QCD to XYZ From quarks and gluons to exotic hadrons Daniel Mohler Graz, April 27, 2016 Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 1 / 35 Quantum Chromodynamics (QCD) and hadrons QCD: Theory that describes the strong interaction between quarks and gluons within the Standard Model of Particle Physics Asymptotic Freedom: Theory perturbative at high energies/short distances → Perturbative calculations for high-energy physics Confinement: Color-charged particles do not exist individually but only confined into composite objects called hadrons. Textbook classification: Quark-antiquark mesons and three-quark baryons → c Arpad Horvath Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 2 / 35 Exotic mesons in the heavy-quark spectrum Surprise results from the Belle and BaBar experiments (built to investigate the difference between matter and antimatter): D∗s0 (2317): Y(4260): PRL 91 262001 (2003) PRL 90 242001 (2003) PRL 95 142001 (2005) Events / 20 MeV/c2 X(3872): 40 104 103 30 102 10 1 3.6 3.8 20 4 4.2 4.4 4.6 4.8 5 10 0 3.8 4 4.2 4.4 4.6 4.8 5 m(π+π-J/ψ) (GeV/c2) Highest-cited Belle paper Daniel Mohler (HIM) Third-most cited BaBar paper From quarks and gluons to exotic hadrons Fourth-most cited BaBar paper Graz, April 27, 2016 3 / 35 10 years later: Many more surprises Data Global fit Three-body PS (global fit) ±1σ uncertainty band Event-mixing (J/ ψ, φ, K+) Event-mixing (J/ ψ, φ K+ ) 1D fit 250 200 150 100 50 0 1.1 1.2 1.3 1.4 Events / 0.01 GeV/c2 N(B+) / 20 MeV 300 CMS, s = 7 TeV, L=5.2 fb-1 Data 100 Total fit Background fit 80 PHSP MC Sideband 60 40 Z(4430)± : Belle, LHCb Candidates / ( 0.2 GeV2 ) Zc (3900)± : BESIII, Belle, data from Cleo Y(4140): CDF, CMS 1000 500 20 0 0 3.7 3.8 3.9 8000 6000 120 Events/(15 MeV) 10000 20 100 80 60 22 m2ψ'π− [GeV2] Pc (4450), Pc (4380): LHCb Zc (4020)± : BESIII Events/ ( 0.005GeV/c2 ) Events / 10 MeV/c2 Belle (a) 18 4.0 Mmax(π±J/ψ) (GeV/c2) 800 LHCb (b) 700 600 500 400 4000 40 2000 20 0 0 -2000 10.4 16 1.5 ∆m [GeV] Zb (10610)+ , Zb (10650)+ : 12000 LHCb 300 10.5 10.6 200 3.7 3.8 3.9 4.0 4.1 4.2 Mπ±hc(GeV/c2) Mmiss(π), GeV/c2 Daniel Mohler (HIM) 100 0 4 4.2 4.4 4.6 4.8 5 mJ / ψp [GeV] 10.7 From quarks and gluons to exotic hadrons Graz, April 27, 2016 4 / 35 Exotic hadron spectroscopy: experiment ↔ theory Vigorous and varied experiment program(current and planned) Heavy mesons: LHCb, BESIII, PANDA, BelleII, . . . Light mesons: GlueX, MesonEx, COMPASS, . . . Baryons: CLAS12, ELSA, E45@JPARC, MAMI . . . Should be accompanied by an equally vigorous theory effort Current theory understanding of states with exotic properties relies on models rather than first-principle calculations. Molecules, Tetraquarks, Hybrid mesons, etc. Many models – and none match all observations The research I pursue will aid the understanding of exotic heavy mesons directly from QCD Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 5 / 35 Exotic hadron spectroscopy: experiment ↔ theory Vigorous and varied experiment program(current and planned) Heavy mesons: LHCb, BESIII, PANDA, BelleII, . . . Light mesons: GlueX, MesonEx, COMPASS, . . . Baryons: CLAS12, ELSA, E45@JPARC, MAMI . . . Should be accompanied by an equally vigorous theory effort Current theory understanding of states with exotic properties relies on models rather than first-principle calculations. Molecules, Tetraquarks, Hybrid mesons, etc. Many models – and none match all observations The research I pursue will aid the understanding of exotic heavy mesons directly from QCD Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 5 / 35 Exotic hadron spectroscopy: experiment ↔ theory Vigorous and varied experiment program(current and planned) Heavy mesons: LHCb, BESIII, PANDA, BelleII, . . . Light mesons: GlueX, MesonEx, COMPASS, . . . Baryons: CLAS12, ELSA, E45@JPARC, MAMI . . . Should be accompanied by an equally vigorous theory effort Current theory understanding of states with exotic properties relies on models rather than first-principle calculations. Molecules, Tetraquarks, Hybrid mesons, etc. Many models – and none match all observations The research I pursue will aid the understanding of exotic heavy mesons directly from QCD Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 5 / 35 Outline 1 Introduction and Motivation Hadrons - the bound states of quarks and gluons Quantum Chromodynamics (QCD) and the Lattice 2 Modern lattice hadron spectroscopy Spectroscopy and properties of bound states What about resonances/ threshold states? The simplest resonance: The ρ meson Ψ(3770) - a heavier brother of the ρ 3 Towards exotic hadrons D∗s0 (2317) and Ds1 (2460) and their b-quark cousins χ0c0 and X/Y(3915) 4 Summary and future research directions Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 6 / 35 Lattice Quantum Chromodynamics: What do we calculate? Regularization of QCD by a 4-d Euclidean space-time lattice. (Kenneth Wilson 1974) Provides a calculational method for QCD Euclidean correlator of two Hilbert-space operators Ô1 and Ô2 . D E X Ô2 (t)Ô1 (0) = e−t∆En h0|Ô2 |nihn|Ô1 |0i n 1 = Z Z D[ψ, ψ̄, U]e−SE O2 [ψ, ψ̄, U]O1 [ψ, ψ̄, U] Last line is a path integral over the Euclidean action SE,QCD [ψ, ψ̄, U]; (a sum over quantum fluctuations) Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 7 / 35 Lattice QCD: What do we calculate? Fermion integral can be done explicitly Rest can be evaluated with Monte Carlo simulations using methods well established in statistical physics gluons: Uµ } a quarks: ψ Λ Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 8 / 35 Why Lattice Quantum Chromodynamics? Understand the theory of the strong interaction at low energies Confinement and hadron properties Chiral Symmetry breaking (QCD dynamics responsible for > 98% of the nucleon mass) Lattice QCD as a tool to understand strong-interaction contributions precision flavor physics muon physics (g − 2, . . . ) neutrino physics dark matter searches Higgs boson decays (precision quark masses) QCD for hadronic (and nuclear) physics Understand hadronic degrees of freedom (and how they arise) Understand connection to nuclei and their properties Lattice QCD is a non-perturbative, systematically improvable method leading to quantifiable uncertainties Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 9 / 35 Stable hadron states: A lattice success story Light mesons and baryons Heavy mesons 12 MESON MASS (GeV/c2) 10 ’ db db expt fix params postdcns predcns rb2 rb1(2P) rb0 rb2 rb1(1P) r [(1D) b0 8 Bc’ Bc 6 4 Bs B d ’c dc 0 s’ J/s hc *’ B c * Bc B*s B* * B c0 rc2 rc1 rc0 Ds D 2 Example from BMW Dürr et al. Science 322 (2008) hb(2P) [’’ [’ [ hb(1P) d / K Example from HPQCD Dowdall et al. PRD 86 094510 (2012) Hadrons stable under QCD: full control of systematic uncertainties Routinely done for a wide variety of observables (for example for flavor physics) Goal: Extend this success to hadron resonances Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 10 / 35 Two kinds of progress... Precision results: = = + = + + / 1.14 1.18 1.22 1.26 Exploratory studies: our estimate for = + + ETM 13F HPQCD 13A MILC 13A MILC 11 (stat. err. only) ETM 10E (stat. err. only) our estimate for = + RBC/UKQCD 12 Laiho 11 MILC 10 JLQCD/TWQCD 10 RBC/UKQCD 10A PACS-CS 09 BMW 10 JLQCD/TWQCD 09A (stat. err. only) MILC 09A MILC 09 Aubin 08 PACS-CS 08, 08A RBC/UKQCD 08 HPQCD/UKQCD 07 NPLQCD 06 MILC 04 our estimate for = ALPHA 13 BGR 11 ETM 10D (stat. err. only) ETM 09 QCDSF/UKQCD 07 Example: FLAG review See http://itpwiki.unibe.ch/flag/ 600 800 1000 1200 1400 1600 -100 -300 -500 Example: πK-ηK-scattering Dudek et al. PRL 113 182001 (2014) I will report on exploratory calculations with regard to heavy meson resonances and bound states Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 11 / 35 Observables: Examples for correlation functions Need: Interpolating field operator that creates states with correct quantum numbers. Example I: Pseudoscalar Mesons with IJ PC = 10−+ O(1) π = ūγ5 d ← → O(2) π = ū D γi γt γ5 d Can obtain mass from 2-point correlator with Oπ and Ōπ Example II: Nucleon ON = abc Γ1 ua uTb Γ2 dc − dbT Γ2 uc In practice: Many (slightly different) constructions possible! Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 12 / 35 (My) Method of choice: The variational method Matrix of correlators projected to fixed momentum (will assume 0) D E X C(t)ij = e−tEn h0|Oi |ni n|O†j |0 n Solve the generalized eigenvalue problem: ~ (k) = λ(k) (t)C(t0 )ψ ~ (k) C(t)ψ λ(k) (t) ∝ e−tEk 1 + O e−t∆Ek At large time separation: only a single state in each eigenvalue. Eigenvectors can serve as a fingerprint. Michael Nucl. Phys. B259, 58 (1985) Lüscher and Wolff Nucl. Blossier et al. Daniel Mohler (HIM) Phys. B339, 222 (1990) JHEP 04, 094 (2009) From quarks and gluons to exotic hadrons Graz, April 27, 2016 13 / 35 Technicalities: The “Distillation” method Peardon et al. PRD 80, 054506 (2009) Morningstar et al. PRD 83, 114505 (2011) Idea: Construct separable quark smearing operator using low modes of the 3D lattice Laplacian Spectral decomposition for an N × N matrix: f (A) = N X f (λ(k) ) v(k) v(k)† . k=1 With f (∇2 ) = qs ≡ Θ(σs2 N X + ∇2 ) (Laplacian-Heaviside (LapH) smearing): Θ(σs2 + λ(k) )v(k) v(k)† q = k=1 Nv X v(k) v(k)† q . k=1 Advantages: momentum projection at source; large interpolator freedom, small storage Disadvantages: expensive; unfavorable volume scaling Stochastic approach (mostly) eliminates bad volume scaling Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 14 / 35 Using single hadron interpolators, what do we see? In practical calculations q̄q and qqq interpolators couple very weakly to multi-hadron states McNeile & Michael, Phys. Lett. B 556, 177 (2003); Engel, DM et al. PRD 82, 034505 (2010); Bulava et al. PRD 82, 014507(2010); Dudek et al. PRD 82, 034508(2010); This is not unlike observations in string breaking studies Pennanen & Michael hep-lat/0001015;Bernard et al. PRD 64 074509 2001; This necessitates the inclusion of hadron-hadron interpolators We know: Energy levels 6= resonance masses Naïve expectation: Correct up to O(ΓR (mπ )) Was good enough for heavy pion masses where one would deal with bound states or very narrow resonances. Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 15 / 35 An example: Different rho momentum frames without ππ with ππ interpolator set: En a 11 P=(0,0,0) 0.6 0.4 1 En a qq 0.8 1 2 3 4 5 6 8 0.8 0.6 P=(0,0,1) 0.4 1 En a 7 ππ 1: O1,2,3,4,5 , O6 2: O1,2,3,4 , O6 3: O1,2,3 , O6 4: O2,3,4,5 , O6 5: O1 , O6 6: O1,2,3,4,5 0.8 7: O1,2,3,4 0.6 P=(1,1,0) 0.4 1 2 3 4 5 6 7 8: O1,2,3 8 interpolator set Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 16 / 35 Scattering in finite volume: The Lüscher method M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237. E = E(p1 ) + E(p2 ) E = E(p1 ) + E(p2 ) + ∆E (2) −−→ En (L) δl (3) −−→ mR ; ΓR or coupling g (1) Extract energy levels En (L) in a finite box (2) Lüscher formula → phase shift of the continuum scattering amplitude (3) Extract resonance parameters (similar to experiment) 2-hadron scattering and transitions well understood; progress for 3 (or more) hadrons but difficult See LATTICE plenaries by Raúl A. Briceño arXiv:1411.6944 and Max Hansen arXiv:1511.04737 Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 17 / 35 A look at the Particle Data Group booklet I will discuss the following examples: Light hadrons Heavy-light hadrons Charmonium + b-quark analogues Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 18 / 35 Studies within our collaboration (look at the past) ππ scattering and ρ meson width Lang, DM, Prelovsek, Vidmar, PRD 84 054503 (2011) Kπ scattering Lang, Leskovec, DM, Prelovsek, PRD 86 054508 (2012) Prelovsek, Lang, Leskovec, DM, PRD 88 054508 (2013) πρ and πω scattering and the a1 , b1 resonances Lang, Leskovec, DM, Prelovsek, JHEP 1404 162 (2014) D mesons including Dπ and D? π with relativistic charm quarks DM, Prelovsek, Woloshyn, PRD 87 034501 (2013) D∗s0 (2317) and Ds1 (2460) with q̄q and D(∗) K DM, Lang, Leskovec, Prelovsek, Woloshyn, PRL 111 222001 (2013) PRD 90 034510 (2014) Predicting Bs states with J P = 0+ , 1+ Lang, Prelovsek, DM, Woloshyn, Phys. Lett.B750 17-21 (2015) Heavy meson scattering and charmonium Prelovsek & Leskovec PRL 111 192001 Prelovsek & Leskovec, Phys.Lett. B727 172 Prelovsek, Lang, Leskovec, DM, PRD 91 014504 Lang, Leskovec, DM, Prelovsek, JHEP 1509 089 Daniel Mohler (HIM) From quarks and gluons to exotic hadrons (2013) (2013) (2015) (2015) Graz, April 27, 2016 19 / 35 Technicalities: Lattices used ID (1) (2) NL3 × NT 163 × 32 323 × 64 Nf 2 2+1 a[fm] 0.1239(13) 0.0907(13) L[fm] 1.98 2.90 #configs 280/279 196 mπ [MeV] 266(3)(3) 156(7)(2) mK [MeV] 552(2)(6) 504(1)(7) Ensemble (1) has 2 flavors of nHYP-smeared quarks Gauge ensemble from Hasenfratz et al. PRD 78 054511 (2008) Hasenfratz et al. PRD 78 014515 (2008) Ensemble (2) has 2+1 flavors of Wilson-Clover quarks PACS-CS, Aoki et al. PRD 79 034503 (2009) On the small volume we use distillation On the larger volume we use stochastic distillation Peardon et al. PRD 80, 054506 (2009); Morningstar et al. PRD 83, 114505 (2011) Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 20 / 35 The ρ resonance - a benchmark calculation From Lang, DM, Prelovsek, Vidmar, PRD 84 054503 (2011); erratum ibid; δ1 150 100 50 gρππ = 5.61(12); mρ = 0.4846(37) lattice data 0 0.1 0.2 0.15 0.25 s 0.3 0.35 0.4 We extract gρππ rather than Γ Γ(s) = p? 3 g2ρππ s 6π Results for mπ = 266(3)(3)MeV gρππ = 5.61(12) Daniel Mohler (HIM) mρ = 772(6)(8) MeV From quarks and gluons to exotic hadrons Graz, April 27, 2016 21 / 35 The ρ resonance - comparing results for the coupling (phys) gρππ ≈ 5.97 mρ = 775.11(34) MeV 7.5 PACS-CS (2011) Lang et al. (2011) ETMC (2011) physical value 7 gρππ 6.5 6 5.5 5 4.5 4 0 100 200 300 Mπ/MeV 400 500 Caution: To date no simulation with full control of systematics Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 22 / 35 The ρ resonance - comparing results for the coupling (phys) gρππ ≈ 5.97 mρ = 775.11(34) MeV 7.5 PACS-CS (2011) Lang et al. (2011) ETMC (2011) GWU (2012) HSC (2012) GWU (2015) HSC (2015) Bulava et al. (2015) Bali et al. (2015) physical value 7 gρππ 6.5 6 5.5 5 4.5 4 0 100 200 300 Mπ/MeV 400 500 Caution: To date no simulation with full control of systematics Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 22 / 35 ρ resonance: Another look at an incomplete basis Wilson et al. PRD 92 094502 (2015) 180 150 120 90 60 30 0 0.08 0.10 0.12 0.14 0.16 At first sight spectrum seems well determined Energy levels cluster close to resonance energy Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 23 / 35 Ψ(3770) resonance Lang, Leskovec, DM, Prelovsek, JHEP 1509 089 (2015) 3.9 mπ = 266 MeV mπ=156 MeV exp. 3.9 ψ(3770) 3.8 3.7 3.8 3.7 ψ(2S) E [GeV] 3.6 3.6 _ D(0)D(0) 3.5 mD++mD- 3.5 2mD0 3.4 3.4 3.3 3.3 3.2 3.2 J/ψ 3.1 3.1 fit (i) Ensemble(1) Ensemble(2) Experiment fit (ii) fit (i) fit (ii) Mass [MeV] 3784(7)(8) 3786(56)(10) 3773.15(33) gΨ(3770)DD 13.2 (1.2) 24(19) 18.7(1.4) First resonance determination of a charmonium state Proof of principle - many improvements possible Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 24 / 35 Exotic Ds (charm-strange) and Bs (bottom-strange) candidates Established s and p-wave states: Ds (J P = 0− ) and D∗s (1− ) ∗ Ds0 (2317) (0+ ), Ds1 (2460) (1+ ), Ds1 (2536) (1+ ), D∗s2 (2573) (2+ ) Peculiarity: Mcs̄ ≈ Mcd̄ → Bs (J P = 0− ) and B∗s (1− ) Bs1 (5830) (1+ ), B∗s2 (5840) (2+ ) exotic structure? (tetraquark, molecule) Traditional lattice studies (using single hadron operators) tend get too large or badly determined masses Observed Bs p-wave states from two body decays into K − B+ (CDF/D0 and LHCb) Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 25 / 35 Exotic Ds (charm-strange) and Bs (bottom-strange) candidates Established s and p-wave states: Ds (J P = 0− ) and D∗s (1− ) ∗ Ds0 (2317) (0+ ), Ds1 (2460) (1+ ), Ds1 (2536) (1+ ), D∗s2 (2573) (2+ ) Peculiarity: Mcs̄ ≈ Mcd̄ → Bs (J P = 0− ) and B∗s (1− ) Bs1 (5830) (1+ ), B∗s2 (5840) (2+ ) exotic structure? (tetraquark, molecule) Traditional lattice studies (using single hadron operators) tend get too large or badly determined masses Observed Bs p-wave states from two body decays into K − B+ (CDF/D0 and LHCb) Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 25 / 35 Exotic Ds (charm-strange) and Bs (bottom-strange) candidates Established s and p-wave states: Ds (J P = 0− ) and D∗s (1− ) ∗ Ds0 (2317) (0+ ), Ds1 (2460) (1+ ), Ds1 (2536) (1+ ), D∗s2 (2573) (2+ ) Peculiarity: Mcs̄ ≈ Mcd̄ → Bs (J P = 0− ) and B∗s (1− ) Bs1 (5830) (1+ ), B∗s2 (5840) (2+ ) exotic structure? (tetraquark, molecule) Traditional lattice studies (using single hadron operators) tend get too large or badly determined masses Observed Bs p-wave states from two body decays into K − B+ (CDF/D0 and LHCb) Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 25 / 35 Discretization effects for charm and beauty −1 NRQCD for quarkonia relative error relative error −1 from w4/6 10 −2 −2 10 10 −1 −1 −1 10 10 −2 −2 10 10 −1 −2 10 −1 10 10 10 3 3 −2 10 −1 −1 10 i 2 10 i 2 from 1/4mE from 1/2mB −2 10 HQET for heavy-light 10 from 1/8m4 from (w4 + w4′ )/4 from 1/2mB −2 10 10 from 1/8m4 −1 −1 10 −2 −2 10 10 −3 −3 10 0.01 0.1 a (fm) 0.01 0.1 a (fm) 10 from w4/6 relative error from wB /4 NRQCD for quarkonia relative error −2 −2 10 10 −3 from (w4 + w4′ )/4 HQET for heavy-light from 1/4mE from wB /4 −1 10 −3 10 0.01 0.1 a (fm) 0.01 0.1 10 a (fm) From Oktay, Kronfeld, PRD 78 014504 (2008) We still expect sizable discretization effects for bottomonium and charm-light states Some discretization effects remain sizable for at < as ≈ 0.1fm Modified dispersion relation makes moving frames not straight-forward Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 26 / 35 Testing our tuning: charm and beauty mJ/Ψ − mηc mD∗s − mDs mD∗ − mD 2mD − mc̄c 2MDs − mc̄c m Ds − m D mB∗ − mB mBs∗ − mBs mBs − mB mY − mηb 2mB − mb̄b 2mBs − mb̄b 2mBc − mηb − mηc Ensemble (1) 107.9(0.3)(1.1) 120.4(0.6)(1.3) 129.4(1.8)(1.4) 890.9(3.3)(9.3) 1065.5(1.4)(11.2) 96.6(0.9)(1.0) - Ensemble (2) 107.1(0.2)(1.5) 142.1(0.7)(2.0) 148.4(5.2)(2.1) 882.0(6.5)(12.6) 1060.7(1.1)(15.2) 94.0(4.6)(1.3) 46.8(7.0)(0.7) 47.1(1.5)(0.7) 81.5(4.1)(1.2) 44.2(0.3)(0.6) 1190(11)(17) 1353(2)(19) 169.4(0.4)(2.4) Experiment 113.2(0.7) 143.8(0.4) 140.66(10) 882.4(0.3) 1084.8(0.6) 98.87(29) 45.78(35) +2.3 48.7−2.1 87.35(23) 62.3(3.2) 1182.7(1.0) 1361.7(3.4) 167.3(4.9) Errors statistical and scale setting only Bottom quark slightly too light Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 27 / 35 D∗s0 (2317): D-meson – Kaon s-wave scattering M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237. 2 p cot δ(p) = √ Z00 (1; q2 ) πL 1 1 ≈ + r0 p2 a0 2 Mohler et al. PRL 111 222001 (2013) Lang, DM et al. PRD 90 034510 (2014) Results for ensembles (1) and (2) p cot δ [GeV] 0 a0 = −0.756 ± 0.025fm -0.2 (1) r0 = −0.056 ± 0.031fm -0.4 12 -0.6 a0 = −1.33 ± 0.20fm -0.8 (2) r0 = 0.27 ± 0.17fm -1 -0.1 0 0.1 2 0.2 0.3 0.4 0.5 2 p [GeV ] Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 28 / 35 D∗s0 (2317): D-meson – Kaon s-wave scattering M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237. 2 p cot δ(p) = √ Z00 (1; q2 ) πL 1 1 ≈ + r0 p2 a0 2 Mohler et al. PRL 111 222001 (2013) Lang, DM et al. PRD 90 034510 (2014) Results for ensembles (1) and (2) p cot δ [GeV] 0 a0 = −0.756 ± 0.025fm -0.2 (1) r0 = −0.056 ± 0.031fm -0.4 12 -0.6 a0 = −1.33 ± 0.20fm -0.8 (2) r0 = 0.27 ± 0.17fm -1 -0.1 0 0.1 2 0.2 0.3 0.4 0.5 2 p [GeV ] Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 28 / 35 B∗s0 and Bs1 : Results aBK 0 = −0.85(10) fm B∗s0 r0BK = 0.03(15) fm MB∗s0 = 5.711(13) GeV aB0 Bs1 ∗K ∗ r0B K = −0.97(16) fm = 0.28(15) fm MBs1 = 5.750(17) GeV Energy from the difference to the B(∗) K threshold Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 29 / 35 Spectrum results Mohler et al. PRL 111 222001 (2013) Lang, DM et al. PRD 90 034510 (2014) Lang, Mohler, Prelovsek, Woloshyn PLB 750 17 (2015) m - (mDs+3mDs*)/4 [MeV] Ensemble (1) Ensemble (2) 600 600 500 500 400 400 300 300 200 200 100 100 0 PDG Lat: energy level Lat: bound state from phase shift 0 -100 -200 Ds P J : 0 - * Ds - 1 * Ds0 + 0 Ds1 1 + Ds1 1 + * Ds2 -100 Ds + 2 0 - * Ds 1 - * Ds0 + 0 Ds1 1 + Ds1 1 + * Ds2 2 + Discretization uncertainties sizeable for charm -200 Full uncertainty estimate only for magenta Bs states Prediction of exotic states from Lattice QCD! Many improvements possible for the Ds states Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 30 / 35 Spectrum results Mohler et al. PRL 111 222001 (2013) Lang, DM et al. PRD 90 034510 (2014) Lang, Mohler, Prelovsek, Woloshyn PLB 750 17 (2015) Ensemble (1) Ensemble (2) mπ = 156 MeV Ensemble (2) 600 600 5.9 500 500 5.8 400 400 300 300 200 200 100 100 -100 -200 P J : * * Ds Ds Ds0 - - + 0 1 0 Ds1 1 + Ds1 1 + * Ds2 5.7 5.6 5.5 PDG Lat: energy level Lat: bound state from phase shift 5.4 -100 * Ds Ds - - + 2 BK 0 PDG Lat: energy level Lat: bound state from phase shift 0 m [GeV] m - (mDs+3mDs*)/4 [MeV] * BK 0 1 * Ds0 + 0 * Ds1 Ds1 Ds2 + + + 1 1 2 -200 5.3 Bs P J : - 0 Bs * - 1 Bs0 * + 0 Bs1 + 1 Bs1’ 1 + Bs2 + 2 Discretization uncertainties sizeable for charm Full uncertainty estimate only for magenta Bs states Many improvements possible for the Ds states Prediction of exotic states from Lattice QCD! Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 30 / 35 Comparing to models Covariant (U)ChPT NLO UHMChPT LO UChPT LO χ-SU(3) Bardeen, Eichten, Hill rel. quark model rel. quark model rel. quark model HPQCD 2010 this work Daniel Mohler (HIM) 0+ 5726(28) 5696(20)(30) 5725(39) 5643 5718(35) 5804 5833 5830 5752(16)(5)(25) 5713(11)(19) From quarks and gluons to exotic hadrons 1+ 5778(26) 5742(20)(30) 5778(7) 5690 5765(35) 5842 5865 5858 5806(15)(5)(25) 5750(17)(19) Graz, April 27, 2016 31 / 35 χ0c0 and X/Y(3915) PDG interprets X(3915) as a regular charmonium (χ0c0 ) Some of the reasons to doubt this assignment: Guo, Meissner Phys. Rev. D86, 091501 (2012) Olsen, arXiv 1410.6534 No evidence for fall-apart mode X(3915) → D̄D Spin splitting mχc2 (2P) − mχc0 (2P) too small Large OZI suppressed X(3915) → ωJ/ψ Width should be significantly larger than Γχc2 (2P) Zhou et al. (PRL 115 2, 022001 (2015)) argue that what is dubbed X(3915) is the spin 2 state already known and suggests that a broader state is hiding in the experiment data. Investigate D̄D scattering in S-wave on the lattice! Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 32 / 35 χ0c0 and X/Y(3915) PDG interprets X(3915) as a regular charmonium (χ0c0 ) Some of the reasons to doubt this assignment: Guo, Meissner Phys. Rev. D86, 091501 (2012) Olsen, arXiv 1410.6534 No evidence for fall-apart mode X(3915) → D̄D Spin splitting mχc2 (2P) − mχc0 (2P) too small Large OZI suppressed X(3915) → ωJ/ψ Width should be significantly larger than Γχc2 (2P) Zhou et al. (PRL 115 2, 022001 (2015)) argue that what is dubbed X(3915) is the spin 2 state already known and suggests that a broader state is hiding in the experiment data. Investigate D̄D scattering in S-wave on the lattice! Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 32 / 35 χ0c0 : Exploratory lattice calculation Lang, Leskovec, DM, Prelovsek, JHEP 1509 089 (2015) (c) (b) 1.00 0.80 0.80 0.60 0.60 0.40 0.40 0.20 0.20 0.00 0.00 -0.20 -0.20 -0.40 p cotδ/√s p cotδ/√s (a) 1.00 -0.40 -0.6 -0.4 -0.2 0.0 2 0.2 0.4 -0.6 -0.4 2 -0.2 2 p [GeV ] 0.0 0.2 0.4 -0.6 -0.4 2 p [GeV ] -0.2 2 0.0 0.2 0.4 2 p [GeV ] Assumes only D̄D is relevant Lattice data suggests a fairly narrow resonance with 3.9GeV < M < 4.0GeV and Γ < 100MeV Future experiment and lattice QCD results needed to clarify the situation Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 33 / 35 Emerging understanding from QCD Ds D*D * D D D* s s0 s1 s1 s2 1000 900 800 700 _ m-m_cc [MeV] 600 500 400 300 200 100 0 -100 -200 800 _ m - mDs [MeV] 1100 600 500 _ m-m D [MeV] 400 600 300 400 200 100 0 200 lat: naive level res. / bound state 0 -100 ηc Ψ h χc0 χc1 χc2 ηc2 Ψ Ψ h χc3 c 2 3 c3 D D* D0*D1 D1D2*D2 Comprehensive studies where feasible spectrum around lowest few thresholds radiative transitions Extend exploratory results to higher masses and search for manifestly exotic states Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 34 / 35 ... Thank you! Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 35 / 35 ... Backup Slides Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 36 / 35 First examples of emerging understanding from QCD lattice (mπ~266 MeV) 600 500 400 400 300 300 200 200 100 100 -100 -200 Ds P J : 0 - * Ds - 1 * Ds0 + 0 Ds1 1 + Ds1 1 + 1100 D(1)D*(-1) 1000 900 J/ψ(0)ω(0) D(0)D*(0) X(3872) 800 X(3872) 700 600 0 PDG Lat: energy level Lat: bound state from phase shift 0 Exp * Ds2 Ds + 2 0 - * * Ds 1 Ds0 - Ds1 + 0 1 + Ds1 1 + * O: cc + Mohler et al. PRL 111 222001 Ensemble (2) m = 156 MeV π 500 400 -200 Ds2 2 χc1(1P) χc1(1P) -100 O: cc DD* J/ψ ω c Ensemble (2) mπ = 156 MeV 500 m - 1/4 (mη +3 mJ/ψ) [MeV] m - (mDs+3mDs*)/4 [MeV] Ensemble (1) mπ = 266 MeV 600 pole L→∞ Prelovsek, Leskovec, PRL 111 5.9 192001 (2013) * BK 5.8 BK 5.7 1200 E - E(1S) MeV m [GeV] 1400 5.6 5.5 PDG Lat: energy level Lat: bound state from phase shift 5.4 5.3 Bs P J : - 0 Bs * - 1 Bs0 * + 0 Bs1 + 1 Bs1’ 1 + * 1000 D(-1)D (1) D(0)D*(0) 800 600 400 cc (I=0) * cc + DD (I=0) * DD (I=0) Bs2 Lee, DM et al. + 2 arXiv:1411.1389 Lang, DM et al. PLB 750 17 Examples of bound states with a large four-quark component Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 37 / 35 Testing our tuning: charm and light mπ mK mφ mηs mJ/Ψ − mηc mD∗s − mDs mD∗ − mD 2mD − mc̄c 2MDs − mc̄c mDs − mD Ensemble (1) 266(3)(3) 552(1)(6) 1015.8(1.8)(10.7) 732.3(0.9)(7.7) 107.9(0.3)(1.1) 120.4(0.6)(1.3) 129.4(1.8)(1.4) 890.9(3.3)(9.3) 1065.5(1.4)(11.2) 96.6(0.9)(1.0) Ensemble (2) 156(7)(2) 504(1)(7) 1018.4(2.8)(14.6) 692.9(0.5)(9.9) 107.1(0.2)(1.5) 142.1(0.7)(2.0) 148.4(5.2)(2.1) 882.0(6.5)(12.6) 1060.7(1.1)(15.2) 94.0(4.6)(1.3) Experiment 139.5702(4) 493.677(16) 1019.455(20) 688.5(2.2)* 113.2(0.7) 143.8(0.4) 140.66(10) 882.4(0.3) 1084.8(0.6) 98.87(29) A single ensemble: Discrepancies due to discretization and unphysical light-quark masses expected Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 38 / 35 D∗s0 (2317) including D meson - Kaon DM, Lang, Leskovec, Prelovsek, Woloshyn, PRL 111 222001 (2013) M - M1S [MeV] Ensemble (1) Ensemble (2) 900 900 800 800 700 700 600 600 500 500 400 400 300 300 200 200 100 100 0 0 qq qq + DK qq qq + DK Much better quality of the ground state plateau with combined basis D∗s0 (2317) as a QCD bound state Suggests that including multi-hadron levels is vital Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 39 / 35 Previous lattice results NRQCD b quarks and staggered light quarks States predicted slightly below the B(∗) K thresholds: MB∗s0 = 5752(16)(5)(25) MBs1 = 5806(15)(5)(25) Gregory et al. PRD 83 014506 (2011) Static-light mesons with the transition amplitude method McNeile, Michael, Thompson, PRD 70 054501 (2004) Static-light mesons plus interpolation between static light states and experiment Ds states Green et al. PRD 69 094505 (2004) Static-light states on quenched and 2 flavor lattices Burch et al. Daniel Mohler (HIM) From quarks and gluons to exotic hadrons PRD 79 014504 (2009) Graz, April 27, 2016 40 / 35 Possible interpretations (1) A sub-threshold state stable under the strong interaction We call this “bound state scenario” This is irrespective of the nature of the state One expects a negative scattering length in this case See Sasaki and Yamazaki, PRD 74 114507 (2006) for details. (2) A resonance in a channel with attractive interaction The lowest state corresponds to the scattering level shifted below threshold in finite volume The additional level would indicate a QCD resonance One expects a positive scattering length in this case This is the situation for the D∗0 (2400) DM, Prelovsek, Woloshyn, PRD 87 034501 (2013). Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 41 / 35 B∗so and Bs1 : Systematic uncertainties source of uncertainty heavy-quark discretization finite volume effects unphysical Kaon, isospin & EM b-quark tuning dispersion relation spin-average (experiment) scale uncertainty 3 pt vs. 2 pt linear fit total expected size [MeV] 12 8 11 3 2 2 1 2 19 discretiation effects from HQET power counting also considering mass mismatches Oktay, Kronfeld Phys.Rev. D78 014504 (2008) Finite volume from difference between the energy level and the pole Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 42 / 35 Search for Zc+ with I G J PC = 1+ 1+− D(2) D*(-2) D*(1) D*(-1) J/ψ(2) π(−2) ψ3 π D(1) D*(-1) ψ1D π D* D* ηc(1)ρ(−1) ψ2S π D D* j/ψ(1) π(-1) ηc ρ J/ψ π 4.6 4.4 E[GeV] 4.2 4 3.8 3.6 3.4 3.2 Exp. Lattice Prelovsek, Lang, Leskovec, DM, Phys.Rev. D91 014504 (2015) Simple level counting approach We find 13 two meson states as expected We find no extra energy level that could point to a Zc candidate Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 43 / 35 Exotic meson physics for P̄ANDA, BelleII, BESIII, LHCb Simulate a large basis of quark-antiquark (regular and hybrid), meson-meson and tetraquark operators with a variety of quantum numbers Study the spectrum and extract bound states and resonances Study quark mass dependence to confirm/falsify model expectations Study operator overlaps to learn about structure Study (radiative) transition amplitudes to learn about structure Promising examples (similar for heavy-light states): X(3872) Establish relation between the observed candidate and the X(3872) Study charm-quark variation and compare to models/ EFT Study radiative transitions of the candidate state χ0c0 /X(3915) Study DD̄∗ and J/ψω scattering and establish resonances < 4GeV Charged charmonium-like Zc states Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 44 / 35 Modern methods Use Lüscher’s method to access scattering phase shifts/ inelasticities → bound state and resonance poles State of the art propagator calculations: distillation method Handles all smeared timeslice-to-timeslice correlators Allows for storing the quark propagators Highly flexible for large synergy between different projects Provides flexibility to optionally address light quark exotics, high spin states and baryons Improved heavy quark action (either Fermilab approach or highly improved actions) → small and well understood discretization effects Methods are mostly established but the combination of methods is unique. A next generation resonance project will profit from lattice gauge fields made available by various lattice collaborations (MILC, CLS, . . . ) Daniel Mohler (HIM) From quarks and gluons to exotic hadrons Graz, April 27, 2016 45 / 35
© Copyright 2026 Paperzz