Module'2'Lesson'4' Real'World'Applications' Exponential'and'Logarithmic'Functions'Notes'Part'1! ! ! There!are!an!incredible!number!of!phenomena,!which!can!be!modeled!by!using!an! exponential!or!logarithmic!function.!!Here!are!a!few:! ! ! Interest:! ! Simple!interest!is!when!your!bank!gives!you!a!certain!amount!of!money!yearly,!based!on! how!much!is!in!your!account!and!what!the!interest!rate!is.!!! ! The!formula!for!simple!interest!looks!like!this:! I!=!Prt!!! ! ‘r’!is!the!interest!rate!(as!a!decimal!)! P!is!the!principal!(starting)!balance! ‘t’!is!the!time!in!years.! ! Compound!interest!is!when!your!bank!gives!you!a!certain!amount!of!money!a!number!of! times!during!the!year.!!It!might!be!quarterly,!monthly,!or!even!daily.!!! ! r The!formula!for!compound!interest!looks!like!this:! A = P(1 + ) nt ! n ! ‘n’!is!the!number!of!times!interest!is!given!per!year! ! For!example,!quarterly!interest!would!make!n!=!4! ‘A’!is!the!amount!of!money!we!have!in!the!account!after!interest!is!added! ‘P’!is!the!principal!(starting)!balance! ! ! When!interest!is!added!to!your!account!continuously,!the!formula!changes.!!Continuous! compound!interest!means!that!you’re!getting!interest!more!than!daily,!more!than! hourly,!even!more!than!minutely.!!It!means!‘n’!is!getting!very,!very!large.! ! As!‘n’!gets!infinitely!large,!the!formula!approaches!the!natural!base,!e,!and!becomes!this! formula!for!continuously!compounded!interest:! ! ! A = Pert ! ! ! ' ! 1! Example'1:! ! ! ! ! ! ! ! Find!the!interest!on!a!Principal!Balance!of!$10,000!over!the!course! of!8!years!with!an!interest!rate!of!5.5%.!!Do!this!for:! a)! Simple!Interest! b)! Monthly!Compound!Interest! ! ! c)! Continuously!Compounded!Interest! ! a) Simple!Interest! I = Pr t !! I = 10000(.055)8 !! I = 4400 ! The!simple!interest!earned!in!8!years!at!a!rate!of!5.5%!would!be!$4400.!! r b) Monthly!Compound!Interest! A = P(1 + ) nt ! n ! .055 12(8) A = 10000(1+ ) 12 !! A = 15511.47 ! The!amount!15511.47!is!the!total!amount!in!the!account.!!To!calculate! the!amount!of!interest!earned!you!would!need!to!take!the!total!amount! in!the!account!after!8!years!and!subtract!the!principal!amount.!! 15511.47 − 10000 = 5511.47 ! ! The!interest!earned!in!8!years!at!a!rate!of!5.5%!compounded!monthly! would!be! 5511.47 .! ! c) Continuously!Compounded!Interest! A = Pert ! A = 10000e.055i8 ! A = 15527.07 !! The!amount!15527.07!is!the!total!amount!in!the!account!after!8!years.!! To!calculate!the!amount!of!interest!earned,!take!the!total!amount!in!the! account!after!8!years!and!subtract!the!principal!amount.!! 15527.07 − 10000 = 5527.07 !! ! The!interest!earned!in!8!years!at!a!rate!compounded!continuously!would! be!$5527.07.!!! ! ! ! 2! Example'2:! ! Your!bank!account!is!sitting!on!$28,000.!!You!started!with!a! principal!balance!of!$20,000.!!If!the!interest!rate!was!6%! compounded!continuously,!how!long!was!your!money!in!the! bank?! Continuously!Compounded!Interest! A = Pert ! 28000 = 20000e.06t 28000 = e.06t 20000 7 = e.06t 5 7 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ln = .06t !! 5 7 ln 5 t= .06 ln 7 − ln 5 t= .06 t ≈ 5.608 ! The!money!was!in!the!bank!for!approximately!5.608!years.!! Substitute!what!you! know!into!the! equation.!!Solve!for! what!you!don’t! know.!! ! ! Newton’s'Law'of'Cooling:' ! Every!good!coroner!knows!that!a!dead!body!will!eventually!reach!equilibrium!with!the! temperature!of!its!surroundings.!!In!other!words,!the!body’s!temperature!will!go!from! its!98.6!degree!normal!to!whatever!the!temperature!is!in!its!environment.! ! The!function!that!this!temperature!drop!follows!is!exponential.!!It!is!given!by:! ! T −S ! kt = ln T0 − S ! ! where!‘t’!is!the!time!the!person!has!been!dead,!‘S’!is!the!surrounding!air!temperature,!! ‘T’!is!the!current!body!temperature,!and! T0 !is!the!starting!temperature!of!the!body! (98.6)! ! ! ! 3! Example'3:!A!coroner!finds!a!dead!body!and!checks!the!temperature.!!It!reads!80! degrees.!!Room!temperature!is!72!degrees.!!If!the!constant,!k,!is!– 0.2,!how!many!hours!has!the!person!has!been!dead?! ! For!the!record,!this!formula!applies!to!other!cooling!problems,!not!just!dead!bodies.!! T −S ! kt = ln T0 − S 80 − 72 (−0.2)t = ln 98.6 − 72 80 − 72 ln !! t = 98.6 − 72 −.2 t ≈ 6.0073 hours ! The!person!has!been!dead!for!approximately!6!hours.!! ! HalfGlife:! ! The!half`life!of!a!substance!is!the!amount!of!time!it!takes!for!one`half!of!the!total! amount!of!the!substance!to!disappear!or!decay.!!! ! x The!formula!for!half`life!looks!like!this:! ! ⎛ 1⎞ A = Ao ⎜ ⎟ ! ⎝ 2⎠ ! (Note:!!This!formula!is!simplified!from!what!you!might!find!in!a!science!book).! ! A!=!Current!amount!of!a!substance! Ao!=!Initial!amount!of!a!substance! x!=!units!of!time! ! For!example,!let’s!say!that!you!have!100!grams!of!the!238`Plutonium!isotope!(known!as! 238 Pu ).!!This!isotope!has!a!half!life!of!87!years.! That!means!each!unit!of!x!is!87!years.!!Let’s!look!at!what!happens!to!the!element:! ! Grams! x! Total!years! 100! 0! 0! 50! 1! 87! 25! 2! 174! 12.5! 3! 261! 6.25! 4! 348! 3.125! 5! 435! 1.563! 6! 522! 0.781! 7! 609! ! 4! 0.391! 8! 696! ! ! ! The!‘total!years’!column!is!found!by!taking!87!times!‘x’.! ! In!696!years,!we!only!have!about!four`tenths!of!one!gram!of!our!original!left.! ! Example'4:! You!start!with!500!grams!of! 238 Pu .!!How!much!is!left!after!1000! years?! ! x ⎛ 1⎞ A = Ao ⎜ ⎟ ⎝ 2 ⎠ !! ⎛ 1⎞ A = 500 ⎜ ⎟ ⎝ 2⎠ ! ' Example'5:! ! ! The!half!life!of!! !is!87! years,!you!have!to!make!x!1000! divided!by!87!because!x!is!the! unit!of!time.!! 1000 87 !! A ≈ .1733 It!is!the!year!2235.!!Scientists!have!unearthed!a!rock!sample!from! an!old!nuclear!power!plant!where!there!was!a!big!nuclear! meltdown!in!1995.!!This!rock!sample!contains!0.2!grams!of! 238 Pu ! How!much! 238 Pu was!in!the!sample!initially?!!Round!your!answer! to!3!decimal!places.!! x ⎛ 1⎞ A = Ao ⎜ ⎟ ⎝ 2⎠ ! ⎛ 1⎞ 0.2 = A0 ⎜ ⎟ ⎝ 2⎠ A0 = 2235−1995 87 0.2 ⎛ 1⎞ ⎜⎝ ⎟⎠ 2 240 87 !! A0 ≈ 1.353 ! ! ! There!was!approximately!1.353!grams!of! 238 Pu !in!the!rock!in!1995! at!the!time!of!the!meltdown!in!1995.! 5! Another'way'to'do'halfGlife:! ! Some!people!prefer!this!method!of!doing!half!life!problems.! ! Consider!the!general!form!of!the!exponential!function:! y = ca x ! ! We!can!use!this!equation!directly!to!solve!our!half!life!problems!because!we!can!find!a! base!‘a’!which!incorporates!the!½!and!the!‘k’!together.! ! ‘c’!is!still!our!initial!value,!‘x’!is!still!our!time.! ! Example'6:! The!half!life!of!an!isotope!known!as!Iodine`125!is!57.4!days.! What!is!the!rate!of!decay!of!this!substance?!! ! When!the!problem!wants!‘rate!of!decay’,!it!wants!the!value!for!‘a’.!!To!find!this,!let’s! imagine!first!we!had!100!grams!initially.!!After!one!half`life,!we’d!have!50!grams!left.!! Let’s!use!these!hypothetical!values!to!find!‘a’:! ! y = ca x 50 = 100a57.4 1 = a57.4 2 ! 1 57.4 57.4 = a 2 0.9880 = a 57.4 ! ! Hopefully!you!can!see!that!it!didn’t!matter!what!we!chose!for!our!initial!and!current! values.!!When!you!divide!the!two!after!one!half`life,!you’ll!always!get!½.! ! The!advantage!of!this!method!is!that!you!don’t!have!to!adjust!to!make!‘x’!the!number!of! half`lives.!!It!can!simply!be!the!time!it!takes!for!one!half!life.! ! Use!the!values!given!for!Iodine`125!to!answer!problems!6!and!7:! ! ! ! ! ! ! ! ! 6! Example'7:! ! ! ! ! If!you!start!with!100g!of!this!substance,!how!much!is!left!in!one!year?!! Round!to!three!decimal!places.! Since!the!half!life!is!measured!in! days!and!in!example!6!we!solve! for!the!“a”!using!57.4!as!the!x,!we! have!to!use!days!as!units!for!“x.”!! So!1!year!is!equivalent!to!365! days.!! y = ca x ! y = 100(.988)365 y = 1.22 ! ! !! ! There!would!be!1.22!grams!of!Iodine`125!left!after!1!year!(365!days).!! ! Example'8:! ! ! Let’s!say!you!have!5g!of!Iodine`125!from!a!different!experiment.!!This! experiment!started!with!200g.!!How!many!days!has!the!substance!been! decaying?! y = ca x ! 5 = 200(.988)x ! 1 = .988 x ! 40 !! 1 log.988 =x 40 x ≈ 305.558 ! The!Iodine`125!has!been!decaying!for!approximately!305.557!days.!! ! Continuous'Growth'and'Decay:! ! Bacteria!growth!is!a!constant!event,!much!like!continuously!compounded!interest.!! Decay!of!a!radioactive!substance,!such!as! 238 Pu !and! 14C !(Carbon`14,!used!in! radiocarbon!dating!to!find!age!of!substances)!is!also!continuous.!! ! The!formula!for!continuous!growth!and!decay!is:! ! A = Ao e kt ! ! ‘A’!is!the!current!amount!of!material! ‘Ao’!is!the!initial!amount!of!material! ‘k’!is!a!constant,!different!for!each!process.!!! ‘k’!will!be!negative!for!decreasing!processes!and!positive!for!increasing!ones! ‘t’!is!the!time!in!years! ! Half`life!could!also!be!calculated!as!a!continuous!decay!process.!! ! 7! ! ! Use!the!continuous!growth!and!decay!model! A = Ao e kt !for!examples!9`11.!! ' Example'9:! What!is!the!rate!of!decay!if!250!grams!remain!of!a!material!that! has!a!half`life!of!2700!years?!!Round!to!4!decimal!places.! kt A = Ao e ! To!find!the!rate!of!decay!of!this!problem,!250!is! 250 = 500ek⋅2700 the!current!amount!of!material!and!if!given!the! 1 = e2700 k half!life!is!2700,!you!would!use!250!as!the!current! 2 amount!“A”!and!then!you!know!if!“t”!is!2700,!then! 1 the!initial!amount!would!have!been!500!(that!is! ln = 2700k !! 2 double!the!current!amount).!!Plug!in!those!values! 1 and!solve!for!k.!!! ln 2 k= **Remember!when!give! !the!next!step! 2700 k ≈ −.0003 you!have!to!do!is!change!that!to!logarithmic!form.!! ! ! The!rate!of!decay!would!be!.03%.!every!year.!! ! ! !! Example'10:!!What!is!the!rate!of!growth!of!10!bacteria!if!after!3.5!hours,!there!are!2,000! bacteria?!!Round!to!4!decimal!places! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! A = Ao e kt ! Plug!in!the!values!given!and!solve!for!k.!!! 2000 = 10e 3.5 k ! 200 = e 3.5 k **!Remember!if!“k”!is!a!negative!value! then!it!is!a!rate!of!decay.!!If!it!is!a!positive! ln 200 = 3.5k ! value!it!is!a!rate!of!growth.!! ln 200 k= 3.5 k ≈ 1.5138 ! The!rate!of!growth!would!be!151.38%!every!hour! ! ' ' ' ' ' ' ! 8! Example'11:!!How!long!will!it!take!50!grams!of!a!substance!to!decay!to!10!grams!if!the! rate!of!decay!is! k = −.345 !daily.!!!Round!to!the!nearest!tenth.! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! A = Ao e kt ! 10 = 50e−.345t 1 = e−.345t Substitute!the!values!given!in!the!problem!and! 5 then!solve!for!the!time.! 1 ln = −.345t ! 5 1 ln 5 t= −.345 t ≈ 4.7 ! ! It!will!take!4.7!days!for!50!grams!of!a!substance!to!decay!to!10!grams!if!the! rate!of!decay!is! k = −.345 .!! ! 9!
© Copyright 2026 Paperzz