Logarithmic Functions Continued Joseph Lee Metropolitan Community College Joseph Lee Logarithmic Functions Continued Antiderivative of 1 x Previously, we learned d 1 [ln |x|] = . Therefore, dx x Z 1 dx = ln |x| + C . x Joseph Lee Logarithmic Functions Continued Example 1. Z Evaluate the indefinite integral Joseph Lee 1 dx. 2x − 3 Logarithmic Functions Continued Example 1. Z Evaluate the indefinite integral 1 dx. 2x − 3 Solution. Let u = 2x − 3. Then du = 2dx. Z Z 1 1 2 dx = dx 2x − 3 2 2x − 3 Joseph Lee Logarithmic Functions Continued Example 1. Z Evaluate the indefinite integral 1 dx. 2x − 3 Solution. Let u = 2x − 3. Then du Z Z 1 1 dx = 2x − 3 2 Z 1 = 2 Joseph Lee = 2dx. 2 dx 2x − 3 du u Logarithmic Functions Continued Example 1. Z Evaluate the indefinite integral 1 dx. 2x − 3 Solution. Let u = 2x − 3. Then du Z Z 1 1 dx = 2x − 3 2 Z 1 = 2 = Joseph Lee = 2dx. 2 dx 2x − 3 du u 1 ln |u| + C 2 Logarithmic Functions Continued Example 1. Z Evaluate the indefinite integral 1 dx. 2x − 3 Solution. Let u = 2x − 3. Then du Z Z 1 1 dx = 2x − 3 2 Z 1 = 2 = 2dx. 2 dx 2x − 3 du u = 1 ln |u| + C 2 = 1 ln |2x − 3| + C 2 Joseph Lee Logarithmic Functions Continued Antiderivatives of sin x and cos x Z sin x dx = − cos x + C . Z cos x dx = − sin x + C . Joseph Lee Logarithmic Functions Continued Example 2. Z Evaluate the indefinite integral Joseph Lee tan x dx. Logarithmic Functions Continued Example 2. Z Evaluate the indefinite integral Solution. tan x dx. Z Z tan x dx = Joseph Lee sin x dx cos x Logarithmic Functions Continued Example 2. Z Evaluate the indefinite integral Solution. tan x dx. Z Z tan x dx = sin x dx cos x Let u = cos x. Then du = − sin x dx. Joseph Lee Logarithmic Functions Continued Example 2. Z Evaluate the indefinite integral Solution. tan x dx. Z Z tan x dx = sin x dx cos x Let u = cos x. Then du = − sin x dx. Z Z du sin x dx = − cos x u Joseph Lee Logarithmic Functions Continued Example 2. Z Evaluate the indefinite integral Solution. tan x dx. Z Z tan x dx = sin x dx cos x Let u = cos x. Then du = − sin x dx. Z Z du sin x dx = − cos x u = − ln |u| + C Joseph Lee Logarithmic Functions Continued Example 2. Z Evaluate the indefinite integral Solution. tan x dx. Z Z tan x dx = sin x dx cos x Let u = cos x. Then du = − sin x dx. Z Z du sin x dx = − cos x u = − ln |u| + C = − ln | cos x| + C Joseph Lee Logarithmic Functions Continued Example 3. Z Evaluate the indefinite integral Joseph Lee cot x dx. Logarithmic Functions Continued Example 3. Z Evaluate the indefinite integral Solution. cot x dx. Z Z cot x dx = Joseph Lee cos x dx sin x Logarithmic Functions Continued Example 3. Z Evaluate the indefinite integral Solution. cot x dx. Z Z cot x dx = cos x dx sin x Let u = sin x. Then du = cos x dx. Joseph Lee Logarithmic Functions Continued Example 3. Z Evaluate the indefinite integral Solution. cot x dx. Z Z cot x dx = cos x dx sin x Let u = sin x. Then du = cos x dx. Z Z cos x du dx = sin x u Joseph Lee Logarithmic Functions Continued Example 3. Z Evaluate the indefinite integral Solution. cot x dx. Z Z cot x dx = cos x dx sin x Let u = sin x. Then du = cos x dx. Z Z cos x du dx = sin x u = ln |u| + C Joseph Lee Logarithmic Functions Continued Example 3. Z Evaluate the indefinite integral Solution. cot x dx. Z Z cot x dx = cos x dx sin x Let u = sin x. Then du = cos x dx. Z Z cos x du dx = sin x u = ln |u| + C = ln | sin x| + C Joseph Lee Logarithmic Functions Continued Example 4. Z Evaluate the indefinite integral Joseph Lee sec x dx. Logarithmic Functions Continued Example 4. Z Evaluate the indefinite integral sec x dx. Solution. Z Z sec x dx = sec x sec x + tan x sec x + tan x Joseph Lee Z dx = sec2 x + sec x tan x dx sec x + tan x Logarithmic Functions Continued Example 4. Z Evaluate the indefinite integral sec x dx. Solution. Z Z sec x dx = sec x sec x + tan x sec x + tan x Z dx = sec2 x + sec x tan x dx sec x + tan x Let u = sec x + tan x. Then du = (sec x tan x + sec2 x) dx. Joseph Lee Logarithmic Functions Continued Example 4. Z Evaluate the indefinite integral sec x dx. Solution. Z Z sec x dx = sec x sec x + tan x sec x + tan x Z dx = sec2 x + sec x tan x dx sec x + tan x Let u = sec x + tan x. Then du = (sec x tan x + sec2 x) dx. Z sec2 x + sec x tan x dx = sec x + tan x Joseph Lee Z du u Logarithmic Functions Continued Example 4. Z Evaluate the indefinite integral sec x dx. Solution. Z Z sec x dx = sec x sec x + tan x sec x + tan x Z dx = sec2 x + sec x tan x dx sec x + tan x Let u = sec x + tan x. Then du = (sec x tan x + sec2 x) dx. Z sec2 x + sec x tan x dx = sec x + tan x Z du u = ln |u| + C Joseph Lee Logarithmic Functions Continued Example 4. Z Evaluate the indefinite integral sec x dx. Solution. Z Z sec x dx = sec x sec x + tan x sec x + tan x Z dx = sec2 x + sec x tan x dx sec x + tan x Let u = sec x + tan x. Then du = (sec x tan x + sec2 x) dx. Z sec2 x + sec x tan x dx = sec x + tan x Z du u = ln |u| + C = ln | sec x + tan x| + C Joseph Lee Logarithmic Functions Continued Example 5. Z Evaluate the indefinite integral Joseph Lee csc x dx. Logarithmic Functions Continued Example 5. Z Evaluate the indefinite integral csc x dx. Solution. Z Z csc x dx = csc x csc x + cot x csc x + cot x Joseph Lee Z dx = csc2 x + csc x cot x dx csc x + cot x Logarithmic Functions Continued Example 5. Z Evaluate the indefinite integral csc x dx. Solution. Z Z csc x dx = csc x csc x + cot x csc x + cot x Z dx = csc2 x + csc x cot x dx csc x + cot x Let u = csc x + cot x. Then du = −(csc x cot x + cot2 x) dx. Joseph Lee Logarithmic Functions Continued Example 5. Z Evaluate the indefinite integral csc x dx. Solution. Z Z csc x dx = csc x csc x + cot x csc x + cot x Z dx = csc2 x + csc x cot x dx csc x + cot x Let u = csc x + cot x. Then du = −(csc x cot x + cot2 x) dx. Z Z csc2 x + csc x cot x du dx = − csc x + cot x u Joseph Lee Logarithmic Functions Continued Example 5. Z Evaluate the indefinite integral csc x dx. Solution. Z Z csc x dx = csc x csc x + cot x csc x + cot x Z dx = csc2 x + csc x cot x dx csc x + cot x Let u = csc x + cot x. Then du = −(csc x cot x + cot2 x) dx. Z Z csc2 x + csc x cot x du dx = − csc x + cot x u = − ln |u| + C Joseph Lee Logarithmic Functions Continued Example 5. Z Evaluate the indefinite integral csc x dx. Solution. Z Z csc x dx = csc x csc x + cot x csc x + cot x Z dx = csc2 x + csc x cot x dx csc x + cot x Let u = csc x + cot x. Then du = −(csc x cot x + cot2 x) dx. Z Z csc2 x + csc x cot x du dx = − csc x + cot x u = − ln |u| + C = − ln | csc x + cot x| + C Joseph Lee Logarithmic Functions Continued Textbook Exercises Exercise 6 Exercise 12 Exercise 18 Exercise 24 Exercise 28 Exercise 36 Exercise 52 Exercise 72 Joseph Lee Logarithmic Functions Continued
© Copyright 2026 Paperzz