d v t v a t v, velocity d, distance t, time Symbols are in bold. m/s (meters per second) m (meters) s (seconds) All units are in italics. a, acceleration v, velocity t, time m/s2 (meters per second squared) m/s (meters per second) s (seconds) Given a constant acceleration, vavg = ( vo + vf ) / 2 such that when vo equals zero, then… vf = 2 * vavg or vavg = vf / 2 vf = at + vo d = ½ at2 + vot + do NOTE: Any of the three terms may be discarded if initially zero. vf 2 = vo2 + 2a Δd d, distance a, acceleration vo initial velocity vf final velocity t, time do (initial) distance m (meters) m/s2 (meters per second squared) m/s (meters per second) m/s (meters per second) s (seconds) m (meters) vtan = r ω ac = r ω2 ac = vtan2 / r Fc = ( m * vtan2) / r m, mass kg (kilograms) vtan tangential velocity m/s (meters per second) r, radius m (meters) ω, angular velocity rad / s (radians per second) a c centripetal acceleration m/s2 (meters per second squared) Fc centripetal force N (Newtons) p, momentum m, mass v, velocity kg*m/s (kilogram-meters per second) kg (kilograms) m/s (meters per second) p, impulse F, force t, time kg*m/s (kilogram-meters per second) N (Newtons) s (seconds) F, force m, mass a, acceleration N (Newtons) kg (kilograms) m/s2 (meters per second squared) W, work F, force d, distance J (joules) N (newtons) m (meters) P, power W, work t, time F, force v, velocity W (watts) J (joules) s (seconds) N (newtons) m/s (meters/second) v, velocity f, frequency λ, wavelength p, period m/s (meters per second) Hz (Hertz) m (meters) s (seconds) p m v p F Δt F m a W F d W P t v f λ P 1 f p F v GPE = m* g* h KE = ½ mv2 EPE = ½ kx2 m, mass g, gravity h, height GPE, gravitational potential energy kg (kilograms) m/s2 (meters per second squared) m (meters) J (joules) m, mass v, velocity KE, kinetic energy kg (kilograms) m/s (meters per second) J (joules) k, spring constant x, displacement N/m (Newtons per meter) m (meters) Q = m * ΔT * C Q, sensible heat energy J (joules) GPE + KE + EPE= ME EPE, elastic potential energy m, mass kg (kilograms) ΔT, change in temperature K (Kelvins) C, specific heat capacity J/kg*K (joules per m, mass kg (kilograms) ΔH, enthalpy (of fusion, vaporization, sublimation) J/kg (joules per kilogram) kilogram*Kelvin) Q = m * ΔH F P A Q, latent heat energy J (Joules) P1 + ρgΔh1 + ½ρv12 = P2 + ρgΔh2 + ½ρv22 P, pressure F, force A, area Pa (Pascals) N (Newtons) m2 (meter squared) 101,325 Pa = 1 atmosphere = 7.60 x 102 Torricelli (same as mm of Hg)= 30.0 inches of Hg = 14.7 lbs/in2 n i * sin θ i = n r sin θ r For series… θ i = angle of incidence θ r = angle of refraction RT = R1 + R2 + … Rn For parallel… 1 = RT 1 + R1 1 + … R2 1. Rn 1 + 1 = 1 s f s’ s = object distance s’ = image distance f = focal length critical angle = A sin θ r = A sin V I R P I V E h f C q MR. Calderón V V, voltage I, current R, resistance v (volts) A (amperes) Ω (ohms) P, power I, current V, voltage W (watts) A (amperes) v (volts) E, energy h, Planck’s constant f, frequency J (Joules) J*s (Joules* seconds) Hz (Hertz) C, capacitance q, charge V, potential difference (voltage) F (Farads) C (coulombs) V (volts) ni sin θ i nr E V q q I ni nr t
© Copyright 2026 Paperzz