The Porous Pavement Curve Number Thomas Ballestero, PE, PhD, PH, CGWP, PG, Federico Uribe, Robert Roseen, PE, PhD, D.WRE, James Houle, CPSWQ University of New Hampshire Stormwater Center University of New Hampshire Philadelphia Low Impact Development Symposium: Greening the Urban Environment 25-28 September 2011 1 What is the Curve Number For Porous Pavement? Who wants to know?!? (What is your OBJECTIVE?) 2 The SCS (NRCS) Curve Number Originally conceived to translate rainfall depth into runoff depth on agricultural watersheds…method worked best for large storms This was then translated into a runoff hydrograph 3 Definition Sketch of SCS Runoff Hydrograph Characteristics 4 5 UNHSC Porous Pavement Sites 6 Permeable Pavement Sites UNHSC Porous Asphalt Lot UNHSC Porous Concrete Lot 7 Typical Cross‐Section Construction 3-6” PERVIOUS PAVEMENT 1-1/4” CRUSHED STONE CHOKER COURSE BANK RUN GRAVEL FILTER COURSE 3/8” PEA-GRAVEL RESERVOIR COURSE 4” 14” 4” 6” SUBGRADE NATIVE MATERIALS Sub-base design matches that of the UNHSC Porous Asphalt Parking Lot 8 UNHSC Porous Pavement Monitoring Compound weir Pressure transducer Datalogger 9 REFERENCE LOT POROUS ASPHALT Tree Filter 10 UNHSC Porous Pavement Hydrologic Data “Real time” flow monitoring…5‐minute time step “Real time” rainfall monitoring…5‐minute time step 11 PC Flow Attenuation 1400 1200 4/1/08 1/1/08--6/30/08 3/31/08 1600 1400 Influent Influent Effluent Effluent Total TotalVolume Volume(liters) (liters) 446,034 446,034 78,192 25,585 Influent # #ofofFlow FlowEvents Events 15 16 85 Influent Effluent 1200 1000 Effluent Volume (gal.) Volume (gal.) 1000 800 800 600 600 400 400 200 200 0 3/ 25 /0 8 3/ 18 /0 8 3/ 11 /0 8 3/ 4/ 08 2/ 26 /0 8 2/ 19 /0 8 2/ 12 /0 8 2/ 5/ 08 1/ 29 /0 8 1/ 22 /0 8 1/ 15 /0 8 1/ 8/ 08 1/ 1/ 08 0 12 PC Pollutant Removal 82% RE 94% RE 13 Methods of Teasing CN from the Data Measure P and Q, invert basic SCS equation Measure P and outflow hydrograph (q), measure lag, estimate CN from lag equations Measure Q and qp, estimate CN from peak discharge equations 14 Method 1 ‐ Depth of Runoff (Q)Method P Ia 2 Q Eq. 1. P Ia S Ia 0.2 S Eq. 2. Q: Total Runoff Depth (in) P: Total Precipitation Depth (in) Ia: Initial Abstraction (in) S: Storage Parameter (in) 2 2 P I a P 0.2 S Q Eq.3. P 0.8S 1000 S 10 CN P 0.8S Eq. 4. 15 16 Method 2 ‐Lag Methods Study how the timing of the “runoff” is transformed Time of concentration Lag time Time base Peak time 17 18 Method 2 ‐Lag Methods L S 1 Tlag 1900 Y 0.5 0.7 0.8 5 Tc Tlag 3 Eq. 5. Eq. 6. 1000 S 10 CN Tlag: Lag Time (hr) Tc: Concentration Time (hr) Y: Surface Slope (%) S: Storage Parameter (in) Eq. 7. 19 Lag Methods 3 APPROACHES LAG METHOD (A) – lag measured from precip peak and In. Abs. runoff peak T base T precip 1. T base (Sánchez San Román [2009]) T base = T precip + T conc Recession curve 0.06 6 0.05 5 0.04 4 Using Eq. 5 and Eq. 6 used into Eq.7., solve for CN 0.03 3 0.02 2 0.01 1 0 Runoff [gpm] Rainfall [in] T conc = T base – T precip 0 0 50 100 150 200 250 300 350 400 450 500 550 600 20 Lag Methods LAG METHOD (B) – measure lag from duration of excess precipitation In. Abs. 2. T peak (Sánchez San Román [2009], T peak Folmar, Miller and Woodward [2007]) T precip T lag T peak = T lag + T precip/2 0.06 6 0.05 5 0.04 4 CN 0.03 3 0.02 2 0.01 1 Runoff [gpm] Insert Eq. 1 into Eq.3 and solve for CN: Rainfall [in] T lag = T peak– T precip/2 1000 1900 TLAG Y 0.5 1.423 9 L0.8 0 0 0 50 100 150 200 250 300 350 400 450 500 550 600 21 Lag Methods LAG METHOD (C) – Measure Lag from when ½ Q occurs In. Abs. 3. T centroid (NRCS [2009], Folmar, Miller and Woodward [2009]) 0.06 6 0.05 5 0.04 4 Rainfall [in] T lag: time from the centroid of excess precipitation to the peak of the hydrograph. CN 0.03 3 0.02 2 0.01 1 Runoff [gpm] T lag 1000 1900 TLAG Y 0.5 1.423 9 L0.8 0 0 0 50 100 150 200 250 300 350 400 450 500 550 600 22 Method 3 GRAPHICAL PEAK DISCHARGE METHOD q p qu Am Q qp: Peak Discharge (cfs) qu: Unit Peak Discharge (csm/in) Am: Drainage area (mi2) Q: Runoff (in) 6 5 Runoff [gpm] 4 3 2 1 0 0 50 100 150 200 250 300 350 400 450 500 550 600 23 GRAPHICAL PEAK DISCHARGE METHOD q p qu Am Q Eq. 8. qp qu Q Am Runoff [gpm] 6 Eq. 9. Area = 0.000201 mi2 (5200 ft2) 5 4 3 2 1 0 0 50 100 150 200 250 300 350 400 450 500 550 600 24 Method 3 – Graphical Peak Discharge ★ Tc estimated with Lag Method and qu found with Eq. 9., find Ia/P from the Unit Peak discharge for NRCS type III rainfall distribution chart. If Ia/P < 0.1 then Ia/P=0.1 If Ia/P > 0.5 then Ia/P=0.5 25 Method 3 – Graphical Peak Discharge Ia 0.2 S Eq. 2. 1000 S 10 CN Eq. 7. Knowing Ia/P and P, compute Ia. Then with Eq. 2 and Eq. 7, obtain CN 1000 CN 5 I a 10 26 27 RESULTS CN CN CN CN Method 2 Method 2 Method 2 CN Method 1 Method A Method B Method C Method 3 Average 74 11 6 6 51 Median 75 8 2 3 13 Natural state for Hinckley-Charlton soil (HSG – B/C) = 60 - 72 28 29 30 31 So….Which to Use? Events Peak Outflow from Underdrain Peak flow method No net increase in benchmark storms Lag method (median) Long Term Simulation Lag methods Runoff depth method (~native soil) Watershed Simulation Seasonal CN Lag methods 32 Philosophically Speaking….. What is the CN for a detention pond? watershed hydrograph flow pond hydrograph time 33 REFERENCES FOLMAR,N.D; MILLER, A.C.; AND WOODWARD, W.E; 2007. “HISTORY AND DEVELOPMENT OF THE NRSC LAG TIME EQUATION”. JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION. VOL. 43(3): 829‐838. LEMAY, G; 2008. DETERMINING THE CURVE NUMBER (CN) FOR POROUS ASPHALT SYSTEMS – INDIVIDUAL STORM VOLUMES. HONORS THESIS INDEPENDENT SANCHEZ SAN ROMAN, F.J. 2009. “HIDROLOGIA SUPERFICIAL III”. ONLINE HTTP://WEB.USAL.ES/JAVISAN/HIDRO UNITED STATES DEPARTMENT OF AGRICULTURE. NATIONAL RESOURCES CONVERSATION SERVICE. 1986. “URBAN HYDROLOGY FOR SMALL WATERSHEDS TR‐55”. ONLINE HTTP://WWW.WSI.NRCS.USDA.GOV/PRODUCTS/W2Q/H&H/TOOLS_MODELS/OTHER/TR55.HTML 34 Acknowledgements Funding Source: 35 Questions? http://www.unh.edu/erg/cstev/ or Simply Search for “UNHSC” 36
© Copyright 2026 Paperzz