ProblemoftheMonth:Movin‘nGroovin TheProblemsoftheMonth(POM)areusedinavarietyofwaystopromoteproblem solvingandtofosterthefirststandardofmathematicalpracticefromtheCommon CoreStateStandards:“Makesenseofproblemsandpersevereinsolvingthem.” ThePOMmaybeusedbyateachertopromoteproblemsolvingandtoaddressthe differentiatedneedsofherstudents.Adepartmentorgradelevelmayengagetheir studentsinaPOMtoshowcaseproblemsolvingasakeyaspectofdoing mathematics.POMscanalsobeusedschoolwidetopromoteaproblem‐solving themeataschool.Thegoalisforallstudentstohavetheexperienceofattacking andsolvingnon‐routineproblemsanddevelopingtheirmathematicalreasoning skills.Althoughobtainingandjustifyingsolutionstotheproblemsistheobjective, theprocessoflearningtoproblemsolveisevenmoreimportant. TheProblemoftheMonthisstructuredtoprovidereasonabletasksforallstudents inaschool.ThestructureofaPOMisashallowfloorandahighceiling,sothatall studentscanproductivelyengage,struggle,andpersevere.ThePrimaryVersion LevelAisdesignedtobeaccessibletoallstudentsandespeciallythekeychallenge forgradesK–1.LevelAwillbechallengingformostsecondandthirdgraders. LevelBmaybethelimitofwherefourthandfifth‐gradestudentshavesuccessand understanding.LevelCmaystretchsixthandseventh‐gradestudents.LevelDmay challengemosteighthandninth‐gradestudents,andLevelEshouldbechallenging formosthighschoolstudents.Thesegrade‐levelexpectationsarejustestimatesand shouldnotbeusedasanabsoluteminimumexpectationormaximumlimitationfor students.Problemsolvingisalearnedskill,andstudentsmayneedmany experiencestodeveloptheirreasoningskills,approaches,strategies,andthe perseverancetobesuccessful.TheProblemoftheMonthbuildsonsequentiallevels ofunderstanding.AllstudentsshouldexperienceLevelAandthenmovethroughthe tasksinordertogoasdeeplyastheycanintotheproblem.Therewillbethose studentswhowillnothaveaccessintoevenLevelA.Educatorsshouldfeelfreeto modifythetasktoallowaccessatsomelevel. Overview IntheProblemoftheMonthMovin‘nGroovin,studentsusemeasurement,ratesof change,andalgebraicthinkingtosolveproblemsinvolvingproportional relationships,metrics,andmultiplicativerelationships.Themathematicaltopics thatunderliethisPOMarerepeatedaddition,multiplication,division,unit conversion,linearmeasurement,proportionalreasoning,rates,distance‐time‐ velocity,andalgebraicreasoning. InthefirstlevelsofthePOM,studentsarepresentedwithameasurementproblem. Intheproblem,studentsareaskedtodeterminewhowinsaracebetweentwo hamstersrunningthroughamaze.Thestudentsaregiventhesecondsittakesthe ProblemoftheMonth Movin’nGroovin’ ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). 1 hamsterstotravelthroughthemaze.Understandingthosenumbers,theythen determinewhichhamsterisfasterandwhofinishesfirst.Theyalsoneedto determinehowmuchfasteronehamsterisfromtheotherbycomparingthetwo finishedtimes.InlevelB,studentsarechallengedwithaprobleminvolvingtwo runnerswhorundifferentdistancesfordifferenttimes.Theywillneedtoreason abouttherelationshipbetweenthetworatestodeterminewhoisfaster.InlevelC, thestudentsarepresentedwiththechallengeofdeterminingthespeedofa student’sremotecontrolcar.Thestudentsareaskedtoconvertmeasuresinfeet andsecondstodeterminetheremotecontrolcar’sspeedinmilesperhourandstate whetherthemodelcartravelsfasterthanarealcar.InlevelD,studentsanalyzea situationinvolvingaspeedingcarandapolicemanonacurvyroad.Thestudents investigatewhataveragespeedtheofficermusttravelinordertoovertakethe speederwithin3.6miles.InthefinallevelofthePOM,studentsarepresentedwitha situationinvolvingairplanestakingofffromtwodifferentcitiesatregularintervals oftime.Studentsareaskedtodeterminehowmanyplanespasseachotheroverthe courseofaday. MathematicalConcepts ThemajormathematicalideasofthisPOMaremeasurement,proportional reasoning,andrateofchange.Studentsmustusemeasuringtechniques,addition, multiplication,division,andrepresentationsofrationalnumberssuchasfractions, decimals,andpercents,aswellasratios,proportions,rates,equations,andlinear functions.Studentssolveproblemsinvolvingratesrequiredtocompleteajobas wellasdistance,rate,andtime. ProblemoftheMonth Movin’nGroovin’ ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). 2 Problem of the Month Movin ‘n Groovin Level A: Maria and Tran each have a pet hamster. They have a maze for the hamsters to run through. Maria says she thinks her hamster can run through the maze faster that Tran’s. They each time their hamster as it runs through the maze. It takes Maria’s hamster 19 seconds to travel through the maze. It takes Tran’s hamster 15 seconds. Which hamster is faster? Explain how you know. How much faster is the faster hamster compared to the slower hamster at running through the maze? Explain your answer. Problem of the Month Movin ‘n Groovin Page 1 (c) Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level B: Lexie wanted to have a heel-toe race with her older brother, Josh, and her sister, Hannah. She said, “My feet are smaller, so I should only have to go a shorter distance than you two.” Her sister said, “That makes sense - let’s race our ages.” They measured off 7 feet for Lexie’s track, 16 feet for Josh’s track and 10 feet for Hannah’s track. “Now let’s measure our shoes,” said Josh. “My shoe is 1/2 of a foot,” said Lexie. “Three of my shoes add up to 2 feet,” said Hannah. Josh said his shoe was exactly a foot long. Who needs to take the fewest steps to walk his or her track? Explain how you found your answer. How many more steps do the two others need to take to finish their races? Who do you think will win the race? Who will take the longest to finish? Explain your reasoning. Problem of the Month Movin ‘n Groovin Page 2 (c) Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level C: Courtney got a remote control car for her birthday. It is metallic purple with chrome wheels that are 1 1/2 inches in diameter. She said to her friend, Dylan, “My remote control car goes faster than my mom’s car on the freeway.” “No way,” said Dylan. Courtney said, “I will prove it to you.” Courtney measured off a distance of 115 inches. Dylan said, “Okay, I will time how long it takes your car to travel that distance. I have a stop watch feature on my watch.” Courtney raced her remote control car over the 115-inch distance. Dylan said, “Wow, that only took 3.21 seconds. That seems really fast.” “See, I told you,” said Courtney. “But really how fast is it going?” answered Dylan. Determine the speed of Courtney’s remote control car and compare its speed to that of a regular car traveling on the freeway. Explain how you found your solution. Why might the manufacturer get away with advertising that the remote control car Travels Faster Than Life? Problem of the Month Movin ‘n Groovin Page 3 (c) Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level D: You are a highway patrol officer, seated on a motorcycle, on a curvy section of Highway 1. The posted speed limit is 45 miles per hour (mph) on this stretch of highway. You are monitoring traffic with a radar gun. The first exit is 3.6 miles up the road. Your radar picks up a speeding car averaging 68 mph. When you try to start your motorcycle to follow the car, it won’t start. You try again and again, and soon you fear that you won’t be able to catch the speeding car before it can turn off the highway. Finally, your motorcycle starts and you begin your pursuit 30 seconds after the speeding car has passed you on the roadside. How fast do you need to go to catch up to the speeding car? What is your average speed in pursuit? Illustrate the speed of the speeding car as well as your own motorcycle during this pursuit. Is your own speed reasonable and safe? Explain why this is or is not a good location at which to monitor traffic. Problem of the Month Movin ‘n Groovin Page 4 (c) Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level E: Suppose that every hour of every day an airplane leaves Los Angeles for New York City and at the same instant, an airplane leaves New York City for Los Angeles. Each flight takes 5 hours. In a single day, how many airplanes originating in New York City will pass airplanes originating in Los Angeles in the air? Problem of the Month Movin ‘n Groovin Page 5 (c) Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Problem of the Month Movin ‘n Groovin Primary Version Level A Materials: A maze and hamster (either a picture or the real thing), paper and pencil to write or draw, color crayons, markers or pencils Discussion on the rug: “Who can tell me, what is a hamster? What do hamsters like to do?” Teacher asks questions and clarifies answers to help students understand a maze and a race. “What is a maze? How does a hamster travel through a maze?” Teacher continues to ask children to clarify how to race two hamsters through a maze while using a timer. In small groups: Each group has a picture of the maze. Teacher reads the problem to the students. “Maria and Tran each have a pet hamster. They have a maze for the hamsters to run through. Maria says she thinks her hamster can run through the maze faster than Tran’s. They each time their hamster as it runs through the maze. It takes Maria’s hamster 19 seconds to travel through the maze. It takes Tran’s hamster 15 seconds.” 1. “Which hamster is faster? Explain how you know.” 2. “How much faster is the faster hamster compared to the slower hamster at running through the maze? Explain your answer.” At the end of the investigation have students either draw a picture or dictate a response to represent their solutions. Problem of the Month Movin ‘n Groovin Page 6 (c) Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). ProblemoftheMonth Movin‘nGroovin TaskDescription–LevelA Thistaskchallengesastudenttodeterminewhichoftwohamstersinamaze winsaraceandbyhow muchwhengiventhetimesofthehamstersrunningthroughthemaze.Astudentisgiventhe secondsittakesthehamsterstotravelthroughthemaze.Withthesenumbers,astudentthen determineswhichhamsterisfasterandwhichfinishesfirst.Astudentmustalsodeterminehow muchfasteronehamsterisfromtheotherbycomparingthetwofinishedtimes. CommonCoreStateStandardsMath‐ContentStandards CountingandCardinality Comparenumbers. K.CC.6Identifywhetherthenumberofobjectsinonegroupisgreaterthan,lessthan,orequaltothe numberofobjectsinanothergroup,e.g.,byusingmatchingandcountingstrategies. OperationsandAlgebraicThinking Representandsolveproblemsinvolvingadditionandsubtraction. 1.OA.1Useadditionandsubtractionwithin20tosolvewordproblemsinvolvingsituationsofadding to,takingfrom,puttingtogether,takingapart,andcomparing,withunknownsinallpositions,e.g.,by usingobjects,drawings,andequationswithasymbolfortheunknownnumbertorepresentthe problem. MeasurementandData Describeandcomparemeasurableattributes. K.MD.2Directlycomparetwoobjectswithameasurableattributeincommon,toseewhichobject has“moreof”/“lessof”theattribute,anddescribethedifference.Forexample,directlycomparethe heightsoftwochildrenanddescribeonechildastaller/shorter. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.2Reasonabstractlyandquantitatively. Mathematicallyproficientstudentsmakesenseofquantitiesandtheirrelationshipsinproblem situations.Theybringtwocomplementaryabilitiestobearonproblemsinvolvingquantitative relationships:theabilitytodecontextualize—toabstractagivensituationandrepresentit symbolicallyandmanipulatetherepresentingsymbolsasiftheyhavealifeoftheirown,without necessarilyattendingtotheirreferents—andtheabilitytocontextualize,topauseasneededduring themanipulationprocessinordertoprobeintothereferentsforthesymbolsinvolved.Quantitative reasoningentailshabitsofcreatingacoherentrepresentationoftheproblemathand;considering theunitsinvolved;attendingtothemeaningofquantities,notjusthowtocomputethem;and knowingandflexiblyusingdifferentpropertiesofoperationsandobjects. MP.5 Useappropriatetoolsstrategically. Mathematicallyproficientstudentsconsidertheavailabletoolswhensolvingamathematical problem.Thesetoolsmightincludepencilandpaper,concretemodels,aruler,aprotractor,a calculator,aspreadsheet,acomputeralgebrasystem,astatisticalpackage,ordynamicgeometry software.Proficientstudentsaresufficientlyfamiliarwithtoolsappropriatefortheirgradeorcourse tomakesounddecisionsaboutwheneachofthesetoolsmightbehelpful,recognizingboththe insighttobegainedandtheirlimitations.Forexample,mathematicallyproficienthighschool studentsanalyzegraphsoffunctionsandsolutionsgeneratedusingagraphingcalculator.They detectpossibleerrorsbystrategicallyusingestimationandothermathematicalknowledge.When makingmathematicalmodels,theyknowthattechnologycanenablethemtovisualizetheresultsof varyingassumptions,exploreconsequences,andcomparepredictionswithdata.Mathematically proficientstudentsatvariousgradelevelsareabletoidentifyrelevantexternalmathematical resources,suchasdigitalcontentlocatedonawebsite,andusethemtoposeorsolveproblems.They areabletousetechnologicaltoolstoexploreanddeepentheirunderstandingofconcepts. ProblemoftheMonth Movin’nGroovin’ ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). 1 ProblemoftheMonth Movin‘nGroovin TaskDescription–LevelB Thistaskchallengesastudenttoreasonabouttherelationshipbetweentheratesoftworunnerswho rundifferentdistancesfordifferenttimesinordertodeterminewhoisfasterbyreasoningaboutthe relationshipbetweenthetworates. CommonCoreStateStandardsMath‐ContentStandards MeasurementandData Measurelengthsindirectlyandbyiteratinglengthunits. 1.MD.2Expressthelengthofanobjectasawholenumberoflengthunits,bylayingmultiplecopiesofashorter object(thelengthunit)endtoend;understandthatthelengthmeasurementofanobjectisthenumberofsame‐ sizelengthunitsthatspanitwithnogapsoroverlaps.Limittocontextswheretheobjectbeingmeasuredis spannedbyawholenumberoflengthunitswithnogapsoroverlaps. RatiosandProportionalRelationships Understandratioconceptsanduseratioreasoningtosolveproblems. 6.RP.1Understandtheconceptofaratioanduseratiolanguagetodescribearatiorelationshipbetweentwo quantities.Forexample,“Theratioofwingstobeaksinthebirdhouseatthezoowas2:1,becauseforevery2 wingstherewas1beak.”“ForeveryvotecandidateAreceived,candidateCreceivednearlythreevotes.” 6.RP.2Understandtheconceptofaunitratea/bassociatedwitharatioa:bwithb≠0,anduseratelanguagein thecontextofaratiorelationship.Forexample,“Thisrecipehasaratioof3cupsofflourto4cupsofsugar,so thereis3/4cupofflourforeachcupofsugar.”“Wepaid$75for15hamburgers,whichisarateof$5per hamburger.”1 6.RP.3Useratioandratereasoningtosolvereal‐worldandmathematicalproblems,e.g.,byreasoningabout tablesofequivalentratios,tapediagrams,doublenumberlinediagrams,orequations. 6.RP.3.aMaketablesofequivalentratiosrelatingquantitieswithwhole‐numbermeasurements,findmissing valuesinthetables,andplotthepairsofvaluesonthecoordinateplane.Usetablestocompareratios. 6.RP.3.bSolveunitrateproblemsincludingthoseinvolvingunitpricingandconstantspeed.Forexample,ifit took7hourstomow4lawns,thenatthatrate,howmanylawnscouldbemowedin35hours?Atwhatratewere lawnsbeingmowed? CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.2Reasonabstractlyandquantitatively. Mathematicallyproficientstudentsmakesenseofquantitiesandtheirrelationshipsinproblemsituations.They bringtwocomplementaryabilitiestobearonproblemsinvolvingquantitativerelationships:theabilityto decontextualize—toabstractagivensituationandrepresentitsymbolicallyandmanipulatetherepresenting symbolsasiftheyhavealifeoftheirown,withoutnecessarilyattendingtotheirreferents—andtheabilityto contextualize,topauseasneededduringthemanipulationprocessinordertoprobeintothereferentsforthe symbolsinvolved.Quantitativereasoningentailshabitsofcreatingacoherentrepresentationoftheproblemat hand;consideringtheunitsinvolved;attendingtothemeaningofquantities,notjusthowtocomputethem;and knowingandflexiblyusingdifferentpropertiesofoperationsandobjects. MP.5 Useappropriatetoolsstrategically. Mathematicallyproficientstudentsconsidertheavailabletoolswhensolvingamathematicalproblem.These toolsmightincludepencilandpaper,concretemodels,aruler,aprotractor,acalculator,aspreadsheet,a computeralgebrasystem,astatisticalpackage,ordynamicgeometrysoftware.Proficientstudentsare sufficientlyfamiliarwithtoolsappropriatefortheirgradeorcoursetomakesounddecisionsaboutwheneachof thesetoolsmightbehelpful,recognizingboththeinsighttobegainedandtheirlimitations.Forexample, mathematicallyproficienthighschoolstudentsanalyzegraphsoffunctionsandsolutionsgeneratedusinga graphingcalculator.Theydetectpossibleerrorsbystrategicallyusingestimationandothermathematical knowledge.Whenmakingmathematicalmodels,theyknowthattechnologycanenablethemtovisualizethe resultsofvaryingassumptions,exploreconsequences,andcomparepredictionswithdata.Mathematically proficientstudentsatvariousgradelevelsareabletoidentifyrelevantexternalmathematicalresources,suchas digitalcontentlocatedonawebsite,andusethemtoposeorsolveproblems.Theyareabletousetechnological toolstoexploreanddeepentheirunderstandingofconcepts. ProblemoftheMonth Movin’nGroovin’ ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). 2 ProblemoftheMonth Movin‘nGroovin TaskDescription–LevelC Thistaskchallengesastudenttodeterminethespeedofaremotecontrolcar,toconvertmeasuresin feetandsecondstodeterminetheremotecontrolcar’sspeedinmph,andtostatewhetherthemodel cartravelsfasterthanarealcar. CommonCoreStateStandardsMath‐ContentStandards MeasurementandData Solveproblemsinvolvingmeasurementandconversionofmeasurementsfromalargerunittoasmaller unit. 4.MD.1Knowrelativesizesofmeasurementunitswithinonesystemofunitsincludingkm,m,cm;kg,g;lb,oz.;l, ml;hr,min,sec.Withinasinglesystemofmeasurement,expressmeasurementsinalargerunitintermsofa smallerunit.Recordmeasurementequivalentsinatwo‐columntable.Forexample,knowthat1ftis12timesas longas1in.Expressthelengthofa4ftsnakeas48in.Generateaconversiontableforfeetandincheslistingthe numberpairs(1,12),(2,24),(3,36),... 4.MD.2Usethefouroperationstosolvewordproblemsinvolvingdistances,intervalsoftime,liquidvolumes, massesofobjects,andmoney,includingproblemsinvolvingsimplefractionsordecimals,andproblemsthat requireexpressingmeasurementsgiveninalargerunitintermsofasmallerunit.Representmeasurement quantitiesusingdiagramssuchasnumberlinediagramsthatfeatureameasurementscale. RatiosandProportionalRelationships Understandratioconceptsanduseratioreasoningtosolveproblems. 6.RP.3Useratioandratereasoningtosolvereal‐worldandmathematicalproblems,e.g.,byreasoningabout tablesofequivalentratios,tapediagrams,doublenumberlinediagrams,orequations. 6.RP.3.bSolveunitrateproblemsincludingthoseinvolvingunitpricingandconstantspeed.Forexample,ifit took7hourstomow4lawns,thenatthatrate,howmanylawnscouldbemowedin35hours?Atwhatratewere lawnsbeingmowed? Analyzeproportionalrelationshipsandusethemtosolvereal‐worldandmathematicalproblems. 7.RP.1Computeunitratesassociatedwithratiosoffractions,includingratiosoflengths,areasandother quantitiesmeasuredinlikeordifferentunits.Forexample,ifapersonwalks1/2mileineach1/4hour,compute theunitrateasthecomplexfraction1/2/1/4milesperhour,equivalently2milesperhour. CommonCoreStateStandardsMath– StandardsofMathematicalPractice MP.2Reasonabstractlyandquantitatively. Mathematicallyproficientstudentsmakesenseofquantitiesandtheirrelationshipsinproblemsituations.They bringtwocomplementaryabilitiestobearonproblemsinvolvingquantitativerelationships:theabilityto decontextualize—toabstractagivensituationandrepresentitsymbolicallyandmanipulatetherepresenting symbolsasiftheyhavealifeoftheirown,withoutnecessarilyattendingtotheirreferents—andtheabilityto contextualize,topauseasneededduringthemanipulationprocessinordertoprobeintothereferentsforthe symbolsinvolved.Quantitativereasoningentailshabitsofcreatingacoherentrepresentationoftheproblemat hand;consideringtheunitsinvolved;attendingtothemeaningofquantities,notjusthowtocomputethem;and knowingandflexiblyusingdifferentpropertiesofoperationsandobjects. MP.5 Useappropriatetoolsstrategically. Mathematicallyproficientstudentsconsidertheavailabletoolswhensolvingamathematicalproblem.These toolsmightincludepencilandpaper,concretemodels,aruler,aprotractor,acalculator,aspreadsheet,a computeralgebrasystem,astatisticalpackage,ordynamicgeometrysoftware.Proficientstudentsare sufficientlyfamiliarwithtoolsappropriatefortheirgradeorcoursetomakesounddecisionsaboutwheneachof thesetoolsmightbehelpful,recognizingboththeinsighttobegainedandtheirlimitations.Forexample, mathematicallyproficienthighschoolstudentsanalyzegraphsoffunctionsandsolutionsgeneratedusinga graphingcalculator.Theydetectpossibleerrorsbystrategicallyusingestimationandothermathematical knowledge.Whenmakingmathematicalmodels,theyknowthattechnologycanenablethemtovisualizethe resultsofvaryingassumptions,exploreconsequences,andcomparepredictionswithdata.Mathematically proficientstudentsatvariousgradelevelsareabletoidentifyrelevantexternalmathematicalresources,suchas digitalcontentlocatedonawebsite,andusethemtoposeorsolveproblems.Theyareabletousetechnological toolstoexploreanddeepentheirunderstandingofconcepts. ProblemoftheMonth Movin’nGroovin’ ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). 3 ProblemoftheMonth: Movin‘nGroovin TaskDescription–LevelD Thistaskchallengesastudenttoanalyzeasituationinvolvingaspeedingcarandapolicemanona curvyroad.Thistaskchallengesastudenttoinvestigatewhataveragespeedapoliceofficermust travelinordertoovertakethespeederwithin3.6miles. CommonCoreStateStandardsMath‐ContentStandards RatiosandProportionalRelationships Understandratioconceptsanduseratioreasoningtosolveproblems. 6.RP.3Useratioandratereasoningtosolvereal‐worldandmathematicalproblems,e.g.,byreasoningabout tablesofequivalentratios,tapediagrams,doublenumberlinediagrams,orequations. 6.RP.3.b.Solveunitrateproblemsincludingthoseinvolvingunitpricingandconstantspeed.Forexample,ifit took7hourstomow4lawns,thenatthatrate,howmanylawnscouldbemowedin35hours?Atwhatratewere lawnsbeingmowed? 6.RP.3.dUseratioreasoningtoconvertmeasurementunits;manipulateandtransformunitsappropriately whenmultiplyingordividingquantities. Analyzeproportionalrelationshipsandusethemtosolvereal‐worldandmathematicalproblems. 7.RP.2Recognizeandrepresentproportionalrelationshipsbetweenquantities. 7.RP.2.bIdentifytheconstantofproportionality(unitrate)intables,graphs,equations,diagrams,andverbal descriptionsofproportionalrelationships. 7.RP.2.cRepresentproportionalrelationshipsbyequations.Forexample,iftotalcosttisproportionaltothe numbernofitemspurchasedataconstantpricep,therelationshipbetweenthetotalcostandthenumberof itemscanbeexpressedast=pn. 7.RP.2.dExplainwhatapoint(x,y)onthegraphofaproportionalrelationshipmeansintermsofthesituation, withspecialattentiontothepoints(0,0)and(1,r)whereristheunitrate.3.Useproportionalrelationshipsto solvemultistepratioandpercentproblems. ExpressionsandEquations Understandtheconnectionbetweenproportionalrelationships,lines,andlinearequations. 8.EE.5Graphproportionalrelationships,interpretingtheunitrateastheslopeofthegraph.Comparetwo differentproportionalrelationshipsrepresentedindifferentways.Forexample,compareadistance‐timegraph toadistance‐timeequationtodeterminewhichoftwomovingobjectshasgreaterspeed. CommonCoreStateStandardsMath– StandardsofMathematicalPractice MP.2Reasonabstractlyandquantitatively. Mathematicallyproficientstudentsmakesenseofquantitiesandtheirrelationshipsinproblemsituations.They bringtwocomplementaryabilitiestobearonproblemsinvolvingquantitativerelationships:theabilityto decontextualize—toabstractagivensituationandrepresentitsymbolicallyandmanipulatetherepresenting symbolsasiftheyhavealifeoftheirown,withoutnecessarilyattendingtotheirreferents—andtheabilityto contextualize,topauseasneededduringthemanipulationprocessinordertoprobeintothereferentsforthe symbolsinvolved.Quantitativereasoningentailshabitsofcreatingacoherentrepresentationoftheproblemat hand;consideringtheunitsinvolved;attendingtothemeaningofquantities,notjusthowtocomputethem;and knowingandflexiblyusingdifferentpropertiesofoperationsandobjects. MP.5 Useappropriatetoolsstrategically. Mathematicallyproficientstudentsconsidertheavailabletoolswhensolvingamathematicalproblem.These toolsmightincludepencilandpaper,concretemodels,aruler,aprotractor,acalculator,aspreadsheet,a computeralgebrasystem,astatisticalpackage,ordynamicgeometrysoftware.Proficientstudentsare sufficientlyfamiliarwithtoolsappropriatefortheirgradeorcoursetomakesounddecisionsaboutwheneachof thesetoolsmightbehelpful,recognizingboththeinsighttobegainedandtheirlimitations.Forexample, mathematicallyproficienthighschoolstudentsanalyzegraphsoffunctionsandsolutionsgeneratedusinga graphingcalculator.Theydetectpossibleerrorsbystrategicallyusingestimationandothermathematical knowledge.Whenmakingmathematicalmodels,theyknowthattechnologycanenablethemtovisualizethe resultsofvaryingassumptions,exploreconsequences,andcomparepredictionswithdata.Mathematically proficientstudentsatvariousgradelevelsareabletoidentifyrelevantexternalmathematicalresources,suchas digitalcontentlocatedonawebsite,andusethemtoposeorsolveproblems.Theyareabletousetechnological toolstoexploreanddeepentheirunderstandingofconcepts. ProblemoftheMonth Movin’nGroovin’ ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). 4 ProblemoftheMonth Movin‘nGroovin TaskDescription– LevelE Inthistask,astudentispresentedwithasituationinvolvingairplanestakingofffromtwodifferentcitiesatregularintervals oftime.Thistaskchallengesastudenttodeterminehowmanyplanestakingofffromtwodifferentcitiesatregularintervals passeachotheroverthecourseofaday. CommonCoreStateStandardsMath‐ContentStandards HighSchool–Functions‐BuildingFunctions Buildafunctionthatmodelsarelationshipbetweentwoquantities F‐BF.1Writeafunctionthatdescribesarelationshipbetweentwoquantities.★ F‐BF.1.aDetermineanexplicitexpression,arecursiveprocess,orstepsforcalculationfromacontext. HighSchool‐Modeling Modelinglinksclassroommathematicsandstatisticstoeverydaylife,work,anddecision‐making.Modelingistheprocessof choosingandusingappropriatemathematicsandstatisticstoanalyzeempiricalsituations,tounderstandthembetter,andto improvedecisions.Quantitiesandtheirrelationshipsinphysical,economic,publicpolicy,social,andeverydaysituationscan bemodeledusingmathematicalandstatisticalmethods.Whenmakingmathematicalmodels,technologyisvaluablefor varyingassumptions,exploringconsequences,andcomparingpredictionswithdata. Amodelcanbeverysimple,suchaswritingtotalcostasaproductofunitpriceandnumberbought,orusingageometric shapetodescribeaphysicalobjectlikeacoin.Evensuchsimplemodelsinvolvemakingchoices.Itisuptouswhethertomodel acoinasathree‐dimensionalcylinder,orwhetheratwo‐dimensionaldiskworkswellenoughforourpurposes.Other situations—modelingadeliveryroute,aproductionschedule,oracomparisonofloanamortizations—needmoreelaborate modelsthatuseothertoolsfromthemathematicalsciences.Real‐worldsituationsarenotorganizedandlabeledforanalysis; formulatingtractablemodels,representingsuchmodels,andanalyzingthemisappropriatelyacreativeprocess.Likeevery suchprocess,thisdependsonacquiredexpertiseaswellascreativity. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.2Reasonabstractlyandquantitatively. Mathematicallyproficientstudentsmakesenseofquantitiesandtheirrelationshipsinproblemsituations.Theybringtwo complementaryabilitiestobearonproblemsinvolvingquantitativerelationships:theabilitytodecontextualize—toabstracta givensituationandrepresentitsymbolicallyandmanipulatetherepresentingsymbolsasiftheyhavealifeoftheirown, withoutnecessarilyattendingtotheirreferents—andtheabilitytocontextualize,topauseasneededduringthemanipulation processinordertoprobeintothereferentsforthesymbolsinvolved.Quantitativereasoningentailshabitsofcreatinga coherentrepresentationoftheproblemathand;consideringtheunitsinvolved;attendingtothemeaningofquantities,not justhowtocomputethem;andknowingandflexiblyusingdifferentpropertiesofoperationsandobjects. MP.4 Modelwithmathematics. Mathematicallyproficientstudentscanapplythemathematicstheyknowtosolveproblemsarisingineverydaylife,society, andtheworkplace.Inearlygrades,thismightbeassimpleaswritinganadditionequationtodescribeasituation.Inmiddle grades,astudentmightapplyproportionalreasoningtoplanaschooleventoranalyzeaprobleminthecommunity.Byhigh school,astudentmightusegeometrytosolveadesignproblemoruseafunctiontodescribehowonequantityofinterest dependsonanother.Mathematicallyproficientstudentswhocanapplywhattheyknowarecomfortablemakingassumptions andapproximationstosimplifyacomplicatedsituation,realizingthatthesemayneedrevisionlater.Theyareabletoidentify importantquantitiesinapracticalsituationandmaptheirrelationshipsusingsuchtoolsasdiagrams,two‐waytables,graphs, flowchartsandformulas.Theycananalyzethoserelationshipsmathematicallytodrawconclusions.Theyroutinelyinterpret theirmathematicalresultsinthecontextofthesituationandreflectonwhethertheresultsmakesense,possiblyimproving themodelifithasnotserveditspurpose. MP.5 Useappropriatetoolsstrategically. Mathematicallyproficientstudentsconsidertheavailabletoolswhensolvingamathematicalproblem.Thesetoolsmight includepencilandpaper,concretemodels,aruler,aprotractor,acalculator,aspreadsheet,acomputeralgebrasystem,a statisticalpackage,ordynamicgeometrysoftware.Proficientstudentsaresufficientlyfamiliarwithtoolsappropriatefortheir gradeorcoursetomakesounddecisionsaboutwheneachofthesetoolsmightbehelpful,recognizingboththeinsighttobe gainedandtheirlimitations.Forexample,mathematicallyproficienthighschoolstudentsanalyzegraphsoffunctionsand solutionsgeneratedusingagraphingcalculator.Theydetectpossibleerrorsbystrategicallyusingestimationandother mathematicalknowledge.Whenmakingmathematicalmodels,theyknowthattechnologycanenablethemtovisualizethe resultsofvaryingassumptions,exploreconsequences,andcomparepredictionswithdata.Mathematicallyproficientstudents atvariousgradelevelsareabletoidentifyrelevantexternalmathematicalresources,suchasdigitalcontentlocatedona website,andusethemtoposeorsolveproblems.Theyareabletousetechnologicaltoolstoexploreanddeepentheir understandingofconcepts. ProblemoftheMonth Movin’nGroovin’ ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). 5 ProblemoftheMonth Movin‘nGroovin TaskDescription–PrimaryLevel Thistaskchallengesastudenttodeterminewhichhamsterrunsthroughamazefasterthananother. Astudentisaskedtotellwhattheyknowabouthamstersandmazesbeforedeterminingwhich hamsterinastoryproblemrunsfasterthantheother.Astudentisaskedtoexplainhowtheyknow whichoneisfasterandtodeterminehowmuchfaster.Astudentisaskedtodrawapictureordictate aresponsetorepresenthisorhersolution. CommonCoreStateStandardsMath‐ContentStandards CountingandCardinality Comparenumbers. K.CC.6Identifywhetherthenumberofobjectsinonegroupisgreaterthan,lessthan,orequaltothe numberofobjectsinanothergroup,e.g.,byusingmatchingandcountingstrategies. OperationsandAlgebraicThinking Representandsolveproblemsinvolvingadditionandsubtraction. 1.OA.1Useadditionandsubtractionwithin20tosolvewordproblemsinvolvingsituationsofadding to,takingfrom,puttingtogether,takingapart,andcomparing,withunknownsinallpositions,e.g.,by usingobjects,drawings,andequationswithasymbolfortheunknownnumbertorepresentthe problem. MeasurementandData Describeandcomparemeasurableattributes. K.MD.2Directlycomparetwoobjectswithameasurableattributeincommon,toseewhichobject has“moreof”/“lessof”theattribute,anddescribethedifference.Forexample,directlycomparethe heightsoftwochildrenanddescribeonechildastaller/shorter. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.1Makesenseofproblemsandpersevereinsolvingthem. Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemandlookingfor entrypointstoitssolution.Theyanalyzegivens,constraints,relationships,andgoals.Theymakeconjectures abouttheformandmeaningofthesolutionandplanasolutionpathwayratherthansimplyjumpingintoa solutionattempt.Theyconsideranalogousproblems,andtryspecialcasesandsimplerformsoftheoriginal probleminordertogaininsightintoitssolution.Theymonitorandevaluatetheirprogressandchangecourseif necessary.Olderstudentsmight,dependingonthecontextoftheproblem,transformalgebraicexpressionsor changetheviewingwindowontheirgraphingcalculatortogettheinformationtheyneed.Mathematically proficientstudentscanexplaincorrespondencesbetweenequations,verbaldescriptions,tables,andgraphsor drawdiagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityortrends.Younger studentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeandsolveaproblem. Mathematicallyproficientstudentschecktheiranswerstoproblemsusingadifferentmethod,andthey continuallyaskthemselves,“Doesthismakesense?”Theycanunderstandtheapproachesofotherstosolving complexproblemsandidentifycorrespondencesbetweendifferentapproaches. MP.5 Useappropriatetoolsstrategically. Mathematicallyproficientstudentsconsidertheavailabletoolswhensolvingamathematicalproblem.These toolsmightincludepencilandpaper,concretemodels,aruler,aprotractor,acalculator,aspreadsheet,a computeralgebrasystem,astatisticalpackage,ordynamicgeometrysoftware.Proficientstudentsare sufficientlyfamiliarwithtoolsappropriatefortheirgradeorcoursetomakesounddecisionsaboutwheneachof thesetoolsmightbehelpful,recognizingboththeinsighttobegainedandtheirlimitations.Forexample, mathematicallyproficienthighschoolstudentsanalyzegraphsoffunctionsandsolutionsgeneratedusinga graphingcalculator.Theydetectpossibleerrorsbystrategicallyusingestimationandothermathematical knowledge.Whenmakingmathematicalmodels,theyknowthattechnologycanenablethemtovisualizethe resultsofvaryingassumptions,exploreconsequences,andcomparepredictionswithdata.Mathematically proficientstudentsatvariousgradelevelsareabletoidentifyrelevantexternalmathematicalresources,suchas digitalcontentlocatedonawebsite,andusethemtoposeorsolveproblems.Theyareabletousetechnological toolstoexploreanddeepentheirunderstandingofconcepts. ProblemoftheMonth Movin’nGroovin’ ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). 6
© Copyright 2026 Paperzz