Math 220 March 7 I. If 1200 cm2 of material is available to make a box with a square base and an open top, find the largest possible volume of the box. II. Find the point on the curve y = √ x that is closest to point (4,0). III. At which points on the curve y = 1 + x + 60x3 − x5 does the tangent line have the largest slope? IV. A farmer whats to fence in area of 400 square feet in a rectangular field and then divide it 3 sections with a two fence parallel to one of the sides of the rectangle. How can he do this so as to minimize the cost of the fence? V. A Frisbee has landed in the ocean 150 from the shore. A dog is standing 200 feet down the shore from where the Frisbee landed. The dog can run 5 feet per second and swim 2 feet per second. How far should the dog run down the shore before he get jumps in the water to get the Frisbee in the least amount of time? VI. Find the limit. 1. ex x→∞ x3 lim 2. sin(3x) x→0 cos(4x) lim 3. 4. √ ln( x) lim x→0+ x2 5x − 7x x→0 x lim 5. sin(x) − x x→0 x lim 1 6. sin(x2 ) lim x→0 x 7. lim+ x→0 8. 9. cos(x) x √ √ 1 + 2x − 1 − 4x lim x→0 x 2x − sin(x) x→0 2x − tan(x) lim 10. lim x→0+ 1 1 − x x e −1 11. lim (sin(x) ln(x)) x→0 12. lim+ x − ln(x2 ) x→0 13. lim+ (tan(3x))6x x→0 14. lim+ (x)2/(1−x) x→1 15. lim ex + x2 x→∞ 2 1/(1−x) I. If 1200 cm2 of material is available to make a box with a square base and an open top, find the largest possible volume of the box. Answer: V olume = x2 y Surf aceArea = 1200 = 4x2 + xy =⇒ y = 1200 − 4x2 x v = x2 y 1200 − 4x2 ) x v(x) = x(1200 − 4x2 ) v 0 (x) = (1200 − 4x2 ) + x(−8x) 0 = 1200 − 12x2 0 = 100 − x2 x = ±10 v(x) = x2 ( v 00 (x) = −24x v 00 (10) < 0 There is a maximum when x = 10 and y = 12 3 The largest possible volume of the box √ is 1200 cm . II. Find the point on the curve y = x that is closest to point (4,0). Answer: Distance = p (x − 4)2 + (y − 0)2 3 D= D(x) = D(x) = D(x) = p q √ √ (x − 4)2 + (y − 0)2 √ (x − 4)2 + ( x)2 x2 − 8x + 16 + x x2 − 7x + 16 2x − 7 D0 (x) = √ 2 2 x − 7x + 16 2x − 7 0= √ 2 x2 − 7x + 16 0 = 2x − 7 7 x= 2 D0 (x) < 0 when x < 7/2 D0 (x) > 0 when x > 7/2 Thus there is a minimum at x = 7/2 p The point (7/2, 7/2) is closest. III. At which points on the curve y = 1 + x + 60x3 − x5 does the tangent line have the largest slope? Answer: slope = y 0 = 180x2 − 5x4 4 m = 180x2 − 5x4 m0 (x) = 360x − 20x3 m0 (x) = 20x(18 − x2 ) 0 = 20x(18 − x2 ) √ x = 0, ± 18 m00 (x) = 360 − 60x2 m00 (0) > 0 √ m00 ( 18) < 0 √ m00 ( 18) < 0 √ There is a maximum at x = ± 18 So line will have the largest slope √ the tangent √ √ at the √ points 3/2 5/2 ( 18, 1+ 18+60(18) −(18) ) and (− 18, 1+ 18+60(18)3/2 −(18)5/2 ) IV. A farmer whats to fence in area of 400 square feet in a rectangular field and then divide it 3 sections with a two fence parallel to one of the sides of the rectangle. How can he do this so as to minimize the cost of the fence? Answer: 400 = xy Cost = 4x + 2y 5 C = 4x + 2y 800 C(x) = 4x + x 0 C (x) = 4 − 800x−2 0 = 4 − 800x−2 x = 4x2 − 800 200 = x2 √ x = ± 200 A00 (x) = 1600x−3 > 0 √ There is maximum at x = 200 √ √ √ Cost is be minimize if the fence is built to be 200 by 2 200 where 200 is the length of the 4 parallel sections. V. A Frisbee has landed in the ocean 150 from the shore. A dog is standing 200 feet down the shore from where the Frisbee landed. The dog can run 5 feet per second and swim 2 feet per second. How far should the dog run down the shore before he get jumps in the water to get the Frisbee in the least amount of time? Answer: 1p 2 1 150 + (200 − x)2 T ime = (x) + 5 2 6 1p 2 1 T (x) = (x) + 150 + (200 − x)2 5 2 −400 + 2x 1 T 0 (x) = + p 5 4 1502 + (200 − x)2 1 −400 + 2x 0= + p 5 4 1502 + (200 − x)2 1 400 − 2x = p 5 4 1502 + (200 − x)2 400 − 2x 1 ( )2 = ( p )2 5 4 1502 + (200 − x)2 1 4(200 − x)2 = 25 16(1502 + (200 − x)2 ) 1 (200 − x)2 = 25 4(1502 + (200 − x)2 ) 4(1502 + (200 − x)2 ) = 25(200 − x)2 3002 + 4(200 − x)2 = 25(200 − x)2 21(200 − x)2 = 3002 30000 (200 − x)2 = 7 r 30000 200 − x = ± 7 r 30000 x = 200 ± 7 x = 134.535, 265.465 r 30000 7 r 30000 T (x) > 0 when x > 200 − 7 T (x) < 0 when x < 200 − There is a minimum at x = 134.535 The dog should run 134.535 feet before jumping in the water. 7 VI. Find the limit. 1. ex x→∞ x3 lim Answer: ex ∞ x→∞ x3 ∞ ex ∞ L.H. = lim x→∞ 3x2 ∞ x e ∞ L.H. = lim x→∞ 6x ∞ ex L.H. = lim x→∞ 6 1 = 6 lim 2. sin(3x) x→0 cos(4x) lim Answer: 0 sin(3x) = x→0 cos(4x) 1 =0 lim 3. √ ln( x) lim x→0+ x2 8 Answer: √ ln( x) (1/2) ln(x) lim+ = lim+ 2 x→0 x→0 x x2 ln(x) = lim+ x→0 2x2 1 1 = lim+ (ln(x) − ) (∞ · −∞) x→0 x 2x = −∞ 4. 5x − 7x x→0 x lim Answer: 5x − 7x 0 lim x→0 x 0 ln(5)5x − ln(7)7x L.H. = lim x→0 1 = ln(5) − ln(7) 5. sin(x) − x x→0 x lim Answer: sin(x) − x 0 lim x→0 x 0 cos(x) − 1 L.H. = lim x→0 1 =0 9 6. sin(x2 ) lim x→0 x Answer: sin(x2 ) 0 lim x→0 x 0 2x cos(x2 ) L.H. = lim x→0 1 =0 7. lim+ x→0 cos(x) x Answer: cos(x) lim+ x→0 x =∞ 8. 1 0+ √ √ 1 + 2x − 1 − 4x lim x→0 x Answer: √ lim x→0 L.H. = lim = 2 2 √ 1 − 4x 0 0 −4 √2 √ − 2 1−4x 2 1+2x 1 + 2x − x 1 x→0 + 42 1 =1+2 =3 10 9. 2x − sin(x) x→0 2x − tan(x) lim Answer: 2x − sin(x) 0 lim x→0 2x − tan(x) 0 2 − cos(x) = lim x→0 2 − sec2 (x) 1 = 1 =1 10. lim x→0+ 1 1 − x x e −1 Answer: 1 1 lim − x→0+ x ex − 1 x e −1−x 0 = lim+ x x→0 x(e − 1) 0 x e −1 0 L.H. = lim+ x x x→0 e − 1 + xe 0 x e L.H. = lim+ x x→0 e + ex + xex 1 = 2 11. lim (sin(x) ln(x)) x→0+ 11 Answer: lim (sin(x) ln(x)) x→0+ = lim+ x→0 ln(x) csc(x) 1/x x→0 − csc(x) cot(x) − sin2 (x) 0 = lim+ x→0 x cos(x) 0 −2 sin(x) cos(x) L.H. = lim+ x→0 cos(x) − x sin(x) 0 = 1 =0 L.H. = lim+ 12. lim+ x − ln(x2 ) x→0 Answer: lim+ x − ln(x2 ) x→0 = lim+ (x − 2 ln(x)) x→0 = 0 − (−∞) =∞ 13. lim+ (tan(3x))6x x→0 Answer: 12 ln(y) = ln( lim+ (tan(3x))6x ) x→0 = lim+ 6x ln(tan(3x)) (0(−∞)) x→0 6 ln(tan(3x)) −∞ = lim+ x→0 x−1 ∞ 2 L.H. = lim+ (3x) 18 sec tan(3x) −x−2 −18x2 sec2 (3x) = lim+ x→0 tan(3x) −18x2 cos(3x) = lim+ x→0 sin(3x) cos2 (3x) −18x2 0 = lim+ x→0 sin(3x) cos(3x) 0 −36x L.H. = lim+ 2 x→0 cos2 (3x) − sin (3x) 0 = 1 =0 x→0 y = eln(y) = e0 =1 14. lim+ (x)2/(1−x) x→1 Answer: 13 ln(y) = ln( lim+ (x)2/(1−x) ) x→1 2 ln(x) x→1 1 − x 2 ln(x) 0 = lim+ x→1 1−x 0 2/x L.H. = lim+ x→1 −1 = −2 = lim+ y = eln(y) = e−2 15. lim ex + x2 x→∞ Answer: 14 1/(1−x) ln(y) = ln( lim ex + x2 x→∞ 1/(1−x) ) 1 ln ex + x2 x→∞ 1 − x ln (ex + x2 ) ∞ = lim x→∞ 1−x −∞ = lim L.H. = lim ex +2x ex +x2 −1 −ex − 2x −∞ = lim x x→∞ e + x2 ∞ x −e − 2 −∞ L.H. = lim x x→∞ e + 2x ∞ x −e −∞ L.H. = lim x x→∞ e + 2 ∞ x −e L.H. = lim x x→∞ e = lim −1 x→∞ x→∞ = −1 y = eln(y) = e−1 15
© Copyright 2026 Paperzz