Name: ____________________________ Practice: Exponential Functions 1. x -2 -1 0 1 y 128 32 8 2 c. Next = Now ____________ a. Initial Value: b. Growth/Decay Factor: d. y=____________________ e. Growth/Decay Rate: Starting at ____________ 2. x 1 2 3 4 y 6 18 54 162 c. Next = Now ____________ a. Initial Value: b. Growth/Decay Factor: d. y=____________________ e. Growth/Decay Rate: Starting at ____________ 3. x 0 1 2 3 y 4 .96 .2304 .055296 c. Next = Now ____________ a. Initial Value: b. Growth/Decay Factor: d. y=____________________ e. Growth/Decay Rate: Starting at ____________ 4. Given the following data from a large mouth bass population in a local pond to the right, find the exponential equation that models this situation. Let 0 represent the year 1970. YEAR POPULATION 1970 200 1971 300 1972 450 1973 675 YEAR POPULATION 2000 5 2001 6 2002 7.2 2003 8.64 5. The population of a state from 2000 to 2003 is recorded in the table below. What percent was the population growing by each year? 6. Write the equation of the exponential function modeled by each graph. (Hint: Make a table)! a. b. 7. (Review) Write an equation and Now-Next Rule for each function. (Hint, it may or may not be exponential!) x y -2 12 -1 3 0 0.75 1 0.1875 Comparing Linear and Exponential Functions 1. Lena has been offered a job with two salary options. The first option is modeled by the function f(x) = 500x + 31,000. The second option is represented by the function g(x) = 29,000(1.04) x after x years. a. Make two tables to compare her salary for the first five years. Option 1: Option 2: b. For which years would option 1 be a better choice? c. For which years would option 2 be a better choice? State the type (Linear, Exponential Growth, or Exponential Decay) of function and write an explicit (y=___) function and recursive (Next=Now ___ SA____) to model each. 2. 3. 4. 𝑥 1 2 𝑓(𝑥) 9 3 3 4 1 1/3 Type: _____________________ Type: _____________________ Type: _____________________ Explicit: ___________________ Explicit: ___________________ Explicit: ___________________ Recursive: _________________ Recursive: _________________ Recursive: _________________ Starting at: ______ Starting at: ______ Starting at: ______ 5. 6. 7. A population of bacteria in a kitchen sponge is tripling every hour. There are 100 bacteria at the start. Type: _____________________ Type: _____________________ Type: _____________________ Explicit: ___________________ Explicit: ___________________ Explicit: ___________________ Recursive: _________________ Recursive: _________________ Recursive: _________________ Starting at: ______ Starting at: ______ Starting at: ______ 8. x y -1 9. x y 20 -3 9 0 40 -2 12 1 80 -1 15 2 160 0 18 10. x y -4 20 -3 10 -2 5 -1 2.5 Type: _____________________ Type: _____________________ Type: _____________________ Explicit: ___________________ Explicit: ___________________ Explicit: ___________________ Recursive: _________________ Recursive: _________________ Recursive: _________________ Starting at: ______ Starting at: ______ Starting at: ______ 11. x y 1 1 2 3 3 9 4 27 12. A population of 350 rabbits 13. is doubling each year. There were 1,500 trees in a forest. Each year, are left. ! ! of the trees Type: _____________________ Type: _____________________ Type: _____________________ Explicit: ___________________ Explicit: ___________________ Explicit: ___________________ Recursive: _________________ Recursive: _________________ Recursive: _________________ Starting at: ______ Starting at: ______ Starting at: ______ 14. A cab company charges a 15. $5.00 flat fee, and $0.50 per mile. 16. Type: _____________________ Type: _____________________ Type: _____________________ Explicit: ___________________ Explicit: ___________________ Explicit: ___________________ Recursive: _________________ Recursive: _________________ Recursive: _________________ Starting at: ______ Starting at: ______ Starting at: ______
© Copyright 2025 Paperzz