits into cells Position of cells Noise (simple) Sliding window algorithm (single CAL) ✔ ✔ ✔ ✔ work in progress 08.02.2017 Coralie Neubüser 14 Software for calorimeter system Ongoing • Sliding window for E + HCAL • Contact with LC ECAL expert on SiW ECAL simulation à integration in FCCSW More plans • Building topo-clusters to build jets • Using topo-clusters as PFA input à contact with ATLAS expert established THANK YOU! 08.02.2017 Coralie Neubüser 15
© Copyright 2026 Paperzz