Math 170 Calculus I Exam III Review Solutions 1. Find dy/dx, using any method you prefer. (a) y = ln(x3 + 4x2 − 3x + 5) 3x2 + 8x − 3 y0 = 3 x + 4x2 − 3x + 5 (b) y = ln(ex ) y = ln(ex ) = x, so y 0 = 1 p (c) y = ln(2x3 ) 3 6x p y 0 = 12 (ln(2x3 ))−1/2 3 = 2 2x 2x ln(2x3 ) ex ln(x) ln(x)ex − ex x1 y0 = (ln(x))2 (d) y = (e) y = ex sin−1 (x) 1 y 0 = ex sin−1 (x) + ex √ 1 − x2 −1 3 (f) y = tan (4x ) 1 12x2 2) = y0 = (12x 1 + (4x3 )2 1 + 16x6 ! 1 + ex (g) y = ln 1 − ex # " (1 − ex )(ex ) − (1 + ex )(−ex ) 2ex d 1 + ex = = dx 1 − ex (1 − ex )2 (1 − ex )2 2ex 2ex (1 − ex ) 2ex (1 − ex )2 y0 = = = (1 − ex )2 (1 + ex ) (1 − ex )(1 + ex ) 1 + ex 1 − ex √ 2 (h) y = e √1−3x √ 2 2 y 0 = e 1−3x 21 (1 − 3x2 )−1/2 (−6x) = −3x(1 − 3x2 )−1/2 e 1−3x (i) y = sin−1 (x) + cos−1 (x) 1 1 y0 = √ −√ =0 1 − x2 1 − x2 2. Find y 0 : (a) x2 + y 2 = 5 2x + 2yy 0 = 0 2yy 0 = −2x − 2x x y0 = =− 2y y 2 3 (b) 3xy + 6y − 4x = 10 3y 2 + 6xyy 0 + 6y 0 − 12x2 = 0 6xyy 0 + 6y 0 = 12x2 − 3y 2 y 0 (6xy + 6) = 12x2 − 3y 2 12x2 − 3y 2 4x2 − y 2 y0 = = 6xy + 6 2xy + 2 (c) tan(xy) = y sec2 (xy)(y + xy 0 ) = y 0 sec2 (xy)y + sec2 (xy)xy 0 = y 0 sec2 (xy)y = y 0 − sec2 (xy)xy 0 = y 0 (1 − sec2 (xy)x) y sec2 (xy) 0 y = 1 − x sec2 (xy) 3. Find y 00 if x2 + y 2 = 50. Simplify your answer as much as possible. 2x + 2yy 0 = 0 x y0 = − y y − xy 0 y − x(−x/y) y 2 + x2 y 00 = − = − = − y2 y2 y3 4. Find y 0 using logarithmic differentiation if ! x2 − 5 (a) y = (x3 + 1)(3x4 − 5x2 + 2x) 3x4 + 6 ln(y) = ln(x2 − 5) − ln(3x4 + 6) + ln(x3 + 1) + ln(3x4 − 5x2 + 2x) 2x 12x3 3x2 12x3 − 10x + 2 y0 = − + + y x2 − 5 3x4 + 6 x3 + 1 3x4 − 5x2 + 2x ! ! 3 2 3 − 10x + 2 2−5 2x 12x 3x 12x x y0 = − + + (x3 + 1)(3x4 − 5x2 + 2x) x2 − 5 3x4 + 6 x3 + 1 3x4 − 5x2 + 2x 3x4 + 6 !4 √ x(x2 − 3) (b) y = √ 3 5x3 − 4x + 1 √ √ ln(y) = 4 ln( x(x2 − 3)) − 4 ln( 3 5x3 − 4x + 1) = 2 ln(x) + 4 ln(x2 − 3) − 43 ln(5x3 − 4x + 1) 8x 4(15x2 − 4) 2 y0 + − = y x x2 − 3 3(5x3 − 4x + 1) ! !4 √ 2 − 4) 2 − 3) 2 8x 4(15x x(x √ y0 = + − 3 x x2 − 3 3(5x3 − 4x + 1) 5x3 − 4x + 1 5. Two parallel sides of a rectangle are being lengthened at the rate of 2 in/sec, while the other two sides are shortened in such a way that the figure remains a rectangle with constant area 50 in2 . What is the rate of change of the perimeter of the rectangle when the length of an increasing side is 5 in? Is the perimeter increasing or decreasing? Let x be the length of a side that’s getting longer, and y be the length of a side that’s getting shorter. Note that we’re given dx/dt = 2. The area and perimeter of the rectangle would be 50 = xy, P = 2x + 2y The rate of change of the perimeter would be (taking derivatives with respect to x): dP dx dy dy =2 +2 = 2(2) + 2 dt dt dt dt We need to go back and find dy/dt, using the area formula’s derivative: d dy dx [50] = x + y dt dt dt dy + 2y dt When x = 5, we must have y = 10, since the area is fixed at 50. Now 0=x 0=5 dy + 2(10) dt so dy/dt = −4. Then dP dy =4+2 = 4 + 2(−4) = −4 dt dt So the perimeter is decreasing at a rate of 4 in/sec. 6. Find the limits: (a) x60 x→+∞ ex lim This is type ∞/∞, so we can use L’Hopital’s rule: x60 60x59 = lim lim x→+∞ ex x→+∞ ex That didn’t help! But we can keep doing it. Eventually, after taking enough derivatives, the numerator will be 0. The denominator never changes, since it’s derivative is always just ex . So after taking 61 derivatives, we get 0 x60 = lim x = 0 lim x→+∞ e x→+∞ ex (b) 5x3 − 4x + 3 x→+∞ 2x2 − 1 This is also type ∞/∞, so we can use L’Hopital’s rule (possibly more than once!): lim 5x3 − 4x + 3 15x2 − 4 30x = lim = lim =∞ 2 x→+∞ x→+∞ x→+∞ 4 2x − 1 4x lim ! 1 1 (c) lim − x→0 x sin(x) This one is type ∞ − ∞. We can’t use L’Hopital’s rule quite yet. We first need to rewrite the expression as something of type 0/0 or ∞/∞. The easiest way (in this case) is to find a common denominator: ! 1 1 sin(x) − x lim − = lim x→0 x x→0 sin(x) x sin(x) Now we can repeatedly use L’Hopital’s rule, stopping whenever we get a limit we can evaluate: cos(x) − 1 sin(x) − x lim = lim x→0 x→0 x cos(x) + sin(x) x sin(x) − sin(x) = lim =0 x→0 x sin(x) + cos(x) + cos(x) (d) √ lim ( x2 + x − x) x→+∞ Multiply by something equivalent to 1: a fraction with the same numerator and denominator, where both are the conjugate of the expression you started with: √ p p x2 + x + x x 2 2 lim ( x + x − x) = lim ( x + x − x) √ = lim √ 2 2 x→+∞ x→+∞ x→+∞ x +x+x x +x+x This is an indeterminate form (which type?) so we can use L’Hopital’s rule: p x lim ( x2 + x − x) = lim √ 2 x→+∞ x→+∞ x +x+x 1 = lim 1 2 −1/2 x→+∞ (x + x) (2x) + 1 2 1 1 1 = lim = = lim p x→+∞ x(x2 + x)−1/2 + 1 x→+∞ 2 1 + 1/x + 1 (e) lim (e2x − 1)x x→0+ NOT ON THE EXAM
© Copyright 2026 Paperzz