HOMEWORK #3 – SOLUTIONS Page 888 10) 46) 14 − 8 =3 3−1 12 − 8 fy ( 2,1) ≈ = −2 0−2 fx ( 2,1) ≈ yz = ln ( x + z ) y ∂z 1 ⎛ ∂z ⎞ ∂z 1 ∂z 1 = ⋅ ⎜1 + ⎟ ⇒ y − = ⇒ ∂x x + z ⎝ ∂x ⎠ ∂x x + z ∂x x + z 1 ⎞ ∂z 1 ∂z 1 ⎛ = ⇒ = ⎜⎝ y − ⎟⎠ x + z ∂x x + z ∂x y ( x + z ) − 1 y ∂z 1 ∂z 1 ⎞ ∂z ⎛ +z= ⋅ ⇒⎜y− = −z ⇒ ⎟ ∂y x + z ∂y ⎝ x + z ⎠ ∂y −z ( x + z ) ∂z = ∂y y ( x + z ) − 1 72) a) u = x 2 + y 2 ⇒ u xx = 2, u yy = 2, 2 + 2 ≠ 0 ⇒ No. b) u = x 2 − y 2 ⇒ u xx = 2, u yy = −2, 2 − 2 = 0 ⇒ Yes. c) u = x 3 + 3xy 2 ⇒ u xx = 6x, u yy = 6x, 6x + 6x ≠ 0 ⇒ No. d) u = ln x 2 + y 2 ux = u xx 1 1 ⋅ x 2 + y2 2 x 2 + y2 (x = 2 ) + y 2 ⋅1 − x ⋅ 2x (x 2 +y ) 2 2 By symmetry, u yy = = ⋅ 2x = x x + y2 2 −x 2 + y 2 (x + y2 2 ) 2 x 2 − y2 (x 2 + y2 ) 2 u xx + u yy = 0 ⇒ u is a solution. e) u = sin x cosh y + cos x sinh y u x = cos x cosh y − sin x sinh y u xx = − sin x cosh y − cos x sinh y u y = sin x sinh y + cos x cosh y u yy = sin x cosh y + cos x sinh y u xx + u yy = 0 ⇒ u is a solution. f) u = e− x cos y − e− y cos x u x = −e− x cos y + e− y sin x u xx = e− x cos y + e− y cos x u y = −e− x sin y + e− y cos x u yy = −e− x cos y − e− y cos x u xx + u yy = 0 ⇒ u is a solution. 80) T ( x, y ) = 60 1 + x 2 + y2 a) Tx = −60 ( 2x ) (1 + x 2 + y2 ) 2 −240 20 C ⇒ Tx ( 2,1) = =− 36 3 m b) Ty = −60 ( 2y ) (1 + x 2 + y2 Page 899 4) z = y ln x, (1, 4, 0 ) ) 2 −120 10 C ⇒ Ty ( 2,1) = =− 36 3 m z = f ( a,b ) + fx ( a,b ) ( x − a ) + fy ( a,b ) ( y − b ) y ⇒ fx (1, 4 ) = 4 x fy = ln x ⇒ fy (1, 4 ) = 0 f (1, 4 ) = 0; fx = z = 0 + 4 ( x − 1) + 0 ( y − 4 ) ⇒ z = 4x − 4 18) f ( 0, 0 ) = 1 y + cos 2 x = f ; (0, 0) fx = 1 2 y + cos 2 x ⋅ 2 cos x ( − sin x ) ⇒ fx ( 0, 0 ) = 0 1 1 fy = ⋅1 ⇒ fy ( 0, 0 ) = 2 2 y + cos 2 x y + cos 2 x ≈ 1 + 0 ⋅ x + 20) f ( x, y ) = ln ( x − 3y ) f ( 7, 2 ) = ln1 = 0 1 1 y = 1+ y 2 2 ( 7, 2 ) 1 ⋅1 ⇒ fx ( 7, 2 ) = 1 x − 3y 1 fy = ⋅ ( −3) ⇒ fy ( 7, 2 ) = −3 x − 3y fx = ln ( x − 3y ) ≈ 0 + 1( x − 7 ) − 3 ( y − 2 ) = x − 3y − 1 f ( 6.9, 2.06 ) ≈ −.28 Actual value = -.328
© Copyright 2026 Paperzz