lkjf.kd y?kq mÙkjh; 1 ;fn 2x 5 8 x 6 5 , rks x Kkr dhft,A 8 3 1 x x2 2 ;fn Δ = 1 y 2 1 z 1 y , Δ1 = yz x z2 1 zx y 1 xy , rks fl¼ dhft, fd Δ + Δ1 = 0 z 3 fcuk izlj.k fd,] fn[kkb, fd cosec 2 2 cosec 42 40 cot 4 n'kkZb, fd x p q cot 2 1 2 1 2 =0 p q x q = (x – p) (x2 + px – 2q2) q x nh?kZ mÙkjh; 5 ;fn x 2 3 1 x 1 = 0, dk ,d ewy x = – 4 gks rks vU; nks ewyksa dks Kkr dhft,A 3 2 x 6 ,d f=kHkqt ABC esa ;fn 1 1 sin A 1 1 sin B 1 1 sin C 0 sinA +sin 2 A sinB+sin 2 B sinC+sin 2 C rks fl¼ dhft, fd ΔABC ,d lef}ckgq f=kHkqt gSA gy 2x 5 8 x 1 gesa fn;k gS 6 5 blfy, 8 3 ⇒ x2 = 9 ⇒ 2x2 – 40 = 18 – 40 2 gesa fn;k gS 1 1 yz x x =±3 1 1 zx xy y z iafDr;ksa vkSj LraHkksa dk ijLij ifjorZu djus ij gesa izkIr gksrk gS 1 1 yz 1 zx 1 xy x x y z = 1 y xyz z xyz x2 xyz y2 xyz z2 x 1 x2 xyz y 1 y2 = xyz , z 1 z2 = ⇒ C1 vkSj C2 dk ijLij ifjorZu djus ij 1 x x2 (–1) 1 y y2 1 z 2 z – Δ1 + Δ = 0 4 3 C1 → C1 – C2 – C3 dk iz;ksx djus ij ge ikrs gSa fd cosec 2 – cot 2 – 1 cot 2 – cosec 2 0 cot 2 1 cosec 2 40 0 1 1 2 = cot 2 θ 1 0 cosec 2 θ −1 = 0 0 40 2 C1 → C1 – C2 dk iz;ksx djus ij ge ikrs gSa fd x p p x 0 p q x q q x 1 p q ( x p) 1 x q 0 q x 0 p + x 2q = ( x − p) −1 x q , R1 → R1 + R2 dk iz;ksx djus ij q x 0 C1 osQ vuqfn'k izlj.k djus ij ge ikrs gSa ( x p) ( px x 2 2q 2 ) = ( x p) ( x 2 px 2q 2 ) R1 → (R1 + R2 + R3) dk iz;ksx djus ij ge ikrs gSa fd 5 C2 → C2 – C1, C3 → C3 – C1, osQ iz;ksx ls ge ikrs gSa x 4 x 4 x 4 x 1 1 . 3 2 x 1 0 0 ( x 4) 1 x 1 0 . 3 1 x 3 R1 ls mHk;fu"B (x + 4) ysus ij ge ikrs gSa R1 osQ vuqfn'k izlj.k djus ij ge ikrs gSa Δ = (x + 4) [(x – 1) (x – 3) – 0]. ijarq Δ = 0 fn;k gS blfy, 1 1 1 ( x 4) 1 x 1 3 2 x ekuk Δ = 6 1 1 sin A 1 1 sin C 1 1 sin B 1 1 1 1 sin A 1 sin B 1 sin C cos 2 A = vr% x = – 4 osQ vfrfjDr vU; nks ewy 1 rFkk 3 gSaA sinA +sin 2 A sinB+sin 2 B sinC+sin 2 C = 1 1 sin A x = – 4, 1, 3 cos 2 B cos 2 C 0 0 sin B sin A sin C sin B cos 2 A cos 2 A cos 2 B cos 2 B cos 2 C , R3 → R3 – R2 , (C3 → C3 – C2 vkSj C2 → C2 – C1) R1 osQ vuqfn'k izlj.k djus ij ge ikrs gSa Δ = (sinB – sinA) (sin2C – sin2B) – (sinC – sin B) (sin2B – sin2A) = (sinB – sinA) (sinC – sinB) (sinC – sin A) = 0 ⇒ sinB – sinA = 0 ;k sinC – sinB ;k sinC – sinA = 0 ⇒ A = B ;k B = C ;k C = A vFkkZr~ f=kHkqt ABC lef}ckgq f=kHkqt gSA
© Copyright 2026 Paperzz