5/8 M Exponential Functions course notation book notation • ‘a’ is called the initial value. • ‘a’ determines vertical stretch/compression. • if a < 0 then reflection across the x-axis. • ‘c’ is called the base or growth factor. • ‘b’ determines horizontal stretch/compression. • if b < 0 then reflection across the y-axis. • ‘h’ determines the horizontal shift left or right. • ‘k’ determines the vertical shift down or up. • horizontal asymptote at y = k • ‘C’ is called the initial value. • ‘C’ determines vertical stretch/compression. • if C < 0 then reflection across the x-axis. • ‘a’ is called the base or growth factor. • ‘b’ determines horizontal stretch/compression. • if b < 0 then reflection across the y-axis. • ‘h’ determines the horizontal shift left or right. • ‘k’ determines the vertical shift down or up. • horizontal asymptote at y = k y= c-x y= cx using finite differences to classify function type x y (-1,c) y = 2x -3 -2 -1 0 1 2 3 -6 -4 -2 0 2 4 6 V V V V V V linear: (1,c) +2 (0,1) +2 V +0 (0,-1) (-1,-c) x y HA: y = 0 y = -cx V +0 +2 V +0 +2 V +0 +2 V +0 y = x2 -3 -2 -1 0 1 2 3 9 4 1 0 1 4 9 V V V V V V quadratic: (1,-c) y = -c-x +2 -5 V +2 -3 V +0 V +2 -1 V +0 +1 V +2 V +0 +3 V +2 V +0 +5 V +2 y = 2x -3 -2 -1 0 1 2 3 1 2 4 8 V V V V V V exponential: x y +1 V V V +2 V +1 ratio of consecutive outputs (y-values) is the base (growth factor) +4 V +2 graphing using transformations x -2 -1 0 1 2 y 1 3 9 HA: y = 0 x y -13 -9 -5 -8 -1 -12 3 -24 HA: y = -6 • reflected across the x-axis • vertical stretch by a factor of 2 • horizontal stretch by a factor of 4 • horizontal shift 5 units to the left • vertical shift 6 units down solve for the exponent using equal bases
© Copyright 2026 Paperzz