Measurement – AP Book 8, Part 1: Unit 6 1. 2. There are more circles because the ratio 94 : 93 indicates that for every 94 circles, there are 93 triangles and 94 > 93. a) 1; 2 : 1 b) 5; 2 : 5 c) 3; 2 : 3 d) 5; 4 : 5 e) 4; 3 : 4 AP Book ME8-2 page 165 f) 4; 2 : 4 1. g) 3; 1 : 3 h) 2; 3 : 2 a) ii) 1:3 iii) b) c) 3. 6. a) a) 3:2 = 6:4 b) 1:4 = 2:8 c) 2 : 5 = 4 : 10 a) 4:2 3:1 b) 6:3 iv) 2:1 c) 8:4 v) 2:3 d) 10 : 5 vi) 3:5 e) 20 : 10 ii) 4:8 a) iii) 3:8 Answers will vary – teacher to check. iv) 1:3 v) 1:4 vi) 1:5 2. 3. b) c) Circle: “squares to polygons” and “triangles to polygons” ii) iii) 3 8 ; shapes; light iv) 1 3 ; circles; dark v) 1 4 ; squares; light vi) 1 5 ; dark shapes; 4. 5. a) 5. a) part-to-whole ratio b) part-to-part ratio c) part-to-part ratio d) part-to-whole ratio e) part-to-part ratio f) part-to-whole ratio If it was considered as a fraction, the denominator wouldn’t be the “whole” – it would be a second “part”, like the numerator. That’s like saying this pie 3 3 is 1 instead of 4 : 4 blue : all = 4 : 7 = 7 3 red : all = 3 : 7 = 7 d) 7 blue : all = 7 : 9 = 9 2 red : all = 2 : 9 = 9 8. 5 They won 7 of the games. 9. 4 11 are rock CDs 6. 7. 5:7 b) 7:2 c) 5:3 d) 2:3 e) 28 : 9 f) 6:5 b) 2 : 3; 9 c) 3 : 5; 27 a) 4 : 5; 24 b) 7 : 10; 21 c) 2 : 3; 16 d) 1 : 4; 4 e) 1 : 2; 10 f) 14; 2 : 1 AP Book ME8-3 page 167 g) 10 : 3; 15 h) 10; 2 : 5 1. i) 4 : 1; 28 2. 3. a) 16 8. 3:2 b) 5 c) 8 d) 30 e) 12 INVESTIGATION f) 8 A. a) 100 ii) 6, 4 b) 25 iii) 9, 6 c) 25 iv) 12, 8 d) 9 v) 15, 10 a) 2 i) 2 b) 7 ii) 4 c) 30 iii) 6 d) 15 iv) 8 a) i) 25 v) 10 The ratio has simply been reversed. B. i) 3, 2 a) 9 : 12 = 12 : 16 b) 6 : 14 = 9 : 21 = 12 : 28 ii) 223 C. Yes iii) 235 D. 10 : 16 = 15 : 24 = 20 : 32 iv) 3 5 5 girls : boys = 1 : 2, so girls : students = 1 : 3 1 3 are girls. E. Ms. X – 2 : 3 d) 7. c) a) 6:9 c) 6. 5. b) circles 4. No – to have a 1 : 1 ratio, there must be an equal number of vowels and consonants. 5 blue : all = 5 : 8 = 8 3 red : all = 3 : 8 = 8 Answers will vary – teacher to check. This is impossible with a 9-letter word since the letter count needs to be even. 4 8 ; shapes; squares b) 4. b) i) 2 6 : 20 = 9 : 30 = 12 : 40 ii) 2 5 = 10 iii) 5 a) 12 girls iv) 2 3 = 6 b) 35 are blue v) c) 9 L are needed a) 3 blue : all = 3 : 5 = 5 2 red : all = 2 : 5 = 5 3 vi) 3 5 = 15 c) i) 5:6 ii) 1:3 iii) 2 : 15 Mr. Y – 5 : 3 F. Mr. Y’s class You can tell because: * fraction – the numerator > half the denominator; * ratio – the first part (girls) > the second part (boys) iv) 2 : 5 v) 4 : 25 vi) 5 : 2 K‐30 AnswerKeysforAPBook8.1 COPYRIGHT©2010JUMPMATH:NOTTOBECOPIED AP Book ME8-1 page 163 Measurement – AP Book 8, Part 1: Unit 6 AP Book ME8-4 page 169 r cm 7. 2r cm Teacher to check drawing. 1. 27 2. 12 3. 15 minutes 4. 24 5. 120 6. 490 7. 80 8. 6.25 cups INVESTIGATION 9. 27 A. 10. 5 11. a) 18 b) 50 12. 8. 9. B. a) 2.5 cm b) 3.5 cm (continued) b) KM, LN c) OA = 34 which is less than 6; inside d) OB = 41, outside; OC = 32, inside; OD = 34, inside; OE = 40, outside Teacher to check drawing. a) 1.1 cm b) 1.4 cm Teacher to check. Teacher to check drawing. e) Teacher to check. f) Teacher to check. radius = 2 cm AP Book ME8-6 page 174 OA = 1.4 cm 1. a), b) OB = 0.9 cm 4 cm 8 cm 12 cm 4:1 8:2 12 : 3 6 cm 12 cm 18 cm 6:2 12 : 4 18 : 6 24 cm 12 cm 36 cm 24 : 8 12 : 4 36 : 12 OC = 1.5 cm 4:5 OD = 1.7 cm These lengths are all shorter than the radius. AP Book ME8-5 page 170 1. Teacher to check. 2. a) Teacher to check. b) c) C. OF = 3.3 cm OG = 3.4 cm c) They are equivalent. Teacher to check. OH = 2.5 cm d) Hexagon: 3, 3; OA = OB These lengths are all longer than the radius. They are both radii. 3. 4. 5. 6. a) Teacher to check. b) Teacher to check. c) Teacher to check. d) The triangle is equilateral: BA = BC = AC = radius of the congruent circles. a) 10 cm b) 2m c) 13 mm d) 1.5 cm a) 108 mm b) 94 cm c) 42 m d) 2.8 cm Radius 4 cm COPYRIGHT©2011JUMPMATH:NOTTOBECOPIED OE = 2.5 cm 12 cm D. 10. 11. 12. Yes, should get the same result – teacher to check. a) inside b) outside c) on b) AB = 5 c) AB = 29 which is between 5 and 6. AB = 45 which is between 6 and 7. a) Teacher to check centre. radius = 5 squares c) 2 = 16 + 9 8 cm = 25 =5 5 mm 10 mm 8m 16 m 2.7 cm 5.4 cm 0.5 m 1m 0.9 cm 1.8 m AnswerKeysforAPBook8.1 d) outside; longer than; OR = 13. B. b) 2 5 +4 Teacher to check. B. Teacher to check. C. Teacher to check. D. radius E. 1 fraction = 2 F. base ≈ C ÷ 2 G. radius circumference ÷ 2 H. r C ÷ 2; ≈ r 2 r ÷ 2 =r2r÷2 =rr2÷2 2 =r 1. 27 mm; 10 mm; 80 mm; ≈ 80 mm 32 mm; 12 mm; 96 mm; ≈ 96 mm 64 : 22 = 2.91 : 1 80 : 27 = 2.96 : 1 96 : 32 = 3 : 1 ratio ≈ 3 C. 3.14 : 1 All are equal. 2 Diameter 24 cm A. 3.14 : 1 4 +3 A. INVESTIGATION on; equal to; OQ = INVESTIGATION Octagon: 3, 3 c) d) AP Book ME8-7 page 176 2. a) 21.98 m b) 37.68 m c) 31.4 m d) 28.26 cm 314 cm b) 78.5 km c) 153.86 m d) ≈ 34.19 mm 25 + 16 = 41 > 5 e) Teacher to check. a) OK, OL, OM, ON 2 2 2 2 e) 113.04 m f) 907.46 cm 2 2 g) ≈ 0.79 m h) ≈ 660.19 mm 2 AP Book ME8-8 page 177 1. 2. 2 b) 25.12 m c) 226.08 cm a) 62.8 cm b) 1 2 ; 31.4 cm c) diameter; 2r d) 31.4 + 20 = 51.4 cm e) Taking half the circumference only gives the length of the curved side of the semi-circle. 2 To find the complete distance around the semi-circle, you must add the length of the circle’s diameter, i.e. the straight edge. 2 = 2 a) f) b) 20.56 m c) 61.68 cm K‐31 Measurement – AP Book 8, Part 1: Unit 6 3. a) A = 113.04 km 2 iii) >1m D = 37.68 km b) A ≈ 31.79 cm 2 A = 37.68 m 2 D = 26.84 m d) NOTE: The first step is to make the units the same – we have used metres. A ≈ 2.08 m 2 7. ≈ 706.5 m 8. 2 2 ≈ 14.13 cm ; ≈ 6 + 14.13 = 20.13 cm 9. 2 a) 175.84 cm b) In 2 seconds, Karen will go ≈ 3 × 175.84 ≈ 527.52 cm. in 10 seconds, she’ll go ≈ 2 637.6 cm or 26.376 m. in 1 minute, she’ll go ≈ 15 825.6 cm or 158.256 m. In 1 hour, she’ll go ≈ 949 536 cm or 9 495.36 m. c) 2 2 x +x =6 b) From solving a), we find that: 18 cm 1 A=2 b × h x= 1 = 2 ( 18 × 18) D ≈ 0.231 3 m 5. 2 a) 2 By looking at 3 b), you can see that you must divide by 10 000 in order to convert a measurement 2 2 in cm to m . 2 6 cm ; Using metres, the radius is 0.045 m. A ≈ 0.003 179 m 2 3 cm; D ≈ 6.96 m 4. 2 2 RECALL: 1 m 2 = 10 000 cm D = 23.13 cm c) ≈ 10 318.47 cm (continued) = 9 cm 10. 11. 2 c) r A= 2 a) (13 + 12) cm b) (8 + ) m c) + 4 cm2 2 a) i) 10.26 cm 2 ii) 15.25 cm 2 b) 2 9 2 = 2 cm 2 2 Teacher to check drawings but, in both i) and ii), the shaded area is less than the area of the triangle. Yes, she will keep up: Karen can only go ≈ 9.5 km/hour on her bike. 6. a) b) i) ≈ 1.72 m ii) ≈ 0.32 m iii) ≈ 114.65 cm i) ≈ 2.32 m >1m ii) K‐32 2 2 ≈ 0.08 m <1m COPYRIGHT©2010JUMPMATH:NOTTOBECOPIED BONUS His wheels should rotate ≈ 4 581.8 times in 1 hour, or ≈ 1.27 times per second. 2 2 AnswerKeysforAPBook8.1
© Copyright 2026 Paperzz