A.H.C.M.Schapendonk Centre for Agrobiological Research (CABO), Wageningen Department of Plant Physiological Research, Agricultural University, Wageningen Electrical events associated with primaryphotosynthetic reactions inchloroplast membranes Centre for Agricultural Wageningen - 1980 Publishing and Documentation ThisworkwassupportedbytheFoundationforBiophysicswith financialaidfromthe NetherlandsOrganizationfortheAdvancementofPureResearch (Z.W.O.). ISBN9022007561 Theauthorgraduatedon10December 1980asDoctorindeLandbouwwetenschappenatthe AgriculturalUniversity,Wageningen,theNetherlands,onathesiswiththesametitle andcontents. ThispublicationwillalsobeissuedasPublication 175oftheCentreforAgrobiological Research (CABO),Wageningen. (c)CentreforAgriculturalPublishingandDocumentation,Wageningen,1980. Nopartofthisbookmaybereproducedorpublished inanyform,byprint,photoprint, microfilmoranyothermeanswithoutwrittenpermissionfromthepublishers. Abstract Schapendonk,A.H.C.M., 1980.Electrical events associated with primary photosynthetic reactions inchloroplast membranes.Agric.Res.Rep. (Versl.landbouwk.Onderz.)905, ISBN 902200756 1, (viii)+95p.,47 figs,3tables,224refs,Eng.and Dutch summaries. Also:Doctoral thesis,Wageningen. A studywasmadeof electricphenomena inisolated photosynthetically-active chloroplast membranes upon energization.Energization of chloroplast thylakoid membranes givesrise to a charge separation across themembrane and anassociated transmembrane electric field. Thekinetics of this fieldweremonitored as potential changes by amicro-electrode inserted ina single chloroplast and theywere compared with theabsorbance change of an intrinsic pigment (F515)proposed tobeareflection of a transmembrane electric field. Theobserved discrepancy between the flash-induced P515response and theelectric response was caused by conformational changes inthemembranal core thatbrought about absorbance changes ofF515 inaddition to itsreponsiveness to the transmembrane potential.Most of theconclusions drawnhitherto fromP515kinetics,both after flash excitation and during prolonged illumination, have tobe regarded with caution because they commonly arebased onassumptions that are invalid under normalphysiological conditions.Under certain conditions, ifappropriate corrections aremade, theP515kinetics are indeed a reflection of the transmembrane potential. Inthat case theresults appear tobe ingood agreement with results obtained with theelectrophysiological approach. The component of theP515absorbance change, that isascribed to conformational changes inthemembranal core,may provide auseful tool for studies of fast structural changes inrelation toenergy coupling,without affecting themembrane integrity. Freedescriptors: electric potential;P515; 515nm absorbance change; conformational changes; structural changes;light scattering; thylakoid membrane; photosynthesis; electron transport; surface potential;ATP synthesis. Contents Abbreviations 1. Introduction 1.1 Higherplantphotosynthesis 1.2 Thylakoidstructure 1.3 Generationofanelectricalpotentialacrossenergizedthylakoidmembranes 1.4 Outlineofstudy 1 1 3 4 5 2. Material and methode 2.1 Isolationandcharacterizationofchloroplasts 2.2 Flash-inducedabsorbancedifferencemeasurementsofP515 2.3 AbsorbancechangesofP515and90°-scatteringchangesduringprolonged illumination 2.4 Salt-inducedabsorbancechangesofP515 2.5 Potentialandresistancemeasurementsbymeansofmicro-capillaryglass electrodes 2.6 Particleelectrophoresisofchloroplasts 2.7 Chemicalanalyses 7 7 7 9 9 11 13 14 3. Evidence for a light-induced blue bandshift of part of the P515pigment pool in intact chloroplast membranes 3.1 Introduction 3.2 Material 3.3 Flash-inducedabsorbancedifferencespectra 3.4 Simulationofbandshifts 3.5 Discussion 4. Salt-induced absorbance changes of PS15 in broken chloroplasts 4.1 Introduction 4.2 Materialandmethod 4.3 Salt-inducedabsorbancechanges 4.4 DataforavoltagecalibrationoftheP515absorbancechange 4.5 Discussion 5. Analyses of the flash-induced 5.1 Introduction 5.2 Materialandmethod PS1S absorbance changes in isolated chloroplasts 15 15 16 17 18 18 21 21 21 22 24 26 28 28 28 5.3 EvidencefortheinductionofafastandaslowP515responseupon saturating lightflashesinintact chloroplasts 5.4 AnalysesoftheP515responseinbrokenchloroplasts 5.5- Kineticsofthe light-generated transmembranepotential 5.6 Effectofvalinomycin 5.7 ActivationofReactionIIbyPhotosystem1 5.8 Discussion 6. Réaction kinetics of transmembrane •potential changes in relation to ion permeability 6.1 Introduction 6.2 Effectofelectrolyte concentrationonthedarkkineticsofReactionI 6.3 Decay of Reaction I after pre-illunination 6.4 Measurementoftheelectrical resistanceofthylakoidmembranes 6.5 Discussion 29 32 35 36 38 40 45 45 46 7. Light-dependent conformational changes in the thylakoid membrane 7.1 Introduction 7.2 Material 7.3 Someelectrokineticdataofdifferent chloroplast preparations 7.4 Theresponsivenessofelectrophoreticmobility andReactionIIuponchemical treatment 7.5 ReactionIIasapossible intrinsicmarkerfortheconformational stateof thecoupling factor 7.6 Discussion 8. The PS1S response and the photo-electrical 8.1 8.2 8.3 8.4 8.5 8.6 49 50 52 55 55 56 56 57 59 62 response during prolonged illumination Introduction Material P515absorbancechangesandchangesinlightscattering Protontranslocation EffectofMg onlight-induced90°-scattering changes Discussion 65 65 65 66 67 68 72 Summary 75 Samenvatting 78 References 81 Abbreviations ACMA 9-amino-6-chloro-2-methoxyacrldine ADP Adenosine-5'-diphosphate ATP Adenosine-S'-triphosphate CCCP Carbonylcyanide-m-chloro-phenylhydrazone DCCD Dicyclohexylcarbodiimide DCMU 3-(3,4,dichlorophenyl)-1,1-dimethylurea DCPIP Dichlorophenolindophenol Diquat N,N'-ethylene-2,2'-dipyridiliumdibromide EDTA Ethylenediaminetetraacetate HEPES N-2-hydroxyethylpiperazine-N'-2-ethanesulphonicacid MES 2(N-morpholino)ethanesulphonicacid NADP Nicotinamide-adeninedinucleotidephosphate PMS N-methylphenazoniummethosulphate S1, S-chloro,3-t-butyl,2'-chloro,4'-nitro-salicylanilide SDS Sodiumdodecylsulphate Tricine N-tris(hydroxymethyl)methyl-glycine Tris tris(hydroxymethyl)aminomethane 1 Introduction 1.1 HIGHERPLANTPHOTOSYNTHESIS Theoverallprocessofphotosynthesis,definedasthelight-drivenCO,reductionwith concomitant0,evolution,hasbeenknownformorethantwocenturiesbutitwasnotbefore1943thatthehypothesisofRuben (1943)arosethatphotosyntheticCO,reductionrequiredtheelectrochemicalgenerationoftwoenergy-richproducts:adenosinetriphosphate (ATP)andreducedpyridinenucleotides (NADPH).Thishypothesisgotstrongsupportinthe earlyfifties (Arnon,1951;Arnonetal., 1954). Theconceptoftwolightreactions,asproposedbyHill&Bendall (1960),andDuysens etal. (1961),hasbeenanimportantlandmarkinthesearchforthemechanismbywhich photosyntheticenergyconversionleadstoNADP reductionandATPproduction.Duysens& Amesz (1962)proposedthatthetwolightreactionswereoperatinginseries:along-wavelengthPhotosystem1(PS1)andashort-wavelengthPhotosystem2(PS2).Thisconceptcan bepresentedbytheso-calledZscheme (Fig.1).Lightenergyabsorbedbytheantenna pigmentmoleculesistransferredtothereactioncenters.InthereactioncentersofPS1 andPS2,theexcitedchlorophyllmolecules (P700andP680,respectively)becomeoxidized withaconcomitantreductionoftheprimaryelectronacceptors'(P430andC550).Thetwo lightreactionsareconnectedbyachainofcompoundsundergoingreversibleoxido-reduc- 20ns «P_ Fig. 1.Simplified visualization ofphotosynthetic electron flow through thevectorially oriented electron transport chainandcoupled proton translocation across thethylakoid membrane.Theproton-binding andproton-releasing sitesattheoutsideandtheinsideof themembrane, respectively areindicated. Reaction sitesofcytb-559andcytb-563are not indicated; P680andP700:trapping centersofPS2andPS1,respectively; C550andP430: primary acceptorsofPS2andPS1,respectively;PQ:plastoquinone;cytf:C554 (cytochrome f); PC:plastocyanin; FD: ferredoxin; FP:flavoprotein;Ma:mangane-containing water splitting protein; S1-S4:different functional statesofthewater splitting enzyme. tionreactions.ThestrongoxidantthatexistsafterchargetransferinPS2iscapableof oxidizingH-0.Thelight-dependentuphillelectronandhydrogentransportfromH,0to NADP servesthepurposetocreatereducingpowerforC0 2reduction.Inaddition,followingthesuggestionofMitchell (1961,1966,1968,1977),avectorialorientationofelectronandhydrogencarriersinthemembranewillleadtotheestablishmentofaproton motiveforce (pmf).Thepmf,whichconsistsofanelectricalandachemicalcomponent,is suggestedtobethedrivingforceforphotophosphorylation.Manyexperimentaldatahave supportedthevalidityofthischemiosmotictheoryforenergycouplinginchloroplastmembranes (Witt,1971;Trebst,1974).Neumann&Jagendorf (1964)recognizedthatprotonuptakeinchloroplastsistightlycoupledwithelectrontransport.Afewyearslater,itwas suggestedthatthylakoidmembraneswereabletouseàpHgradienttodriveATPsynthesis (Jagendorf&Uribe,1966;Jagendorf,1967,1975).TheabilityofpHgradientstomimicthe effectsoflightindeedisrathergoodandextendsoveragreatareaoflight-inducedeffectssuchasPi-ATPexchangereactions (Bachofen&Specht-Jurgensen,1967)andconformationalchangesinCF.,(Ryrie&Jagendorf,1972).Recentlyreversedelectronflowcaused byapHgradienthasbeenobserved (Schreiber&Avron,1977). IfthetransmembraneelectrochemicalprotongradientistheenergysourceforATP synthesisitwouldbeexpectedthatphotophosphorylationstartsafteralagperiod,to allowtheestablishmentofapmf,sufficientlyhightosupplytheenergyrequiredforATP synthesis.Suchalagperiod,however,hasbeenobservedtobeverysmallorabsentand ATPformationwasfoundtoproceedduringthefirstfewmillisecondsofilluminationor eveninsinglelightflashes,whenthereiseithernooranegligibleprotongradient formed (Ortetal.,1976;Ort&Dilley,1976;Vinkleretal.,1978).Avron (1978)suggestedthat,inthisearlytimerange,thetransmembraneelectricfieldwasthemajordriving force.Althoughthelattersuggestionmightexplaintheobservedflash-inducedATPsynthesis,noconvincingevidenceforsuchamechanismisavailable.Furthermore,itseems unlikelythatthetransmembraneelectricalpotentialishighenoughtospanthephosphate potential (Vredenbergetal.,1973).WithinthisframeworkIwouldliketocastaglance attwoalternativemodelsandavarietyofintermediateversions,thatmayprovideinsight intothemechanismofcoupledelectrontransport (Jagendorf,1975). Thechemicalhypothesis (Slater,1953;Chance&Williams,1956)proposestheformationofdirectchemicalbondsbetweenelectroncarriersandenzymesorsubstratesofthe phosphorylationreaction.Oxidationofthecomplexthenraisestheligandbondtoahigh energylevelandthisenergydrivestheanhydro-bondformationofATP.Thebasicideabehindthismechanismledtotheproposalthatenergycouplingmayinvolveconformational changes (Boyer,1965).Animportantfeatureofthishypothesis,recentlyrevisedbyBoyer (1974)andSlater (1974),isthereleaseoftightlyboundATPviaanenergy-linkedconformationalchangeatthecatalyticsiteofthecouplingATPase (CF*)whereastheATPformationitselfrequiresnoenergyinput.Accordingly,severalobservationspointtothe occurrenceofconformationalchangesinthe (CF..)(Ryrie&Jagendorf,1971;Nelsonetal., 1972;McCartyetal.,1972;Kraayenhof&Slater,1975)butnosatisfactoryexplanationas tohowtheenergyistransmittedhasbeengivenasyet. ThehypothesisproposedbyWilliams (1962)emphasizestheimportanceofelectrontransportmediatedaccumulationofprotonsinthehydrophylicpocketsofthemembrane itself.ThismaycausealoweringofH 2 0activityduetohydronium formationandfacilitatethedehydrationreactionofpolyphosphate formation.Recently,DelValle-Tasconet al. (1978)gavesupport forsuchamechanism inchromatophores of Rhodoepirillum rubrum. In addition,localpHchangeswithinthemembranehavebeenproposedtoaccount foran importantroleofconformational changesofmembraneproteins (Williams,1972).Seealso Izawaetal. (1975). Althoughallthesehypotheses canexplain theobservedformationofATP intheabsenceofeitheratransmembraneproton gradient oratransmembranepotential (Ortet al., 1976),noconvincing evidence fortheproposedmechanism isavailableuntilnow.Thechemiosmotichypothesis sofarhasprovided themost coherent framework tounderstand andpredictmany facetsofthecouplingmechanism.However,someofthesepredictionshavenot beenverifiedbyexperimental findings,especially thoseconcerning thenumber ofATPmoleculesformedperpairofelectronsmoving fromH-0tothereducingsiteofPS1.A full understandingofthismechanismmightrequest theaccomodationofmembrane-locatedevents (Harris&Crofts, 1978). 1.2 THYLAKOIDSTRUCTURE Theabilityofthedirect conversionoflightenergy intochemicalenergy istheunique propertyofspecializedorganelles inphotosynthesizing organisms.Tomeet the requirements setbythiscomplex task,thestructuralframeworkoftheseorganelles isexpected tobe highlydifferentiatedand tobeprovidedwithappropriate toolswhichenableastrict functioning ofthesystem. Itisnowwellestablished thatthe innerchloroplast membranes,havingafolded structureofcloselypackedmembrane stacks (granumlamellae)and interconnectingmembranes,called stromalamellae,separateaninnerthylakoidphase fromthestromaphase (Menke, 1961). Thethylakoidmembrane containsallthechlorophylls and accessorypigments,thecomponentsoftheelectrontransportchainsand theenzymes forphosphorylationofADP.The matrixofthisstructureconsistsofglycolipids,sulpholipids andfewphospholipids.It containsavarietyofdifferentproteins (Menke&Ruppel, 1971),eitherasan intrinsic part,stabilizedbyhydrophobic interactions and ionpairformation (Gitler,1972), or loselyboundatthesurfacebysaltbridge interaction (Avron, 1963).Chlorophyll aandb, carotenoids (Thornber, 1975)andcytochromes (Bendallétal., 1971;Lemberg &Barrett, 1973)formcomplexeswithproteins inacooperative andprotective interaction.Freeze fracturing,deep etchingandserologicaltechniquesrevealed themorphological andfunctionalasymmetry ofthethylakoidmembrane (Trebst, 1974;Anderson, 1975). The compartmentalized threedimensional structureofthechloroplast andthespecializedcomposition ofthethylakoidmembranes implicitelypoint toahighaccessibilityof theprimaryphotosyntheticprocesses toregulatory activities suchas energy-dependent redistribution ofionsbetweenthethylakoid innerspaceand thestromaor structural changesofthemembrane.A considerationofthisaspect inphotosynthesis research emerged inrecentyears,andmanyobservations confirmed theoccurrenceofsuchcontrolmechanisms (Horton&Cramer, 1974;Butler &Kitajima,1975;Kraayenhof&Slater, 1975).Foramore detailed treatiseonthissubject Iwould liketorefertorecentreviews (Barber,1976; Kraayenhof,1977a,1977b). Anextensiveresearchonthebasicoriginoftheintrinsicachievementsofthe thylakoidmembraneandthecriticalimportanceofthemutualcoherenceofitscomponents, willleadtoamorecompleteunderstandingofprimaryphotosyntheticprocesses. 1.3 GENERATIONOFANELECTRICALPOTENTIALACROSSENERGIZEDTHYLAKOIDMEMBRANES Energycapturedbythereactioncentersisusedforelectrontransferfromadonortoan acceptormolecule.Photo-oxidationoftheelectrondonorsOila TdimerP700andChia T T P680(Fig.1)andvectorialelectronejectiontowardstheexternallyorientatedelectron acceptors,P430andC550,respectively,willgiverisetoatransmembraneelectricfield (Junge&Witt,1968).Whenbothreactioncentersareequallyactivatedinasingle-turnover lightflash,eachofthemgenerateshalfoftheelectricfield (Schliephakeetal.,1968; Renger&Wolff,1975;Schapendonk&Vredenberg,1979).Allfurtherreactionsinphotosynthesisaresubsequenttothisprocessandthereforeconsiderableattentionhasbeenpaid tounderstanditsoriginandfunction.Itmayprovidefurtherknowledgeaboutthecoupling betweenelectrontransportandphotophosphorylation.Adetailedreviewonthismatterhas beengivenrecentlybyWitt (1979). Themagnitudeoftheelectricalpotentialinasingle-turnoverlightflashmeasured withdifferenttechniques,wasreportedtobe10-20mV (Vredenberg&Tonk,1975),15-35 mV (Schapendonk&Vredenberg,1977),50mV (Schliephakeetal.,1968)and135mV(Zickler etal.,1976),althoughrecentlyoneoftheauthors (Witt,1979)suggestedthatthelatter valuemightbeanoverestimation.Exeptfortheelectrodemeasurements (Vredenberg&Tonk, 1975),allavailableinformationonflash-inducedelectricfieldkineticsisobtainedfrom estimatesmakinguseoftheabsorbanceresponseofanintrinsicprobe,theP515pigment complex (Witt,1971),orofanexternalpotentialprobe (Bashfordetal.,1978;Schuurmans etal., 1978). Junge&Witt (1968)suggestedthatthefield-dependentelectrochromicabsorbanceshift ofP515wasalinearindicatoroftheelectricfieldacrossthethylakoidmembraneand consequentlywouldfollowasingle-exponentialdarkdecaywitharateconstant,determined bythemembranecapacitanceandthemembraneconductance (Bulychev&Vredenberg,1976a). Accordingly,asingle-exponentialdecayoftheP51Sabsorbancechangeinisotonically suspendedchloroplastshasbeenreportedtooccurundernon-phosphorylatingconditions (Witt,1971;Junge&Witt,1968;Boeck&Witt,1972).Thedecayrate,however,seemstobe dependentonthemembraneintegrityratherthanonthemembraneconductance.Thisisdemonstratedbythescatterinthereportedhalf-lifetimesoftheP515changes,usingdifferentmembraneisolationprocedures (Schmidetal.,1976;Schapendonketal.,1979). Theoccurrenceofbiphasicdecaykineticsunderphosphorylatingconditions(Rumberg &Siggel,1968;Jungeetal.,1970;Girault&Galmiche,1978)hasbeeninterpretedtobe duetoanincreasedprotonconductancethroughtheATPsynthesizingenzymecomplexabove acriticalpotential (Rumberg&Siggel,1968;Jungeetal.,1970).Ontheotherhand Nelson (1972)andNeumannetal. (1970)observedthatthedecaykineticsofP515wereindependentontheoccurrenceofATPsynthesis.Moreover,Girault&Galmiche(1976)demon- stratedthattheaccelerationofthePS15decaycouldeasilybeobtainedbyadditionof ATP. Theseandotherobservationshavegivenrisetofundamentalcriticismoftheproposed hypothesis (Rumberg&Siggel,1968)andtendtotheconclusionthattheobservedeffects somehowreflectaprocesswhichmaybeassociatedwithnucleotidebindingonthemembrane ormorespecificallyontheCF«. Supportwasgivenforthesuggestionthatatleastpartofthecarotenoidabsorbance changesmaybecausedbyconformationalchangesinthemembraneclosetotheregionwhere thecarotenoidsareattached (Fleischmann&Clayton,1968;Baltscheffskyetal., 1971). Quantitativeestimatesofthesteady-statetransmembranepotentialacrossthethylakoidduringcontinuousilluminationarealsoambiguousasyet.Dependentonthemethodologicalapproach,valuesof75-10SmV (Barber,1972a),30mV (Strichartz&Chance,1972), 10mV (Schröderetal.,1971)havebeenreportedforthetransmembranepotentialinchloroplasts.Gräber&Witt (1974)concludedfromP515measurementsthatthesteady-state transmembranepotentialreachedavalueofabout 100mVinintact Chlorella cells.Adirectmeasurementwithmicro-electrodesinintact PeperotrAa chloroplastsshowedasteadystatepotentialinthelightoflessthan10mV.Moreover,thekineticsofthelatterare quitedifferentfromthoseofthe515nmabsorbancechanges.Consideringthedifferent methodsused,theapparentlyconflictingresultsinfactarenotnecessarilycontradictorybecausetheintrinsicP515pigmentsmayreacttochangesinlocalelectricfields (Fleischmann&Clayton,1968)andtochangesinsurfacepotential (Rumberg&Muhle, 1976). Theselocalizedeventsarenotdetectedwithmicro-electrodes,thataresituatedinthe bulkphase.Moreover,partoftheP515absorbancechangesiscausedbyslowersecondary events,reflectedbyscatteringchanges,thatareknowntooccuruponenergization (Deameretal.,1967;Thome etal., 1975). 1.4 OUTLINEOFSTUDY Thisstudydealswithelectricaleventsinthylakoidmembranes,associatedwithlightactivitationofthephotosyntheticapparatus.Theseeventswillbediscussedinrelationto thedynamicfunctionofthemembraneinenergytransductionandenergycoupling.Thekineticpatternofthetransmembranepotentialwillbecharacterizedanddiscussedinview oftheseeminglyconflictingresultsobtainedwithspectroscopicandelectrophysiological methods,respectively.Someadditionalinformationwillbepresentedaboutstructural changesinthemembranecoreinducedbyelectrogenicmechanisms,andtheirpossiblefunctioninphotophosphorylationwillbediscussed. Experimentshavebeencarriedoutwithintact (ClassI) andbroken(ClassII)chloroplasts.Chapter3dealswiththeinhomogeneousdistributionofthefield-indicating carotenoid-chlorophyllbpigmentcomplex(P515)inthemembrane,asconcludedfromapparentdifferencesinthespectrum,characteristicfortheelectrochromicresponseofthe complex.AvoltagecalibrationoftheP515absorbancechangescausedbyasaturating single-turnoverlightflashisgiveninChapter4.AkineticanalysisoftheP515responseinlightflashesisgiveninChapter5. Thekineticsofthetransmembranepotentialchanges,reflectedbyafastP515component (resolvedinChapter5 ) ,arestudiedinrelationtoionconductivityandcompared withthetransmembranepotentialchangesasmeasuredwithmicro-capillary glass electrodes (Chapter 6). Thecharacteristics ofaslowP515componentarediscussed inrelationto conformationalchangesinthemembrane (Chapter 7). Finally,anexperimentalapproachis given,todetectP515absorbancechangesduringprolonged illuminationafter correction forscattering artifacts (Chapter8 ) . Partoftheworkpresented inthisbookhasbeenpublished (Schapendonk&Vredenberg, 1977; 1979;Vredenberg &Schapendonk,1978;Tonketal.,1979;Schapendonketal.,1979; 1980). 2 Material and methods 2.1 ISOLATIONANDCHARACTERIZATIONOFCHLOROPLASTS Forallexperiments,except thosedescribedinChapter6,freshly-grown spinach (Spinaeia oleraaea, "Amsterdams Reuzenblad"wasculturedonhydroponicsinthelaboratory green houseaccordingtothemethodofSteiner (1968).Foroptimum growthinwinter theroot temperaturewasmaintainedat20°Candduringthatperiodtheplantswere illuminated withhigh-pressuremercury lampsfor8hours.Intactchloroplasts routinelywere isolated accordingtoamodifiedmethodofNakatani&Barber (1977),except forpreparationsused inChapter 4.Washed leaves (25g)werecutintosmallpieces(%0.5cm)andgroundfor 2s,usinganUltraTurrax 18/10cavitationdisperserprovidedwith 18Nshaft,in50ml ofamedium containing 0.33mol/1sorbitol,0.2mmol/1MgCl,,20mmol/1MESand5mgegg albumen,adjustedtopH6.5withtris.After filtrationthrough8layersofperlonnet (porediameter40jjm),thefiltratewas centrifugedintwotubesfor40sat815 gina M5EChillSpincentrifuge.Thepelletswere resuspendedbygentlehand-shakingin10ml of 0.33mol/1sorbitol,adjustedtopH7.5withtris.However,inthecourseoftheinvestigation,itwasdiscovered thatreplacementoftrisbytricine-NaOHgavebetterCO," dependent0,evolution,seealsoCheniae&Martin (1978).Asubsequent centrifugationfor 30-40sat815 gyieldedapreparationof90-100% intactchloroplastsasdeterminedby ferricyanidereduction (Heber&Santarius, 1970).Theassaymedium consistedof0.33 mol/1 sorbitol,0.5nmol/1K2HP0 4 , 10mmol/1NaHCOj,2mmol/1HEPES,pH7.5,unless otherwi;.u indicatedinthetext.TheCO^-dependent0,evolutionrateusuallywasintherangebetween 60and80ymol0,permgchlorophyllperhour. The isolationproceduredidnot takemore than4-5min.Brokenchloroplastswereobtainedbya30sosmoticshockineitherH,0, 10nmol/1MgCl,or10mmol/1 KClandsubsequent additionofdouble strengthassaymedium,containing 0.66nmol/1sorbitol,4mmol/1 HEPES,pH7.5andeither 10mmol/1 MgCl,or10nmol/1KCl,unlessotherwise indicatedin the text. 2.2 FLASH-INDUCEDABSORBANCE DIFFERENCEMEASUREMENTSOFF51S Flash-induced absorbance changesweremeasuredinamodifiedAminco-Chance absorption difference spectrophotometer (Fig.2a).Theapparatus operatedinthedcsingle-beammode.A 0.3x0.3cmsample cellwas inserted intoaspecialholder thatcouldbethermostated. Flashillumination (half-time8us)withaGeneralElectric FT-230flashtubeoraXenon 457flashtubeofwavelengths above665 ranreachedthesampleviaaflexible light guide. Thephotomultiplier wasshielded fromstray lightbyaWratten 58,BG38andBG18filter combination.Singleflashesoragroupof2-6flasheswithtime intervalsof100mswere TRIGGER SOURCE - J I— AMPL. [FLASH AVERAGER CH RECORDER / EJJ MA CUV Fig. 2a.Schematicdiagramoftheequipmenttomeasureflash-inducedabsorbancechangesin chloroplastsuspensions.Thechopperblade (CH)isatafixedpositionallowingonemeasuringbeamofacertainwavelengthtopassthecuvetteviaanadjustablemirrorassembly (MA).Transmittedlightisdetectedbyaphotomultiplier (PM1).Aftercompensationwitha dcvoltageandsubsequentamplification,thesignalcausedbyaflash-inducedchangein transmission,isfedintoaDatalab.102Asignal-averager.Severalflashresponsesare averagedandthesignalismonitoredonarecorderoranosciloscope.Apulsegenerating system,TektronixRate/Rampgenerator26G1triggeringaRampgenerator26G2andtwopulse generators 26G3,controlsthetimeofflashfiringandprovidestriggerpulsesforthe averagerandtheosciloscope (Tektronix 7313). Fig. 2b.Operationmodeofequipmenttomeasureabsorbancechangesand90-scattering changessimultaneously.Chopperrotationcausesa300Hzmodulatedpassageofthemeasuringbeamofafixedwavelengththroughthecuvette,whichallowsanabsorbance (andscattering)measurementatthiswavelengthagainstadarkreference.Light,scatteredbythe chloroplastsuspensionisdetectedbyasecondphotomultiplier (PM2).Furtherdetailsare inthetext. Fig. 2c.Equipment tomeasure absorbance changes caused by addition of substances toone of thecuvette compartments. Chopper rotation directsmeasuring light of a selected wavelength alternatively through themeasuring and reference compartment of thecuvette.The ac signal is fed intoaLock-in amplifier and theresulting dc signal is recorded. fired.Therepetitionrateusuallywas0.05Hz.Anumberofeither32or64absorbance responsesweresampledandaveragedusingaDataLab102Asignal-averager.Insomeexperiments38or70flasheswerefiredatarepetitionrateof3-4Hz.Inthiscase6flashes wereusedforpre-conditioningthesample. 2.3 ABSORBANCECHANGESOFP515AND90°-SCATTERINGCHANGESDURINGPROLONGED ILLUMINATION Absorbancechangesand90°-scatteringchangesweremeasuredsimultaneouslyinthesameapparatus (Fig.2b)nowoperatinginthechoppedsingle-beammode (monochromaticmeasuring beamalternatingagainstdark).Scatteringchangesweremonitoredbyasecondphotomultiplierviaaflexiblelightguide,placedagainstthesidewallofthecuvette.ThephotomultiplierswereshieldedfromstraylightbyaWratten58,BG18andBG38filtercombination.Thesamplewasilluminatedbylightfroma250Wtungstenlampplacedinamodifiedlamphouseassemblyofalightprojector.Theexcitationlightwasofwavelengthsabove 665nm.Thetemperatureofthesamplewaskeptat2°C.Beammodulation (300Hz)wasachievedbyarotatingchopperblade.Thesignalofalight-emittingdetectionsystem (Data TechnologyAD2010E)wasusedasthereferenceinputforaBrookdealLock-inAmplifier Type401AandaBrookdealPhasesensitiveDetector9412,thatservedtoconvertthemodulatedresponseofthephotomultiplierintoaproportionaldcsignal.Thissignalwasamplifiedandrecorded. 2.4 SALT-INDUCEDABSORBANCECHANGESOFP515 Absorbancechangescausedbytheadditionofsaltsatcharacteristicwavelengthsinthe regionbetween460and700nmweremeasuredinthesplit-beammodeofoperation(Fig. 2c). Themonochromaticbeamofmeasuringwavelengthsalternativelypassessampleandreference compartmentofaspecialcuvette (Fig.3 ) ,seealsoTonketal. (1979).Themotor-driven pinions (aandb)coupledbythestring (e),rotatesynchronouslyintwosmallcylindrical channels(5mmdiam.)whichhaveopenconnectionswiththeupperandlowerpartsofsepa- Fig.3.Cuvette,designedtomeasureabsorbancechangesinchloroplastsuspensionscaused byadditionofsubstancesthroughinletskandjinoneofthecompartments (g),withreferencetocompartmentf. ratedreference (£)andmeasuring (g)compartment (34x8x 10mm).Thecentersofthelowerholes (candd)areoff-linewiththeshafts(handi)oftherotatingpinions.Clockwise-directedrotationthereforecausesasuctionintotheupperholesandanupwarddirectedpressureinthecompartments,whichleadstoacounter-clockwisecirculationofthe suspensionsinbothcompartments.Becauseoftheparallelandsynchronizedflowofparticles,split-beamabsorbancedifferencemeasurementsaremuchlesslimitedinsensitivity andaccuracybywhirlingeffects.Themixingtimeafterthepulsedinjection(throughinletsjork)ofasmallvolumeofaconcentratedchemicaleffectorinthemeasuringcompartmentwasfoundtobelessthan1s.Thedouble-beammode (monochromaticbeamsofmeasuringandreferencewavelengthalternativelypassingthroughasinglecompartmentof cuvette)wasusedtomeasureaccuratelyabsorbancedifferencespectraofKCl-induced changesinthepresenceof3umol/1valinomycinand2mmol/1MgCl-.Saltswereaddedas concentratedsolutions (1mol/1viamicro-syringes). 10 2.5 POTENTIALANDRESISTANCEMEASUREMENTSBYMEANSOFMICRO-CAPILLARYGLASSELECTRODES MeasurementswereperformedonchloroplastsofPeperomia metalliaa inathinleafsection (Fig.4 ) . Growthconditionsofplantsandexperimentalprocedureswereessentiallythe sameasdescribedbyVredenbergetal. (1973)andBulychevetal. (1973).Fig.5showsthe diagramoftheexperimentalarrangement.Potentialsweremeasuredbymeansofamicro-capillaryglasselectrode (Fig.6)filledwith3mol/1KClincontactwithaAg-AgClwire, viaanagarKClbridge (Fig. 7).Thepotential (change)oftheelectrode,insertedintoa singlechloroplast,wasmeasuredwithreferencetoanexternalelectrode.Theelectrode signalwasfedintoahigh-impedanceunitygainamplifier (ILPICO-metricAmplifier181),andrecordedonanoscilloscopeoragalvanometricrecorderwithatimeresolution of0.5ms.Photoreactionswereinducedeitherbyprolongedilluminationfromamodified lamphouseassemblyofalightprojector (250W ) ,orbyflasheswithhalf-lifetimesof8 ysand80ususingaXenonoraRolleiflashdevice,respectively.Thelightreachedthe sampleviaaflexiblelightguide(1mmdiameter).Thepositionofthelightguidewasat adistanceof1to4mmfromtheleafsection.Thepositionoftheelectrodewasstabilized,quenchingenvironmentalvibrationsbyaspeciallyconstructedtable (W.Tonk,unpublished).Photoresponsescouldbeobservedduringaperiodof5-15minafterinsertion oftheelectrode. ThemembraneresistancewasrecordedwithswitchSinposition1(Fig. 5).Withthe q 10 ilresistorinthecurrentcircuit,thecurrentpulses,eitherhyperpolarizingor depolarizingthemembrane,wereoflowamplitude (lessthan1nA).Thecurrentpulses Fig.4.Light-microscopepictureofaleafsectionof Peperomia metalliaa withonecell, containingfourchloroplasts.Theglasselectrodeispositionedneartothecellwall. Thebarcorrespondstoalengthof20pm. 11 Fig.5.Scheme Thepotentialis inserted intoa tion.Thesignal toredonanosci Apulsegenerato allowedcurrent plastmembranes 0. felectricpotentialmeasurements inaleafsectionof Peperomia metallioa. measuredacrosschloroplastmembranesbyamicro-capillary glasselectrode singlechloroplastwithreferencetoanelectrodeinthesurroundingsoluisfedintoahigh-impedanceunitygainamplifierandsubsequentlymoniloscopeorrecorder. r (switchSinpositionl)Qorafunctiongenerator (switchSinposition2) injection,limitedbya10 Sresistorinthecircuit,acrossthechloroLight-inducedpotentialchangesweremeasuredwiththeswitchinposition passedacrossthemembranethroughtheelectrodetowardstheexternalreferenceelectrode. Thecapacitanceoftheelectrodewascompensatedbyanegative-capacitancecouplingcircuitofthePICO-metricamplifier. Current-voltagecharacteristicsofthethylakoidmembraneweremeasuredbymeansofa current-scanningtechnique,basicallysimilartotheonedescribedbyothers(Coster, 1965;Vredenberg&Tonk,1974b).SwitchSisputinposition2,connectingthecurrent circuitwiththeoutputofafunctiongenerator,operatinginasingle-sweepmode,which o generatesavoltagethatchangesatauniformerate.Thecurrentlimitedbythe10 a loadresistorchangedfrom-1 (inwardcurrent)to+1nA (outwardcurrent)atarateof 0.66nA/s.SpecialattentionwaspaidtothelinearityoftheI-Vcharacteristicofthe measuringelectrode. Fig.6.Scanningelectronmicrographoftheopenelectrodetip.Thebarcorrespondstoa lengthof 1urn.ThemicrographwasmadebytheTechnicalandPhysicalEngineeringResearch Service,ElectronMicroscopySectionatWageningen. 12 Fig.7.Perspexholder formicro-capillary glasselectrode.TheAg-AgClwire (a)isin contactwiththeKCl-filledglasselectrode (c)viaaKCl-agarbridge(b). Insameexperimentschloroplastswereisolatedinamediumcontaining 0.25mol/1 sucrose,25g/1Ficoll,100mg/1bovineserumalbumen,12mnol/1NaCl,20mmol/1HEPES-NaCH,pH 7.6.Onesinglechloroplastwasimmobilizedbysuctiononafire-polished tipof a glasspipette (tipdiameter 10-12 ym),andtheelectrodecouldbeinserted.Furtherprocedureswereasdescribed inthissectionandappeared tobeapplicabletothissystem without furtheradaptations. 2.6 PARTICLEELECTROPHORESIS OF CHLOROPLASTS Theelectrophoreticmobility (u)ofindividual chloroplastswasdetermined inathermostated (25°C)laterallyorientatedrectangularquartzchamber (depth0.7mm,height 14mm) connected toreversibleCu-CuSO.electrodecompartments.Theinstrument,basically similar totheonedescribedbyFuhrmannetal.(1964),wasequippedwithphasecontrastoptics (Leitz,largeworkingdistance)andafibre-opticsactinic illuminatorprovidingred light (650nmcut-offfilter)withanintensityof220W/m attheelectrophoresis chamber.Measurementswereperformedatconstantcurrents (1-5mA)resultinginelectricfield strengths between5and35V/cm.Theobservationlightwasfilteredbyagreen (540nm)interference filterandkeptatthelowestpossibleintensity inordertominimizeactiniceffects.The objectivewasfocussedononeofthetwopre-determined stationaryphases.Theelectrophoreticmigrationwastimedforbothforwardandbackward (reversedfield)runsovera knowndistance (37.5or75 ym).Usually 10consecutiverunsofdifferent chloroplasts ofthesametypewereregisteredandthemeanvaluesof u aregivenintablesandfigures; withinthesamechloroplastpreparationthestandarddeviationsweremostly 1to3%,neverexceeding 8%.Theelectricalconductance andviscosityofthedifferentmedia,includingchloroplastsweremeasuredwithconductivitybridges (PhilipsPR9501 andRadiometer CDM3)andanOstwald-typeviscosimeter,respectively. Glutaraldehyde-treatedchloroplastswereobtainedbyincubatingbrokenchloroplasts for2minin2.5%glutaraldehyde,followedbytwowashing steps. ElectrophoreticmeasurementsweredoneinclosecollaborationwithDr.A.Theuvenet, Dept.ofChemicalCytologyoftheUniversityatNijmegenandDr.R.Kraayenhofandworkers,Dept.ofBiologyoftheFreeuniversityatAmsterdam. 13 2.7 CHEMICAL ANALYSES -Chlorophyll concentrationsweredeterminedbythemethod ofBruinsma (1961). - Proteinwasdetermined bytheBiuretreactionofGornall &Bardawill (1949). - Light-dependentJ^g fluxacrossthylakoidmembraneswasdetectedbyaMg -selective electrodeplaced inacylindricalperspex cuvette (W.Tonk,unpublished).Stirringofthe suspensionwas achievedbyrotationofthecuvettecausedbyaconstant flowofairagainstapaddlewheel.Theadvantageofthisstirringmethodabovethemorecommonlyused magnetic stirrer isasuppresseddeteriorationofthechloroplasts andanimprovement of thesignaltonoiseratio.Thesuspensionwas illuminated bylight froma 250W tungsten lampplaced inamodified lamphouseassemblyofalightprojector (Leitz). - Lightdependentoxygenevolutionwasmonitoredpolarographicallywitheither a separate oxygenelectrode (RankBrothers)oraGilsonOxygraph.The temperaturewaskept constant at20°C. - Phosphorylation activityofchloroplastpreparationswasmeasured byATP consuming luciferine/luciferasemediated lightemission.Thechloroplast suspensionwas illuminated underphosphorylating conditionswithlightofwavelengths above 665nm.Immediately after cessationoftheillumination,thequantumyieldoftheATPhydrolyzing luciferine/ luciferasereactionwasdetectedbyaphotomultiplier.Calibrationwascarried outby titratingknownamounts ofATP. -A CF..preparationfromspinachchloroplastswas isolatedbyachloroform-water extractionprocedure offragmented thylakoidmembranes andsubsequent ammoniumsulphateprecipitationoftheproteinfractioninthewaterphase.FurtherpurificationbySepharose 6B chromatography yielded ahighlypurified CF. fraction.Antibodies againstCF.,elicited inrabbit,wereadonationofDr.J.VerheyenoftheBiochemistryDepartment,University ofAmsterdam. Intheexperiments dealingwiththeseantibodypreparations,theserum from thesameanimalbefore immunizationwasused asacontrol. 14 3 Evidence for a light-induced bluebandshift of part of theP515 pigment poolin intact chloroplast membranes 3.1 INTRODUCTION Thelight-induceddifference spectruminthe460-S40 ranwavelengthregion,measuredin algaeandchloroplasts,ischaracterizedbyamaximum around 518nm,aminimumatabout 480 ranandaninflectioninthe490-500 ranwavelengthregion (Duysens,'1954;Roux& Faludi-Daniel,1977;Bouges-Bocquet, 1977;Conjeaudetal., 1976).Evidencehasbeengiven thatthisspectrumistheresultofanelectrochromicresponseofchlorophyll b andcarotenoidpigmentstotheelectricfield,generatedbytheprimarylight-inducedchargeseparationinthemembrane (Junge&Witt,1968;Reichetal., 1976). Reichetal. (1976)showed thatthefrequencyshiftoftheabsorptionofamolecule wasrelatedtothestrengthoftheelectricfield.Therelationisgivenby: hAv=-|-ye-yg|?-J(<*e-ag)? 2 , inwhichAvisthefrequencyshiftoftheabsorption,duetotheelectrical fieldF*,yg andyepresent thepermanentdipolemomentofthemoleculeinitsgroundstateandexcited state,respectively;agandaepresent thepolarizability ofthegroundstateandthe excitedstaterespectively;histheconstantofPlanck.Becausecarotenoids lackapermanentdipolemomenty,onlythequadraticpartoftherelationwouldbeexpectedtocontributetotheshift.Experiments,however,showedalinearrelationshipbetweentheelectricfieldandtheabsorbanceshiftatafixedwavelength (Jackson&Crofts,1969a;Amesz &DeGrooth, 1976;Chapter 4).Thus,ithasbeensuggested thatthecarotenoidsareexposedtoahighpermanent field (fint),duetoasymmetrical complex formationwithpolar molecules (Sewe&Reich, 1977a; 1977b;Reichetal., 1976;Reich&Scheerer, 1976).Inthe caseofcarotenoidssuchaligand formationhasbeenshowntoinduceadipolemomentrelatedtothestrengthofthepermanent field (Reichetal., 1976)with: Ay = Aa//-Fint, inwhich àa// isthepolarizabilityofthecarotenoidmoleculeparallelwiththelongaxis ofthemolecule.Consequently: hAv = -|Aa//'fint|f-i(«e-ag)? 2 Sewe&Reich (1977b)estimated that themagnitudeofthepermanent field,causedby asymmetrical complexformationisoftheorderof1.7x10 V-cnf .Forchromatophoresan evenhigherfieldstrengthhasbeenreported (Amesz&DeGrooth, 1976),thatmayexceed 15 7 x 1 0 V-cnf .Incomparison,thephoto-electricfieldacrossathylakoidmembranehas beenapproximatedtobeabout1.2x10 V-cm" (Reich&Scheerer,1976).Therefore,the quadratictermintheequationcanbeneglected.Witt (1979)inferredthattheabsorbancechangeAA(X)isrelatedtoageneratedelectricfieldofmoderatestrengthaccording to: AA(X)=c( 6A / 5x ) |f| Theconstantcisproportionaltothescalarproductofthemagnitudeoftheinduced dipolemomentandthecosineoftheanglebetweenthemolecularaxisandthefielddirection.Thismeansthat: -AA(X)islinearlydependentonthefieldstrength -theshapeandwavelengthlocationofthedifferencespectrumAA(X)isinvariableand 6A proportionaltothefirstderivative ( /.)oftheabsorbancespectrum. DeGrooth&Amesz(1977)suggestedthat,atleastinbacterialchromatophores,the poolofcarotenoidsshowingelectrochromismmaynotbecompletelyhomogeneousandmayconsistofmoleculeswithslightlydifferentpeakwavelengthsandbandshiftsdependingonthe strengthandorientationoflocalelectricfields. Inthischapterwediscussaneffectofcationsonthelight-induceddifferencespectrumofP515inchloroplasts.Itisshownthatinintactchloroplasts,aswellasinbroken chloroplastsinthepresenceofcations,partofthepigmentsinthepoolrespondina waythat,uponflashillumination,theirabsorptionbandisshiftedtowardsashorter wavelength.Thisblueshift,whichgivesrisetotheinflectionaround500runintheoveralldifferencespectrum,isinterpretedintermsofacation-dependentchangeinthe orientationofthepigmentcomplexwithrespecttoaninducedphoto-electricfield,orof acation-inducedmigrationoftheprimaryacceptorofPhotosystem2intothehydrophobic regionofthemembrane.Thus,inthelattercase,partofthepigmentsmightbecomeexposedinthelighttoanoppositelyorientatedfieldbetweentheprimaryacceptorandthe outersurfaceofthemembrane. 3.2 1IATERIAL IntactchloroplastsfromfreshspinachleaveswereisolatedasdescribedinChapter 2exceptforthefollowingmodifications.Theincubationmediumofintactchloroplasts contained330mmol/1sorbitoland30mmol/1tricinepH8.0.Brokenchloroplastswereobtainedbybriefosmoticshockeitherinwater,orsaltsolutioncontaining10mmol/1MgCl, and15mmol/1KClandsubsequentwashinginincubationmediumcontaining,inadditionto 330mmol/1sorbitoland30mmol/1tricine,nosaltor10mmol/1MgCl?and15mmol/1KCl, respectively.Stocksuspensionsofchloroplastswerediluted6-10foldinassaymedium whichwassimilartotheincubationmedium.Insuspensionsofbrokenchloroplasts,20 ymol/1diquatwasaddedaselectronacceptor.Finalchloroplastconcentrationswereequivalenttoapprox100yg/mlchlorophyll. 16 3.3 FLASH-INDUCEDABSORBANCE DIFFERENCE SPECTRA Fig. 8a showsthespectraofflash-inducedabsorbance changesinintactandbrokenchloroplastsinthepresenceandabsenceofions,respectively.Thetwospectraaredistinctly different.Theratiooftheabsorbancechangesatthemaximum 515andtheminimum480nm ishigherinintactchloroplaststhaninbrokenchloroplasts.Inaddition,thespectrum oftheintactchloroplasts showsaninflectioninthe490-500nmregion.Thespectrumof brokenchloroplasts,isolatedandincubatedinasalt-containingmediumwasfoundtobesimilartothespectrumofintactchloroplasts (notshown).Thus,thespectraldifferences AA -033Fig.8.a)Spectraof flash-induced absorbance changes inintact andbrokenchloroplasts, (curves2and 1,respectively). Intact chloroplasts suspensions contained inaddition to sorbitoland tricine, 10mmol/1 MgCl2and 30mmol/1KCl.Broken chloroplastswere prepared and incubated intheabsence of cations.Theabsorbance changes aregiven inrelativeunits,b)Spectrum obtained by subtraction (curve 2-1)of the two spectra inFig.8a. 17 appearedtobeduetoioniceffects. Inductionandrecoveryoftheflash-inducedabsorbancechangesforeachpreparation hadthesamekineticsatallwavelengthsstudied,butnoattemptwasmadetodistinguish thekineticsofAA515indifferentchloroplastsuspensions.AdetailedstudyofthesekineticsisgiveninChapter5.ThemagnitudesofAA515werefoundtovarylinearlywith chlorophyllconcentration. AsshowninFig.8b,subtractionofthetwospectraofFig.8agivesaspectrumwith aminimumaround505nm,amaximumat483nmandzeropointsat460,495and535nm.Thus, itappearsthatthedifferencespectrumofintactchloroplastsiscausedbytwodifferent bandshifts,onesimilartotheredbandshiftobservedinbrokenchloroplasts (Fig-8a,see alsoChapter4)andone (Fig.8b),indicativeforabluebandshift. 3.4 SIMULATIONOFBANDSHIFTS Fig. 9 (curve"a+b")showsacomputeddifferencespectrumcomposedofa1nmredbandshiftofasingleGaussianbandA (maximumat497nm,halfwidth44nm)anda1nmblue bandshiftofaGaussianbandB (B=0.18A,maximumat495.5nm,halfwidth25nm).For comparisonthespectraofbandshiftsA (curvea)andB (curveb)aregiven.Thecomputed differencespectraaanda+bappeartobeareasonablygoodsimulationofthespectra1 and2measuredinthechloroplasts (Fig.8).Obviously,thewidthofthenegativebandof theexperimentaldifferencespectraissmallerthanthatofthecomputedspectra.Moreover, thelatterwouldneedasmallbaselineshift (Fig.9)tomatchtheasymmetryobserved intheexperimentalspectra. 3.5 DISCUSSION Incubationofchloroplastsinanion-freeenvironmentwillleadtounstacking (Gross&Hess, 1974;Telferetal.,1976),changesinthemembranesurfacecharge (potential)(Barber& Mills,1976),andtostructuralchangesinthemembrane(Gross&Hess,1974;Murakamiet al.,1975).Thestructuralchangeswillaffectthemutualorientationofpigments. Thus,inthepresenceofhighconcentrationsofMg andK ,whichforinstanceexist intheintactchloroplasts (Nobel,1969;Vredenberg,1977),thecarotenoidsinthemembrane mightbecomeexposedtoelectricfieldswithadifferentorientationandmagnitudethan inanion-freeenvironment.Ifso,ourresultscanbeinterpretedintermsoftwoalternativemodels:(i)Instackedchloroplasts,inthepresenceofmono-anddivalentcations, partoftheelectrochromicallyrespondingcarotenoidshaveadipoleorientationwhich, withrespecttothelight-generatedelectricfield,isdifferentfromtheoneofthebulk ofthecarotenoids.Butintheabsenceofionsallfield-indicatingpigmentsareorientated inthesamedirection,(ii)Allcarotenoidshavethesamedipoleorientation,bothinthe absenceandpresenceofions,butasmallpartofthem,notablythoselocatedinthevicinityoftheprimaryacceptorsofthereactioncentersattheoutercoreofthemembrane, becomeexposedtoanoppositelyorientatedlight-generatedelectricfieldbetweenthe chargedprimaryacceptorsandtheoutermembranesurface.Thiscouldperhapsoccurifthe acceptorhasmigratedmoreintothehydrophobicregionofthemembraneunderhigh-salt AA 540nm Fig.9. Computed difference spectrum (curvea+b)composed of a 1nmredbandshift (curve a)of a singleGaussianbandA and a 1nmblue shift (curveb)of aGaussianband B (B• 0.18 A ) .Thebrokenhorizontal line istheoriginal zero lineof the spectra.The spectra areplotted inrelative absorbanceunits. conditions.Thepostulatedmigrationwouldbecomereversedintheabsenceofions.AccordingtoaninterpretativemodelproposedbyRenger (1975)th emigrationoftheprimaryacceptorQofPhotosystem 2includingitsproteinaceous shieldingcomplex,couldtakeplace inthepresenceofsurfactants.Furthermore,afield-drivenmovementofQintothemembranalplanehasbeensuggested (Joliot&Delosme, 1974). AlthoughIamnotinthepositiontodiscriminatebetweenthetwoalternatives,I considerthefirstoneasthemostplausibleone.Thefractionofpigmentsthatshowsa bluebandshift cannotbeestimatedwithprecisionasyet.AnalysesofthedataofFigs8 and9indicate thatwhenthebluebandshift isassumedtobeequaltotheoneofthered bandshiftofthebulkpigments,theformeroneiscausedby181ofthebulkpigments.The 19 absorptionbandoftheblue-shifting fractionpresumablyhasasomewhatsmallerhalf-width (25nm)thanthatofthebulk (44run)andislocatedataslightly lowerwavelength.These differencessuggestadifferentchemicalenvironmentwhichwouldbeinharmonywiththe modelsdiscussed. 20 4 Salt-induced absorbance changesof P515inbroken chloroplasts 4.1 INTRODUCTION Voltagecalibrationofthe515nmabsorbancechangeusuallyismadewithreferencetothe absorbancechangeinresponsetoasingle-turnoversaturatinglightflash.Accordingto approximationsaboutthenumberofchargesloadingthemembranecapacitance,asingle flashwouldgenerateatransmembranepotentialofapprox.50mV(Junge&Witt,1968; Emrichetal.,1969;Witt&Zickler,1973;Witt,1971).Potentialmeasurementswithmicro-capillaryglasselectrodesinsertedinasinglegranumstackofchloroplastsof Peperomia metalliaa haveindicatedthatasingle-turnoverlightflashgeneratesapotentialacrossthethylakoidmembraneintherangebetween10and50mV(Bulychevetal., 1972;Vredenbergetal.,1973;Vredenberg&Tonk,1975;Vredenberg, 1976). Accordingtotheresultsofstudiesontheeffectofthevoltage-dependentionophore alamethicinonthekineticsofthe515nmabsorbancechange,ithasbeenconcludedthat thepotentialgeneratedbyasingleflashisoftheorderof100-200mV(Zickleretal., 1976; Boheim&Benz, 1978).Thisvalueisatvariancewiththepotentialconcludedfrom themicro-electrodeapproach.Thediscrepancyemphasizestheneedforanotherindependent voltagecalibrationmethodoftheelectrogenicchargingofthethylakoidmembrane. Attemptshavebeenmadetomeasureelectrochromicbandshifts,broughtaboutbya transmembrane (diffusion)potential,generatedbysaltadditions (Strichartz&Chance, 1972; Gross&Libbey,1972).Theseexperimentsweresuccessfulinbacterialchromatophores (Croftsetal.,1972;Jackson&Crofts,1969a)andhavebeenusedasacalibrationmethod fordeterminingthemagnitudeofthetransmembranepotential,associatedwithphotosyntheticenergyconservation,inbacteria.However,thismethodcouldnotbeappliedto chloroplast (thylakoid)membranesbecausesubstantialchangesinlightscatteringoccur uponsaltadditions,whichpreventedaccuratemeasurementsofthe515nmbandshift (Strichartz&Chance,1972;Gross&Libbey, 1972). ThischapterreportsonexperimentsinwhichKCl-inducedabsorbancechangesaremeasuredinthe460-540nmwavelengthregionunderproperconditionsatwhichscattering changesareminimized.Theresultsindicatethata515nmabsorbancechangeof1.1x10 correspondswithapotentialacrossthethylakoidmembraneof1mVandthattheelectrogenicpotentialgeneratedbyasingle-turnoversaturatinglightflashisintherange between15and35mV. 4.2 MATERIALSANDMETHOD Chloroplastswere'isolatedfromfreshleavesofspinach,growninthelaboratoryglass house.Washedleaveswerehomogenizedinanisolationmediumcontaining0.33mol/1sor21 bitoland2nmol/1HEPES,adjustedtopH7.1withNaOH.Thehomogenatewasfiltered through fourlayersofperIonnet (porediameter40ymol/1),andcentrifugedfor2minat2000 g. Thesedimentedchloroplastsweresubjectedtoanosmoticshockresuspending themin10ml distilledwater.After1min,10mlofdoublestrengthisolationmediumwasaddedtothe suspension.Thestocksuspensionofbrokenchloroplastswasdiluted10to15foldinisolationmediumgivingafinalconcentration,equivalentto15-25yg/mlchlorophyll.Chloroplastswereusedwithin1hafterpreparation. Absorbance changes inducedbysaltadditionorbysingle-turnover lightflasheswere measuredasdescribedinChapter 2.Theactinicflashwasofwavelengths above665nm.The absorbancechangesweremeasuredatvariouswavelengths,selectedbyinterferencefilters, intheregion460-540nm.Anumberofflasheswerefiredatdarkintervalsof0.3s.Usually thesignalsof64flashesweresampledandaveraged. 4.3 SALT-INDUCEDABSORBANCECHANGES Thecharacteristicsoftheabsorbancechangesat515,540,460and475nmupon successive additionsof10mmol/1KCland2mmol/1MgCl-,orviae versa, toasuspensionofchloroplastsareshowninFig. 10.Additionof10mmol/1KClcausesanabsorbancedecreaseat thesewavelengths.At515and540nmthedecreaseisprecededbyatransient increase.It appearsthatthedecreaseinabsorbanceiscomposedofafastandaslowcomponent.The relativemagnitudeofthesecomponentsisdifferentatthewavelengthsused.Subsequent additionof2mmol/1MgCl,causesanincreaseinabsorbanceat515and540nm,whichapproximately equalstheprecedingdecreasecausedbytheadditionofKCl (Figs.10aand10b). Ascanbeseen,thekineticsoftheMgCl2-inducedabsorbanceincreasearemultiphasic. Theincreaseat475and460 (Figs.10cand10d)causedbyMgCl,inthepresenceofKClis relativelysmallascomparedtotheincreaseat515and540nm.Additionof2mMMgCl-to a suspensionofchloroplastsintheabsenceofKClcausesanincreaseinabsorbanceat515 and540nmandadecreaseat475and460nm.Theabsorbancechanges causedbyMgCl 2at thesewavelengths appeartobecomposedofaslowandafastcomponent.Subsequent addition of10mmol/1KClcausesasmallandreversibleabsorbance increaseat515and540nm.Absorbancechangesofthiskindat475and460nmcouldnotberesolvedwithsufficientaccuracy fromtheresponsecausedbythedilutioneffect.Theabsorbance changesbrought aboutbyMgCl ?additionintheabsenceandpresenceofKCl,respectively,werefoundtobe saturatedataMgCl?concentrationof1-2mmol/1 (not shown). ThecharacteristicsoftheabsorbancechangesuponKCladditioninthepresenceof MgCl,,asobservedat515 (and 540nm) (Figs. 10aand10b),werestudiedinmoredetail. Theaccuracyofthemeasurementswas improvedbyperformingtheminthe dual-wavelength operationmodeofthespectrophotometer.Inordertosuppressdisturbances causedbythe dilutioneffect,measurementsweredonewithreferencewavelengthsinthe570-680nmwavelengthregion,atwhichtheabsorbanceofthechloroplast suspensionwasequaltotheone atthemeasuringwavelengthsinthe460-540nmregion.Forexample,570and642nmwere usedasreferencewavelengths formeasurementsat540and515nm,respectively. Itwas verified thattheabsorbancechangesatthereferencewavelengthsuponadditionofKClin thepresenceofMgCl-andvalinomycin,werenegligibly smallascomparedtotheonesatthe 22 Fig.10.Kineticsofsalt-inducedabsorbancechangesat540(a),515(b),475(c)and 460ran(d)inacation-freesuspensionofbrokenchloroplasts(15ug/mlchlorophyll).FinalconcentrationsofKClandMgCl2were 10and2mmol/1respectively.AdditionofMgCl2, KClandH2Oareindicatedbylong,shortandthinupwardpointingarrows,respectively. TheresponseuponadditionsofH2Oatthesameamountasthesaltsolutionindicatesthe dilutioneffect.Thespectrophotometerwasoperatinginthesplit-beammode.Anupward inflectionmeansadecreaseinabsorbance. KCl KCl Fig.11.Absorbancechangesat515nmupontwosubsequentadditionsof10mmol/1KCl(b) orof10mmol/1NaCland 10mmol/1KCl (a)toachloroplastsuspension (25ug/mlchlorophyll)inthepresenceof2mmol/1MgCl2and2ymol/1valinomycin.Adownward inflection meansanincreaseinabsorbance.Thespectrophotometerwasoperatinginthedual-wavelengthmode.Thereferencewavelengthwas642nm.Thesmallinitialtransientsignalwas causedbytheadditionofthesaltsolution. 23 measuringwavelengths. Fig.11bshowstheKCl-inducedabsorbancechangeat515 ran inthepresenceof2mmol/1 MgCl2and3umol/1valinomycin.Afastincreaseisfollowedbyaslowdecreasetotheinitiallevel.Asecondadditionof10mmol/1KClcausesasimilarbutsmallerabsorbance change.Asmalleffectisalsoobserveduponaprioradditionof10mmol/1NaCl(Fig.11a). Asubsequentadditionof10mmol/1KCl,inthiscase,givesrisetoanabsorbancechange thatisaboutequaltotheoneobservedintheabsenceofNaClandKClinthesuspending medium. 4.4 DATAFORAVOLTAGECALIBRATIONOFTHEP515ABSORBANCECHANGE InFig.12theabsorbancechangeat515 ran isplottedasafunctionoftheKCladdedto thechloroplastsuspension.Itappearsthattheincreaseinabsorbanceisproportional tothelogarithmoftheKClconcentrationgradient,initiallyinducedacrossthethylakoid membrane,atleastforaconcentrationbelow50mmol/1.Thissuggeststhattheabsorbance changeisproportionaltothemembranediffusionpotential,setbythesaltaddition.KCl concentrationsupto50mmol/1didnotaffectthemagnitudeofthelight-inducedabsorbance changesat515nm.AtaKClconcentrationabove50mmol/1theabsorbanceincreasewas higherthanwouldbepredictedfromtherelationshipatthelowerconcentrations (not shown). Thetimecourseof'thelight-inducedabsorbancechangeat515nminthepresenceand absenceofMgCl,,respectively,isshowninFig.13.Themagnitudeofthefastinitial 30.0mmol/lKCl Fig. 12.ThemagnitudeoftheKCl-inducedabsorbancechangesat515nm,measured inthe presenceof2mmol/1M g C ^ and3umol/1valinomycin,plottedasafunctionofKClconcentration.Chlorophyllconcentrationwas25ug/ml.Otherconditionswereasdescribed inthe text. 24 Fig. 13.Absorbance changeat 515nmupon single-turnover saturating light flashes inthe presence (a)and theabsence (b)of 2mmol/1MgCl^, respectively.Chlorophyll concentrationwas 23ug/ml.Other conditionswere asdescribed inthe text. Fig. 14.Spectrum of absorbance changes induced by additionof 10mmol/1 KCl (opencircles)orby a single-turnover light flash (closed circles), measured inthepresenceof 2mmol/1 MgCl,and 3umol/1valinomycin.Theabsorbance scaleof the spectrum isplotted inrelativeabsorbanceunits. increaseinabsorbancecausedbyasingle-turnoverlightflash,isindependentonthepresenceof2mmol/1MgCl,.MgCl,atconcentrationsabove10mmol/1wasfoundtosuppressthe magnitudeofthisresponsetoacertainextent.Thespectrumofthereversibleabsorbance changescausedbyadditionof10mmol/1KClandthespectrumofthechangescausedby single-turnoversaturatinglightflashesappeartobesimilar(Fig. 14). 25 4.5 DISCUSSION Thespectrumofthereversibleabsorbancechangeinthe460-540nmwavelengthregionupon additionofKCltoachloroplastsuspensioncontainingMgCl-andvalinomycin(Fig.14) suggeststhatthechangeiscloselyassociatedwithareactionofP515. Light-inducedabsorbancechangesofP515havebeenarguedtobeduetoanelectrochromicbandshiftofthesepigments,inresponsetothephoto-electricalfield(potential) acrossthemembrane (Junge&Witt,1968;Emrichetal.,1969;Witt&Zickler,1973;Witt, 1971).Thespectrumoftheabsorbancechangecausedbyasingle-turnoversaturatinglight flashisidenticalwiththedifferencespectrumofthesalt-inducedabsorbancechange (Fig. 14).Asimilarcorrespondencehasbeendemonstratedforbacterialchromatophores withrespecttothecarotenoidbandshifts (Croftsetal.,1972;Jackson&Crofts,1969a). Instrictanalogywiththeseexperiments,thedataofFigs.11and12confirmthat theabsorbancechangesinducedbyKCladditioninthepresenceofMgCl,occurinresponse toamembrane (diffusion)potential,(i)Theabsorbancechangeuponadditionof10mmol/1 KClinthepresenceofvalinomycinismuchhigherthanuponadditionof10mmol/1NaCl,as wouldbeexpectedinthepresenceofthisionophoreatwhichthemembranepermeabilityto K ishighascomparedtothatofNaCl. (ii)ThepresenceofNaClinthesuspendingmedium doesnotinfluencetheextentoftheabsorbancechangeuponKCladdition,whereastheresponseuponKCladditioninthepresenceofKClissignificantlysmaller,(iii)Theextent ofthe515nmabsorbancechangeisproportionaltothelogarithmoftheconcentrationof addedKCl (Fig.12).Moreover,thedecaykineticsoftheabsorbancechangescloselyresemblethekineticsoftheKCl-inducedchangesindelayedlightemissioninbrokenchloroplasts (Barber,1972a;1972b).Thesechangesindeedhavebeeninterpretedintermsofthe decayofthemembranediffusionpotential,duetotheredistributionofK .Therateof thisredistributionhasbeenevidencedtobecontrolledbytherateofentryofCI across themembraneintothethylakoidinnerspace (Barber,1972a).Itwasfoundthatthemagnitudeofthe515nmabsorbancechange(Fig.11),uponadditionofafixedamountofKCl(in thepresenceofMgCl,andvalinomycin),isproportionaltothechlorophyllconcentration inthechloroplastsuspension,forconcentrationslowerthan30yg/mlchlorophyll.The samewasfoundtobetrueforthemagnitudeofthelight-inducedabsorbancechange. Fig.12showsthata10-fold increaseinK concentrationcorrespondswitha515nm absorbancechangeofapprox.4.9x10".Intheabsenceofpermeatingionsthisincrease wouldhavecorrespondedwithachangeinthemembranediffusionpotentialof58.5mV(at 20C),accordingtotheNernstequation.CorrectingforthepresenceofCl~inthemedium (2mMMgCl2)andsubstitutinganestimated (Barber,1972a)permeabilityratiobetweenCI andK of0.04inthepresenceofvalinomycin,theGoldmanconstantfieldequationyields + that,attheconcentrationsused,a10-foldincreaseinK concentrationcorrespondswith achangeinthemembranediffusionpotentialofabout35mV.Thustheproportionalityfactorbetween515nmabsorbancechangeandmembranepotentialisabout1.4x10 permV. ThedataofFig.12mayneedacorrectionfactorforasmallabsorbancechangethatcould haveoccurredatthereferencewavelength (642nm)used.Accordingtospectraldataof Reichetal. (1976)thiscorrectionfactorisabout0.8.Thiswouldmeanthattheabsor-4 bancechangeat515nmhasbeen1.1x10 permVatachlorophyllconcentrationof25 26 -4 yg/ml.Atthesameconcentrationasingle-turnoversaturatinglightflash (e.g.Fig.13) _3 wouldcauseanabsorbancechangeof2.2x 10 ,whichcorrespondswithamembranepotentialof20mV.Similarexperiments,donewithvarioussamples,haveindicatedthatasingle-tumoversaturatinglightflashcausesthegenerationofatransmembranepotential (E) intherangebetween15and35mVwithanaveragevalueofabout25mV.ThisvalueisaboutequaltotheestimatedvalueofE associatedwiththechargingofthemembrane capacitance,duetoonechargeseparationinallreactioncenterspresentinthethylakoid membrane (Junge&Witt,1968;Witt,1971;Vredenberg,1976),andfallswithintherangeof flash-generatedpotentialsmeasuredwithmicro-electrodes inchloroplastsof P. metallioa (Vredenberg&Tonk,1975;Vredenberg, 1976).Valuesofabout 100mVhaverecentlybeenconcludedfromanalysesofthe515nmabsorptionchanges inchloroplastsinthepresenceof thevoltage-dependentionophorealamethicin (Zickleretal., 1976).Thereasonforthe apparentdiscrepancyisunknownasyet.Itmightbethat,contrarytotheassumptions made (Zickleretal., 1976),theproportionalityfactorbetweenconcentrationandthecharacteristicpotentialoftheionophoreisdifferent inartificiallipidbilayersandthylakoidmembranes.Thepresentcalibrationmethodhastheimportantadvantagethatthelightandsalt-induced515nmabsorbancechangesaremeasuredinidenticalsamplesunderequal conditions. AscanbeconcludedfromthedataofFig.10,theapproachofsettingK diffusion potentialsacrossthethylakoidmembraneinordertomeasureitsassociated electrochromic shiftscouldonlybeappliediflowconcentrationsofMgCl-,orhighconcentrationsof NaCl (notshown),werepresentinthesuspendingmedium.Inaccordancewiththeresultsof others (Gross&Libbey,1972),thetimecourseoftheirreversibleabsorbancechangesin the450-550nmwavelengthregionuponadditionofKClintheabsenceofMgCl,(Fig.10), indicatesachangeinlightscattering,probablyduetostructuralchangesinthemembrane, associatedwithcationbindingatfixednegativecharges.SubsequentadditionofMgCl, resultsinanabsorbanceincreaseatwavelengthsabove500nm.Thiseffecthasbeennoticedbyothers (Gross&Prasher,1974).Itprobablyreflectsthesubstitutionofmonovalentcationsbydivalentcationsatthefixedcharges,causedbychangesofionicconcentrationsneartheelectricaldoublelayer (Barberetal.,1977;Chapter8 ) . 27 5 Analyses of theflash-inducedP515 absorbance changes in isolated chloroplasts 5.1 INTRODUCTION Recentlyithasbeenreportedthattheflash-inducedAA515inintact(ClassI)chloroplasts (Horvâthetal.,1978),likeinintactalgalcells (Joliot&Delosme,1974),occurs withcomplexmulti-phasicriseanddecaykinetics.However,riseanddecayoftheflashinducedpotentialchangesincoupledintactchloroplasts,measuredwithmicro-electrodes, havebeenshowntofollowsinglefirst-orderreactionkinetics (Bulychevetal.,1972; Vredenberg&Tonk,1974a;Bulychev&Vredenberg,1976a).Thedecayrateofthepotential changeafterasingleflashwasfoundtobedependentontheionicpermeabilityofthe thylakoidmembraneonly (Bulychev&Vredenberg,1976a).Apparentdiscrepanciesonthemagnitudeandkineticsofthelight-inducedtransmembranepotentialchanges,asmeasuredwith AA515andmicro-electrodes,respectively,havebeenamatterofdiscussion (Junge,1977b; Rumberg,1977;Vredenberg,1976;Vredenberg&Tonk,1975;Schapendonk&Vredenberg,1977). Thischapterdealswithanalysesofthekineticsofflash-inducedPS15absorbance changesandofthetransmembranepotential,studiedonthylakoidmembranesofdark-adapted spinachand Peperomia metallica chloroplasts,respectively.Theanalysessuggestthatthe AA515inintactandbrokenchloroplastsisthecompositeresultofatleasttwodifferent processes,whicharecalledReactionIandReactionII.ThekineticsoftheAA515caused byReactionI,characterizedbyarisetime<0.5msandadecayrateof8.6-17.3s~, showsimilaritieswiththekineticsofthetransmembranepotential,measuredbymeansof micro-capillaryglasselectrodes.TheabsorbancechangeofP515,associatedwithReaction IIandcharacterizedbyarisetimeof100-150msandadecayrateof1.1-1.7s ispre- sumedtobeinducedbyalocalintramembranalelectricfieldassociatedwithchargeinteractionbetweenacompoundatthereducingsiteofPhotosystem1andcytochromeforplastocyanin. 5.2 MATERIALANDMETHOD IntactandbrokenchloroplastswereisolatedfromfreshlygrownspinachleavesandpreparedbythemethoddescribedinChapter2,exceptforthefollowingmodificationswith respecttotheincubationandassaymedium.Intactchloroplastswereincubatedandmeasuredinamediumwhichcontained330mmol/1sorbitol,0.5mmol/1K-HPO.,10mmol/1NaHCCu, 2mmol/1HEPES (pH7.5)and10mmol/1MgCl~.Brokenchloroplastswereobtainedbyosmotic shockinH,0containingeither10mmol/1MgCl,or10mmol/1KCl.Theassaymediumcontained 330mmol/1sorbitol,30mmol/1tricine(pH7.7),20pmol/ldiquatandeither10mmol/1 MgCl-or17.5mmol/1KCl.Chloroplastconcentrationusuallywasequivalenttoabout50 yg/mlchlorophyll.Flash-inducedelectricpotentialchangesweremeasuredonsinglechlo28 roplastsinintactleavesof Peperonria metalliaa. Experimentalconditionsandmethods wereasdescribedinChapter2.InhibitionoftheelectrontransportbetweenPhotosystem 2andPhotosystem 1wasachievedbypre-incubationofthesampleinthepresenceofKCN, bythemethoddescribedelsewhere (Ouitrakul&Izawa,1973),orbyadditionofD O U . 5.3 EVIDENCEFORTHEINDUCTIONOFAFASTANDASLOWP515RESPONSEUPONSATURATINGLIGHT FLASHESININTACTCHLOROPLASTS ArepresentativeexampleofthetimecourseoftheÄA515uponasaturatinglightflashin intactspinachchloroplastsisshowninFigs 15aand15b.Analysesofthesemi-logarithmic plotsofthesechangesrevealatleast5differentphasesinthekinetics.Aftertheinitialfastabsorbanceincrease,calledphaseaandcompletedwithinatimeshorterthanthe resolutiontimeofthemeasuringsystem (0.5m s ) , arelativelyslowincreaseinabsorbance occursinthefirst10-20msuptoanabsorbancelevelwhichismoreorlessconstantfor thenext20-80ms.Accordingtotheanalysis,thesubsequentdecreaseinabsorbanceappearstobecomposedofthreedifferentphases.Amajorphasecwithahalf-lifetimeof 420msisprecededbyarelativelyfastphasec'withahalf-lifetimeof75ms,andfollowedbyasmallslowphaseddecayingwithahalf-lifetimeof1.5s.Phasesc',andd arenotresolvedduringthefirst70-100msaftertheflashduetotheslowabsorbance riseorevenconstantlevelinthistimeperiod.However,extrapolationofthedecayline ofphasec'totimezero (Fig.15b)resultsinaninitiallevelwhichcoincidesreasonablywellwiththeonereachedinthefastphasearise.Thiscertainlyisnottruefor phasec. ThedataofFig.15bsuggestthatthephasec'decayisassociatedwiththephasea rise.Thissuggestionissubstantiatedbytheanalyzeddataoftheabsorbanceresponsein adoubleflash (Fig.15c).TheseshowthattheAA515uponasecondflash,characterizedby afastriseandasingledecayphaseequaltothec'componentanalyzedinthefirstflash, issuperimposedupontheAA515inducedbythefirstflash.Thebreakbetweenthefast (c') andtheslow (c)phaseafterthesecondflashisattheabsorbanceleveldeterminedby phasecanddofthefirstflash.Thekineticsoftheresponseuponthirdandfollowing flashes,firedattimeintervalsintherangeof10-100ms,werefoundtobesimilarto thoseinducedbythesecondflash.Thus,wearriveattheconclusionthattherapiddecay component (phasec')isassociatedwiththefastrise (phase a).Thesecomponentshavebeen ascribedtoareaction,calledReactionI. ThedeconvolutionoftheoverallP515responseintoReactionIandIIisshowninFig. 16.TherisekineticsofReactionIIshowaslowabsorbanceincreasewithin140ms.This iscalledphaseb.ThedecayofReactionIIaftertheflashisbiphasicwithrateconstants determinedbythecharacteristicrelaxationtimesofphasescandd.Foralargevariety ofpreparations,thehalf-lifetimeofphasec',canddwasfoundtobeintherangeof 40-80ms,400-600msand1.5-3 s,respectively.Fig.16,representativeforintactspinach chloroplasts,showsthatthephaseaandb,associatedwithReactionIand II,respectively,areaboutequalinmagnitude.Thespectraofthesechangeswerefoundtobeidentical withthecharacteristicdifferencespectrumofP515 (e.g.Chapter 4 ) .Thereforewesuggest thatReactions IandIIareduetoelectrochromicresponsesoftheP515pigmentcomplex. 29 AA(a.u.) 1001 5s 100 10- V^JuVÔ_ /UW « H • 0.5 1 « 02s 100 ©rv 02s Fig. 15.Absorbance changes at 515ranindark-adapted intact spinach chloroplasts, in duced by single (a,b)or double (c)flashes,recorded and displayed on 5 s (a)and 1s time scales (b,c). Average of 32 single or double flashes, fired at a rate of 0.05 Hz. The arrows mark themoments at which the flashes were fired. On the right the corresponding semi-logarithmic plots of the experimental curves are shown and the curve analyses into exponential phase d (open squares), c (closed stars) and c' (closed circles), respectively, according to an adopted method (Atkins, 1969). (AA is given in arbitrary units (a.u.)). Extrapolation of phase d and subtraction of the absorbance of phase d from the experimental absorbance at corresponding times,gives the AA in the absence of phase d. This absorbance curve yields themeasuring points of phase c.Analogously, phase c' is resolved (see text). The dotted lineparallel with phase c' (lower right-hand figure) represents the fast phase c' induced by the first flash (middle right-hand figure). Other dotted lines represent the extrapolated parts of the respective phases. /N. 5.6x10r • • b, . -—d -d Fig. 16.Resolution (bottompart of figure)of theAA515 induced by asingleflashanda seriesof twoflashes (upperpart of figure)into twocomponents,Reaction 1 (solid curves) and Reaction II (brokencurves).Thecurveswere computed according tothedataobtained from thecurveanalysisdepicted inFig. 15.Further explanations are inthetext. Thespectrumoftherelatively smallphasedwas found tobepartially dissimilar tothatofP515.Phased,which isnegligibly smallinbrokenchloroplasts (seebelow), might represent thedecayofareactiondifferent fromReaction Iand II.Therefore,Reaction IIinintactchloroplastsmightneedasmallcorrection fortheAA515associatedwith phase d. According tothedataofFigs 15and 16onewould expect forintactchloroplasts that, afteronepre-illuminatingflash,singleflashes firedatarepetitionrateof4-S Hz cause theAA515ofReaction Ionly,i.e.AA515withafastrise (phasea)andasingleexponentialdecay (phasec')witharateconstant ofabout 9s~ .Thisresponse issuperimposeduponaconstant absorbance leveldeterminedbyReaction IIinducedinthepre-illuminating flash(es).Experiments ofthiskindwillbeillustrated forbrokenchloroplasts in Section5.4. According totheanalyses (not shown),theeffectofanon-saturating secondflash (Fig.17b)isidenticaltothatofasaturatingsecondflash (Fig. 17a),except forthe magnitudeofphasec'.Fig. 17cshowstheresponseuponafirstnon-saturating andasuccessivesaturatingflash.Theabsorbance increase inducedby thesecondflashisenhanced ascompared totheresponseafterasaturating firstflash.Itsrisekinetics suggest a contributionofphaseb inthiscase (notresolvedhere).Thedecaykineticsafterthe second flashappeartobe identicaltothoseofasecondflashobserved aftera saturating first flash (compareFigs.17band 17c).Theanalysesofthesetimecourses indicatethat thesecondflashcauses anabsorbance increasethatdecaysexponentially inaphasec', characterizedbyanintensity-independenthalf-lifetimeof60-80ms.Aftercompletion of 31 © © © -V Fig. 17.Timecoursesofthe515nmabsorbancechangeinintactchloroplasts,inducedby twosuccessiveflashes,bothsaturating (a),thesecondnonsaturating (b)andthefirst nonsaturating (c). Thebrokenlinespresentthekineticsofasinglesaturating(first) flash. 4 AA 5J6XKT 200ms Fig. 18.Timecourseofthe515nmabsorbancechangesinducedbytwosuccessiveflashes. Thetimeintervalbetweenbothflasheswasvariedasindicatedbythearrows. phasec',the slowphasescanddareobservedthataresolelyduetotheeffectofthe firstflash(if saturating). Theeffectofthesecondflashwasfoundtobeinvariablewhenthedark timebetween theflasheswasvaried from 1to100ms.Atdarktimesabove 100msagradual increasein thephasescandd,inducedbythesecond flash,wasobserved.Representativecurvesare showninFig. 18.Atdarktimesshorterthan1msthe absorbancechangeuponthesecond flashdecreasedsignificantly (withoutaneffect,uponthehalf-timeofphasec'andwas foundtobecome zeroatdarktimesbelow400to500 ps (notshown). 5.4 ANALYSESOFTHEP515RESPONSEINBROKENCHLOROPLASTS Experimentsonbrokenspinachchloroplastswereperformedtostudythe effectofvarious additionsontheP515kineticsintheabsenceofthe"barrier function"exertedbythe chloroplastenvelopeandstromaphase.Fig.19illustratesthattheP515responseinfresh brokenchloroplastsalsoiscomposedofaReactionI-andReactionII-type.Ingeneralthe 32 AA(a.u) 50 Fig. 19.Time courses of the 515nm absorbance changes inbroken spinach chloroplasts (in thepresence of 10mmol/1 MgCl 2 ), induced by repetitive single flashes fired at a repetition rate of 0.05 Hz (aand c)and 4Hz (b).Curve bwasmeasured immediately after pre-illuminationwith 6flashes, fired at arate of 4Hz.On theright in aand b: semi-logarithmic plot of the absorbance change against time.Note thedifferent time scales inaand b.Thebroken curve (I)in c is identical to the response measured inb, i.e. characterized by an exponential decay phase c'; curve II is thedifference between the experimental curve (identical to the one shown ina)and curve I. occurrencesinbrokenchloroplastswerefoundtobesimilartothoseinintactchloroplasts providedthatagentleisolationprocedurewasapplied,includingosmoticshockinginthe presenceofcations. Fig.19ashowstheP515responseindark-adaptedbrokenchloroplasts,suspendedina Mg -containingmedium,illuminatedbyflashes,firedatarepetitionrateof0.05Hz.The semi-logarithmicplotshowsthatthedecaydoesnotfollowfirst-orderreactionkinetics. Aslowandafastphasecanberesolvedwhich,inanalogywiththesituationinintact chloroplasts,arecalledphasecandphasec',respectively.Phasec'canberesolvedaftersaturationofReactionIIwithsevenpre-illuminatingflashes(seebelow).Subsequent flashes,firedatarepetitionrateof4HzcauseaP51Sresponsewhichexhibitsasingle-exponentialdecaywitharateconstantof12s" (Fig.19b).Becauseoftheclearsimilaritieswiththeoccurrencesinintactchloroplasts,thisresponseisattributedtoReaction I.SubtractionofReactionIfromtheoverallresponsethengivestheresponseofReaction II,asillustratedinFig.19c.TheincreaseinabsorbancecausedbyReactionIIisabout 501oftheabsorbanceincreaseassociatedwithReactionI. TherelativemagnitudeofReactionIIinbrokenchloroplastsappearstobedependent 33 ontheioniccompositionofthemedium.Figs 20cand20dshowthatthemagnitudeofReactionIIinchloroplasts,suspendedinaMg -containingmedium,islowerthanthatof ReactionIIinchloroplastssuspendedinK-containingmedium.Ascanbeconcludedfrom thesemi-logarithmicplots (insertsFigs20aand 20b),therateconstantofthedecayof AA(a.u.) 50 • 10 X. X 1 100 • 200ms 200ms • Fig.20.Timecoursesofthe515nmabsorbancechangesinbrokenchloroplastsinducedby repetitivesingleflashesfiredatarepetitionrateof0.05Hzinthepresenceof10 mmol/1KCl (a)or 10mmol/1MgCl2 (b).Resolution (bottompartoffigure)oftheAA515 responsesintotwocomponents:ReactionIandReactionII.CurvesI (candd)weremeasuredbyfiringrepetitivesingleflashesatarepetitionrateof4Hz,afterpre-illuminationwith6flashes.CurvesII(candd;brokenlines)wereobtainedbysubtracting curvesIfromtheoverallAA515response (aand b). Theinsertspresentsemi-logarithmic plotsoftheoverallresponses (aandb)andoftheReactionIdecaykinetics (candd), respectively. 34 AA1.2X1Ö 3 * •• c ^ O (7th flash) 2s Fig.21.Timecourseoftheabsorbance changesat515nminbrokenchloroplasts,inthe presenceof10mmol/1 KCl,inducedbyaseriesof7flashes,firedat100mstime intervals.ReactionI(phasec',closed circles),wasobtained after extrapolatingtheslow phasec(closed stars)tothetimeatwhichtheseventh flashwas fired (semi-logarithmic plot),andsubsequent subtracting fromtheoverall decay. ReactionIIisindependentontheioniccompositionofthemedium.Thesemi-logarithmic plotsofReactionI(insertsFig. 20cand20d),indicate thatthedecayofReactionIis about 25%fasterinthepresenceof10mmol/1Mg ,incomparisonwith itsdecayinthe presenceof10mmol/1K .MoredatawithrespecttothisioniceffectareinSection6.2. Inbrokenchloroplasts,agroupofseveralflashes causesacumulative increaseof theabsorbanceuptoasaturationlevelwhichisreached after4-6flashes,firedattime intervalsof100ms(Fig.21).Theincreaseoftheabsorbancewhichappearstobedueto anincreaseofReactionIIisabout 1.*timestheextentofReactionIIafteroneflash (compareFig.20andFig.21).BecauseReactionIIreachesasaturation levelafterfive successive flashes,thedecayaftertheseventh flashcanbeanalyzedbyextrapolatingthe slowphase,associatedwithReaction II,tothetimeatwhichthe7thflashhadbeen fired. Subtracting theextrapolatedpart fromtheexperimental curvegivesrisetothesingleexponentialdecayofReactionIwithahalf-life timethatequals thehalf-lifetimeof ReactionIafterasingleflashi.e.approximately 100ms. 5.5 KINETICSOFTHELIGHT-GENERATED TRANSMEMBRANE POTENTIAL Fig.22showsthesingleanddoubleflashresponseofthepotential acrossthechloroplast (thylakoid)membraneofa Peperomia chloroplast in situ measuredwithamicro-electrode. Theanalyses indicateasimilarsingle-exponential potentialdecaybothafterthefirst andthesecondflashwithahalf-life timeof35ms.Inafewinstancestherelaxationaf- 35 lOmV/div 20ms/div mV lOOr j10 100 200ms Fig.22.Responseandsemi-logarithmicplotofthephoto-electricpotentialofa Feperomia metallioa chloroplasttoasaturatinglightflashortoaseriesoftwosaturatinglight flashesseparatedbyadarktimeof20ms.Measurementsweredoneinacrosssectionofa Peperomia metallioa leafwithamicro-capillary glasselectrodeinsertedintoasingle chloroplast. terthesecondflashwasslightly(% 1(H)fasterthanafterthefirstflash.Thehalf-life timeofthepotentialdecayforalargenumberofdifferentchloroplastswas30-60ms.The potentialincreasemeasuredinthefirstflashwasintherangeof15-40mV;theratio betweenthepotentialchangeinthesecondandfirstflashwas0.6-0.8.Thesimilarities betweenthekineticsofReactionI(Fig.16)andthekineticsofthetransmembranepotentialchanges,asmeasuredwithmicro-capillaryglasselectrodes (Fig.22), suggestthat theAA515associatedwithReactionI,isduetothetransmembraneelectricfield.Amore detailedstudyontheReactionIkineticswillbegiveninChapter6. 5.6 EFFECTOFVALINOMYCIN Itseemsunlikely,thattheslowdecaykineticsofReactionII,whichmainlydeterminethe decayoftheoverallP515responseafteraflashinthe0.1-1 stimeperiod (cf.Figs15 and 16),areassociatedwiththedecayofadelocalizedelectricfield.Thissuggestionis substantiatedbytheresultsdepictedinFig.23,whichshowthehalf-lifetimesofthedecayofReactionIandthemagnitudeofReactionII,afterasingleflash,asafunctionof thevalinomycinconcentration.ThemagnitudeofReactionIandthedecayrateofReaction IIwerefoundtobeindependentonthevalinomycinconcentration (notshown).Themagnitude ofReactionIIappearstobeextremelysensitivetolowconcentrationoftheionophore. ReactionIIiscompletelyinhibitedatavalinomycinconcentration,equalorlessthan250 36 tv2(ms) AA(au.) 100 100 tV 2 (ms) 100r AAla.u.) 100 jJO 250 soo nmol/l Fig.23.ThemagnitudeofReactionIIinbrokenspinachchloroplasts(openstars,right hand scale)andthehalf-lifetimeofReactionI(closedcircles,lefthandscale)plotted asafunctionoftheamountofvalinomycininthesuspendingmedium,inthepresenceof10 mmol/1MgCl,and 1mmol/1KCl (a),10nmol/lMgCl2and6mmol/1KCl (b),10mmol/1MgCl, and 10mmol/1KCl (c),or6mmol/1KCl(d). nmol/l.A501inhibitionofReactionII,measuredinthepresenceofMg + + ,isobtainedat 140nmol/land60nmol/lvalinomycininthepresenceof1mmol/1and10mmol/1KCl (Fig. 23aand 23c),respectively.ReactionIisonlyacceleratedwhenReactionIIhasbeencompletelyinhibited.InthepresenceofMg atavalinomycinconcentrationbelow200nmol/l, thehalf-lifetimeofthedecayofReactionIishardlydependentontheK +concentration. ThisindicatesthatMg isamorepermeantionthanK,eveninthepresenceofalow amountvalinomycin.Thisissubstantiatedbytheobservationthat,ReactionI,inthepresenceof6mmol/1K,isequallyacceleratedby450nmol/lvalinomycin (Fig.23d)and10 mmol/1MgCl 2 (Fig.23b).SeealsoSection6.2. TheobservedaccelerationoftheoveralldecayofP515inthepresenceoftheionophore apparentlyisnotduetoanenhancedrateconstantofthedecayofthetransmembraneelectricfieldbuttoadecreaseofthemagnitudeofReactionII.Ingeneral,themagnitude ofReactionIIinbrokenchloroplastsunlikethatofReactionIwasfoundtobestrongly dependentonthephysiologicalconditionofthechloroplastsandtobesubstantiallysuppressedbymembrane-modifying substances (Fig.23),divalentcations (Fig.20),ageing (Fig.24)andfreezing (notshown).SeeChapter7foramoredetaileddiscussion. 37 5.6x10" 200m s V^Mr Fig.24.Timecoursesofthe515nmabsorbancechangesinanagedpreparationofion-free preparedbrokenchloroplastsupondouble-flashexcitation.Repetitionrateofseparate flashsequenceswas0.05Hz. 5.7 ACTIVATIONOFREACTIONIIBYPHOTOSYSTEM1 Figs 25aand2SbshowrepresentativeexamplesoftheAA515inintactchloroplastsupon saturatingsingle-turnoverlightflashes,whichexcitebothphotosystemswithexcitation lightofwavelengthsabove665nm(Fig.25a),orpreferentiallyPhotosystem 1bylightof anarrowwavelengthbandaround717nm (Fig.25b),respectively.Accordingtotheanalyses, themagnitudesofReactionIandofReactionIIin717nmlightareabout50$andabout 75%,respectively,ofthemagnitudecausedbyactivatingbothphotosystems.Figs26aand 26bshowtheAA515uponilluminationwith3successivelightflashesofwavelengthsabove 665nmandof717nm,respectively,inintactchloroplasts.Thetimeintervalsbetweenthe Fig.25.Timecoursesofthe515nmabsorbancechangesinintactchloroplastsuponilluminationwithsingle-turnover lightflashesofwavelengthsabove665nm (a)andofanarrowwavelengthbandaround717nm (b).Flashfrequencywas0.05Hz (noisycurves)or3Hz (solidcurves).Incaseofthelatter,3pre-illuminatingflasheswerefired (seetext). ThedottedlinesrepresenttheresultantkineticpatternofReactionIIobtainedafter subtractionofthesolidcurves (ReactionI)fromtheoverallresponses. 38 ••• Fig.26.Timecoursesofthe515runabsorbancechangesinintactchloroplastsuponilluminationwithtripleflashesofwavelengthsabove665nm (a)andofanarrowwavelength bandaround717nm (b).Timespanbetweenseparateflasheswas80ms.Seriesof3flashes werefiredatafrequencyof0.05Hz.Thedottedlinesrepresenttheresponsestosingle flashesfiredat0.05Hz. flasheswas80ms.ThedottedcurvesrepresentthePS15absorbanceresponsesuponasingle flash.Astheabsorbancedecayinthedark,300msafteraflash,isexclusivelydueto thatofReactionII(cf. Fig.25),itappears,accordingtoFig.26a,andconclusivewith resultsobtainedwithdoubleflashexperiments,thatReactionIIissaturatedbyasingle lightflashofwavelengthsabove665nm.Thisapparentlyisnotthecasewhenlightof717 nmwavelengthisused.RepetitiveexcitationofPhotosystem1givesrisetoafurtherincreaseofReactionIIinthesecondandthirdflash (Fig.26b).Itshouldbementioned that, with717nmlight,thethirdandthesecondflashwerenotcompletelysaturating.Therefore,itmightbethatthesaturationlevelofReactionIIcanbereachedaftertwo successivesaturatingexcitationswithPhotosystem1light. Fig. 27showstheresponsesinbrokenchloroplasts,intheabsenceandpresenceof theelectrontransportinhibitorsDCMJandKCN.InthepresenceofD O W (b), theextent oftheP515responseisabout 50%oftheoneassociatedwithReactionIintheabsenceof DCMJ (a).TheAA515inthepresenceofDCMUcannotberesolved intoits componentsbecauseReactionIcanonlybemeasuredaccuratelyinfast-repetitiveflashexperiments.However,aswouldbeexpectedinthepresenceofDCMJ,nosignalisobservedunderthatcondition (seealsoRenger&Wolff,1975). AdditionofDCPIP/ascorbatecreatesaconditioninwhichatotalrecoveryoftheP515 responseismeasured (Fig.27c).Asimilarresponsehasbeenmeasuredafteradditionof 70umol/1PMStoDCMJ-poisoned chloroplasts (notshown).Theresponseafterpre-incubation ofthechloroplastsinthepresenceof30mmol/1KCNisshowninFig.27d.Themagnitude ofthesignalisabout40%ofthatoftheReactionIresponseinthecontrolexperiment. ThedecayoftheresponseinthepresenceofKCNappearstobefasterthanthedecayof thesignalinDCMJ-poisoned chloroplastsandsuggeststhecompleteabsenceofReactionII 39 ® AA 1-KT3 © 200ms "•»^J v< Wt*<*tif**Jl4V'+*u*< Fig.27.Timecourseofthe515nmabsorbancechangesuponilluminationwithsingle-turnoverlightflashesofwavelengthsabove665nmfiredatafrequencyof0.05Hzinbroken chloroplasts.Chloroplastsweresuspended in330mmol/1sorbitol,30mmol/1tricine(pH 7.6)andeither 17.5mmol/1KCl (a,bandc)or 17.5mmol/1KCN (dand e). a)Controlexperiment;b)inthepresenceof2pmol/1DCMUafterpre-illuminationwith4flashes;c) inthepresenceof2pmol/1DCMU,3.3mmol/1ascorbateand48pmol/1DCPIP;d)after pre-incubationin30mmol/1KCN;e)afterpre-incubationinKCNandsubsequentaddition of3.3mmol/1ascorbateand48pmol/1DCPIP. andasomewhatfasterdecayrateofReactionI.AdditionofDCPIP/ascorbate(Fig.27e)or 70pmol/1PMS (notshown),inthiscase,createsaconditioninwhichtheflash-induced AA515equalstheReactionIresponseofthecontrol,exceptforthesomewhatfasterdecay. ThedarkkineticssuggesttheabsenceofReactionIIinKCN-inhibitedchloroplastsinthe presenceofDCPIP/ascorbate. Apparently,reducedDCPIPandPMScanreactwithoxydizedP700inadirectway,independentofplastocyanin.Ouitrakul&Izawa(1975)reportedarecoveryof18%and201of theelectrontransportrateinKCN-treatedchloroplastsby50pmol/1DCPIPand100umol/1 PMS,respectively.Thus,adirectreactionofthesemediatorswithP700seemsplausible. A201recoveryoftheelectrontransportrateissufficienttoreduceP700 completelyin thedarkperiodsbetweentherepetitiveflashes. 5.8 DISCUSSION Themagnitudeoftheabsorbanceincreaseat515nmhasbeenusedasalinearmeasureofthe electrictransmembranepotentialofthethylakoids (Witt,1971;Junge,1977a;Gräber& 40 Witt, 1975).A single-exponentialdecayofthe515nmresponseafterasingle-turnover lightflashisusuallyobservedinaged,oruncoupledion-freepreparedbrokenchloroplasts (Fig.24).Thiswouldindicateavoltage-independentmembraneconductancewhich determinestherateconstantoffield-dissipatingpassiveionmovements (seealsoChapter 6). Biphasicdecaykineticshavebeenshowntooccurinbrokenchloroplastunderphosphorylatingconditions.Thesearebelievedtobeduetochangesintheprotonconductancethrough theATPaseaboveacriticalpotential (Junge&Witt,1968;Boeck&Witt,1972;Schliephake etal., 1968;Rumberg&Siggel,1968;Jungeetal.,1970;Schmidetal.,1976;Girault& Galmiche,1978).ThishypothesishasledtoconclusionsaboutacorrelationbetweenATP synthesisandP515kinetics.However,itmaybedoubtedifprotonscontributesignificantly tothemembraneconductance,whetherunderphosphorylatingconditionsornot (Section6.3). Moreover,theexperimentswithbrokenchloroplastsdescribedinthischapterwerecarried outundernon-phosphorylatingconditionsandthereforenomulti-phasicdecaykinetics wouldbeexpectedtooccurinviewofthishypothesis.Furthermore,ascanbeconcluded fromFig.21andFig.20a,thetransitionfromafasttoaslowdecayphaseafterthelast flashofaseriesof7flashes,occursatahigherlevelthanthetransitionafterasingle flash.Itisdifficulttoreconcilewiththisobservationintermsoftheexistenceofa distinctcriticalpotentialfortheactivationoftheATP-synthesizingcomplex. OnthebasisofresultsdepictedinFigs 15-21,wearriveattheconclusionthatthe flash-induced515nmabsorbancechangeindark-adaptedintactchloroplastsistheconsequenceofatleasttwodifferentprocesses.Oneprocess (ReactionI)ischaracterizedbya fastrise (phasea)andadecay (phasec')withahalf-lifetimeof60-100ms,theother (ReactionII)ischaracterizedbyarelativelyslowriseandadecay (phasescandd)with ahalf-lifetimesof400-800msand 1-3s,respectively. ThespectrumoftheslowdecayofphasedwasfoundtobedifferentfromthatofP515. ThisphasemightrepresentthedecayofareactiondifferentfromReactionIandIIand probablycorrespondstochangesinscatteringlevel (seealsoChapter 8).Theestimated magnitudeofphasedinasingleflashisabout 101ofthetotalP515response. TheobservedsimilaritybetweenReactionIkineticsandthekineticsofthetransmembranepotentialchangesasmeasuredwithmicro-capillaryglasselectrodes,providesreasonablegoodevidencefortheconclusionthatthe515nmabsorbancechangeassociatedwith ReactionIisduetothetransmembraneelectricfield.Thisfield,measuredwithmicroelectrodesisequallyactivatedbybothpigmentsystems (Vredenberg,1974).Accordingto thedataofFig.25,itappearsthatthemagnitudeofthefastriseofReactionIinPhotosystem1(717nm)lightisabout501ofthemagnitudemeasuredinlightabsorbedbyboth photosysterns.Moreover,themagnitudeoftheP515responsemeasuredinDCMU-orKCNtreatedchloroplasts (Fig.27band27d,respectively)uponflashlightabsorbedbyboth systemsisabout50%oftheReactionIresponseintheabsenceoftheinhibitors (Fig.27a). IlluminationofDCMU-poisonedbrokenchloroplastswith717nmlightflashesunderthese conditionsdidnotresultinanabsorbanceresponseintheabsenceofelectrondonorsfor Photosystem 1.Wethereforeconclude,inagreementwiththeinterpretationofRenger& Wolff (1975),thattheresponsemeasuredinthepresenceoftheseelectron-transportinhibitorsisbroughtaboutbychargeseparationinPhotosystem 2only.AccordingtoFigs 27a,27cand 27e,ReactionIcanberestoredcompletelyinDCMU-orKCN-poisonedchloro41 plastsbytheadditionofelectrondonorsforPhotosystem 1.Thus,itseemsreasonableto concludethatReactionIisequallyactivatedbyPhotosystem 1andPhotosystem2. ThedecayoftheoverallP515responseafteraflashinthe0.1-1stimeperiod (cf. Figs 15-21),whichismainlyduetoReactionII,isdifficulttointerpretintermsof thedecayofthetransmembraneelectricfield.Thisisnicelyillustratedbytheinhibiting effectoflowconcentrationsofvalinomycinonthemagnitudeofReactionII.Inthisrespectitisofinteresttorecallthe200to600foldincreaseinP515decayrate,usually observedinintactchloroplastsinthepresenceof1pmol/1valinomycin.Ifweassumethat intheabsenceofvalinomycintheK concentrationinthechloroplaststromaisatleast 30mmol/1(Nobel,1969;Gimmleretal.,1974;Vredenberg,1976)andwilldecreaseconsiderablyinthepresenceoftheionophoreatalowoutsideconcentrationofK (Bulychev& Vredenberg,1976a),andfurtherassumethattheK permeabilitycoefficientofthethylakoidmembraneisincreasedbyafactorof10inthepresenceofvalinomycin (Barber,1972a), onewouldnotexpectthatthemembraneconductancechangestosuchalargeextent.Ithas beenreported (Bulychev&Vredenberg,1976a)thatthedecayofthetransmembranepotential undersimilarbutnotidenticalconditionsisacceleratedbyafactorofnomorethan5. ReactionIIdependsquitedifferentlyonPhotosystem1andPhotosystem2illumination. WefoundforavarietyofpreparationsthatexcitationofonlyPhotosystem1,bysingle lightflashes,causedanactivationofReactionII,thatappearedtobe60-80$oftheresponseafterexcitationofbothphotosystems.AsFig.26shows,ReactionIIissaturated afterdoubleortripleexcitationofPhotosystem1.Thissuggeststhattheredoxpoiseat thereducingsideofPhotosystem2partlycontrolsReactionII,possiblybyitsinfluence ontheredoxstateofcytochromef(Mitchell,1975).Theobservation,thatReactionIIis mainlydependentonaprocessactivatedbyPhotosystem1excitation,isinagreementwith theobservation (Fig.22)thatReactionIIisrelativelysmall,orevenabsentinDCMU(Fig. 27b)andKCN-treated (Fig.27d)chloroplasts,respectively,andcanbecompletely restoredinthepresenceofDCMJafteradditionofelectrondonorsforPhotosystem1. ThedecayoftheP515responseinthepresenceofD C U (Fig.27b)suggestsacontributionofReactionII,whichinthiscaseisabout20%ofthemaximalresponseunderconditionsatwhichelectrontransferthroughPhotosystem1ispossible (Figs 27aand27c). WhetherthissmallcontributionofReactionIIhastobeattributedtoPhotosystem1activitycannotbesaidwithcertainty.Photosystem1excitationby717nmlightunderthese conditionswasfoundnottoresultinaP515response.Butitispossiblethat,uponexcitationofbothPhotosystems,thereducedacceptorofPhotosystem2isoxidizedinthe darkbyacomponentwhichinitsreducedformservesasa(weak)donorforoxidizedcarriersatthedonorsideofPhotosystem1.Thus,uponexcitation,someelectrontransport throughPhotosystem1wouldbepossiblewiththeconsequentappearanceofasmallReactionII(andReactionI).Inintactchloroplasts (inthepresenceofDCMU),POmightbe comere-reducedviathepathway:ferredoxin •*cytb564 •*PQ(Millsetal.,1979).Subsequently,thereducedplastoquinonemightreducetheprimarydonorofPhotosystem2.Such amechanism,however,isnottobeexpectedinbrokenchloroplasts,whicheasilyhavereleasedferredoxin. Ourresultsdonotpermitdefiniteconclusionsabouttheprocesswhichisresponsible fortheappearanceofReactionII.Aslowflash-inducedAA515increasehasbeenreported 42 tooccurinpre-illuminatedchloroplasts (Velthuys,1978),whichhasbeensuggested tobe causedbyaprotontranslocationattheoxidizingsideoftheplastoquinonepool.Theresultsofourexperiments,however,stillshowaslowAA515associatedwithReactionII, underconditionsatwhichplastoquinone isintheoxidizedform (Photosystem 1illumination).However,arelationbetweenelectrogeniccyclicelectrontransport andtheslowP515 response (Arnon&Chain,1975;Crowtheretal.,1979;Millsetal.,1979)cannotbeexcludedasyet,provided thatthereactionrateoftheelectrogeniccyclicelectrontransportturnsouttobecompatiblewithReaction IIriseanddecaykinetics.This suggestion isdifficult toreconcilewiththefact (Fig.23)thatthedecayofReactionIIisunalteredwhereas itsmagnitude issuppressed inthepresenceoflowconcentrations ofvalinomycin. ThekineticsandspectralcharacteristicsofReaction IIsuggestthatitsmanifestationisareflectionof physico-chemical processes inthemembraneneartheP515pigment complex.Severalworkers showedthatthedecayofthePS15responseinbroken chloroplasts hasrelativelyrapidsinglefirst-orderkinetics (seealsoFig.13). Thissuggests that Reaction IIinthesepreparations doesnotresult inanelectrochromicresponseofthe P515pigmentcomplex,oralternativelydoesnotoccuratall.Thereasonforthisisunknownasyet.Iassumethatthestructuralorganizationofmembraneconstituents andspecifically thesensitivity of (partof)theP515pigments totrans-andinnermembraneelectricalfieldsareaffectedbysome,asyetunknown,critical stepsintheprocedure of chloroplastpreparation. TheabsenceofReactionIIinKCN-poisonedchloroplasts,inthepresenceofelectron donorsforPhotosystem1(Fig.27e)wouldsuggestafunctional roleofplastocyanin or cytochrome finthereactionprocess.Thissuggestion isinagreementwiththeobservation (Malkin,1978)thatadistinctcomponentoftheP515response isdependentontheredox conditionofacomponentwithamidpointpotentialof+385mV,whichisaboutequaltothe midpointpotentialsofcytochrome fandplastocyanine. Thereasonfortheobserveddifference insaturationofReaction IIinintactand brokenchloroplasts isnotclearasyetbut itshouldberecalled thatdifferences inthe P515spectrumofbroken-andintactchloroplastweresuggested tobeduetocation-dependentchanges inthepositionofelectroncarriersandotherpigments inthemembrane (Chapter 3). Ithasbeenobserved (Haehnel,1977),thatoxidizedP700canbereduced completely afteronesaturating flash,whereasonlypartofPCisoxidized.Successive flashesincreasetheoxidationdegreeofthePCpool.Similarresultswithrespecttocytochrome f wereobtainedbyKoikeetal. (1977).Anelectric interactionbetweenoxidizedPCandP700, proposed tobepartofonecomplex (Ke,1975),mightexplaintheobservedincreaseof Reaction IIinsuccessive flashesinbrokenchloroplasts.ThereforeitmightbeinterestingtostudytheoxidationofPCandthereductionofP700inintactchloroplasts.This, accordingtotheobserved saturationofReaction IIinasingleflash,shouldhaveaone-to-onestoichiometryundertheseconditions. Itisunlikely thatsome,relatively fast,electrogenicprocess,mediatedbyeither oxidizedcytochrome forplastocyanin,mayaccount inadirectwayfortheslowriseand decaykinetics ofReactionII.However,suchanelectrogenicprocessmaywellcauseconformational changes inthemembrane.A chargeseparationbetweeneitheroxidizedplasto43 cyaninorcytochrome£andacatalistatthereducingsideofPhotosystem1mayinduce changesinthestructuralassemblyoflipidandproteinmolecules.Suchconformational changesaresupposedtoalterthemutualorientationoffixedchargedgroupsofthemolecularstructureswithinthemembrane.Weproposethatthismayresultin(achangeof)the intrinsicelectricfield,associatedwiththesechargedisplacements.Asaconsequence thismayresultinAA515oftheReactionIItype.Itisinterestingtonotethattherise anddecaykineticsoftheP515absorbancechangesassociatedwithReactionIIcloselyresembletheopticalresponseofthepotentialprobeoxonolVI (Schuurmans,1978;Bashford, 1978).Themagnitudeoftheoxonolabsorbanceshifthasbeenshowntobeinhibitedbyvalinomycin(Schuurmansetal.,1978).Thisinhibitionappearstobesimilartotheinhibition ofReactionII.Theactionofvalinomycincanbeunderstoodbydiscerningthechaotropic effectofthisionophore.Adirecteffectofvalinomycinonthephosphorylatingsystemhas beenreported (Trebst&Reimer,1977)andthechangesinlipidaggregationcausedbythe antibiotic (Walz,1977)mighthampertheconformationalchangeoftheactivatedcoupling factor. Ingeneral,itappearsthattheriseofReactionIIoccursinthesametimerangeas theflash-inducedresponseofexternalprobeswhichareindicatorsofeitherchangesin themembranesurfacepotential (Kraayenhof&Arents,1977),orofconformationalchanges ofthechloroplastATPase (Kraayenhof&Slater,1975).Ithasbeendiscussed (Ortetal., 1976;Vinkleretal.,1978)thatsomemodeofmembraneenergizationorconformationis neededfortheonsetofATPsynthesisinthelight.Thisactivationstepappearstobe completedinthesametimerangeastheriseofReactionII(seealsoChapter7). 44 6 Reaction kineticsof transmembrane potential changesin relation to ion permeability 6.1 INTRODUCTION Therelationshipbetweenelectrontransportandprotonpumping intothethylakoid inner spacehasbeenthesubjectofseveralstudies.NetuptakeofprotonswasobservedbyNeumann &Jagendorf (1964)inbrokenchloroplastsandbyHeldtetal. (1973)inintactchloroplasts.UsingphenolredasapHindicatororthefluorescencequenchingoffluorescent amines,thesteady-stateratesofprotontranslocation (Chow&Hope,1977)andthekineticsofonsetanddecayofApH (Chow&Hope,1976)havebeenstudied extensively. Tomaintainelectricalneutralityinthebulkphases,theH uptakeisbalancedby eitheranioninfluxorcationefflux.Unfortunately,theknowledgeofpassiveionfluxes •acrossthethylakoidmembraneanditsconductanceisratherunsatisfactory.Sofar,often conflicting resultshavebeenreported.TheeffluxofK andMg hasbeenreportedtobe themainchargebalancing ionmovement (Dilley&Vernon,1965).Bulychev&Vredenberg (1976b)havegivensupportforthissuggestionandhaveemphasized theconsequenceofthe relativelyhighconcentrationofbothionsavailableintheintactchloroplast.Deamer& Packer (1969)reportedCl~tobeamajorco-ionforprotonpumping.TheimportanceofCl~ inthisrespectwasalsodiscernedbyHindetal. (1974). Nakatanietal. (1978)emphasized theimportanceofsurfacepotentialsofthylakoid membranesintermsofiondistributionbetweenthemembraneboundaryandthebulkphase andtheeffectsthereofonthemembraneconductance.Theseresults,confirmedbylater findings (Nakatanietal., 1979),havegivensupporttotheproposalthatMg mayactas themaincounterionforprotontransport.Alternatively,Gräber&Witt (1975,1976)concludedthattheestablishmentofaprotongradientcausedanenhancementofthespecific protonconductance,tosuchanextent,thattheactiveprotonuptakeunder steady-state conditionsisbalancedbothbypassiveproton leakageandprotoneffluxthroughtheATP-synthesizing complex.Junge (1977a)andHarris&Crofts (1978)discussedanelectrically gatedATP-synthesizing complexthatwouldenlargethemembraneconductanceduetoahigher protonpermeabilitycoefficient (seehoweverChapter5and7 ) . Thesearchforaneffectofthemembranepotentialontheionconductivity remainsa challengeforabetterunderstandingofion-controlledprocesses,includingATPsynthesis. Reversiblechangesofthemembraneconductancecausedbylight-dependentprocesses have beenobservedbyVredenberg&Tonk (1973)attheplasmalemmaofNitella tranaluoens. Inthischapter,thedecayrateofReactionI(cf.Chapter 5),proposedtobeproportionaltothethylakoidmembraneconductance,isstudiedinrelationtotheionicenvironmentofthylakoidmembranesofspinachchloroplasts.Fromthisstudyconclusionsare drawnwithrespecttotherelativecontributionofdifferentionstothepassivemembrane conductance.AnalysisofReactionIkineticsinducedbyaflash,firedimmediatelyafter 45 thepre-illuminatingperiods,leadstotheconclusionthattheprotonconductanceofthe thylakoidmembraneisrelativelylowandsuggestsevidencefortheexistenceofaMg -H exchangemechanism.Additionalinformationontheeffectofenergizationandassociated changesoftheelectricalresistanceofthemembrane,isderivedfromelectricalstimulationofthylakoidmembranesof Peperomia metalliaa bymeansofmicro-capillaryglass electrodes. 6.2 EFFECTOFELECTROLYTECONCENTRATIONONTHEDARKKINETICSOFREACTIONI Fig.28ashowsthereciprokehalf-lifetimeofReactionIplottedasafunctionofthe amountofKClpresentintheassaymediumatdifferentpHvalues.AtpH7and8,thedecayappearstobehardlydependentontheconcentrationofKCl,indicativeforalowmembranepermeabilityofbothK andCI undertheseconditions.SimilarresultswereobtainedbySchuldiner&Avron (1971)andYakovleva&Molotkovskii (1979)whomeasureddark swellingofthylakoidsuponadditionofKCl.LoweringthepHoftheassaymediumapparentlyresultsinanincreaseinthemembraneconductanceasmaybeconcludedfromthepHdependentdecayrateofReactionIintheabsenceofions (Fig.28b).Moreover,atlower pHthedecayrateofReactionIbecomesmoredependentonsaltconcentration,according tothealteredslopesinFig.28a.IfCI isreplacedbyaspartate,noappreciableeffect © s-1 120r r 'i . 8pH mmol/l KAsp. *=50 i O =35 I-* o . =10 . =20 *= 5 *= 0 \ o. • * \*\• X if 1 6 Fig.28.a)Reciprokeofthehalf-lifetimeoftheReactionIdecayafterasingle-turnover flash,measuredatdifferentpHvaluesinbrokenspinachchloroplastsplottedasafunctionofKClconcentrationinthesuspendingmedium:pH8,openstars;pH7,closedcrescents;pH6,closedstars. b)EffectofpHonthereciprokehalf-lifetimeofReactionIinbrokenchloroplasts,suspendedinanion-freeassaymedium,c)EffectofpHonthereciprokehalf-lifetimeof ReactionIinbrokenchloroplasts,suspended inamediumcontaining5mmol/1KClandin additionvaryingamountsofpotassiumaspartate (seeinsert). 46 8pH ofsaltconcentrationonthe-ReactionIdecay kineticswasfound atdifferentpH.The pH-dependent changesofthedecayratearesimilartothoseintheabsenceofions (compareFigs28band28c).Thus,Iconclude thatthethylakoidmembraneisimpermeableto bothaspartateandK.Fromtheseresultsitmaybederived that,betweenpH8and6, the membraneconductanceisdeterminedbytheamountofCl".ThetransportofCl~apparently isfacilitatedbylowpHascanbeconcluded from itseffectontheslopeoftheconcentrationdependent ReactionIdecayrate (Fig.28a). Fig.29showsthehalf-life timeofReactionIasafunctionofCl~concentrationat differentpH.Cl~wasaddedeitheraspotassiumsaltorasmagnesium salt.BecauseK*is ratherimpermeant (Fig. 28c),theapparent differencesindecay rateatequal Cl"concentrationsaresuggestive foracontributionofaMg fluxtothemembraneconductance.The reason fortheinitial inclinationinsomeofthecurvesisnotknownasyetbutitmight reflect secondaryeffectsofMg additionassociatedwith ionredistribution processes intheelectrical double layeradjacenttotheplaneofshear (c.f.Chapter7and8). Conclusionsaboutthepassivemembrane conductance,however,canbederived fromthe linear partofthecurves.Fromthedifferencesintheslopesoftheconcentration lines,anestimationcanbemadeoftheMg -andtheCl~-conductivity,respectively.Themembrane conductanceatpH7,inthepresenceof40mmol/1Cl"addedasaMgsalt,exceedstheone inthepresenceofthesameamountofCl~addedasK saltbyafactorofabout4.Atthis pH,theMg conductivity apparentlyisfourtimestheoneofCl".Thisfactorwasabout 2bothatpH6andpH8.The Cl"conductivityhasnopHoptimumbutrather increasesconstantlyupon lowering thepHtoavalueofS(not shown). Fig.30showstheanion-dependent half-lifetimesofReaction I.Allsaltswereadded asMg salts.Therefore,theobserveddifferencesinconcentration curvesmaybeattributedsolelytotheanioneffectonthemembrane conductance.Theplots showamoreor © 8-1 100 100 50- 20 4 0 6 0 0 20 40 600 20 40 60mmol/ICI Fig.29.Reciprokeofthehalf-life timeofReactionIdecay,measuredatpH8(a),pH7 (b)andpH6(c),plottedasafunctionofCl concentration.Cl wasaddedasMgCl2 (closed stars)orasKCl (closed circles), respectively. 47 © s-1 100r 100 50 - 50 - 20 40 60 20 40 60 •Cl" Fig.30.Reciprokeofthehalf-lifetimeofReactionIatpH8(a), pH7(b)andpH6(c) plottedasafunctionofnegativechargeequivalents:CI (closed stars),SO^ (open stars)andNO-j"(closedcrescents).AllanionswereaddedasMg-salts. 30mmol/l Fig.31.Reciprokeofthehalf-lifetimeofthedecayofReactionI,measuredbyfastrepetitive(3Hz)flashfiring,afterpre-illuminationwith6flashes,plottedasafunction oftheMgCl2concentrationinthesuspendingmedium.Closedcirclespresenttheresults ofexperimentsperformedonbrokenchloroplastswithoutfurthermanipulation;openstars: brokenchloroplastsafterCF]extractionbymildEDTAtreatment. lesssigmoidalconcentrationdependenceindicativeforamorecomplexmechanismthanonly apassiveiondiffusion.ThepermeabilitycoefficientofNO,"andCl~appeartobeequal exceptatpH7,asmaybeconcludedfromthemorepronouncedeffectofNO,"additionat thatpH.TheresultsofSO. additionshow,inaccordancewithresultsreportedbyYakovleva&Molotkovskii (1979),thatthisanionisrelativelyimpermeant. 48 6 0mmol/l ExtractionofCF.byEDTAtreatmenthasbeenreportedtocreateaconductancechannel throughCF 0 thatretainsitsselectivityforprotons (O'Keefe&Dilley,1977).Results. depictedinFig.31areinconflictwiththisinterpretation.ExtractionofCF1bymild EDTAtreatment (chloroplastswereincubatedfor1minin0.5mmol/1EDTA,2mmol/1tricine pH 8.0),resultsina101increaseintheReactionIdecayrateintheabsenceofsalts (notshown).ToinvestigatewetherthissmallaccelerationwascausedbyanincreasedprotonconductancethroughCF Q ,thereciprokeofthehalf-lifetimesofReactionIincontrol-andextractedchloroplastswereplottedasafunctionofMgCl,concentration(Fig. 31).Thedifferencebetweentheslopesofthelines,depictedinthisfigure,indicates thattheCl~andMg conductivityinextractedchloroplastsisenhanced.Theacceleration ofReactionIdecaycouldbereversedbyDCCDsubstitution (notshown).DCCDisachemical effectorthatblockstheionconductingchannelthroughCF Q .Thus,Iconcludethatthe relativehighmembraneconductanceinextractedchloroplastsisnotexclusivelycausedby aselectiveincreaseoftheprotonpermeability. 6.3 DECAYOFREACTIONIAFTERPRE-ILLUMINATION Table1showsthehalf-lifetimesofthedecayofReactionIasafunctionofpre-illumination.-Ifpre-illuminationcausesaprotonaccumulationinthethylakoidinnerspacethis willleadtoanincreaseofthespecificprotonconductanceofthemembrane.Shortpreilluminationof200to500msindeedresultsinanenhancementoftheReactionIdecay kineticsbutextensionofthispre-illuminationperiodupto32sdoesnotresultina furtheraccelerationofthedecayofReactionI.Ithasbeenestablishedthatamaximum ApHacrossthethylakoidmembraneisachievedafter5-30sofillumination (Hindetal., 1974;Karlish&Avron,1971).ThusitappearsthatthemaximumaccelerationofReactionI decayafter0.25sofpre-illuminationisnotdirectlycausedbyanincreasedprotonconductanceduetolight-dependentprotonaccumulationinthethylakoidinnerspace. Ausländer&Junge (1974)andFowler&Kok(1974a)suggestedthattheremightexist localizedprotonreservoirsonbothsidesofthethylakoidmembrane.Itisplausiblethat suchreservoirs,seperatedfromthebulkphase,mayleadtoafastriseofprotonconcentrationinthelight,causingasignificant increaseinprotonconductivitywithinatime spanobservedabove.AdditionofDCCD,thatisexpectedtodecreasethespecificproton permeabilitythroughCF« (underphosphorylatingconditions),however,didnotresultina differenteffectofpre-illuminationcomparedwiththesituationintheabsenceofDCCD. Table 1.Effectofpre-illuminationonthehalf-lifetimeofReactionI. Pre-illuminationtime(s) 0.1 0.25 0.5 1.0 2.0 4.0 32 Half-lifetime(ms) 67 39 42 43 41 50 48 49 FurthermoreIobservedthattheeffectofpre-illuminationwasaboutsimilarunderboth phosphorylatingconditionsandnon-phosphorylatingconditionswhereastheprotonpermeabilityisexpectedtobedistinctlydifferent.Thereforeitseemsunlikelythattheobservedeffectsofpre-illuminationareduetoaprotongradientwhetherlocalizedornot. IsuggestthattheenhancementofReactionIdecayaftershortpre-illuminationisdueto afastcompetitivereleaseofcationsfromH bindingsitesattheinsidethylakoidsurface.AlocalincreaseoffreeMg concentrationatthemembraneboundarymaycausethe observedincreaseofmembraneconductance.Accordingly,IobservedthattheeffectofpreilluminationonReactionIkineticsisconsiderablylessinthepresenceofMgCl,concentrationsabove4mmol/1(notshown).Inthiscase,themembraneconductanceislessaffectedbyproton-inducedcationreleasefromthemembranebecauseoftheexistenceofa highconcentrationoffreemovingionsattheboundaryofthemembrane (seealsoSection 8.6). 6.4 MEASUREMENTOFTHEELECTRICALRESISTANCEOFTHYLAKOIDMEMBRANES Thesingle-electrodepulsemethod (Lettvinetal.,1958)opensperspectivestoobtaininformationonthemagnitudeoftheresistanceofthethylakoidmembrane.However,themethodhassomeshortcomingsmainlyduetothefactthattherearenomeansforatestofthe electrodequalityafterimpalement.Thereforethemethodgivesonlyqualitativeinformationontheresistanceofthethylakoidmembrane.Buthitherto,itistheonlydirectmethodavailable.Afterimpalementoftheelectrode,thetotalresistanceofthecircuit,detectedbythepotentialresponseupona400mshyperpolarizingcurrentinjectionof1nA, wasfoundtobe50-60Mfi.Theresponseuponsuchacurrentpulseisbiphasic(Fig.32b).The fastphaseisattributedtothepotentialdifferenceacrosstheelectrodetipandisdetermined bytheelectroderesistance.Theslowphaseisareflectionofthetransmembranepotentialdifferencegeneratedbythechargingcurrentpassingacrossthemembrane.Extrapolationof thesemi-logarithmicplot (Fig.32b)oftheslowphasetotimezeroshowsthatthepotentialacrossthemembraneisabout2mVataloadingcurrentof1nAindicatingamembrane resistanceof2Mf!.Similarly,theresponseupondepolarizingpulsescouldbeanalyzed (notshown).Therelaxationtimeofthecurrent-inducedpotentialchange (Fig.32b)agrees fairlywellwiththatofthepotentialdecayafterasingle-turnoverflash(Fig.32a).The membraneresistancederivedfromsuchexperimentsingeneralvariedbetween2and40Mft, dependingonthemagnitudeofthepulseandthestateofthechloroplast.Iobserveda maximumvalueof60MŒatadepolarizingpulseof0.25nA(notshown).Highcurrentinjectionabove1-1.5nAgaverisetoapotentialovershootindicativeforthe"punchthrough"effect(Coster,1965)thatiscausedbyasharpdeclineofthemembraneresistanceaboveacertaincriticalpotential.Thevalidityofthepulsemethodissupported bytheobserveddisappearanceoftheslowpotentialkineticsinthepresenceoftheionophorevalinomycin(Fig.32c)thatisknowntoincreasethespecificmembraneconductance forK .ItshouldbenotedthattheamountofK inthechloroplastmayincreasedueto KClleakageoutoftheelectrodetip. Themembraneconductanceisdeterminedbythepermeabilityofionsandtheamount ofionsavailableforchargetransportacrossthemembrane.Theelectrodemeasurements 50 Fig.32.a)Time courseof a flash-induced electricpotential and the semi-logarithmic plot of itsdecaykinetics.The arrow indicates themoment atwhich theflashwas fired. b,c)Electrical responsesof theelectrodeand the thylakoidmembraneupon ahyperpolarizingcurrent injection intheabsence (b)and thepresence (c)of 30ymol/1valinomycin. Thearrows indicate themoment ofpulse injection.Extrapolationof the slowphase inthe semi-logarithmic plot to time zerogives thevoltage,generated across thethylakoid membrane. arenotsuitableforaquantitative studyoftheselectiveconductanceofthethylakoid membranebecausevariationofionconcentrationintheinsideofthechloroplastishamperedbytheenvelopebarrier.Thereforethissortofexperimentswereperformedonbroken chloroplastsusingtheReactionIkineticsofPS15asthedeterminantprobe (Section6.2). Fig.33givestheI-Vcharacteristicofthethylakoidmembranemeasuredwithasingle electrodewithreferencetoanexternalelectrode.Before insertingtheelectrode,its current-voltage linearitywaschecked.Thischeckisimportant topreventafalsifiedinterpretationofresultsduetoartifactscausedbyanon-linearcurrent-voltagerelationshipoftheelectrode.Itisdiscerned,however,that thiscontrolisnotadefiniteprecautionagainstpossibleartifactsbecausetheconditionoftheelectrodetipmaybedifferentbeforeandafterimpalement.Thedifferent ioniccompositionofthethylakoidinteriorandcontaminating substancesclingingtotheelectrodetipmaycausechangesin electroderesistance.However,thetypicalbendedshapeofthemembrane current-voltage relation,depictedinFig.33,wasonlyobservedifreproducable light-dependent potential responsescouldbeevoked.Ifthelatterwererelativelysmall,orevenabsent,thecur- 51 +1J1A Fig.33.Current-voltagecharacteristicofthethylakoidmembrane.Thecurvesweremeasuredbyapplyingacurrent,from-1nAto+1nAchangingatauniformrateof0.66nAs Thebrokenlinerepresentsthecurrent-voltagecharacteristicoftheelectrodebeforeimpalement. rent-voltagecharacteristicusuallywasstraightalthoughaconsiderableincreaseofresistancewasobservedafterelectrodeimpalement. Afteraratherconstantvalue,adepolarizingcurrentacrossthethylakoidmembrane wasfoundtocauseanincreaseoftheapparentresistanceuptoacertainlevel.Beyond thisleveltheresistancewasfoundtodeclineandmightevenbecomezero.Atthishigh currentflowspontaneousfiringofactionpotentialswasobservedindicatingadramatic changeofthefunctionalconditionofthemembrane. 6.5 DISCUSSION ThedatadepictedinFig.33showthattheelectricalresistanceofthethylakoidmembraneisnotaconstantbutratherdependsonthedirectionandmagnitudeofapolarizing currentfluxthroughthemembrane.Non-linearcurrent-voltagecharacteristicshavebeen observedintheplasmamembraneof mitella tvanslucens (Vredenberg&Tonk,1973)andalso inthylakoidmembranesof Peperomia chloroplasts (Bulychevetal.,1976).Althoughthe latterauthorsdonotspecifytherectifyingpropertyoftheelectrode,theyconcludeaboutthesameresistanceforthethylakoidmembraneatzerocurrent (i.e.20-30Nto). Assumingaspecificconductanceofthethylakoidmembraneof30yS.cm whichcanbe calculatedfromthedatainFig.32a(seealsoVredenberg,1976)andatotalresistance of20MS2(Fig.33)itcanbecalculatedthatthemembranesurfaceinvolvedisabout 4 2 2 1 5 x 1 0 vim.Thesurfaceareaofonethylakoidisabout3.5urn.Thereforeitseemsthat 4 about4.3x10 thylakoidsareinterconnected,correspondingtoaninternalvolumeofa3 3 bout110urn.Thetotalvolumeofa Peperomia chloroplastisabout700ym.Theamountof thylakoidsbeinginterconnectedmightbeevenhigherbecauseinmycalculationthewhole thylakoidsurfacewasassumedtoparticipateintheionexchangemechanism.However,only partofthethylakoidsurface (i.e.themargin)isexposedtothestroma;themajorpart issituatedinthepartitionzone.Theresistancemeasurementssupporttheevidencethat granumstacksarenoseperateentitiesbutratherformaunity,interconnectedbystroma lamellae.Paollilo (1970)pointstotheexistenceofaspiralfretwork,interconnecting individualgranaandgranumstacks.Evenseveralparallelfretsmaybesimilarlyassoci- 52 atedwithasinglegranun.ForareviewseeCoombs&Greenwood (1976). Theobservednon-linearcurrent-voltagerelationshipofthethylakoidmembranesuggestsevidenceforanasymmetricaldouble-latticemodelofthethylakoidmembrane.Sucha modelhasbeendescribedforotherbiologicalmembranes (Coster,1965).Inanasymmetrical fixed-charge latticemodel,anabrupttransitionoftheelectrostatical potential exists attheso-calleddepletion zone.Theconcentrationofmobileionsinthevicinityofthis zoneisdependent onthesignandthemagnitudeoftheappliedvoltage.Fluctuationof themobileionconcentration atthedepletion zonebyanappliedexternal fieldwill causeconcentrationgradients intheneighbouring fixedchargeregionsand consequently adiffusionofionsdowntheconcentrationgradientwilltakeplace.Thecurrent densityduetoiondiffusiondecreases ifthejunctionpotentialismagnifiedby theexternalappliedvoltage.Alternatively,thecurrentdensity increases iftheappliedvoltageisoppositetothejunctionpotential.Asmaybeconcluded fromFig.33,thecurrent densitythroughthethylakoidmembrane increases ifthesignoftheappliedvoltageis negative.Thiswouldsuggestthatthefixednegativecharge-density attheinner thylakoid surface islessthanattheoutersurface. Analysesoftherelativecontributionofdifferent ionstothethylakoidmembrane conductance (Figs.28-32)pertaintofourconclusions: 1.TheprotonconductanceofthethylakoidmembraneatpH5-8isnegligibleascomparedtoitsconductance tootherions,bothafteradarkperiodandapre-illumination period,longenoughtoestablishamaximumprotongradientacrossthemembrane.Thesmall acceleration ofReaction Iafterashortperiodoflightapparently isnotduetoadirect effectofprotonaccumulation.Iproposethatthisacceleration istheresultofanincrease inthepermeability ofotherionsoranincreaseofthecationconcentration in themembraneboundaryduetoexpulsionofcationsfromthemembraneorinnermembrane double layerbyproton-binding.A competitiveMg extrusioninthedarkuponH addition hasbeenobservedbyBose&Hoch (1978).. 2.A similarconclusionisdrawnfromtheobservationthatloweringpH apparently resultsinanincreasedmembraneconductancewhichisnotduetothehigheramountof availableprotons.Themechanismoftheproton-inducedpermeability increase isnotknown. Fromtheeffectofsurface-charge neutralisation ontheiondistributionatlowpH,the Mg concentrationattheboundarymaybeexpectedtodecreasewhichconsequentlymay causeadecreaseoftheMg conductivity.However,thechanges insurfacechargedensityinthetrajectfrompH6topH 8areonlyminor (cf. Chapter 7).Apossiblemechanis++ ticexplanationmaybegivenbypH-dependent openingandclosingofspecificMg -conductancechannelsoralternatively aH -Mg antiportmechanism (Karlish&Avron,1968) facilitatedbylowpH (seeSection 8.6).TheobservedcompetitionofMg andH forbindingsites (Bose&Hoch,1978)makestheantiportmechanismacceptable.Theexistence of specificion-conductance channelshowever,maynotbeexcluded.Suchchannelsmay fulfill animportantregulatingrole,expeciallywhenthefunctionofthatspecific ionisdeterminedbyitsdistributionoverdifferentcompartments.Therefore,aselectiveprotonchannelthroughtheATP-synthesizing complexisindispensable,buteventhenthe selectivity apparently isnotdeterminedbythemembranecomponent (CF0)but itisratheraconsequenceoftheCFjbindingattheoutsideofthechannel (Fig.31). 53 3.Inthisrespecttheobserved increaseofselectiveCI conductivityupon lowering pHfrom8to5mightbecausedbyadecreaseofnegativesurfacechargesfavouring anincreaseofCl~ionsatthemembraneboundary. 4.Theobserveddifferences inpermeability ofanumberofanionsagreewithobservationsofothersusinganindependentmethod (Schuldiner &Avron, 1971). 54 7 Light-dependentconformational changesinthethylakoid membrane 7.1 INTRODUCTION Basedonavailablekineticdata,atleast twocategoriesoflight-dependent structural changes canbedistinguished: -Ratherslowconformational changesoccurringinthesecondtominute timerangedueto changesintheionicmicro-environmentanddehydrationofcomponentswithinthemembranal corethatareprobably correlatedwithionfluxesandwatermovementduring illumination (Packer,1963;Dilley&Vernon, 1965;Murakami&Packer, 1970;Torres-Pereiraetal., 1974). -Relatively fastconformational changeswithahalf-life timeof20-100ms(Kraayenhof& Slater, 1975;Kraayenhof,1975)thatwere foundtobecorrelatedwithanenergydependent exposureofnegativesitestowards theoutsidethylakoidmembrane surfaceoranocclusion ofpositivesitesontheATPase (Giaquintaetal., 1973,1974;Kraayenhof, 1975). Boyer (1965),proposedamechanismofsequentional conformational-energy transduction inwhichelectron-transportingproteinsareinvolved.Theseconformational changes,which areprobablyaccompaniedbychangesinpK ofproteingroupsonthe oxidation-reduction components (Papa,1976)arelikelytoresultinanalteredchargedensity. Theoccurrenceofconformational changesintheATPsynthetizing complexwas first observedbyRyrie&Jagendorf (1972)andtheirfindingswere confirmedbyothers (McCarty & Fagan, 1973;Lutzetal., 1974;Kraayenhof&Slater, 1975;Harris&Slater, 1975). Isuggested (Chapter 5)thattheslowcomponentoftheflash-induced absorbance changeat515nm,wasareflectionofanaltered conformationofproteinsorlipidsinthe membrane,inducedbyanelectrogenic effectnearPhotosystem 1.Thiswasproposedtolead toachangeinstrengthandorientationofinternalelectric fieldsneartheP515pigment complex.ThereforeIinvestigatedwhethertherewassomecommonmechanisticbasisforfast conformational changesoftheATP-synthetizing complex,ReactionIIandtheproposed changesinelectricalchargedensityofthemembrane,inthecourseofphotosyntheticenergy transduction. Mostbiologicalmembranes includingchloroplastmembranes (Dilley&Rothstein,1967; Gross&Hess,1974;Bergetal., 1974;Gitier, 1971)bearanetnegativesurfacecharge inthephysiologicalpH-domain.Thecorrespondingnegativeelectricsurfacepotentialmay beconsideredasanentitythatcontrolstheioniccompositioninthediffusedouble layer adjacenttothemembrane surfaceandthereby intrinsicmetabolicandstructuralmembrane properties,includingthetranslocationofions (Gross&Prasher, 1974;Barberetal., 1977; Theuvenet&Borst-Pauwels,1976a, 1976b).Anumberofsurface-relatedphenomena,such astheelectrostatic absorptionofdyemolecules (Montai&Gitler,1973;Searleetal., 1977)anduncouplers (Bakkeretal., 1975)seemtobeingoodharmonywiththe theoryof 55 thediffusedoublelayerdevelopedbyGouyandChapman (Davies&Rideal,1963;Aveyard& Haydon,1973).McLaughlin (1977)hasreviewedgeneralaspectsofthistheorywithspecial emphasistoelectrostaticphenomenaofsurfacesofbiologicalmembranes. A 15?,increaseofthe (negative)surfacechargehasbeenobserveduponillumination ofintactspinachchloroplasts (Nobel&Mel,1966).Inarecentelectrophoreticstudyon membranesofintactchloroplastsandofdivalentcation-depletedthylakoidsmembranes, Nakatanietal. (1978)didnotobserveanylight-inducedincreaseofsurfacechargedensity. Inthischapteracharacterizationoftheelectrokineticbehaviorofchloroplastsin responsetoenergizationbylightwillbegiven.Theresultsarediscussedinrelationto theprocessesthatgiverisetotheReactionIIresponseofP515.SeealsoSchapendonket al. (1980). 7.2 MATERIAL Absorbancechangesweremeasuredinchloroplasts,preparedasdescribedinChapter2.All othermeasurementswerecarriedoutwithchloroplastspreparedasdescribedbelow."Intact" (outermembrane-containing)chloroplastsweremadefromfreshlygrownormarketspinachby homogenizationofpre-cutleaves (10g)withacavitationdisperser(IKAUltra-Turrax, equipedwith18Nshaft)for2x1satmaximumspeed,followedbyfiltrationthrough8 layersofperlonnet (40 \mmeshwidth)and1mincentrifugationat2000 g. Theisolation andresuspensionmedium (usually50mland2ml,respectively)contained330mmol/1sorbitoland2mmol/1tricine,pH7.2and,whereindicated,5mmol/1MgCl7.Brokenchloroplasts wereobtainedbysuspendingthepelletsin1ml ti?0 or10mmol/1MgCl,for1min,after which1mlofdouble-strengthmediumwasadded.Theelectrophoresismediawereasindicatedinthelegendstothetablesandfigure.Themethodformeasuringelectrophoretic mobilityofchloroplastparticlesisdescribedinChapter2. 7.3 SOMEELECTROKINETICDATAOFDIFFERENTCHLOROPLASTPREPARATIONS Theelectrophoreticmobility (u)ofchloroplastsandtheeffectofilluminationwerefound todependonchloroplastintegrity.Brokenchloroplastsshowedaslightlylargerdarkmobilityandthelight-stimulation (àu^. )wasfoundtoberoughly2to5timesthatof intactones. Thescreeningofnegativechargesonthethylakoidmembranesbythechloroplastenvelopeisprobablythereasonfortherelativelylowincreaseinmobilityinintactchloroplasts.TheeffectofMgCl2onthemobilityofbrokenchloroplastswasinvestigatedand theresultsaresummarizedinTable2.Chloroplastsisolatedandbrokenintheabsenceof MgCl,»butwithoutdrasticdepletionofbivalentcations (Nakatanietal.,1978),showa decreaseofelectrophoreticmobilitiesandoflight-stimulationuponincreasingtheMgCl, concentrationintheelectrophoresismedium (Table 2).Theobviousadvantageofusing brokenchloroplastsisolatedintheabsenceofcations,isthattheyprovidealesscomplicatedmembranesystemmoresuitableforcomparingthecationeffectswiththeoretical modelsaspredictedbytheGouy-Chapmantheory.Theresultsofthesetestsindeedarefound 56 Table2.EffectofMgCl2ontheelectrophoreticmobilityofbrokenchloroplasts prepared intheabsenceorpresenceofMgC^ 3 . Experiment MgCl2 (mmol/1) 0 0.05 1.0 0.05b 1.0 -K-105 (cm2-V_1-s-1) A (%) ") VL dark light 19.9 19.0 13.0 28.5 24.5 14.6 43 29 J2 13.8 13.6 26.9 18.2 95 34 a.Thebrokenchloroplastswereisolated intheabsence (expt.A)orpresence (expt.B) of5mmol/1MgCl?*Inbothexperimentselectrophoresiswascarriedoutinisolationmedium plus10iimol/1diquat.Chlorophyllcontentwas 10ug/ml. b.ThisconcentrationofMgCl2wasintroduced intothemediumwiththechloroplastsuspension. tobeingoodharmonywiththetheory (Searleetal.,1977;Nakatanietal., 1978).If chloroplastmembranesarekeptunderamorephysiological conditionbyisolationinthe presenceo£Mg ions,theyshowasmallerelectrophoreticmobilityinthedark,butthe stimulatory effectoflightatlowMg concentrationisconsiderably increased.Further experimentstobereportedhereareperformedwithbrokenchloroplastsonly. 7.4 THERESPONSIVENESSOFELECTROPHORETICMOBILITYANDREACTIONIIUPONCHEMICALTREATMENT ThepH-dependenceofthedark-andlight-mobilitiesofbrokenchloroplastsisshownin Fig.34.BothmobilitycurvessharplydeclinebelowpH6andindicateachargeneutralizationpointatpH4.8,roughlyconfirmingtheresultsofNakatanietal. (1978)onnon- -uK^Ccm2^-1^-!) 40 8 pH Fig.34.Theelectrophoreticmobilityofbrokenchloroplastsindark (closedcircles)and light (opencircles)asafunctionofpH,measured intheabsenceofMgCl2-Experimental conditionswereasinTable2A. 57 energizedchloroplastmembranes.ItappearsthatilluminationcausesexposureofadditionalnegativegroupswithidenticalpK asthegroupsalreadyexposedinthedark. Fig.35showssingle-flashinducedabsorbancechanges,measuredatpH6.7andpH5.2. TheslowdecaycomponentrepresentativeforReactionII,whichisclearlyobservedatpH 6.7appearstobeabsentatpH5.2.AtthispHonlyReactionIisobserved.Aplotofthe ReactionII/ReactionIratio,asafunctionofpH,isdepictedinFig.35.Thereappears tobeamaximumvalueforthisratioatpH6.7andasharpdeclinebetweenpH6andpH 5.2.ThemagnitudesofReactionIandReactionIIwereanalyzedasdescribedinChapter5. Table3liststheeffectsofchemicalandphysicaltreatmentsontheelectrophoretic mobilityofbrokenchloroplasts.TheelectrontransferinhibitorDCMUdoesnotaffectthe ® b*nj © H Q5 0- -*S\ 6 8 pH Fig.35.Upperpart:ResponseofP515toflashesfiredatarepetitionrateof0.05Hz, atpH6.7 (a)andpH5.2 (b),respectively.Lowerpart:theratioReactionII/ReactionI, plottedasafunctionofpH(c). 58 Table3.Effectsofelectrontransferinhibitor,uncouplersandphysicaltreatmentson theelectrophoreticmobilityofbrokenchloroplasts3. Additionortreatment None DCMU (0.5ymol/1) DCMU (0.5ymol/1)+PMS (6ymol/1)-diquat CCCP (5ymol/1) S-13(lymol/1) ACMA (15ymol/1) 1.5min60°C 2min2.5%glutaraldehyde valinomycin (1ymol/1) valinomycin(5ymol/1) -u-105 (cm2-V_1-s-1) AM dark light 14.0 14.0 14.9 17.4 13.5 12.1 5.3 6.7 12.6 12.1 27.0 15.0 27.1 14.8 14.1 14.0 5.1 6.9 20.7 12.5 ^ n-»i 93 7 82 -15 4 16 - 4 3 64 3 a.Thebrokenchloroplastswerepreparedinthepresenceof5mmol/1MgCl2.Theelectrophoresismediumcontained330nmol/1sorbitol,10mmol/1KCl,2mmol/1tricinebuffer, pH7.2,10ymol/1diquat (0.05mmol/1MgCl2introducedwithchloroplast suspension).Chlorophyllcontent 10yg/ml. dark-mobilitybutpreventsthelightstimulation.AdditionofPMScompletelyrestoresthe lighteffect.AsimilarobservationhasbeendescribedinChapter5forReactionII. Theeffectofvalinomycinwastestedunderavarietyofconditions.Wefoundthat thisantibioticinvariablyeliminatesthelight-stimulationbothinthepresence (Table3) andabsence (notshown)ofaddedK ions,whichisincompleteagreementwiththeobservedinhibitionofReactionIIbytheionophore (cf.Chapter 5), exeptforthefactthat ReactionIIappearstobeinhibitedatsomewhatlowerconcentrations.Thisdiscrepancy mightbeduetothedifferenceintheisolationproceduresused.Treatmentswhichinhibit ReactionII,arealsofoundtodiminishthelight-inducedincreaseofnegativesurface charges:Ashortheat-treatment (1.5minat60°C)ofachloroplastsuspensiondrastically lowersthedark-mobilityandabolishesthelight-effect.Ageingofthechloroplastsfor3 hat25°Cdidnotaffectthedark-mobilitysignificantlybutgraduallydiminishedthe light-stimulation (notshown).Treatmentofthechloroplastsfor2minwith2.5%glutaraldehyderesultsinadecreaseddark-mobilityandaninhibitionofthelight-stimulation. West&Packer (1970)reportedthatinthelattercaseATPsynthesisisimpaired,whereas electrontransferandH uptakestillproceeds. 7.5 REACTIONIIASAPOSSIBLEINTRINSICMARKERFORTHECONFORMATIONALSTATEOFTHECOUPLINGFACTOR Fig.36showsthesemi-logarithmicplotofthe515 ranabsorbancedecayafteraseriesof 7flashesintheabsenceandthepresenceofMgCl,(Fig.36aand36b,respectively).The absorbancelevelinthe0.4-1 stimedomainwhichisduetoReactionII(cf.Chapter5) wasfoundtobeappreciablylowerinthepresencethanintheabsenceofADPandK^HPO., bothintheabsence (Fig.36a)andthepresence (Fig.36b)ofMg + + ..Theionicstrengthof theassaymediumintheabsenceofK-HPO.wasadjustedtoanequivalentmolaritywithKCl. ThedecaykineticsofReactionIIappeartobesimilar,althoughintheabsenceofMg + + , 59 AA(a.u.) 40 r A. ^-n— 10 -*- 05 1s 40 \ ,v ® 10 *-*. 0 Q5 1s Fig.36.Semi-logarithmicplotsoftheabsorbancedecayat515ranafteraseriesof7 flashesfiredat100mstimeintervalsinthepresenceofeither 10mmol/1KCl (a)or 10mmol/1MgCl2(b).TheP515decayunderphosphorylating-(+0.8mmol/1ADPand 1mmol/1 KH2PO4)andnon-phosphorylatingconditionsisindicatedbyopenstarsandclosedcircles, respectively.Thelogarithmsoftheabsorbancechangesaregiveninarbitraryunits (a.u.). thedecayisslightlyfasterinthepresenceofADPandK-HPO..ThedecayofReactionI wasfoundtobeunaffectedbyADPandK2HPO.(Section6.3).Conclusivewithresultsof Girault&Galmiche(1976)wefoundthatadditionofATPhadqualitativelythesameeffect onReactionIIasADPandK2HPO..Accordingly,theapparentaccelerationoftheoverall responseinthepresenceofADPorATPmustbeduetoadecreasedcontributionofReaction 11totheoverallresponse.Thesedatasuggestthattheinductionofchangesinthelocal electricfield (Reaction II),ispartlyaffectedbyanalteredconformationofamembrane component,possiblytheATPasecomplex,duetobindingofADPorATP. Fig.37aand37bshowtheanalysesoftheP51Sresponseintheabsenceandthepresenceof4pmol/1DCCDpermgchlorophyll.InthepresenceofDCCD,ReactionIIappearsto becompletelyinhibited.TheslowprocessthatisresponsiblefortheDCCDinsensitivepart oftheabsorbancechange (Fig.37b)isnotyetknownbutitsslowriseanddecaykinetics whicharedifferentfromthekineticsofReactionII,leadtothesuggestionthatsome otherasyetunknowneffectmightbeinvolved.Asimilarabsorbancecomponentwhichwe calledphased(cf.Chapter 5),wasobservedintheabsenceofDCCD.Wedidnotcorrect 60 DCCD(«mol) -V* Fig. 37.Timecourseof theP515 absorbance changes inbroken chloroplasts intheabsence (a)and thepresence (b)of 4umolDCCDpermg chlorophyll,respectively, induced by repetitive single-turnover flashes,fired at arepetition rateof 0.05 Hz.Reaction Ikinetics (solid curves)weremeasured immediately after pre-illuminationwith 6flashes,firedat arepetitionrateof 3Hz.In (c)therelative contribution ofReaction I (open squares) and Reaction II (closed circles) isplotted as a functionof theadded amount ofDCCDper mgchlorophyll. forthisphasebecauseofitsrelativelysmallcontribution.Fig.37cshowsthemaximum extentofReactionIandReaction II,respectively,asafunctionoftheamountofDCCD. ReactionIIiscompletely inhibitedataDCCDconcentrationatwhichthemagnitudeof ReactionIcorrespondsto75%ofthecontrol.Theobserved decreaseofReactionIupon additionofDCCDprobablyiscausedbyasecondaryeffectduetoinhibitionofelectron transport (Uribe,1971).Thiseffectmightalsoberesponsibleforapartial inhibition ofReactionII,becausetheonsetoftheconformational changeassociatedwithReactionII issuggestedtobeprimarily causedbyanelectrogenicmechanism locatedatthePhotosystem1site (Section 5.7). However,thedifferentconcentration levelsofDCCDatwhich ReactionIandReactionIIareinhibited (Fig.37c),indicate thatReactionIIinhibition cannotexclusivelybecausedbyinhibitionofelectrontransport,evenwhenDCCDwould haveapredominanteffectonelectrontransportactivatedbyPhotosystem 1only.Moreover ithasbeenobservedthatrestorationofelectrontransportinDCCDpoisoned chloroplasts byadditionof6pmol/1PMSresultsinacompleterecoveryofReactionIbutwithouta concomitant recoveryofReactionII(notshown). ExtractionofCF 1bymildEDTAtreatment (chloroplastswereincubatedin0.5mmol/1 EDTAand2nrnol/1tricine (pH8)resultedinapartialinhibitionofReactionII(Fig. 38). Theabilityofchloroplaststophosphorylateortocarryoutlight-dependentH uptake isknowntobelostundertheseconditions (Avron,1963;McCarty&Racker,1966).ThisagaingivesanindicationthattheprocessesreflectedbyReactionIIareconnectedwith 61 WV -wv Fig.38.TimecourseoftheP515absorbancechangeinbrokenchloroplastsbefore (a)and afterEDTAtreatment (b),inducedbyrepetitivesingle-turnoverflashesfiredatarepetitionrateof0.05Hz.Theresolvedresponsesareobtainedaccordingtotheanalysis discussed inChapter5,Fig.15. thefunctionalintegrityoftheATP-synthesizingsystem.AnattempttoinhibittheconformationalchangesinCF..andconcomitantlyReactionIImorespecificallybytreatmentwith anti-serumagainstCF,,wasunsuccesfull.TheisolatedCF..fractionwasfoundtobehighly pureaccordingtotheelectrophoreticbandpatternina SDS-polyacrylamidegel,butthe antibodiesinhibitedneithertheCa -dependentATPase (J.Verheyen,personalcommunication),northelight-dependentATPsynthesis,northeelectrontransportrate.Although theantibodiesdidprecipitatewithantiserumandchloroplastagglutinationwasobserved, noinhibitionwasfoundtooccur,evenwhentheantibodywastitratedoverawideconcentrationrange.Theseresultsareinagreementwiththoseofothers (Nelsonetal.,1973; Shoshanetal.,1975)whoshowedthatantibodyfunctioninginrelationtoATPsynthesis isconfinedtoveryspecificpartsoftheCF..ratherthentoanindispensableunityofthe totalCF 7.6 DISCUSSION Thepresentexperimentsshowthatilluminationofchloroplastsinthepresenceofsuitable electrontransfermediatorscausesamarkedenhancementofparticlemobility,theeffect beingmostpronouncedinbroken(envelope-free)chloroplasts.Thesmallerlight-stimulation(15-301)in"intact"chloroplastswouldconfirmearlierobservationsofothers (Nobel&Mel,1966).Obviously,amoreorlessintactoutermembraneshieldsthethylakoid surfacechargeeffects (andchangesthereof).Ontheotherhand,thestructuralandfunctionalintegrityofthethylakoidmembranesthemselvesisaprerequisiteforthelighteffect.Extensivedepletionofdivalentcationsandtris-washingpriortotheelectrophoresisexperiments (Nakatanietal.,1978)leadstoamodificationofgrosschloroplast structure (granastacking)aswellasofthemolecularstructureofthethylakoidmembrane; thelipidbilayerisexpectedtobecomelessorderedandmembrane-boundproteins,including theATPase,areremoved.Earlierworkondivalentcationbinding (Grossetal.,1969; 62 Gross, 1972)showsthatdivalent cationdepletionleadstouncouplingof energy-linked functions.Thismayexplainthelackoflight-stimulation ofelectrophoreticmobility in the thylakoidpreparationsusedbyNakatani etal. (1978)and thelowextent orevenabsenceofReaction IIinchloroplast thatarebrokenandincubated inabsenceofsalts. Incontrast totheobservations ofNobel&Mel (1966)thelight-inducedincreaseof thenegativemembrane surfacechargedensity, liketheoccurrenceofReaction II,isshown tobeuncoupler-sensitive (Table3)andseemstogohandinhandwiththelight-induced conformational changesdetectedasanelectrostatic interactionofchloroplastswith cationicprobes,suchasaminoacridines (Kraayenhof, 1973),ethylred (Heath, 1973)and PMS (Homaim,1976).However,itshouldberemembered thattheReactionIIkineticswere studiedinflashilluminationand theelectrophoretic experimentswerestudied incontinuous illumination.Withthisinmind,oneis leftwiththenotion thatadditionofvalinomycin,acidification,additionofDCMJandPMSandvariousphysical treatments,have qualitatively thesameeffect onboth theextent ofReaction IIandthe light-stimulated increase insurfacechargedensity. Themagnitudeofthechargedensitycorresponds toa zêta (ç)potential of-18mV in thedarkand-37mV inthelight (Schapendonk etal., 1980).Itseemsveryunlikelythat thelight-inducedincrease ofnegative surfacecharges isadirect resultofchargereorientationatthephotosyntheticreactioncenters,sincethesechargechangesareexpected tobe toosmalltobedetectedbyelectrophoresis (Nakatanietal., 1978).From chemical modification studies,Nakatani etal. (1978)deduced thatthethylakoidsurfacechargeis mainly determinedbycarboxylgroupsofasparticandglumaticacidwhichsuggests that membraneproteinsaremost likelyinvolvedinthealteredchargedensityupon illumination, describedhere. TheobvioussimilaritybetweentheeffectofpHontheextentofReaction II (Fig. 35)andonthedecreaseofthelight-induced changeofthenegativechargedensity (Fig. 34)respectively,expeciallythenarrowtransitionphasebetweenpH6andpH 5,isin goodagreementwiththesuggestionthatbothReaction IIandtheobservednegative charge exposureareanexpressionofareorientationoffixednegative chargesassociatedwith conformational changes inthemembranalcore. The factthatbothReactionIIandthelight-stimulated generationoffixednegative chargescanbecatalysedbyPhotosystem 1only,alsosuggeststheexistenceofa common basicprinciple (compareTable3andFig.27).IfReaction IIandalsoaminoacridinebindingarebelieved tooriginate fromthesameelectrogenicprocessasthechanges insurfacechargedensity,thenthekineticsoftheformerprocesses showthatthe generation ofsurfacecharges is much faster thantheenergy-dependent increaseofchloroplast lightscatteringandbulkiontranslocation.ThegenerationofnegativechargesandtherisetimeofReaction IIappeartocoincidewiththelight-induced conformationalchange in themembrane-boundATPase,monitoredwithacovalent fluorescent label (Kraayenhof, 1977b). Iwant topaysomeattentiontothefunctional aspectsofbothReaction IIandthe electrophoretically detectedchargeexposure inthelight,inparticularwithrespectto theactivityoftheATP-synthesizing complex.Itshouldbenoticed thatthe innersideof thethylakoidmembrane alsohas anexcess offixednegativecharges,whichwill decrease uponillumination inconjunctionwithprotonuptake (Witt&Zickler, 1973;Fowler&Kok, 63 1974b).Theresultanteffectmaybealocalizedelectricfieldofsignificantstrength, whichmightcontributetotheprotonmotiveforce(Rumberg,1977)andwhichmightbedetectedbytheP515pigmentsystem,resultingintheappearanceofReactionII. Alternativelythereisnodirectevidencethattheproposedchangeinmembraneconformation,reflectedbytheincreaseinsurfacechargedensityandtheappearanceof ReactionII,isameasureoftheenergizedstateofthethylakoidmembrane,although,the observedinhibitoryeffectsofuncouplerslikeS13andCCCPontheseprocesses (notshown forReactionII)wouldconfirmsuchaninterpretation.IfthemagnitudeofReactionII wouldreflectsuchenergizedstate,orevenwouldbequantitativelylinkedwiththeintermediaryhigh-energystateoftheATP-synthesizingcomplex,thenitsdecreaseinthepresenceofaddedATPcannotbeeasilyunderstood.Moreover,thedecayrateofReactionII wouldbeenhancedunderphosphorylatingconditions.Accordingtotheresultsshownin Fig. 36,thisappearsnottobethecase.However,itmightbethattheregulationofthe capacityoftheATP-synthesizingcomplex,governedbyachangeinitsconformation,goes handinhandwithmembraneconformationalchanges,thatfindtheirexpressionintheappearanceofReactionIIandthechangeinsurfacechargedensity.TheinhibitionofReactionIIbyEDTAextractionofCF.,orbyadditionofDCCDeveninclinetotheideathat ReactionIIisassociatedwithaconformationalchangeofthecouplingfactoritself.An attempttofixtheconformationoftheATPasemorespecificallybyantibodycomplexation unfortunatelywasunsuccessful. Harris&Crofts (1978)suggestedthattheactivationofATPproductioniscontrolled byadistortionofalocalelectricfieldinthevicinityoftheATPasecomplex.ThecharacteristicsofReactionIIsuggestthatundersomeconditionstheP515complexresponds similarly,tothesedistortedfields.However,modificationofeithertheATPaseorthe P515complexmightresultinanalteredandmutuallydifferentresponsiveness.Nevertheless,themanifestationofthesedynamicmembranephenomenapointstothefunctionalimportanceofamechanismthatishighlyaccessibletoinfluencesofpHandionmovements andprovidesapossibilityforregulationoftheATP-synthesizingcapacity.Inthiscontext itisofinteresttorecall (Chapter5)thatReactionIIisactivatedbyPhotosystem1and asmaybeconcludedfromdataofCrowtheretal. (1979)itsrateofappearanceissubstantiallyenhancedunderconditionsatwhichcyclicelectrontransportoccurs.Thiswould mean,ifourinterpretationiscorrect,thatthelight-activationoftheATPaseismainly, ifnotexclusively,dependenton (cyclic)electrontransportaroundPhotosystem1.Inagreementwiththishypothesis,electron-microscopystudiesofthylakoidmembranesrevealed thatthemargins,stromalamellaeandendmembranescontaintheATP-synthesizingcomplex andonlyPhotosystem1,whereasthepartitionregionsofthegranacontainbothPhotosystem1andPhotosystem2butnoATPasecomplex(Saneetal.,1970;McCartyetal., 1971). FurtherexperimentshavetobedesignedtoclarifytheverydetailsofthemembraneprocessesthatcontroltheefficiencyoftheenergytransductionreactionsthatleadtoATP productionandiondisplacements. 64 8 TheP515responseandthephoto-electricalresponseduringprolonged illumination 8.1 INTRODUCTION Thekineticsandmagnitudeoftheelectricalcomponentoftheelectrochemicalprotongradientincontinuous light,resulting fromcapacitivemembranecharging,followedbyH uptake andfielddissipatingionfluxes,arestillamatterofdiscussion.Fromchanges indelayed lightemissioninchloroplastmembranes,Barber (1972b)concluded thatthe steady-statepotentialinthelightis75-105mV.Fromthedistributionofpermeant ions, equilibratinginthelightaccordingtoaNernstpotentialequaltothesteady-statepotential,avalueofabout 10mVhasbeendeduced (Rottenbergetal., 1972).Thisvalue was foundtobesimilartotheoneobtainedbydirectmeasurementswithamicro-electrode inserted intoastackofthylakoids (Vredenbergetal., 1973). Thekineticsoftheabsorbancechangesat515nmincontinuous lighthavebeenproposedtoreflectchangesofthetransmembraneelectric field.Thekineticsandmagnitude oftheseopticalchangesincontinuous light,aswellasinflashlight (Chapter5)were foundtobedifferentfromthetransmembranepotentialasmeasuredbymicro-electrodes (Larkum&Bonner,1972;Vredenbergetal.,1973;Thorneetal., 1975;Krendelevaetal., 1977).Opticalmeasurements,however,havebeencriticizedbecauseoftheoccurrenceof scatteringchangesthatmaycontributetotheobservedP515changes (Thorneetal., 1975; Deameretal., 1967).Totesttheeffectofscattering changes,absorbanceandscattering changesinthelightwererecordedsimultaneouslyat515nmundervariousconditionsand anattemptwasmadetocorrecttheapparentabsorbancechangesforthescatteringchanges. Theresultsarepresentedinthischapterandcorrectedopticalchangesarecomparedwith thepotentialresponsesmeasuredbymicro-electrodes. 8.2 MATERIAL ChloroplastswerepreparedaccordingtothemethoddescribedinChapter2exceptforthe followingmodifications.AfterhomogenizationinaOmniMixerfor5-10s,thechloroplasts werecentrifugedat1650 gfor1min.Itshouldbementioned thatundertheseconditions thechloroplastenvelopemightbebrokenpriortoosmoticshocking.Themeasuringsystems, todetectabsorbancechanges,scatteringchangesandlight-dependentMg effluxaredescribedinChapter 2.Althoughthechloroplasts,usedinelectrodeandabsorbance (difference)measurements,areofdifferentorigin,theP515responsesofintactspinachchloroplastswerefoundtobequalitatively similartothoseinintactleavesofPeperomia and spinach. Peperomia chloroplastsweredifficulttoisolate,thereforespinach chloroplasts havebeenusedintheP515measurements. 65 8.3 P515ABSORBANCECHANGESANDCHANGESINLIGHTSCATTERING Thetimecoursesoftheelectricalpotentialinthelight,measuredin Peperomia chloroplastswithmicro-electrodes (Fig.39b),isobviouslydifferentfromthetimecourseof theabsorbancechangeat515nm (Fig.39a),measuredinisolatedspinachchloroplasts.The mostprominentdetailistheobservedhighsteady-stateabsorbancelevelreachedinthe latter.Inordertoinvestigatetowhatextentthishighabsorbancelevelwascausedby scatteringchanges,aphenomenonthatiswellestablishedinthylakoidpreparations(Itoh etal.,1963;Packeretal.,1965;Croftsetal.,1967),bothabsorbancechanges (AA)and 90-scatteringchanges (ASc)wererecordedsimultaneously (Fig.40a).90-Scattering changesofthylakoidmembranes,measuredat515nm,aremostlikelyamanifestationof selectivedispersionduetoachangeoftherefractiveindexneartheabsorptionpeak (Latimer&Rabinowitch,1956,1957),leadingtoscatteringmaximaatthelong-wavelength sidesoftheabsorptionmaxima.Iftherefractiveindexofthemediumisincreasedtowards thatofthethylakoidmembranes,byadditionof30*0bovineserumalbumen,thescattering maximumshiftstowardstheabsorbancemaximumandthis,asexpected,resultsinadecrease ofthelight-induced90-scatteringchanges (compareFigs40aand40b).Thus,incontinuous light,usingalowchloroplastdensity,asignificantpartoftheapparentabsorbance changesat515nmmaybecausedby90°-scattering. Ifscatteringchangesaresuppressed (Fig.40b)thekineticsoftheabsorbancechanges arequalitativelysimilartothepotentialresponseasprobedwithanelectrode (e.g.compareFig.39band40b). ® 10mV Fig. 39.Timecourseofthelight-inducedabsorbancechangesat515nmofbrokenspinach chloroplasts (a)andthetimecourseoftheelectricpotentialacrossthethylakoidsofa Peperomia metatlioa chloroplastmeasuredbymicro-electrodes (b).Upwardanddownwardpointingarrowsmarktheonsetandendoftheillumination,respectively. 66 AA1-10-3 ASd2510"2 i 1 0.5min i 0L5 1 min Fig.40.Simultaneous recordings ofthelight-induced 515tunabsorbance changes (upper part)and90°-scattering changes (lower part). Chloroplasts aresuspended in0.33mol/1 sorbitol.5mmol/1MgCl2> 5mmol/1 HEPES,pH6.5,intheabsence (a)andthepresenceof 30% bovine serumalbumen (b).Chlorophyll concentrationwasequivalent to25ug/ml chlorophyll (optical path 1cm).Measurements wereperformed inthedouble-beammodewitha dark reference.Theupward anddownward pointing arrowsmark thestart andtheendofan illumination period, respectively. 8.4 PROTON TRANSLOCATION Convincing argumentshavebeengivenbyothers (Deameretal., 1967;Thomeetal., 1975), favouringtheideathatthe90°-scattering changesreflect small alterationsoftheindex ofrefractionduetothylakoid loadingofprotonsandconformational changesinthethylakoidmembrane.Fig.41ashowstheeffectofpH,bothonthe515nmabsorbanceandonthe 90-scattering.AloweringofpHresultsinanincreaseofboth90-scatteringandabsorbance.Thelinearrelationbetweentheabsorbance increaseandthescattering increase indicates thattheformerisadirectreflectionofthelatterwhichinturnmaybeassociatedwithprotonationofthethylakoidmembrane.Thereisadeviationfrom linearityat highscattering changes (belowpH4.5).Thereasonforthisisunknownasyet.TheAA/ASc ratio (inthelinearregion)wasfoundtodependonthechloroplast density. Figs42aand42bshowthetimecoursesoflight-induced absorbanceandscattering changesinathylakoid suspensionisolatedinthepresenceofMgCl-andincubatedina lowsalt (0.5mmol/1MgCl,)assaymedium.TheAA/ASC ratiounder theseconditionswasdeterminedaccordingtothemethoddepictedinFig.41.Assumingthatthelight-dependent processes,andtheloweringofthepHinthedark,giverisetothesameAA/ASc ratio,a 67 2 K) 2 ASc-102 A A•10 0- AA-102 (ï) \. •3 25- jT (b) 3- V AS \ \. S. 2/ / \ * / ; AA 50- -1 \ \ / 1- / / / l_^ 6.0 I 5.5 • • 5.0 4.5 4.0pH 25 Fig.41.Simultaneousrecordingsoftheabsorbance (closedcircles)and90-scattering changes (closedstars)measuredat515 ran, plottedasafunctionofpH (a).Anupward inflectionoftheabsorbancecurveandadownwardinflectionofthescatteringcurveindicateanabsorbanceincreaseandascatteringincrease,respectively,b)PlotofAAasa functionofASc,derivedfromtherecordinginwhichthechloroplastconcentrationwas equivalentto130ug/mlchlorophyll (opticalpath1 cm). correctionfortheapparentabsorbanceincreaseinthelightcanbemadebysubtracting thelight-inducedscatteringchange,multipliedbytheestimatedAA/AScratio(Fig. 42c). Theresultantcorrectedkineticpattern (Fig.42d)showsatimecourseoftheabsorbance changemuchmore,ifnotcompletely,compatiblewiththetimecourseoftheelectrode-detectedelectricpotential (Fig. 39b). Differentandcomplicatedresultswereobtainedinchloroplaststhatwereisolated andbrokeninion-freemedium.Thesechloroplastsshowedalight-inducedscatteringdecreasethatappearedtobemostpronouncedatpH5.9-6.3andtobenegligibleatpH8 (Fig.43).InthelattersituationthekineticpatternoftheP51Sresponsewasqualitativelysimilartotheresponsemeasuredinthepresenceofions,butcorrectedforscatteringchanges (cf.Fig.42d).ThecorrectionmethodcouldnotbeappliedforthescatteringdecreaseatlowpH.Inthiscase,thecontributionofanincreaseofforwardscattering,isprobablyappreciable,duetoshrinkageoftheunstackedthylakoids.Therefore, adifferentanalysisandcorrectionprocedureshouldbeappliedinthiscase. 8.5 EFFECTOFMg + +ONLIGHT-INDUCED90°-SCATTERINGCHANGES Mg extrusioninion-freepreparedbrokenchloroplastsinthelightwasfoundtobe60- 80nmol/1Mg permgchlorophyllin20s(Fig.44).Iassumethat,inthelight,Mg is notreleasedfrombindingsitesattheouterthylakoidsurfacebutitisextrudedeither fromthethylakoidinteriorvolumeorfromtheinnerthylakoidsurface,dissipatingthe electrochemicalpotentialgradient.Withachloroplastvolumeof26ul/mgchlorophyll 68 50 ASc-10 2 AA-10' © y 8-ASc-IO2 AAM O 3 30s 30s Fig.42.Simultaneous recordingsof light-induced absorbance changes at 515nm (a)and scattering changes (b)ina suspension ofbroken chloroplasts containing 0.33 mol/1 sorbitol, 2mmol/1MES,pH 6.3, and inaddition 0.5mmol/1MgCl2.Therelationbetween the absorbance and scattering increase (c)isdetermined according to themethod depicted in Fig.41.The resolved light-induced absorbance change isdepicted ind. Chloroplast concentrationwas equivalent to 25ug/mlchlorophyll (opticalpath 1cm).Furtherdetails are inthe text. (Heldtetal., 1973),extrusionfromthethylakoidinteriorvolumeduringillumination wouldgiveacalculateddecreaseinMg concentrationof2-5nmol/1.However,only0.24 mmol/1wereavailableatthestartoftheexperimentindicatingthatthemajorpartofMg ismembrane-bound.ThereleaseofboundMg inthelightmayaccountforthescattering decreasedepictedinFig.43.Theamountoflight-dependentMg effluxacrossthethylakoidmembranehasbeenreportedtobehighatlowpHandtobenegligibleatpH8.6(Ben-Hayim,1978;Portis&Heldt,1976).ThepHdependenceofthe90°-scatteringdecreaseis fullycompatiblewiththesefindings(Fig. 43). Fig. 45showsthekineticsoflight-inducedabsorbanceand90°-scatteringchangesat pH6.3ineithertheabsenceorpresenceof5mmol/1MgCl,.ThepresenceofthisrelativelyhighMgCl 2concentrationapparentlycreatesaconditionthatfavoursthelight-stimulated90-scatteringincrease (compareFigs.45aand45b).Thisstronglysuggeststhat light-drivenMg movementandconsequentchangesinMg bindingatthethylakoidsurface cause90-scatteringchangessimilartoH-induced90°-scatteringchanges.UndercircumstancesthatsufficientMg ispresentinthediffusedoublelayernexttotheinner thylakoidsurfacetomeetthedemandforcounterions,thecompetitionbetweenthetightly- 69 0.5min 0.5min 0.5min Fig. 43.Simultaneousrecordingsoflight-induced 515iraiabsorbancechanges(upperpart) and90-scatteringchanges (lowerpart)atdifferentpH:6(a);7(b);8(c).Chloroplasts wereisolatedandsuspendedin0.33mol/1sorbitoland2mmol/1HEPES.Chloroplastconcentrationwasequivalentto15yg/mlchlorophyll (opticalpath1 cm). 20nmol 30s Fig. 44.Light-inducedMg extrusionfromchloroplastmembranesincubated inthepressenceof0.24mmol/1MgCl2measuredwithaMg-sensitiveelectrode.Thebarcorresponds with20nmolMg + + permgchlorophyll.Arrowsmarkthestartandendofillumination. boundMg andH maystopandconsequentlythescatteringdecrease (Fig.43a)willbein- hibited.Thereasonfortherelativelyhighlight-induced90-scatteringincreaseinthe presenceof5mmol/1MgCl2 (Fig.45b)ascomparedtotheoneinthepresenceof0.5mmol/1 MgCl2 (Fig.42b)isnotclearasyet.Recentstudies (Krause,1974;Ben-Hayim,1978), however,supporttheideathatthereleasedMg isnotdilutedinthemediumbutremains inthediffusedoublelayernexttothemembrane.ThismayleadtoahighlocalconcentrationofMg Mg 70 andanassociatedshiftoftheequilibriumtowardscomplexformationof andfixednegativechargesattheoutsidesurfaceofthethylakoidmembrane.Subse- © © AAKMÖ3 ASC 0.5min 0.5min Fig.45.Simultaneous recordings of 515umabsorbance changes (upperpart)and 90°-scattering changes (lower part)inthelight.Chloroplastswereprepared and incubated, either intheabsence (a)or inthepresence (b)of 5mmol/1MgCl 2 - Thechloroplast concentration was equivalent to27pg/mlchlorophyll (opticalpath 1cm). quentdehydrationofmembranalcomponentscouldthenleadtoanincreaseof90°-scattering. OurresultssuggestthatthiseffectoccursatratherhighconcentrationsoffreeMg C>0.5mmol/1),whichisseeminglyconflictingwithadissociationconstantof51pmol/1 forcomplexformationofMg andnegativechargesonthethylakoidsurfaceashasbeen proposedbyProchaska&Gross (1975).However,itisdifficulttopredicttheactualion concentrationsinthediffusedoublelayer,whichareknowntodifferfromthosepresent inthebulkphase.Moreover,thenetincreaseoftheoutsidesurfacechargedensity(Section7.3)uponilluminationwillshifttheequilibriumtowardscomplexformation. Unfortunately,wewerenotabletocorrectforMg -inducedscatteringchangesinthe samewayaswasdoneforH-induced90°-scatteringchanges.Themainreasonforthisisthe effectofMg onotherprocessesthenthoseundersurveyhere,whichinadditionto90scatteringgiverisetochangesinforwardscattering.Furthermoretheeffectofaddition ofMg on90°-scatteringand515nmabsorbancechangeswasfoundtobepH-dependent(Fig. 46).BecausethepHofthethylakoidinteriorisknowntodecreaseuponenergization,associatedMg movementsandbindingprocesseswillcause90°-scatteringchangesthatare dependentontheprevailingpHconditions.ThisinfactcreatesarathercomplicatedsituationthatcannotbeanalyzedbythemethoddepictedinFig.42. 71 AA 60s ASc610" 2 60s ~"\w Fig. 46.Effectofadditionof 10mmol/1MgCl2 (indicatedbythearrows)onthe515iunabsorbance (a)andthe90-scattering (b)ofachloroplastsuspensionatpH7.6 (left-hand part)andpH4.2 (right-hand part),respectively.Chloroplastconcentrationwasequivalent to80ug/mlchlorophyll.Anupwardinflectionmeansanincreaseinabsorbanceandscattering,respectively. 8.6 DISCUSSION Theresultspresentedinthischapterindicatethatthe515nmabsorbancechangesincontinuouslight,conclusivelywiththeinterpretationofothers (Thomeetal.,1975;Deamer etal., 1967),maybeattributedatleastpartly,tolight-induced90°-scatteringchanges. Inthepast,severalauthorsdidnotdiscerntheinfluenceofscatteringphenomenaonthe 515nmabsorbanceinthelightandconsequentlyconsideredthekineticdataofthese changesasadirectreflectionofelectrogenicprocessesmonitoredbytheP515pigment system (Larkum&Bonner,1972;Larkum&Boardman,1974;Krendelevaetal.,1977;Satoh& Katoh,1977,1979;Yamamoto&Nishimura,1977).Itisnotmyintentiontodiscusstheir resultsindetailhere.However,'asmaybeconcludedfromtheoverallresponsesofthe515 nmabsorbancechangessuchaninterpretationwillleadtoanoverestimationofthemembranepotential (c.f.Figs 39,42and45).Theobserved90°-scatteringchangesareproposedtobetheresultofalterationsinrefractiveindexofthethylakoidmembranesdue tobothH-andMg -bindingeffectsonthehydrationofthethylakoidmembranes,andconformationalchangesinthemembranecausedbyMg -binding. Fig. 47presentsapossiblemechanismforlight-induced90-scatteringchangesinthe absence (a)andpresence (b)ofMgCl,.IntheabsenceofMg inthebulkphase (Fig. 47a), ++ stillasmallamountofMg isretainedatspecialbindingsites.Light-drivenprotonaccumulationinthethylakoidinteriorisproposedtoresultinadissociationandsubsequent extrusionofboundMg inordertoreachasteady-statecondition.Theobservedlight-dependentMg extrusionfromthylakoidmembranesthatwerepreparedintheabsenceofMg (Fig. 44),supportsthismechanism.Inaddition,partoftheprotonspumpedintothethy72 O \ » & # idböö^ o o o o QQOQQ' » 0 * Mfi* ß Q&WS&2'» Q<JX»q$ ••** Fig. 47.Schematicvisualisationoflight-inducedchangesofbindingpropertiesofH (closedovalsymbols)andMg (closedcircles)inchloroplastmembranes,intheabsence (A)andpresence (B)ofMg inthebulkphase.Negativechargesatthemembraneareindicatedbysmalldashes.Dark-andlight-conditionsarepresented intheleft-andright-handpartofthefigure,respectively. lakoidbindattheinnersideofthemembrane.Theresultanteffectapparentlyisadecreaseof90°-scatteringmainlycausedbyconformationalchangesassociatedwithMg dissociation.InthepresenceofrelativelyhighMg concentration(Fig.47b)theamountof ++ freeMg intheboundarylayerisproposedtobesufficientforcounteriontransportand thereforenoboundMg + +willbeexchangedtobalanceinwardprotonpumping.Protonationof thethylakoidinteriorwillleadtodehydration,increaseinhydrophobicityandanincrease in90°-scattering.UndertheseconditionstheextrudedMg maybindattheoutersurface (Ben-Hayim,1978),drivenbytheincreasednegativechargedensityattheoutersurface 73 (Section7.3).Thisprocessmayleadtoanadditionalincreaseof90-scattering.Itis assumedthatbindingofMg attheoutersurfaceisnegligiblysmallataMg concentra- tionequalorlessthan0.5mmol/1inthebulkphase. Thecontributionofthe90-scatteringchangestothe515nmabsorbancechangeis clearlydemonstratedinFigs40and45.However,aneliminationofallartifactsinsuch acomplicatedsystemasathylakoidmembranesuspensioncannotbeattainedduetothe heterogenityoftheabsorbingcompounds,andthegreatnumberofprocessesthattakeplace uponillumination,probablyaffectingtheP515absorbancechanges.Multiplescatteringand consequentlyalterationsoftheeffectivepathlengthofthemeasuringlightcausedbymembraneparticlescannotbeexcluded,neitherthedistortionofabsorbancechangesbymutual shadingofpigmentsassociatedwithanalteredionicenvironmentofthemembraneduring illumination (Duysens,1956),seealsoChapter4.Osmoticswellingorshrinkageislikely tooccurinenergizedion-freepreparedchloroplasts (Fig.43)butmaybesmallinchloroplastssuspendedinthepresenceofsaltswithapermeableanion(Deamer&Packer,1969; Thorne,1975). ThisleadsmetotheconclusionthattheP515absorbancechangeinchloroplastscannotbetakenasameasureforthetransmembranepotentialincontinuouslight.Aquantitativecorrectionforotherprocessesthataffecttherealelectrochromicabsorbance changecanonlybemadeunderspecialconditions. 74 Summary Themainsubjectofthispublicationisacomparativestudyofelectricalphenomenaand associatedprocesses inchloroplastsmeasuredbymeansofspectroscopicandelectrophysiologicaltechniques.Theprocessesundersurveyaredirectlylinkedwiththeprimary photo-acts andtheassociatedconversionoflightenergyintochemicalenergy. A generalintroductiontothesubjectoftheenergy-conserving systeminphotosyntheticmembranes isgiveninChapter1.Themethodsandcomplementary techniquesusedto studylight-dependent reactionsinchloroplastsaredescribed inChapter2.Aspectroscopicmethod tocharacterizeelectricphenomenainchloroplast (thylakoid)membranes,is basedonanabsorbancebandshiftofanintrinsicpigmentcomplex (P515)duetolight-inducedchangesinthemembraneelectricfield.Flash-induced absorbancedifference spectra areshowntobedifferent,dependentonthetypeofchloroplastsused (Chapter 3). The differencespectrum,characteristic forthebandshiftofintactchloroplasts inthe460S40nmwavelengthregion,couldnot,incontrasttotheoneofion-freepreparedbroken chloroplasts,beexplainedbyasinglebandshift.Computersimulationofacombinedred bandshiftofasinglegaussianbandat497nmandabluebandshiftofasinglegaussian bandat495.5nm,showedagoodsimilaritywiththeobserveddifferencespectruminintact chloroplasts.Thisledtotheconclusionthatthefield-indicatingpigmentsinintact chloroplasts arenothomogeneously distributedinthemembranecore.Alternatively,the bluebandshiftmightbecausedbyanenergy-dependent exposureofpartofthepigments toanoppositelyorientatedelectric field. AmethodforthevoltagecalibrationoftheP515absorbancechangescausedbysingleturnoversaturating lightflashesisdiscussed inChapter4.Absorbancechanges,caused byaddingKCltoasuspensionofbrokenchloroplasts inthepresenceofvalinomycinand a lowconcentrationofMgCl,,weremeasured inthewavelengthregion460-540nm.ThemagnitudeoftheKCl-inducedabsorbancechangeswasshowntobeproportional tothelogarithm oftheKClconcentration.Thespectrumoftheseabsorbancechangeswasfoundtobeidenticalwiththedifferencespectrumofthelight-inducedabsorbancechanges,whichwas attributed totheelectrochromic absorbancebandshiftofP515.Thiswasinterpreted as evidencethatundertheseconditionsabsorbancechangesofPS15respondexclusively toa membranediffusionpotentialinducedbysaltaddition.Theresultsindicate thattheelectricpotentialacross thethylakoidmembrane,generatedbyasingle-turnover lightflash, isintherangebetween 15and35mV. Analysesofthekineticsofflash-inducedabsorbancechangesofP515andofthetransmembranepotential,asmeasuredbyamicro-electrode insertedinasinglechloroplastof Peperomia metalliaa (Chapter 5), suggestedevidencethattheP515absorbancechangesare thecompositeresultofatleasttwoprocesses:ReactionIandReactionII.Absorbance changes,accompanyingReactionI,areproposedtoberelatedwithachangeofthetrans75 membranepotential.Theyshowedakineticpattern,similartothephoto-electricresponse measuredwithmicro-electrodes.BothPhotosystem1andPhotosystem2werefoundtocontributeequallytotheflash-inducedabsorbancechangeofP515associatedwithReactionI. AbsorbancechangesaccompanyingReactionIIareattributedtochangesininnermembrane electricfieldsduetoalterationsintheconformationofmembraneconstituents.Experimentscarriedoutbothwithbrokenandintactchloroplastsshowedthattheinductionof ReactionIIisexclusivelydependentonPhotosystem1activity.Thedatasuggestevidence thattheoxidation-reductionstateofcytochromeforplastocyaninisadeterminantfactor fortheinductionoftheconformationalchangesinthemembrane.ThesechangesaresuggestedtoresultinanalteredexposureofnegativefixedchargestotheP515pigmentcomplex. SomeelectricalcharacteristicsofthethylakoidmembraneareconsideredinChapter 6.Thecurrent-voltagerelationofthethylakoidmembranewasfoundtobenon-linear.It isconcludedthattheresistanceoftheinnermembranesystemisabout20 Mil,whichincreasesbyadepolarizingcurrentinjectiontoavalueof60MJianddecreasestoavalue of2Mßbyahyperpolarizingcurrentinjection. Thehalf-lifetimeofthedecayofReactionIafterasingleflashwastakenasa measureforthepassivemembraneconductance.Itisconcludedthatprotonshardlyattributetothemembraneconductance.AsmallaccelerationofReactionIafterashortpreilluminationperiodcouldnotbeattributedtoadirecteffectofanincreasedproton conductance,associatedwithprotonaccumulationinthethylakoidvolume.Theselective conductanceofthethylakoidmembranetoavarietyofionswasfoundtobepH-dependent, exeptforK,whichwasfoundtoberatherimpermeantinthepHrangefrom8to6.The conductivityofMg appearedtobeofsignificantimportanceatpH7.Allanionstested, werefoundtocrossthethylakoidmembraneatincreasingrates,whenthepHwaslowered from8to6.Itisarguedthatthiseffectisduetothereductionofthefixednegative-chargedensity,favouringahighanionconcentrationinthediffusedouble-layeradjacent tothemembrane. Chapter7dealswithacloserstudyofprocessesthataffectReactionII.Theextent ofReactionIIwasfoundtobehighlysensitivetophysicalandchemicaltreatmentsof thechloroplastsandtotheionicenvironmentofthethylakoidmembrane.Light-induced exposureofnegativechargesatthethylakoidoutersurface,detectedbyparticleelectrophoresis,showedasimilarsensitivitytovariousphysicalandchemicaltreatmentsas ReactionII.Thisobservationledtotheconclusionthatbothphenomenamightbeareflectionofthesameprocess.TherisetimeofReactionIIabsorbancechangesofP515coincideswiththeactivationtimefortheonsetofATPsynthesis,•whichledtoasearchfor apossibleparticipationofCF.,structuralchangesintheprocessthatunderliesReaction II. ItwasfoundindeedthatReactionIIisinhibitedbytreatmentsthatmodifythestructureandoperationoftheATP-synthesizingcomplexsuchasextractionofCF..,additionof adeninenucleotidesandDCCDbindingonCF„.Itissuggested,however,thattheconformationalchanges,asreflectedbyReactionII,areprobablynotthedrivingforceforphotophosphorylationbuttheyrathercreateaconditioninwhichphotophosphorylationcan proceedefficiently.However,furtheracquisitionofinsightinthemechanismbywhich structuralchangesinthemembranemightbecorrelatedwithconformationalchangesofthe 76 couplingfactorwillneedmoredetailed experimentation. Resultsofacomparitiveexaminationofthekineticsofthetransmembranepotential changeandofthePS15ahsorbancechangeduringprolongedilluminationaregiveninChapter8.ItisshownthatpartofthePS15absorbancechangesincontinuous lightaredueto simultaneously occurringscatteringchanges.Itissuggested thatH accumulationandsubsequentH bindingontheinsideofthethylakoidmembranecausethesescatteringchanges. Aproportionality factor,relatingthescatteringchangetoanassociatedabsorbancechange, wasobtainedbyacidtitrationofthesechangesinachloroplast suspension.Thisfactor wastakentocorrectlight-inducedPS15changesforthesimultaneously recorded scattering changes.Itisshownthatundercertainconditions,theresultanttimecourseofPS15is qualitatively similartothetimecourseoftheelectricalpotential,measuredwithmicroelectrodes.Thelimitationsofthemethodarediscussed,inparticularinviewoftheoccurrenceofconformationalchangeswhicharecausedbyarathercomplicatedmechanismof Mg -H exchange,andofMg bindingontheoutsideofthethylakoidsurfaceafterlightinducedextrusionfromthethylakoidinterior. 77 Samenvatting Dezepublikatiegeefthetresultaatvaneenvergelijkendonderzoekinchloroplastennaar elektrischeverschijnselenendaarmeegeassocieerdeprocessen,gemetenmetspectroscopischeenelektrofysiologischetechnieken.Deonderzochteprocessenzijndirektverbonden metdeomzettingvanlichtenergieinchemischeenergie. Hoofdstuk1geefteenalgemeneinleidingoverhetenergieconserverendesysteem.De methodesdiebijhetonderzoeknaarliehtafhankelijkereactiesinchloroplastengebruikt zijn,alsmedeverscheideneaanvullendetechnieken,wordenbeschreveninhoofdstuk2.Een spectroscopischemethodeomelektrischeverschijnseleninthylakoïdmembranentekarakteriserenisgebaseerdopeenabsorptiebandverschuivingvaneenintrinsiekpigmentcomplex (P515),tengevolgevandoorlichtgeïnduceerdeveranderingenvanhetelektrischeveld.Verschilspectravanflits-geïnduceerdeabsorptieveranderingenblijkenafhankelijktezijnvan deintactheidvandechloroplasten (hoofdstuk 3). Integenstellingtothetverschilspectrum,waargenomeningebrokenchloroplasteninhetgolflengtegebiedtussen460en540nm, kanhetverschilspectruminintactechloroplastenindatgebiednietwordenverklaardmet deverschuivingvanéénenkelabsorptieband.Computersimulatievaneengecombineerderoodverschuivingvaneenbandbij497nmeneenverschuivingnaarblauwvaneenbandbij495,5 nm,geeftweleenverschilspectrumovereenstemmendmetdatvanintactechloroplasten.Dit leidttotdeconclusiedatdepigmenten,diedegroottevanhetveldaangeven,inintacte chloroplastenniethomogeenoverdemembraanverdeeldzijn.Anderzijdszoudeblauwverschuivingveroorzaaktkunnenzijndoorenergie-afhankelijkeblootstellingvaneendeel vandepigmentenaaneentegenovergesteldgeoriënteerdelektrischveld. EenkalibratievandeP515-absorptieveranderingen,alsafspiegelingvandekinetiek vandeelektrischetransmembraanpotentiaal,isbeschreveninhoofdstuk4.AbsorptieveranderingenveroorzaaktdoorKCl-toevoegingaaneensuspensievangebrokenchloroplasten,in aanwezigheidvanvalinomycineeneenlageMgCl~concentratie,werdengemeteninhetgolflengtegebiedtussen460en540nm.AangetoondwordtdatdedoorKClgeïnduceerdeabsorptieveranderingenevenredigzijnmetdelogaritmevandeKCl-gradiëntoverdemembraan.Het verschilspectrumvandezeabsorptieveranderingenisidentiekaanhetverschilspectrumvan dedoorlichtgeïnduceerdeabsorptieveranderingen.Ditwordtgeïnterpreteerdalseenbewijs dat,onderdieomstandigheden,deoptredendeP515-absorptieveranderingenhetgevolgzijn vaneendiffusiepotentiaaloverdemembraan.Deresultatentonenaandatdooreenenkele lichtflitseenpotentiaaloverhetmembraangegenereerdwordt,dieligttussen15and35mV. Analysesvandekinetiekvandeflits-geïnduceerdeP515-absorptieveranderingenende kinetiekvandetransmembraanpotentiaal,gemetenmeteenmicro-elektrodeinéénenkele chloroplastvan Pepevomia metalliea (hoofdstuk 5),tonenaandatdeP515-absorptieveran- deringhetsamengestelderesultaatisvantenminstetweeprocessen:reactieIenreactie IIgenaamd.AbsorptieveranderingengerelateerdaanreactieI,zijnhetgevolgvande 78 transmembraanpotentiaal enhebbeneenvergelijkbaarkinetischpatroonalsdefoto-elektrischeresponsgemetenmetmicro-elektrodes.Fotosysteem 1en 2dragenindezelfdemate bij totdeinitiële,met reactie Igeassocieerde,absorptieverandering.DeabsorptieveranderingendieaanreactieIIgerelateerd zijnwordentoegeschrevenaanveranderingenvan lokaleelektrischeveldenindemembraan tengevolgevanconformatieveranderingenvan bepaaldemembraanstructuren.Experimentenmet zowelgebrokenalsintactechloroplastentonenaan,datreactieIIuitsluitendafhankelijkisvandeaktiviteitvanFotosysteem 1. Demate,waarinplastocyanineofcytochroomfgeoxydeerd zijn,isbepalendvoordeaanzet vanconformatieveranderingen indemembraaneneenveranderdeblootstellingvanhetPS15pigmentcomplexaangeladengroepen. Hoofdstuk6handeltoverenkeleelektrischeeigenschappenvande thylakoïdmembraan. Derelatietussendegroottevaneenkunstmatig-geïnduceerdestroom IendegemetenspanningV isniet lineair.DaaruitkanwordengeconcludeerddatdeweerstandRvandethylakoïdmembraan afhankelijkisvandegrootteenderichtingvandestroom I.InafwezigheidvaneenstroomI,isRongeveer 20Mn.Eendepolarizerendestroomveroorzaakteen stijgingvanRtoteenmaximumwaardevan60MR eneenhyperpolarizerendestroomveroorzaakteendalingvanRtoteenwaardevan 2Mn. Dehalfwaardetijdvanhetvervalvanreactie Inaeenflitswordtalsmaat genomen voordepassievemembraangeleiding.Hetblijktdatprotonennauwelijksbijdragentotdeze geleiding.Dekleineversnellingvanreactie Inavoorbelichtingkannietwordenverklaard met eenverhoogdeprotongeleiding tengevolgevanprotonopname indethylakoïden.DeselektievegeleidingvandethylakoïdmembraanvoorandereionenispHafhankelijk,behalvevoor K ,dattamelijkslechtdemembraanpasseert inhettrajecttussenpH 8enpH6.DepermeabiliteitvoorMg daarentegenishoogmeteenmaximumbijpH 7.Depermeatiesnelheid vanalleanionen diewerdengetest,neemt toebijeenpH-dalingvan8naar6.Ditis waarschijnlijkhetgevolgvaneenverhoogdeanionconcentratie indeelektrischedubbellaaggrenzendaanhetmembraanoppervlak,tengevolgevanneutralisatievandenegatiefgeladenmembraangroependoorprotonen. Hoofdstuk7behandeltdebasisverschijnselendietengrondslag liggenaanhetoptredenvanreactieII.Demate,waarinreactieIIoptreedtblijkt zeergevoeligte zijnvoor fysisch-chemischingrijpenindestructuurvande thylakoïdmembraan envoordeionensamenstellingvanhetsuspensiemedium.ToevoegingvanMg enH heeft eensterkremmend effectopreactie II.Vergrotingvandenegatieveoppervlakteladingvande thylakoïd (buitenzijde)inhetlicht,zoalsdiewordtgemetenineenelektroforese-experiment,heefteenzelfdegevoeligheidvoorverscheidene fysisch-chemischebehandelingenalsreactie II.Daarnaast isdevergrotingvandenegatieveoppervlaktelading,evenalsreactie II,alleenafhankelijkvandeaktiviteitvanFotosysteem 1.Dezeobservaties leidentotdeconclusie, datbeideverschijnseleneenafspiegeling zijnvanhetzelfdeproces.Destijgtijdvanabsorptieveranderingen tengevolgevanreactie II,isvergelijkbaarmetdetijd,diewordt gemetenalvorensATP-syntheseeenaanvangneemt.Derhalveisgezochtnaareenmogelijke betrokkenheidvanreactieIIbijconformatieveranderingeninhetATP-synthetiserendeenzymcomplex. Overeenkomstigdezesuggestieblijkt reactie IIgeremdtewordendoorstructurele veranderingenvanditenzym,veroorzaaktdoor:extractievanCF..,toevoegingvanadenine79 nucleotidenenDCCD-bindingaanCF„;maareendirectbewijsvooreencausaalverband tussen degroottevanreactieIIenhetATP-syntheseprocesisnietgevonden(hoofdstuk7). OpbasisvandekinetiekvanreactieIIwordtgeconcludeerddatdeprocessen dieaan reactieIItengrondslagliggen,geendrijvendekrachtvormenvoordefotofosforylering, maardatzijmogelijkerwijsweleenvoorwaardezijnvooreenefficiëntefotofosforyleringsactiviteit.Erisechtermeeronderzoekvereistominzichtteverkrijgeninhetmechanisme, waardoorstructureleveranderingenindemembraan (reactieII)zijngekoppeldaanconformatieveranderingenvanhetATP-synthetiserendenzym. DeresultatenvaneenvergelijkendonderzoeknaardekinetiekvandetransmembraanpotentiaalendeP515-absorptieveranderingentijdenslangerebelichtingsperiodenzijnvervatinhoofdstuk8.EendeelvandeP515-absorptieveranderingenincontinuebelichting wordtveroorzaaktdoorgelijktijdigeveranderingeninstrooiing.Verondersteldwordtdat dezestrooiingsveranderingenhetgevolgzijnvanprotonopnameenprotonbindingaandebinnenzijdevandethylakoïdmembraan.Deevenredigheidsfactortussenstrooiings-enabsorptieveranderingenwordtverkregendoorzuurtitratievanbeideveranderingen.Destrooiingsveranderingenwordengemetenondereenhoekvan90 methetmeetlicht.Dewaargenomenverhoudingtussenabsorptie-enstrooiingsveranderingwordtgebruiktomdoorlicht-geïnduceerdeP51S-absorptieveranderingentecorrigerenvoorgelijktijdigoptredendestrooiingsveranderingen.HetresulterendetijdsverloopvandeP515-absorptieveranderingblijktdan, onderbepaaldeomstandigheden,vergelijkbaartezijnmetdetransmembraanpotentiaal,gemetenmetmicro-elektrodes.Demethodeheeftechtereengeringetoepasbaarheid.De strooiingsveranderingen,tengevolgevanprotonbindingaandebinnenzijdevandethylakoïdmembraanlijkennamelijkvergezeldtegaanvannoganderestructureleveranderingen,die wordenveroorzaaktdooreenuitwisselingvanMg tegenprotonen.Demate,waarinditin strooiingsveranderingentotuitdrukkingkomt,lijktafhankelijkvanderelatievehoeveelheidMg dieaanwezigisindeoplossingendeelektrischedubbellaag,endehoeveelheid Mg ,diegebondenisaangefixeerdeladingenophetmembraan. 80 References Amesz, J. &B.G.DeGrooth, 1976.Biochim.Biophys.Acta 440:301-312. Anderson,J.M., 1975.Biochim. Biophys.Acta 416:191-235. Arnon,D.I.,1951.Nature 167:1008-1010. Arnon,D.I.,M.B.Allen &F.R.Whatley, 1954.Nature 174:394-396. Arnon,D.I.&R.K.Chain, 1975.Proc.Nat.Acad. Sei.U.S.72:4961-4965. Atkins,G.L., 1969.In:Multicompartment Models forBiological Systems.Methuen,London, p. 98. Ausländer,W. &W.Junge, 1974.Biochim.Biophys.Acta 357:285-298. Aveyard, R. &D.A.Haydon, 1973.In:An Introduction to thePrinciples of SurfaceChemistry.University Press,Cambridge, Chapter 2. Avron,M., 1963.Biochim. Biophys.Acta 77:699-702. Avron,M., 1977.Ann.Rev.Biochem.46:143-155. Avron,M., 1978.FEBS Lett.96:225-232. Bachofen,R.4 I.Specht-Jurgensen, 1967.Z.Naturforsch. 22b:1051-1054. Bakker,E.P., J.C.Arents,J.P.M.Hoebe &H.Terada, 1975.Biochim.Biophys.Acta387: 491-506. Baltscheffsky,M.,E.Quagliariello,S.Papa &C.S.Rossi, 1971.In:Energy Transduction inRespiration and Photosynthesis.AdriaticaEditrice,Bari-,pp.639-645. Barber,J., 1972a.Biochim. Biophys.Acta 275:105-116. Barber,J., 1972b.FEBSLett. 20:251-254. Barber,J., 1976.In:J.Barber (ed),The Intact Chloroplast.Elsevier,Amsterdam, pp. 89-134. Barber,J. &J.Mills, 3976.FEBS Lett.68:288-292. Barber,J., J.Mills &A.Love, 1977.FEBSLett. 74:174-181. Bashford, L.C.,B.Chance &R.C.Prince, 1978.Biochim. Biophys.Acta 545:46-57. Bendall,D.S.,H.E.Davenport &R.Hill, 1971.Methods Enzymol. 23:327-344. Berg, S.,S.Dodge,D.W.Krogmann&R.A. Dilley, 1974.Plant Physiol.53:619-627. Ben-Hayim, G., 1978.Eur.J.Biochem. 83:99-104. Boeck,M. &H.T.Witt, 1972.In:G.Forti,M.Avron &A.Melandri (eds), Proc. 2nd Intern. Congr.Photosynthesis,Vol.II.Dr.Junk,TheHague,pp.903-911. Boheim.G. &R.Benz, 1978.Biochim. Biophys.Acta 507:262-270. Bose, S.&G.E.Hoch, 1978.Z.Naturforsch. 33c:105-107. Bouges-Bocquet,B., 1977.FEBSLett. 85:340-342. Boyer,P.D., 1965.In:T.E.Kinge,H.S.Mason &M.Morrison (eds), Oxidases and Related Redox Systems.Wiley,NewYork,pp.994-1000. Boyer,P.D., 1974.In:L.Ernster,R.W. Estabrook &E.C.Slater (eds), Elsevier,Amsterdam, pp.289-301. Bruinsma,J., 1961.Biochim.Biophys.Acta 52:576-578. Bulychev,A.A.,V.K.Andrianov, G.A. Kurella &F.F.Litvin, 1972.Nature 236:175-176. Bulychev,A.A.,V.K.Andrianov, G.A.Kurella &F.F.Litvin, 1973.In:Biophysics of Membranes.Proceedings of theSymposium onMolecularMechanisms ofMembrane Permeability, pp. 104-113. Bulychev,A.A.,V.K.Andrianov, G.A. Kurella &F.F.Litvin, 1976.Biochim. Biophys.Acta 420: 336-351. Bulychev,A.A.&W.J.Vredenberg, 1976a.Biochim. Biophys.Acta 423:548-556. Bulychev,A.A. &W.J.Vredenberg, 1976b.Biochim.Biophys.Acta 449:48-58. Butler,W.L.&M.Kitajima, 1975.Biochim.Biophys.Acta 376:116-125. Chance,B.&Williams,G.R., 1956.Advan.Enzymol. 17:65-134. Cheniae,G.M. &I.F.Martin, 1978.Biochim.Biophys.Acta 502:321-344. Chow,W.S.&A.B.Hope, 1976.Austr.J. Plant Physiol.3:141-152. Chow,W.S.&A.B.Hope, 1977.Austr.J. Plant Physiol.4:647-665. Coombs,J. &A.D.Greenwood, 1976.In:J. Barber (ed),The Intact Chloroplast. Elsevier, Amsterdam -NewYork-Oxford,pp.8-10. Coster,H.G.L., 1965.Biophys.J. 5:669-685. Conjeaud, H.,M.Michel-Villaz,A.Vermeglio &P.Mathis,1976.FEBSLett.7J: 138-141. 81 Crofts,A.R.,D.W.Deamer&L.Packer,1967.Biochim.Biophys.Acta 131:97-118. Crofts,A.R.,J.B.Jackson,E.H.Evans&R.J.Cogdell, 1972.In:G.Forti,M.Avron & A.Melandri (eds),Proc.2ndInt.Congr.Photosynthesis.Dr.Junk,TheHague,Vol.II, pp.873-902. Crowther,D.,J.D.Mills &G.Hind,1979.FEBSLett.98:386-390. Deamer,D.W.,A.R.Crofts &L.Packer, 1967.Biochim.Biophys.Acta 131:81-96. Deamer,D.W. &L.Packer, 1969.Biochim.Biophys.Acta 172:539-547. Davies,J.T. &E.K.Rideal,1963.In:Interfacial Phenomena,2nded.,AcademicPress, NewYork,Chapter2. DeGrooth,B.G.&J.Amesz,1977.Biochim.Biophys.Acta462:247-258. DelValleTascon,S.,R.vanGrondelle &L.N.M.Duysens,1978.Biochim.Biophys.Acta 504:26-39. Dilley,R.A.&A.Rothstein, 1967.Biochim.Biophys.Acta 135:427-443. Dilley,R.A. &L.P.Vernon, 1965.Arch.Biochem.Biophys. Ill:365-375. Duysens,L.N.M.,1954.Science 120:353-354. Duysens,L.N.M.,1956.Biochim.Biophys.Acta 19:1-12. Duysens,L.N.M.&J.Amesz,1962.Biochim.Biophys.Acta 64:243-260. Duysens,L.N.M.,J.Amesz&B.M.Kamp,1961.Nature 190:510-511. Emrich,H.M.,W.Junge&H.T.Witt,1969.Z.Naturforsch. 24b:144-146. Fleischmann,D.&R.K.Clayton, 1968.Photochem.Photobiol.8:287-298. Fuhrmann,G.F.,E.Granzer,E.Boy &G.Ruhenstroth-Bauer, 1964.Z.Naturforsch. 196: 612-621. Fowler,C F . &B.Kok, 1974a.Biochim.Biophys.Acta357:299-307. Fowler,C F . &B.Kok, 1974b.Biochim.Biophys.Acta 357:308-318. Giaquinta,R.,R.A.Dilley&B.J.Anderson, 1973.Biophys.Res.Commun.52:1410-1417. Giaquinta,R.,R.A.Dilley,B.J.Anderson &P.Horton, 1974.J.Bioenerget. 6:167-177. Gimmler,H.,G.Schaefer &U.Heber, 1974.In:M.Avron (ed),Proc.3rdInt.Congr.Photosynthesis.Elsevier,Amsterdam,pp.1381-1392. Girault,G.&J.Galmiche, 1976.Biochem.Biophys.Res.Comm.68:724-729. Girault,G.&J.Galmiche,1978.Biochim.Biophys.Acta502:430-444. Gitler,C , 1971.In:L.A.Hanson (ed),Biomembranes,Vol.2.Plenum,NewYork,pp.41-73. Gitler,C , 1972.Ann.Rev.Biophys.Bioenerg. 1:51-92. Gornall,A.G.,C.J.Bardawill &M.M.David, 1949.J.Biol.Chem.177:751. Gräber,P.&H.T.Witt,1974.Biochim.Biophys.Acta333:389-392. Gräber,P.&H.T.Witt,1975.FEBSLett.59:184-189. Gräber,P.&H.T.Witt,1976.Biochim.Biophys.Acta423:141-163. Gross,E.L., 1972.Arch.Biochem.Biophys.150:324-329. Gross,E.L.,R.A.Dilley &A.SanPietro,1969.Arch.Biochem.Biophys.134:450-462. Gross,E.L.&S.C.Hess,1974.Biochim.Biophys.Acta 339:334-346. Gross,E.L. &J.W.Libbey, 1972.Arch.Biochem.Biophys. 153:457-467. Gross,E.L.&S.H.Prasher, 1974.Arch.Biochem.Biophys.164:460-468. Haehnel,W.,1977.Biochim.Biophys.Acta459:418-441. Harris,D.A. &A.R.Crofts,1978.Biochim.Biophys.Acta502:87-102. Harris,D.A. &E.C.Slater, 1975.Biochim.Biophys.Acta387:335-348. Heath,R.L.,1973.Biochim.Biophys.Acta 292:444-458. Heber,U.&K.A.Santarius, 1970.Z.Naturforsch. 25b:718-728. Heldt,H.W.,K.Werden,M.Milovancec &G.Geller,1973.Biochim.Biophys.Acta314: 224-241. Hill,R.&F.Bendali,1960.Nature 186:136-137. Hind,G.,H.Y.Nakatani SS.Izawa,1974.Proc.Nat.Acad.Sei.U.S.71:1484-1488. Homann,P.H., 1976.PlantPhysiol.57:387-392. Horton,P.&W.A.Cramer, 1974.Biochim.Biophys.Acta368:348-360. Horvâth,G.,M.Droppa,L.Mustärdy &A.Faludi-Daniel,1978.Planta 141:239-244. Itoh,M.,S.Izawa&K.Shibata, 1963.Biochim.Biophys.Acta66:319-327. Izawa,S.,D.R.Ort,J.M.Gould &N.E.Good, 1975.In:M.Avron (ed),Proc.3rdInt. Congr.Photosynthesis,Vol.I.Elsevier,Amsterdam,pp.449-461. Jackson,J.B.&A.R.Crofts,1969a.FEBSLett.4:185-189. Jackson,J.B.&A.R.Crofts,1969b.Z.Naturforsch. 24b:1144-J146. Jagendorf,A.T.&E.Uribe,1966.Proc.Nat.Acad.Sei,U.S.55:170-177. Jagendorf,A.T.,1967.Federation Proc.26:1361-1369. Jagendorf,A.T.,1975.In:Govindjee (ed),Bioenergetics ofPhotosynthesis.AcademicPress, NewYork,pp.414-492. Jagendorf,A.T.,1977.In:A.Trebst &M.Avron (eds),Encyclopedia ofPlant Physiology NewSeries,Vol.5.Springer-Verlag, Berlin-Heidelberg -NewYork,pp.307-337. Joliot,P.&R.Delosme,1974.Biochim.Biophys.Acta 357:267-284. Junge,W., 1970.Eur.J.Biochem. 14:582-592. 82 Junge,W., 1977a.Ann.Rev.PlantPhysiol.28:503-536. Junge,W.,1977b.In:A.Tr'ebst&M.Avron (eds),EncyclopediaofPlantPhysiologyNew Series,Vol.5.Springer-Verlag,Berlin-Heidelberg-NewYork,pp.59-93. Junge,W.,B.Rumberg&H.Schröder,1970.Eur.J.Biochem.14:575-581. Junge,W.&H.T.Witt,1968.Z.Naturforsch.23b:244-254. Karlish,S.J.&M.Avron,1968.Biochim.Biophys.Acta153:878-888. Karlish,S.J.&M.Avron,1971.Eur.J.Biochem.20:51-57. Ke,B.,K.Sugahara&E.R.Shaw,1975.Biochim.Biophys.Acta408:12-25. Koike,H.,K.Satoh&S.Katoh,1977.In:D.O.Hall,J.Coombs&T.W.Goodwin (eds),Proc. 4thInt.Congr.Photosynthesis.BiochemicalSociety,London,pp.765-770. Kraayenhof,R., 1973.In:A.A.Thaer&M.Sernetz (eds),FluorescenceTechniquesinCell Biology.Springer-Verlag,Berlin,pp.381-394. Kraayenhof,R., 1975.In:Abstr.5thInt.Biophys.Congr.Copenhagen. Kraayenhof,R., 1977a.In:A.Trebst&M.Avron (eds),EncyclopediaofPlantPhysiology NewSeries,Vol.5.Springer-Verlag,Berlin-Heidelberg-NewYork.pp.416-428. Kraayenhof,R.,1977b.In:K.vanDam&B.F.vanGelder (eds),StructureandFunctionof Energy-TransducingMembranes.Elsevier,Amsterdam,pp.223-236. Kraayenhof,R.&J.C.Arents,1977.In:E.Roux (ed),ElectricalPhenomenaattheBiologicalMembraneLevel.Elsevier,Amsterdam,pp.493-504. Kraayenhof,R.&E.C.Slater,1975.In:M.Avron (ed),Proc.3rdInt.Congr.Photosynthesis,Vol.II.Elsevier,Amsterdam,pp.985-996. Krause,G.H.,1974.Biochim.Biophys.Acta333:301-313. Krendeleva,T.E.,G.P.Kukarskikh,N.V.Nizovskaya&A.B.Rubin,1977.Photosynthetica11: 183-188. Larkum,A.W.D.&N.K.Boardman,1974.FEBSLett.40:229-232. Larkum,A.W.D.&W.D.Bonner,1972.Biochim.Biophys.Acta256:396-408. Latimer,P.&E.Rabinowitch, 1956.J.Chem.Phys.24:480. Latimer,P.&E.Rabinowitch,1957.In:H.Gaffron (ed),ResearchinPhotosynthesis.Interscience,NewYork,pp.100-106. Lemberg,R.&J.Barret,1975.In:TheCytochromes.AcademicPress,NewYork-London. Lettvin,J.Y.,B.Howland &R.C.Gesteland, 1958.I.R.E.TransElectronP.G.M.E.10:26-28. Lutz,H.U.,J.S.Dahl&R.Bachofen, 1974.Biochim.Biophys.Acta347:359-370. Malkin,R., 1978.FEBSLett.87:329-333. McCarty,R.E.&J.Fagan,1973.BiochemistryJ2:1503-1507. McCarty,R.E.&E.Racker,1966.Brookhaven.Symp.Biol.19:202-214. McCarty,R.E.,J.S.Fuhrmann&Y.Tsuchiya,1971.Proc.Nat.Acad.Sei.U.S.68: 2522-2526. McCarty,R.E.,P.R.Pittman&Y.Tsuchiya,1972.J.Biol.Chem.247:3048-3051. McLaughlin,S.,1977.In:F.Bonner&A.Kleinzeller (eds),CurrentTopicsinMembranes andTransport,Vol.9.AcademicPress,NewYork,pp.71-144. Menke,W.,1961.Z.Naturforsch.16b:334-336. Menke,W.&H.G.Ruppel,1971.Z.Naturforsch.26b:825-831. Mills,J.D.,P.D'.Mitchell&J.Barber,1979.Photobiochem.Photobiophys.1:3-9. Mitchell,P.D.,1961.Nature191:144-148. Mitchell,P.D.,1966.Biol.Rev.41:445-502. Mitchell,P.D., 1968.In:ChemiosmoticCouplingandEnergyTransduction.GlynnResearch, Bodmin, 111pp. Mitchell,P.D.,1975.FEBSLett.59:137-139. Mitchell,P.D., 1977.FEBSLett.78:1-28. Montai,M.&C.Gitler,1973.J.Bioenerg.4:363-382. Murakami,S.&L.Packer,1970.J.CellBiol.47:332-351. Murakami,S.,J.Torres-Pereira&L.Packer,1975.In:Govindjee (ed), Bioenergeticsof Photosynthesis.AcademicPress,NewYork-SanFransisco-London,pp.556-614. Nakatani,H.Y.&J.Barber,1977.Biochim.Biophys.Acta461:510-512. Nakatani,H.Y.,J.Barber&J.A.Forrester,1978.Biochim.Biophys.Acta504:215-225. Nakatani,H.Y.,J.Barber&M.J.Minski,1979.Biochim.Biophys.Acta545:24-35. Nelson,N.,1972.FEBSLett.24:57-59. Nelson,N.,D.W.Deters,H.Nelson&E.Racker,1973.J.Biol.Chem.248:2049-2055. Nelson,N.,H.Nelson&E.Racker,1972.J.Biol.Chem.247:7657-7662. Neumann,J.&A.T.Jagendorf,1964.Arch.Biochem.Biophys.107:109-119. Neumann,J.,B.Ke&R.A.Dilley,1970.PlantPhysiol.46:86-92. Nobel,P.S.,1969.Biochim.Biophys.Acta172:134-143. Nobel,P.S.&H.C.Mel,1966.Arch.Biochem.Biophys.113:695-702. 0'Keefe,P.P.&R.A.Dilley, 1977.Biochim.Biophys.Acta461:48-60. Ort,D.R.&R.A.Dilley, 1976.Biochim.Biophys.Acta449:95-107. Ort,D.R.,R.A.Dilley&N.E.Good,1976.Biochim.Biophys.Acta449:108-124. 83 Ouitrakul,R.&S.Izawa,1973.Biochim.Biophys.Acta305:105-118. Packer,L.,1963.Biochim.Biophys.Acta75:12-22. Packer,L.,P.A.Siegenthaler &P.S.Nobel,1965.J.CellBiol.26:593-600. Paolillo,D.J., 1970.J.CellSei.6:243-255. Papa,S.,1976.Biochim.Biophys.Acta456:39-84. Portis,A.R.&H.W.Heldt,1976.Biochim.Biophys.Acta449:434-446. Prochaska,L.J. &E.L.Gross,1975.Biochim.Biophys.Acta 376:126-135. Reich,R.&R.Scheerer, 1976.Ber.Bunsengesellschaft Phys.Chem.80:542-547. Reich,R.,R.Scheerer,K-U. Sewe &H.T.Witt,1976.Biochim.Biophys.Acta444:285-294. Renger,G., 1975.Biochim.Biophys.Acta440:287-300. Renger,G.&C.Wolff,1975.Z.Naturforsch. 30c:161-171. Rottenberg,H.,T.Grunwald &M.Avron,1972.Eur.J.Biochem. 25:54-63. Roux,E. &A.Faludi-Daniel, 1977.Biochim.Biophys.Acta461:25-30. Ruben,S.C.J.,1943.Am.Chem.Soc.65:279-282. Rumberg,B.,1977.In:A.Trebst&M.Avron (eds),Encyclopedia ofPlantPhysiology New Series,Vol.5.Springer-Verlag, Berlin-Heidelberg -NewYork,pp.405-415. Rumberg,B.&H.Mühle,1976.J.Bioelectr.Bioenerg. 3:393-403. Rumberg,B.&U.Siggel,1968.Z.Naturforsch. 23b:239-244. Ryrie,I.J.&A.T.Jagendorf, 1971.J.Biol.Chem.246:3771-3774. Ryrie,I.J. &A.T.Jagendorf, 1972.J.Biol.Chem.247:4453-4459. Sane,P.V.,D.J. Goodschild &R.B.Park,1970.Biochim.Biophys.Acta 218:162-178. Satoh,K.&S.Katoh,1977.Plant.CellPhysiol. 18:1077-1087. Satoh,K.&S.Katoh,1979.Biochim.Biophys.Acta545:454-465. Schapendonk,A.H.CM.&W.J.Vredenberg, 1977.Biochim.Biophys.Acta462:613-621. Schapendonk,A.H.C.M.&W.J.Vredenberg, 1979.FEBSLett. 106:257-261. Schapendonk,A.H.C.K.,W.J.Vredenberg &W.J.M.Tonk,1979.FEBSLett.100:325-330. Schapendonk,A.H.C.M.,A.M.Hemrika-Wagner, A.P.R.Theuvenet,H.W.WongFongSang,W.J. Vredenberg &R.Kraayenhof, 1980.Biochemistry 19:1922-1927. Schliephake,W.,W.Junge&H.T.Witt,1968.Z.Naturforsch. 23b:1571-1578. Schmid,R.,W.Shavit &W.Junge,1976.Biochim.Biophys.Acta430:145-153. Schreiber,U.&M.Avron, 1977.FEBSLett.82:159-162. Schröder,H.,H.Muhle&B.Rumberg, 1971.In:M.Avron&A.Melandri (eds),Proc.2ndInt. Congr.Photosynthesis.Dr.Junk,TheHague,pp.919-930. Schuldiner,S.&M.Avron,1971.Eur.J.Biochem. 19:227-231. Schuurmans,J.J.,R.P.Casey &R.Kraayenhof, 1978.FEBSLett.94:405-409. Searle,G.F.W.,J.Barber &J.Mills,1977.Biochim.Biophys.Acta461:413-425. Sewe,K-U.&R.Reich,1977a.FEBSLett.80:30-34. Sewe,K-U.&R.Reich, 1977b.Z.Naturforsch. 32c:161-171. Shoshan,V.,E.Tel-Or &N.Shavit,1974.In:M.Avron (ed),Proc.3rdInt.Congr.Photosynthesis.Elsevier,Amsterdam,pp.831-838. Slater,E.C.,1953.Nature 172:975-978. Slater,E.C., 1974.In:L.Ernster,R.W.Estabrook &E.C.Slater (eds),Dynamics ofenergy-Transducing Membranes.Elsevier,Amsterdam,pp.1-20. Steiner,A., 1968.In:Proc.6thColl.Int.Potash.Inst.Florence,Italy,pp.324-341. Strichartz,G.R. &B.Chance,1972.Biochim.Biophys.Acta256:71-84. Telfer,A.,J.Nicholson &J.Barber, 1976.FEBSLett.65:77-83. Theuvenet,A.P.R.&G.W.F.H.Borst-Pauwels,1976a.Biochim.Biophys.Acta426:745-756. Theuvenet,A.P.R.&G.W.F.H.Borst-Pauwels, 1976b.J.Theor.Biol.57:313-329. Thornber,J.P., 1975.Ann.Rev.PlantPhysiol.26:127-158. Thorne,S.W., G.Horvâth,A.Kahn&N.K.Boardman, 1975.Proc.Nat.Acad.Sei.U.S.72: 3858-3862. Tonk,W.J.M.,A.H.C.M.Schapendonk &W.J.Vredenberg, 1979.J.Biochem.Biophys.Meth.1: 193-194. Torres-Pereira,J.,R.Mehlhorn,A.D.Keith&L.Packer,1974.Arch.Biochem.Biophys. 160:90-99. Trebst,A., 1974.Ann.Rev.PlantPhysiol.25:423-458. Trebst,A.&S.Reimer,1973.Biochim.Biophys.Acta305:129-139. Trebst,A.&S.Reimer,1977.Plant&CellPhysiol.Spec.Issue,p.201. Uribe,E.G., 1971.In:M.Avron&A.Melandri (eds),Proc.2ndInt.Congr.Photosynthesis. Dr.Junk,TheHague,pp.1125-1133. Velthuys,B.R., 1978.Proc.Nat.Acad.Sei.U.S.75:6031-6034. Vinkler,C , M.Avron&P.D.Boyer, 1978.FEBSLett.96:120-134. Vredenberg,W.J., 1974.In:M.Avron (ed),Proc.3rdInt.Congr.Photosynthesis,Vol.II. Elsevier,Amsterdam,pp.929-939. Vredenberg,W.J., 1976.In:J.Barber (ed),TheIntactChloroplast.Elsevier,Amsterdam, pp.53-81. 84 Vredenberg,W.J.,1977.In:M.Thellier,A.Monnier,M.Demasty&J.Dainty (eds),TransmembraneIonicExchangesinPlants.C.N.R.S.,Paris,pp.583-589. Vredenberg,W.J.,P.H.Homann&W.J.H.Tonk,1973.Biochim.Biophys.Acta324:261-265. Vredenberg,W.J.&A.H.C.M.Schapendonk,1978.FEBSLett.90:90-93. Vredenberg,W.J.&W.J.M.Tonk,1973.Biochim.Biophys.Acta298:354-368. Vredenberg,W.J.&W.J.M.Tonk,1974a.FEBSLett.42:236-240. Vredenberg,W.J.&W.J.M.Tonk,1974b.In:U.Zimmermann&J.Dainty (eds),MembraneTransportinPlants.Springer-Verlag,Berlin-Heidelberg-NewYork,pp.126-130. Vredenberg,W.J.&W.J.M.Tonk,1975.Biochim.Biophys.Acta387:580-587. Walz,D.,1977.In:L.Packer (ed),BioenergeticsofMembranes,Vol.1.Elsevier,Amsterdam,pp.485-494. West,J.&L.Packer,1970.J.Bioenerg. 1:405-412. Williams,R.J.P.,1962.J.Theor.Biol.3:209-229. Williams,R.J.P.,1972.J.Bioenerg.3:81. Witt,H.T.,1971.Q.Rev.Biophys.4:365-477. Witt,H.T.,1979.Biochim.Biophys.Acta505:355-427. Witt,H.T.&A.Zickler,1973.FEBSLett.37:307-310. Yakovleva,G.A. &Y.G.Molotkovskii,1979.SovietPlantPhysiol.18:55-66. Yamamoto,Y.&N.Nishimura,1977.Plant&CellPhysiol.18:55-66. Zickler,A.,H.T.Witt&G.Boheim, 1976.FEBSLett.66:142-148. 85
© Copyright 2025 Paperzz