meters per second - Take me to Mr. Calderon

d
v
t
v
a
t
v, velocity
d, distance
t, time
Symbols are in bold.
m/s
(meters per second)
m
(meters)
s
(seconds)
All units are in italics.
a, acceleration
v, velocity
t, time
m/s2
(meters per
second squared)
m/s
(meters per second)
s
(seconds)
Given a constant acceleration,
vavg = ( vo + vf ) / 2
such that when vo equals zero, then… vf = 2 * vavg
or
vavg = vf / 2
vf = at + vo
d = ½ at2 + vot + do
NOTE: Any of the three terms may be discarded if initially zero.
vf 2 = vo2 + 2a Δd
d, distance
a, acceleration
vo initial velocity
vf final velocity
t, time
do (initial) distance
m
(meters)
m/s2
(meters per second
squared)
m/s
(meters per second)
m/s
(meters per second)
s
(seconds)
m
(meters)
vtan = r ω
ac = r ω2
ac = vtan2 / r
Fc = ( m * vtan2) / r
m, mass kg (kilograms)
vtan tangential velocity
m/s
(meters per second)
r, radius
m
(meters)
ω, angular velocity
rad / s
(radians per second)
a c centripetal acceleration
m/s2
(meters per second squared)
Fc centripetal force
N
(Newtons)
p, momentum
m, mass
v, velocity
kg*m/s
(kilogram-meters
per second)
kg
(kilograms)
m/s
(meters per second)
p, impulse
F, force
t, time
kg*m/s
(kilogram-meters
per second)
N
(Newtons)
s
(seconds)
F, force
m, mass
a, acceleration
N
(Newtons)
kg
(kilograms)
m/s2
(meters per second squared)
W, work
F, force
d, distance
J
(joules)
N
(newtons)
m
(meters)
P, power
W, work
t, time
F, force
v, velocity
W
(watts)
J
(joules)
s
(seconds)
N
(newtons)
m/s
(meters/second)
v, velocity
f, frequency
λ, wavelength
p, period
m/s
(meters per second)
Hz
(Hertz)
m
(meters)
s
(seconds)
p
m
v
p
F
Δt
F
m
a
W
F
d
W
P
t
v
f
λ
P
1
f
p
F
v
GPE = m* g* h
KE = ½ mv2
EPE = ½ kx2
m, mass
g, gravity
h, height
GPE, gravitational potential energy
kg
(kilograms)
m/s2
(meters per
second squared)
m
(meters)
J
(joules)
m, mass
v, velocity
KE, kinetic energy
kg
(kilograms)
m/s
(meters per second)
J
(joules)
k, spring constant
x, displacement
N/m
(Newtons per meter)
m
(meters)
Q = m * ΔT * C
Q, sensible heat energy
J
(joules)
GPE + KE + EPE= ME
EPE, elastic potential energy
m, mass
kg
(kilograms)
ΔT, change in temperature
K
(Kelvins)
C, specific heat capacity
J/kg*K
(joules per
m, mass
kg
(kilograms)
ΔH, enthalpy (of fusion, vaporization, sublimation)
J/kg
(joules per kilogram)
kilogram*Kelvin)
Q = m * ΔH
F
P
A
Q, latent heat energy
J
(Joules)
P1 + ρgΔh1 + ½ρv12 = P2 + ρgΔh2 + ½ρv22
P, pressure
F, force
A, area
Pa
(Pascals)
N
(Newtons)
m2
(meter squared)
101,325 Pa = 1 atmosphere = 7.60 x 102 Torricelli (same as mm of Hg)= 30.0 inches of Hg = 14.7 lbs/in2
n i * sin θ i = n r sin θ r
For series…
θ i = angle of incidence
θ r = angle of refraction
RT = R1 + R2 + … Rn
For parallel…
1 =
RT
1 +
R1
1
+ …
R2
1.
Rn
1 + 1 =
1
s
f
s’
s = object distance
s’ = image distance
f = focal length
critical angle = A sin
θ r = A sin
V
I
R
P
I
V
E
h
f
C
q
MR. Calderón
V
V, voltage
I, current
R, resistance
v
(volts)
A
(amperes)
Ω
(ohms)
P, power
I, current
V, voltage
W
(watts)
A
(amperes)
v
(volts)
E, energy
h, Planck’s constant
f, frequency
J
(Joules)
J*s
(Joules* seconds)
Hz
(Hertz)
C, capacitance
q, charge
V, potential difference (voltage)
F
(Farads)
C
(coulombs)
V
(volts)
ni sin θ i
nr
E
V
q
q
I
ni
nr
t