Exam 1

9LFWRULDQ&HUWL¿FDWHRI(GXFDWLRQ
2011
)857+(50$7+(0$7,&6
Written examination 1
)ULGD\1RYHPEHU
5HDGLQJWLPHDPWRQRRQPLQXWHV
:ULWLQJWLPHQRRQWRSPKRXUPLQXWHV
08/7,3/(&+2,&(48(67,21%22.
6WUXFWXUHRIERRN
Section
Number of
questions
Number of questions
to be answered
A
B
13
54
13
27
Number of
modules
6
Number of modules
to be answered
3
Number of
marks
13
27
Total 40
‡ 6WXGHQWVDUHSHUPLWWHGWREULQJLQWRWKHH[DPLQDWLRQURRPSHQVSHQFLOVKLJKOLJKWHUVHUDVHUV
VKDUSHQHUVUXOHUVRQHERXQGUHIHUHQFHRQHDSSURYHGJUDSKLFVFDOFXODWRURUDSSURYHG&$6
FDOFXODWRURU&$6VRIWZDUHDQGLIGHVLUHGRQHVFLHQWL¿FFDOFXODWRU&DOFXODWRUPHPRU\'2(6127
QHHGWREHFOHDUHG
‡ 6WXGHQWVDUH127SHUPLWWHGWREULQJLQWRWKHH[DPLQDWLRQURRPEODQNVKHHWVRISDSHUDQGRUZKLWH
RXWOLTXLGWDSH
0DWHULDOVVXSSOLHG
‡ 4XHVWLRQERRNRISDJHVZLWKDGHWDFKDEOHVKHHWRIPLVFHOODQHRXVIRUPXODVLQWKHFHQWUHIROG
‡ $QVZHUVKHHWIRUPXOWLSOHFKRLFHTXHVWLRQV
‡ :RUNLQJVSDFHLVSURYLGHGWKURXJKRXWWKHERRN
,QVWUXFWLRQV
‡ 'HWDFKWKHIRUPXODVKHHWIURPWKHFHQWUHRIWKLVERRNGXULQJUHDGLQJWLPH
‡ &KHFNWKDW\RXUname DQGVWXGHQWQXPEHUDVSULQWHGRQ\RXUDQVZHUVKHHWIRUPXOWLSOHFKRLFH
TXHVWLRQVDUHFRUUHFWDQGVLJQ\RXUQDPHLQWKHVSDFHSURYLGHGWRYHULI\WKLV
‡ 8QOHVVRWKHUZLVHLQGLFDWHGWKHGLDJUDPVLQWKLVERRNDUHnotGUDZQWRVFDOH
$WWKHHQGRIWKHH[DPLQDWLRQ
‡ <RXPD\NHHSWKLVTXHVWLRQERRN
6WXGHQWVDUH127SHUPLWWHGWREULQJPRELOHSKRQHVDQGRUDQ\RWKHUXQDXWKRULVHGHOHFWURQLF
GHYLFHVLQWRWKHH[DPLQDWLRQURRP
‹9,&725,$1&855,&8/80$1'$66(660(17$87+25,7<
)850$7+(;$0
7KLVSDJHLVEODQN
)850$7+(;$0
6(&7,21$
,QVWUXFWLRQVIRU6HFWLRQ$
$QVZHUDOOTXHVWLRQVLQSHQFLORQWKHDQVZHUVKHHWSURYLGHGIRUPXOWLSOHFKRLFHTXHVWLRQV
&KRRVHWKHUHVSRQVHWKDWLVcorrectIRUWKHTXHVWLRQ
$FRUUHFWDQVZHUVFRUHVDQLQFRUUHFWDQVZHUVFRUHV
0DUNVZLOOnotEHGHGXFWHGIRULQFRUUHFWDQVZHUV
1RPDUNVZLOOEHJLYHQLIPRUHWKDQRQHDQVZHULVFRPSOHWHGIRUDQ\TXHVWLRQ
&RUH'DWDDQDO\VLV
Use the following information to answer Questions 1, 2 and 3.
7KHKLVWRJUDPEHORZGLVSOD\VWKHGLVWULEXWLRQRIWKHSHUFHQWDJHRI,QWHUQHWXVHUVLQFRXQWULHVLQ
35
30
25
20
number of
countries
15
10
5
0
0
10
20
30
40
50
60
70
percentage of Internet users
80
90
100
%DVHGRQGDWDREWDLQHGIURPZZZGDWDXQRUJ
4XHVWLRQ
7KHVKDSHRIWKHKLVWRJUDPLVEHVWGHVFULEHGDV
$ DSSUR[LPDWHO\V\PPHWULF
% EHOOVKDSHG
& SRVLWLYHO\VNHZHG
' QHJDWLYHO\VNHZHG
( ELPRGDO
6(&7,21$±FRQWLQXHG
785129(5
)850$7+(;$0
4XHVWLRQ
7KHQXPEHURIFRXQWULHVLQZKLFKOHVVWKDQRISHRSOHDUH,QWHUQHWXVHUVLVFORVHVWWR
$ 10
% 16
& 22
' 32
( 54
4XHVWLRQ
)URPWKHKLVWRJUDPWKHPHGLDQSHUFHQWDJHRI,QWHUQHWXVHUVLVFORVHVWWR
$ % & ' ( 4XHVWLRQ
7KHYDULDEOHV
region FLW\XUEDQUXUDO
population density QXPEHURISHRSOHSHUVTXDUHNLORPHWUH
$
%
&
'
(
DUHERWKFDWHJRULFDO
DUHERWKQXPHULFDO
DUHFDWHJRULFDODQGQXPHULFDOUHVSHFWLYHO\
DUHQXPHULFDODQGFDWHJRULFDOUHVSHFWLYHO\
DUHQHLWKHUFDWHJRULFDOQRUQXPHULFDO
6(&7,21$±FRQWLQXHG
)850$7+(;$0
4XHVWLRQ
7KHER[SORWVEHORZGLVSOD\WKHGLVWULEXWLRQRIDYHUDJHSD\UDWHVLQGROODUVSHUKRXUHDUQHGE\ZRUNHUVLQ
FRXQWULHVIRUWKH\HDUVDQG
25
20
15
average pay rate ($/hour)
10
5
0
1980
1990
year
2000
%DVHGRQGDWDREWDLQHGIURPZZZGDWDXQRUJ
%DVHGRQWKHLQIRUPDWLRQFRQWDLQHGLQWKHER[SORWVZKLFKRQHRIWKHIROORZLQJVWDWHPHQWVLVnotWUXH"
$ ,QRYHURIWKHFRXQWULHVKDGDQDYHUDJHSD\UDWHOHVVWKDQSHUKRXU
% ,QRYHURIWKHFRXQWULHVKDGDQDYHUDJHSD\UDWHJUHDWHUWKDQSHUKRXU
& ,QWKHDYHUDJHSD\UDWHLQWKHWRSRIWKHFRXQWULHVZDVKLJKHUWKDQWKHDYHUDJHSD\UDWHIRUDQ\
RIWKHFRXQWULHVLQ
' ,QRYHURIWKHFRXQWULHVKDGDQDYHUDJHSD\UDWHOHVVWKDQWKHPHGLDQDYHUDJHSD\UDWHLQ
( ,QRYHURIWKHFRXQWULHVKDGDQDYHUDJHSD\UDWHJUHDWHUWKDQWKHPHGLDQDYHUDJHSD\UDWHLQ
6(&7,21$±FRQWLQXHG
785129(5
)850$7+(;$0
Use the following information to answer Questions 6, 7 and 8.
:KHQEORRGSUHVVXUHLVPHDVXUHGERWKWKHV\VWROLFRUPD[LPXPSUHVVXUHDQGWKHGLDVWROLFRUPLQLPXP
SUHVVXUHDUHUHFRUGHG
7DEOHGLVSOD\VWKHEORRGSUHVVXUHUHDGLQJVLQPP+JWKDWUHVXOWIURP¿IWHHQVXFFHVVLYHPHDVXUHPHQWVRI
WKHVDPHSHUVRQ¶VEORRGSUHVVXUH
7DEOH
%ORRGSUHVVXUH
5HDGLQJQXPEHU
V\VWROLF
GLDVWROLF
1
121
73
2
126
75
3
141
73
4
125
73
5
122
67
6
126
74
7
70
130
72
125
10
121
65
11
66
12
134
77
13
125
70
14
127
64
15
4XHVWLRQ
&RUUHFW WR RQH GHFLPDO SODFH WKH PHDQ DQG VWDQGDUG GHYLDWLRQ RI WKLV SHUVRQ¶V V\VWROLF EORRG SUHVVXUH
PHDVXUHPHQWVDUHUHVSHFWLYHO\
$ DQG
% DQG
& DQG
' DQG
( DQG
6(&7,21$±FRQWLQXHG
)850$7+(;$0
4XHVWLRQ
8VLQJV\VWROLFEORRGSUHVVXUHsystolicDVWKHGHSHQGHQWYDULDEOHDQGGLDVWROLFEORRGSUHVVXUHdiastolicDV
WKHLQGHSHQGHQWYDULDEOHDOHDVWVTXDUHVUHJUHVVLRQOLQHLV¿WWHGWRWKHGDWDLQ7DEOH
7KHHTXDWLRQRIWKHOHDVWVTXDUHVUHJUHVVLRQOLQHLVFORVHVWWR
$ systolic =+× diastolic
% diastolic =+× systolic
& systolic =+× diastolic
' diastolic =+× systolic
( systolic =+× diastolic
4XHVWLRQ
)URPWKH¿IWHHQEORRGSUHVVXUHPHDVXUHPHQWVIRUWKLVSHUVRQLWFDQEHFRQFOXGHGWKDWWKHSHUFHQWDJHRIWKH
YDULDWLRQLQV\VWROLFEORRGSUHVVXUHWKDWLVH[SODLQHGE\WKHYDULDWLRQLQGLDVWROLFEORRGSUHVVXUHLVFORVHVWWR
$ % & ' ( Use the following information to answer Questions 9 and 10.
7KH OHQJWK RI D W\SH RI DQW LV DSSUR[LPDWHO\ QRUPDOO\ GLVWULEXWHG ZLWK D PHDQ RI PP DQG D VWDQGDUG
GHYLDWLRQRIPP
4XHVWLRQ
)URPWKLVLQIRUPDWLRQLWFDQEHFRQFOXGHGWKDWDURXQGRIWKHOHQJWKVRIWKHVHDQWVVKRXOGOLHEHWZHHQ
$ PP DQG PP
% PP DQG PP
& PP DQG PP
' PP DQG PP
( PP DQG PP
4XHVWLRQ
$VWDQGDUGLVHGDQWOHQJWKRIz =±FRUUHVSRQGVWRDQDFWXDODQWOHQJWKRI
$ PP
% PP
& PP
' PP
( PP
6(&7,21$±FRQWLQXHG
785129(5
)850$7+(;$0
4XHVWLRQ
)RUDJURXSRI\HDUROGVWXGHQWVZKRUHJXODUO\SOD\HGFRPSXWHUJDPHVWKHFRUUHODWLRQEHWZHHQWKHWLPH
VSHQWSOD\LQJFRPSXWHUJDPHVDQG¿WQHVVOHYHOZDVIRXQGWREHr =±
2QWKHEDVLVRIWKLVLQIRUPDWLRQLWFDQEHFRQFOXGHGWKDW
$ RIWKHVHVWXGHQWVZHUHQRWYHU\¿W
% WKHVHVWXGHQWVZRXOGEHFRPH¿WWHULIWKH\VSHQWOHVVWLPHSOD\LQJFRPSXWHUJDPHV
& WKHVHVWXGHQWVZRXOGEHFRPH¿WWHULIWKH\VSHQWPRUHWLPHSOD\LQJFRPSXWHUJDPHV
' WKHVWXGHQWVLQWKHJURXSZKRVSHQWDVKRUWDPRXQWRIWLPHSOD\LQJFRPSXWHUJDPHVWHQGHGWREH¿WWHU
( WKHVWXGHQWVLQWKHJURXSZKRVSHQWDODUJHDPRXQWRIWLPHSOD\LQJFRPSXWHUJDPHVWHQGHGWREH¿WWHU
4XHVWLRQ
7KHVHDVRQDOLQGH[IRUKHDGDFKHWDEOHWVDOHVLQVXPPHULV
7RFRUUHFWIRUVHDVRQDOLW\WKHKHDGDFKHWDEOHWVDOHV¿JXUHVIRUVXPPHUVKRXOGEH
$ UHGXFHGE\
% UHGXFHGE\
& UHGXFHGE\
' LQFUHDVHGE\
( LQFUHDVHGE\
4XHVWLRQ
7KHWDEOHEHORZVKRZVWKHQXPEHURIEURDGEDQGXVHUVLQ$XVWUDOLDIRUHDFKRIWKH\HDUVIURPWR
Year
1XPEHU
2004
2005
2006
2007
1 012 000
2 016 000
5 140 000
%DVHGRQGDWDREWDLQHGIURPZZZGDWDZRUOGEDQNRUJ
$WZRSRLQWPRYLQJPHDQZLWKFHQWULQJLVXVHGWRVPRRWKWKHWLPHVHULHV
7KHVPRRWKHGYDOXHIRUWKHQXPEHURIEURDGEDQGXVHUVLQ$XVWUDOLDLQLV
$ % & 3 455 500
' 3 661 500
( (1'2)6(&7,21$
)850$7+(;$0
6(&7,21%
,QVWUXFWLRQVIRU6HFWLRQ%
6HOHFWWKUHHPRGXOHVDQGDQVZHUDOOTXHVWLRQVZLWKLQWKHPRGXOHVVHOHFWHGLQSHQFLORQWKHDQVZHU
VKHHWSURYLGHGIRUPXOWLSOHFKRLFHTXHVWLRQV
6KRZWKHPRGXOHV\RXDUHDQVZHULQJE\VKDGLQJWKHPDWFKLQJER[HVRQ\RXUPXOWLSOHFKRLFHDQVZHU
VKHHWDQGZULWLQJWKHQDPHRIWKHPRGXOHLQWKHER[SURYLGHG
&KRRVHWKHUHVSRQVHWKDWLVcorrectIRUWKHTXHVWLRQ
$FRUUHFWDQVZHUVFRUHVDQLQFRUUHFWDQVZHUVFRUHV
0DUNVZLOOnotEHGHGXFWHGIRULQFRUUHFWDQVZHUV
1RPDUNVZLOOEHJLYHQLIPRUHWKDQRQHDQVZHULVFRPSOHWHGIRUDQ\TXHVWLRQ
0RGXOH
0RGXOH1XPEHUSDWWHUQV
0RGXOH*HRPHWU\DQGWULJRQRPHWU\
0RGXOH*UDSKVDQGUHODWLRQV
0RGXOH%XVLQHVVUHODWHGPDWKHPDWLFV
0RGXOH1HWZRUNVDQGGHFLVLRQPDWKHPDWLFV
0RGXOH0DWULFHV
3DJH
6(&7,21%±FRQWLQXHG
785129(5
2011 FURMATH EXAM 1
10
Module 1: Number patterns
Before answering these questions you must shade the Number patterns box on the answer sheet for
multiple-choice questions and write the name of the module in the box provided.
Question 1
Stefan swam laps of his pool each day last week.
The number of laps he swam each day followed a geometric sequence.
He swam 1 lap on Monday, 2 laps on Tuesday and 4 laps on Wednesday.
The number of laps that he swam on Thursday was
A.
5
B.
6
C.
8
D. 12
E. 16
Question 2
7KH¿UVWWKUHHWHUPVRIDQDULWKPHWLFVHTXHQFHDUH±±±
An expression for the nth term of this sequence, tn , is
A. tn = 1 – 4n
B. tn = 1 – 8n
C. tn =±±n
D. tn =±+ 4n
E. tn =±+ 4n
SECTION B – Module 1: Number patterns – continued
11
2011 FURMATH EXAM 1
Question 3
An
8
0
1
2
3
4
5
n
–8
7KHJUDSKDERYHVKRZVWKH¿UVW¿YHWHUPVRIDVHTXHQFH
Let An be the nWKWHUPRIWKHVHTXHQFH
$GLIIHUHQFHHTXDWLRQWKDWJHQHUDWHVWKHWHUPVRIWKLVVHTXHQFHLV
where
A1 = 8
A. An+1 = 2An – 2
B.
An+1 = 3An
where
A1 = 8
C.
An+1 = –2An
where
A1 = 8
D.
1
An+1 = An
2
where
A1 = 8
E.
An+1 = –An – 1
where
A1 = 8
Question 4
7KHQXPEHURIEHHVLQDFRORQ\ZDVUHFRUGHGIRUWKUHHPRQWKVDQGWKHUHVXOWVDUHGLVSOD\HGLQWKHWDEOHEHORZ
Month
1
2
3
Number of bees
10
30
90
,IWKLVSDWWHUQRILQFUHDVHFRQWLQXHVZKLFKRQHRIWKHIROORZLQJVWDWHPHQWVLVnot true?
A. 7KHUHZLOOEHQLQHWLPHVDVPDQ\EHHVLQWKHFRORQ\LQPRQWKWKDQLQPRQWK
B. ,QPRQWKWKHQXPEHURIEHHVZLOOHTXDO
C. ,QPRQWKWKHQXPEHURIEHHVZLOOHTXDO
D. ,QPRQWKWKHQXPEHURIEHHVZLOOH[FHHG
E. ,QPRQWKWKHQXPEHURIEHHVZLOOEHXQGHU
SECTION B – Module 1: Number patterns – continued
TURN OVER
)850$7+(;$0
4XHVWLRQ
7KHGLIIHUHQFHHTXDWLRQ
tn+2 = tn+1 + tn ZKHUH t1 = a DQG t2 = 7
JHQHUDWHVDVHTXHQFHZLWKt5 7KHYDOXHRIaLV
$ 0
% 1
& 2
' 3
( 4
4XHVWLRQ
)RUZKLFKRQHRIWKHIROORZLQJJHRPHWULFVHTXHQFHVLVDQLQ¿QLWHVXPnotDEOHWREHGHWHUPLQHG"
1
$ 2
% 1
& ±± 2
1 1 1
' 2 4 8
1 1 1
( ± 2 4 8
4XHVWLRQ
/HWP2011EHWKHQXPEHURISDLUVRIVKRHVWKDW6LHQQDRZQVDWWKHHQGRI
$WWKHEHJLQQLQJRI6LHQQDSODQVWRWKURZRXWWKHROGHVWRISDLUVRIVKRHVWKDWVKHRZQHGLQ
'XULQJVKHSODQVWREX\QHZSDLUVRIVKRHVWRDGGWRKHUFROOHFWLRQ
/HWP2012EHWKHQXPEHURISDLUVRIVKRHVWKDW6LHQQDRZQVDWWKHHQGRI
$UXOHWKDWHQDEOHVP2012WREHGHWHUPLQHGIURPP2011LV
$
%
&
'
(
P2012
P2012
P2012
P2012
P2012
P2011 + 15
P2011
P2011 + 15
P2011
P2011 + 15
4XHVWLRQ
7KH¿UVWWKUHHWHUPVRIDQDULWKPHWLFVHTXHQFHDUH
7KHVXPRIWKH¿UVWnWHUPVRIWKLVVHTXHQFHSnLV
$ Sn = n2
% Sn = n2– n
& Sn = 2n
' Sn = 2n – 1
( Sn = 2n + 1
6(&7,21%±0RGXOH1XPEHUSDWWHUQV±FRQWLQXHG
13
)850$7+(;$0
4XHVWLRQ
$WR\WUDLQWUDFNFRQVLVWVRIDQXPEHURISLHFHVRIWUDFNZKLFKMRLQWRJHWKHU
7KHVKRUWHVWSLHFHRIWKHWUDFNLVFHQWLPHWUHVORQJDQGHDFKSLHFHRIWUDFNDIWHUWKHVKRUWHVWLVFHQWLPHWUHV
ORQJHUWKDQWKHSUHYLRXVSLHFH
7KHWRWDOOHQJWKRIWKHFRPSOHWHWUDFNLVPHWUHV
7KHOHQJWKRIWKHORQJHVWSLHFHRIWUDFNLQFHQWLPHWUHVLV
$ 21
% 47
& ' 55
( 57
6(&7,21%±FRQWLQXHG
785129(5
)850$7+(;$0
0RGXOH *HRPHWU\DQGWULJRQRPHWU\
%HIRUHDQVZHULQJWKHVHTXHVWLRQV\RXPXVWVKDGHWKH*HRPHWU\DQGWULJRQRPHWU\ER[RQWKHDQVZHU
VKHHWIRUPXOWLSOHFKRLFHTXHVWLRQVDQGZULWHWKHQDPHRIWKHPRGXOHLQWKHER[SURYLGHG
4XHVWLRQ
,QWULDQJOHABC ‘ BCA ƒDQGAB = BC
B
x°
A
69°
C
7KHYDOXHRIxLV
$
42
% & ' 111
( 4XHVWLRQ
P
16 m
Q
building A
building B
23 m
7KHSRLQWQRQEXLOGLQJBLVYLVLEOHIURPWKHSRLQWPRQEXLOGLQJADVVKRZQLQWKHGLDJUDPDERYH
%XLOGLQJALVPHWUHVWDOOHUWKDQEXLOGLQJB
7KHKRUL]RQWDOGLVWDQFHEHWZHHQSRLQWPDQGSRLQWQLVPHWUHV
7KHDQJOHRIGHSUHVVLRQRISRLQWQIURPSRLQWPLVFORVHVWWR
$ ƒ
% ƒ
& ƒ
' ƒ
( ƒ
6(&7,21%±0RGXOH*HRPHWU\DQGWULJRQRPHWU\±FRQWLQXHG
15
)850$7+(;$0
4XHVWLRQ
7KHUDGLXVRIDFLUFOHLVFHQWLPHWUHV
$VTXDUHKDVWKHVDPHDUHDDVWKLVFLUFOH
7KHOHQJWKRIHDFKVLGHRIWKHVTXDUHLQFHQWLPHWUHVLVFORVHVWWR
$ % & ' ( 4XHVWLRQ
,QWULDQJOH ACB‘CAB ƒDQG‘ABC ƒ
7KHOHQJWKRIVLGHAB P
C
60°
A
80°
50 m
B
7KHOHQJWKRIVLGHAC LVFORVHVWWR
$ P
% P
& P
' P
( P
6(&7,21%±0RGXOH*HRPHWU\DQGWULJRQRPHWU\±FRQWLQXHG
785129(5
)850$7+(;$0
4XHVWLRQ
$ULJKWS\UDPLGVKRZQEHORZKDVDUHFWDQJXODUEDVHZLWKOHQJWKPDQGZLGWKP
7KHKHLJKWRIWKHS\UDPLGLVP
V
2m
C
3m
O
4m
7KHDQJOHVCOWKDWWKHVORSLQJHGJHVCPDNHVZLWKWKHEDVHRIWKHS\UDPLGWRWKHQHDUHVWGHJUHHLV
$ ƒ
% ƒ
& ƒ
' ƒ
( ƒ
4XHVWLRQ
,QSDUDOOHORJUDPPQRS‘QPS ƒ
,QWKLVSDUDOOHORJUDPPQ FPDQGPS FP
Q
R
18 cm
74°
P
25 cm
S
7KHOHQJWKRIWKHORQJHUGLDJRQDORIWKLVSDUDOOHORJUDPLVFORVHVWWR
$ FP
% FP
& FP
' FP
( FP
6(&7,21%±0RGXOH*HRPHWU\DQGWULJRQRPHWU\±FRQWLQXHG
)850$7+(;$0
17
4XHVWLRQ
7KHVWUXFWXUHRIDURRIIUDPHLVVKRZQLQWKHGLDJUDPEHORZ
,QWKLVGLDJUDPAB = BC = CD PPDQG ‘PAB ƒ
R
Q
P
A
16°
2400 mm
B
2400 mm
2400 mm
C
D
7KHOHQJWKRIQDLQPPLVFORVHVWWR
$ 2741
% 2767
& ' ( 5201
4XHVWLRQ
7KHGLDJUDPEHORZVKRZVDFURVVVHFWLRQPQRSRIDVZLPPLQJSRRO
7KHVZLPPLQJSRROLVPHWUHVORQJDQGWKHGHSWKLQFUHDVHVXQLIRUPO\IURPPHWUHDWWKHVKDOORZHQGWR
PHWUHVDWWKHGHHSHQG
11 m
8m
Q
T
R
shallow end 1 m
1.8 m deep end
P
U
S
7KHGHSWKRIWKHZDWHUDWDSRLQWPHWUHVIURPWKHVKDOORZHQGUHSUHVHQWHGE\TURQWKHGLDJUDPLVFORVHVWWR
$ PHWUHV
% PHWUHV
& PHWUHV
' PHWUHV
( PHWUHV
6(&7,21%±0RGXOH*HRPHWU\DQGWULJRQRPHWU\±FRQWLQXHG
785129(5
)850$7+(;$0
4XHVWLRQ
,QWKHGLDJUDPEHORZ ‘ABD = ‘$&% șƒ
BD FPDQGBC FP
7KHDUHDRIWULDQJOHABDLVFP2
A
D
24 cm
șƒ
șƒ
B
40 cm
C
7KHDUHDRIWULDQJOHABCLQFP2LVFORVHVWWR
$ 167
% & 267
' ( 6(&7,21%±FRQWLQXHG
)850$7+(;$0
0RGXOH *UDSKVDQGUHODWLRQV
%HIRUHDQVZHULQJWKHVHTXHVWLRQV\RXPXVWVKDGHWKH*UDSKVDQGUHODWLRQVER[RQWKHDQVZHUVKHHWIRU
PXOWLSOHFKRLFHTXHVWLRQVDQGZULWHWKHQDPHRIWKHPRGXOHLQWKHER[SURYLGHG
Use the following information to answer Questions 1 and 2.
7KHFKDUJHVIRUSRVWLQJOHWWHUVWKDWZHLJKJRUOHVVDUHVKRZQLQWKHJUDSKEHORZ
charge ($)
2.00
1.50
1.00
0.50
0
0
10
20
30
40
50
60
70
80
90
100
weight (grams)
4XHVWLRQ
7KHFKDUJHIRUSRVWLQJDJOHWWHULV
$ % & ' ( 4XHVWLRQ
7ZROHWWHUVDUHSRVWHG
7KHWRWDOSRVWDJHFKDUJHcannotEH
$ % & ' ( 6(&7,21%±0RGXOH*UDSKVDQGUHODWLRQV±FRQWLQXHG
785129(5
)850$7+(;$0
4XHVWLRQ
7ZROLQHVLQWHUVHFWDWSRLQWARQDJUDSK
7KHHTXDWLRQRIRQHRIWKHOLQHVLV
3x + 4y = 26
7KHFRRUGLQDWHVRISRLQWAFRXOGEH
$ % & ' ( 4XHVWLRQ
7KHIDUHFWRWUDYHODGLVWDQFHRInNLORPHWUHVLQDWD[LLVJLYHQE\WKHUXOH
F = a + bn
7RWUDYHODGLVWDQFHRINLORPHWUHVWKHWD[LIDUHLV
7RWUDYHODGLVWDQFHRINLORPHWUHVWKHWD[LIDUHLV
7KHFKDUJHSHUNLORPHWUHbLV
$ % & ' ( 4XHVWLRQ
7KHFRVWCRIPDNLQJxNLORJUDPVRIFKRFRODWHIXGJHLVJLYHQE\C = 60 + 5x.
7KHUHYHQXHRIURPVHOOLQJxNLORJUDPVRIFKRFRODWHIXGJHLVJLYHQE\R = 15x.
$SDUWLFXODUTXDQWLW\RIFKRFRODWHIXGJHZDVPDGHDQGVROG,WUHVXOWHGLQDORVVRI
7KHQXPEHURINLORJUDPVRIFKRFRODWHIXGJHPDGHDQGVROGZDV
$
2
%
4
& ' 12
( 16
6(&7,21%±0RGXOH*UDSKVDQGUHODWLRQV±FRQWLQXHG
)850$7+(;$0
21
4XHVWLRQ
$QHZVDJHQWKDVIRXUWKLFNPDJD]LQHVDQGIRXUWKLQPDJD]LQHV
7KHPDJD]LQHVDUHVWDFNHGRQHE\RQHLQWRDSLOH
7KHWKLFNPDJD]LQHVDUHDOOSODFHGLQWKHERWWRPSDUWRIWKHSLOHDQGWKHWKLQPDJD]LQHVDUHDOOSODFHGLQWKH
WRSSDUWRIWKHSLOH
$JUDSKWKDWLQGLFDWHVWKHFKDQJLQJKHLJKWRIWKHSLOHRIPDJD]LQHVDVHDFKPDJD]LQHLVDGGHGWRWKHSLOHFRXOGEH
A.
B.
height
height
number of
magazines
D.
C.
height
height
number of
magazines
E.
number of
magazines
number of
magazines
height
number of
magazines
6(&7,21%±0RGXOH*UDSKVDQGUHODWLRQV±FRQWLQXHG
785129(5
2011 FURMATH EXAM 1
22
Use the following information to answer Questions 7, 8 and 9.
Craig plays sport and computer games every Saturday.
Let x be the number of hours that he spends playing sport.
Let y be the number of hours that he spends playing computer games.
Craig has placed some constraints on the amount of time that he spends playing sport and computer games.
7KHVHFRQVWUDLQWVGH¿QHWKHIHDVLEOHUHJLRQVKRZQVKDGHGLQWKHJUDSKEHORZ7KHHTXDWLRQVRIWKHOLQHVWKDW
GH¿QHWKHERXQGDULHVRIWKHIHDVLEOHUHJLRQDUHDOVRVKRZQ
y
10
x=2
9
8
x+y=9
A
7
6
5
B
2x + y = 6
4
3
4x – y = 11
2
1
O
E
y=1
D
1
2
C
3
4
5
x
Question 7
2QHRIWKHFRQVWUDLQWVWKDWGH¿QHVWKHIHDVLEOHUHJLRQLV
y”
A.
B.
x”
C.
x + y•
D. 2x + y”
E. 4x – y”
Question 8
By spending Saturday playing sport and computer games, Craig believes he can improve his health.
Let W be the health rating Craig achieves by spending a day playing sport and computer games.
The value of W is determined by using the rule W = 5x – 2y.
)RUWKHIHDVLEOHUHJLRQVKRZQLQWKHJUDSKDERYHWKHPD[LPXPYDOXHRIW occurs at
A. point A
B. point B
C. point C
D. point D
E. point E
SECTION B – Module 3: Graphs and relations – continued
23
)850$7+(;$0
4XHVWLRQ
%\VSHQGLQJ6DWXUGD\SOD\LQJVSRUWDQGFRPSXWHUJDPHV&UDLJEHOLHYHVWKDWKHFDQLPSURYHKLVPHQWDODOHUWQHVV
/HWMEHWKHPHQWDODOHUWQHVVUDWLQJWKDW&UDLJDFKLHYHVE\VSHQGLQJDGD\SOD\LQJVSRUWDQGFRPSXWHUJDPHV
)RUWKHIHDVLEOHUHJLRQVKRZQLQWKHJUDSKRQSDJHWKHPD[LPXPYDOXHRIMRFFXUVDWDQ\SRLQWWKDWOLHV
RQWKHOLQHWKDWMRLQVSRLQWVADQGBLQWKHIHDVLEOHUHJLRQ
7KHUXOHIRUMFRXOGEH
$ M = 2x – 5y
% M = 5x – 2y
& M = 5x – 5y
' M = 5x + 2y
( M = 5x + 5y
6(&7,21%±FRQWLQXHG
785129(5
2011 FURMATH EXAM 1
24
Module 4: Business-related mathematics
Before answering these questions you must shade the Business-related mathematics box on the answer
sheet for multiple-choice questions and write the name of the module in the box provided.
Question 1
An electrician charges $68 per hour to complete a job.
A Goods and Services Tax (GST) of 10% is added to the charge.
Including GST, the cost of a job that takes three hours is
A.
$6.80
B.
$20.40
C. $204.00
D. $210.80
E. $224.40
Question 2
An amount of $22 000 is invested for three years at an interest rate of 3.5% per annum, compounding annually.
The value of the investment at the end of three years is closest to
A.
$2 310
B.
$9 433
C. $24 040
D. $24 392
E. $31 433
Question 3
A van is purchased for $56 000.
Its value depreciates at a rate of 42 cents for each kilometre that it travels.
The value of the van after it has travelled 32 000 km is
A. $13 440
B. $26 880
C. $29 120
D. $32 480
E. $42 560
Question 4
Nathan bought a $2 500 bedroom suite on a contract that involves no deposit and an interest-free loan for a
period of 48 months.
He has to pay an initial set-up fee of $25.
In addition, he pays an administration fee of $3.95 per month.
The total amount that Nathan will have to pay in fees for the entire 48 months, as a percentage of the original
price of $2 500, is closest to
A. 1.6%
B. 4.0%
C. 7.6%
D. 8.5%
E. 8.6%
SECTION B – Module 4: Business-related mathematics – continued
25
)850$7+(;$0
4XHVWLRQ
-DQHLQYHVWVLQDQRUGLQDU\SHUSHWXLW\WRSURYLGHKHUZLWKDZHHNO\SD\PHQWRI
7KHLQWHUHVWUDWHIRUWKHLQYHVWPHQWLVSHUDQQXP
$VVXPLQJWKHUHDUHZHHNVSHU\HDUWKHDPRXQWWKDW-DQHQHHGVWRLQYHVWLQWKHSHUSHWXLW\LVFORVHVWWR
$ % & ' ( 4XHVWLRQ
6KDXQGHFLGHVWREX\DQHZVRXQGV\VWHPRQDWLPHSD\PHQWKLUHSXUFKDVHSODQ
7KHVRXQGV\VWHPLVSULFHGDW
6KDXQSD\VDGHSRVLWRIDQGUHSD\PHQWVRISHUPRQWKIRU¿YH\HDUV
7KHÀDWUDWHRILQWHUHVWFKDUJHGSHUDQQXPFRUUHFWWRRQHGHFLPDOSODFHLV
$ % & ' ( 4XHVWLRQ
$QWKRQ\LQYHVWHGLQDQDFFRXQW,WHDUQHGrLQWHUHVWSHUDQQXPFRPSRXQGLQJPRQWKO\
7KHDPRXQWRILQWHUHVWWKDWLVHDUQHGLQWKHWKLUG\HDURIWKHLQYHVWPHQWLVJLYHQE\
3
2
$
r ⎞
r ⎞
⎛
⎛
15000 ⎜1 +
⎟ − 15000 ⎜1 +
⎟
⎝ 1200 ⎠
⎝ 1200 ⎠
%
r ⎞
r ⎞
⎛
⎛
15000 ⎜1 +
⎟ − 15000 ⎜ 1 +
⎟
⎝ 1200 ⎠
⎝ 1200 ⎠
&
r ⎞
r ⎞
⎛
⎛
15000 ⎜1 +
⎟ − 15000 ⎜ 1 +
⎟
⎝ 100 ⎠
⎝ 100 ⎠
'
r ⎞
r ⎞
⎛
⎛
15000 ⎜1 +
⎟ − 15000 ⎜ 1 +
⎟
100
100
⎠
⎠
⎝
⎝
(
r ⎞
r ⎞
⎛
⎛
15000 ⎜1 +
⎟ − 15000 ⎜1 +
⎟
⎝ 1200 ⎠
⎝ 1200 ⎠
36
3
36
4
24
2
24
3
6(&7,21%±0RGXOH%XVLQHVVUHODWHGPDWKHPDWLFV±FRQWLQXHG
785129(5
)850$7+(;$0
4XHVWLRQ
7HUHVDERUURZHGDWDQLQWHUHVWUDWHRISHUDQQXPFRPSRXQGLQJPRQWKO\
7KHORDQLVWREHUHSDLGZLWKHTXDOPRQWKO\SD\PHQWV
6KHGHFLGHVWRUHSD\WKHORDQE\PDNLQJPRQWKO\SD\PHQWVRI
:KLFKRIWKHIROORZLQJVWDWHPHQWVLVWUXH"
$ 6KHZLOOSD\RXWWKHORDQIXOO\LQOHVVWKDQWHQ\HDUV
% 7KHDPRXQWRILQWHUHVWWKDWVKHSD\VRQWKHORDQZLOOLQFUHDVHHDFK\HDU
& $IWHUIRXU\HDUVWKHDPRXQWWKDWVKHRZHVRQWKHORDQZLOOEHOHVVWKDQ
' (YHU\PRQWKO\SD\PHQWWKDWVKHPDNHVUHGXFHVWKHDPRXQWWKDWVKHRZHVRQWKHORDQE\WKHVDPHDPRXQW
( 0RQWKO\SD\PHQWVRILQVWHDGRIZLOOHQDEOHKHUWRUHSD\WKLVORDQLQOHVVWKDQQLQH\HDUV
4XHVWLRQ
;DYLHUERUURZVIURPWKHEDQNWREX\DFDU
+HLVRIIHUHGDUHGXFLQJEDODQFHORDQIRUWKUHH\HDUVZLWKDQLQWHUHVWUDWHRISHUDQQXPFRPSRXQGLQJ
PRQWKO\
+HFDQUHSD\WKLVORDQE\PDNLQJHTXDOPRQWKO\SD\PHQWV
,QVWHDG;DYLHUGHFLGHVWRUHSD\WKHORDQLQHTXDOPRQWKO\SD\PHQWV
,IWKHUHDUHQRSHQDOWLHVIRUUHSD\LQJWKHORDQHDUO\WKHDPRXQWKHZLOOVDYHLVFORVHVWWR
$ % & ' ( 6(&7,21%±FRQWLQXHG
27
)850$7+(;$0
0RGXOH 1HWZRUNVDQGGHFLVLRQPDWKHPDWLFV
%HIRUHDQVZHULQJWKHVHTXHVWLRQV\RXPXVWVKDGHWKH1HWZRUNVDQGGHFLVLRQPDWKHPDWLFVER[RQWKH
DQVZHUVKHHWIRUPXOWLSOHFKRLFHTXHVWLRQVDQGZULWHWKHQDPHRIWKHPRGXOHLQWKHER[SURYLGHG
4XHVWLRQ
,QWKHQHWZRUNVKRZQWKHQXPEHURIYHUWLFHVRIHYHQGHJUHHLV
$ 2
% 3
& 4
' 5
( 6
4XHVWLRQ
7KHJUDSKEHORZVKRZVWKHRQHVWHSGRPLQDQFHVEHWZHHQIRXUIDUPGRJV.LS/DE0D[DQG1LP
,QWKLVJUDSKDQDUURZIURP/DEWR.LSLQGLFDWHVWKDW/DEKDVDRQHVWHSGRPLQDQFHRYHU.LS
Kip
Lab
Nim
Max
)URPWKLVJUDSKLWFDQEHFRQFOXGHGWKDW.LSKDVDWZRVWHSGRPLQDQFHRYHU
$ 0D[RQO\
% 1LPRQO\
& /DEDQG1LPRQO\
' DOORIWKHRWKHUWKUHHGRJV
( QRQHRIWKHRWKHUWKUHHGRJV
6(&7,21%±0RGXOH1HWZRUNVDQGGHFLVLRQPDWKHPDWLFV±FRQWLQXHG
785129(5
)850$7+(;$0
Use the following information to answer Questions 3 and 4.
7KHPDSRI$XVWUDOLDVKRZVWKHVL[VWDWHVWKH1RUWKHUQ7HUULWRU\DQGWKH$XVWUDOLDQ&DSLWDO7HUULWRU\$&7
Northern
Territory
Queensland
Western
Australia
South
Australia
New South
Wales
ACT
Victoria
Tasmania
,QWKHQHWZRUNGLDJUDPEHORZHDFKRIWKHYHUWLFHV$WR+UHSUHVHQWVRQHRIWKHVWDWHVRUWHUULWRULHVVKRZQRQ
WKHPDSRI$XVWUDOLD7KHHGJHVUHSUHVHQWDERUGHUVKDUHGEHWZHHQWZRVWDWHVRUEHWZHHQDVWDWHDQGDWHUULWRU\
E
D
A
B
C
F
G
H
4XHVWLRQ
,QWKHQHWZRUNGLDJUDPWKHRUGHURIWKHYHUWH[WKDWUHSUHVHQWVWKH$XVWUDOLDQ&DSLWDO7HUULWRU\$&7LV
$ 0
% 1
& 2
' 3
( 4
4XHVWLRQ
,QWKHQHWZRUNGLDJUDP4XHHQVODQGLVUHSUHVHQWHGE\
$ YHUWH[A
% YHUWH[B
& YHUWH[C
' YHUWH[D
( YHUWH[E
6(&7,21%±0RGXOH1HWZRUNVDQGGHFLVLRQPDWKHPDWLFV±FRQWLQXHG
)850$7+(;$0
4XHVWLRQ
$QHWZRUNLVUHSUHVHQWHGE\WKHIROORZLQJJUDSK
:KLFKRQHRIWKHIROORZLQJJUDSKVFRXOGnotEHXVHGWRUHSUHVHQWWKHVDPHQHWZRUN"
$
%
&
'
(
6(&7,21%±0RGXOH1HWZRUNVDQGGHFLVLRQPDWKHPDWLFV±FRQWLQXHG
785129(5
2011 FURMATH EXAM 1
30
Question 6
$VWRUHPDQDJHULVGLUHFWO\LQFKDUJHRI¿YHGHSDUWPHQWPDQDJHUV
(DFKGHSDUWPHQWPDQDJHULVGLUHFWO\LQFKDUJHRIVL[VDOHVSHRSOHLQWKHLUGHSDUWPHQW
7KLVVWDI¿QJVWUXFWXUHFRXOGEHUHSUHVHQWHGJUDSKLFDOO\E\
A. DWUHH
B. DFLUFXLW
C. DQ(XOHUSDWK
D. D+DPLOWRQLDQSDWK
E. DFRPSOHWHJUDSK
Question 7
$QG\%ULDQDQG&DOHEPXVWFRPSOHWHWKUHHDFWLYLWLHVLQWRWDOK, L and M
7KHWDEOHVKRZVWKHSHUVRQVHOHFWHGWRFRPSOHWHHDFKDFWLYLW\WKHWLPHLWZLOOWDNHWRFRPSOHWHWKHDFWLYLW\LQ
PLQXWHVDQGWKHLPPHGLDWHSUHGHFHVVRUIRUHDFKDFWLYLW\
Person
Activity
Duration
Immediate predecessor
Andy
K
13
–
Brian
L
5
K
&DOHE
M
16
L
$OOWKUHHDFWLYLWLHVPXVWEHFRPSOHWHGLQDWRWDORIPLQXWHV
7KHLQVWDQWWKDW$QG\VWDUWVKLVDFWLYLW\&DOHEJHWVDWHOHSKRQHFDOO
7KHPD[LPXPWLPHLQPLQXWHVWKDW&DOHEFDQVSHDNRQWKHWHOHSKRQHEHIRUHKHPXVWVWDUWKLVDOORFDWHGDFWLYLW\LV
A.
5
B. 13
C. 18
D. E. SECTION B – Module 5: Networks and decision mathematics – continued
)850$7+(;$0
31
4XHVWLRQ
7KHGLDJUDPVKRZVWKHWDVNVWKDWPXVWEHFRPSOHWHGLQDSURMHFW
$OVRVKRZQDUHWKHFRPSOHWLRQWLPHVLQPLQXWHVIRUHDFKWDVN
E, 4
B, 3
start
A, 4
dummy
D, 2
H, 3
L, 2
I, 2
F, 7
K, 4
finish
C, 5
G, 6
dummy
J, 5
7KHFULWLFDOSDWKIRUWKLVSURMHFWLQFOXGHVDFWLYLWLHV
$ BDQGI
% CDQGH
& DDQGE
' FDQGK
( GDQGJ
4XHVWLRQ
$Q(XOHUSDWKWKURXJKDQHWZRUNFRPPHQFHVDWYHUWH[PDQGHQGVDWYHUWH[Q
&RQVLGHUWKHIROORZLQJ¿YHVWDWHPHQWVDERXWWKLV(XOHUSDWKDQGQHWZRUN
‡
‡
‡
‡
‡
,QWKHQHWZRUNWKHUHFRXOGEHWKUHHYHUWLFHVZLWKGHJUHHHTXDOWRRQH
7KHSDWKFRXOGKDYHSDVVHGWKURXJKDQLVRODWHGYHUWH[
7KHSDWKFRXOGKDYHLQFOXGHGYHUWH[QPRUHWKDQRQFH
7KHVXPRIWKHGHJUHHVRIYHUWLFHVPDQGQFRXOGHTXDOVHYHQ
7KHVXPRIWKHGHJUHHVRIDOOYHUWLFHVLQWKHQHWZRUNFRXOGHTXDOVHYHQ
+RZPDQ\RIWKHVHVWDWHPHQWVDUHWUXH"
$ 0
% 1
& 2
' 3
( 4
6(&7,21%±FRQWLQXHG
785129(5
2011 FURMATH EXAM 1
32
Module 6: Matrices
Before answering these questions you must shade the Matrices box on the answer sheet for
multiple-choice questions and write the name of the module in the box provided.
Question 1
The matrix below shows the airfares (in dollars) that are charged by Zeniff Airlines to fly between
Adelaide (A), Melbourne (M) and Sydney (S).
from
A
M
S
0
85
89 A
85
0
99 M
97 101
to
0 S
7KHFRVWWRÀ\IURP0HOERXUQHWR6\GQH\ZLWK=HQLII$LUOLQHVLV
A.
$85
B.
$89
C.
$97
D.
$99
E. $101
Question 2
⎡0 1 ⎤
⎡1 ⎤
, B = ⎢ ⎥ and C =
If A = ⎢
⎥
⎣1 0 ⎦
⎣0 ⎦
A.
⎡0 ⎤
⎢3 ⎥
⎣ ⎦
B.
⎡3 ⎤
⎢0 ⎥
⎣ ⎦
C.
⎡1 ⎤
⎢2⎥
⎣ ⎦
D.
⎡2⎤
⎢0 ⎥
⎣ ⎦
E.
⎡2⎤
⎢3 ⎥
⎣ ⎦
⎡0 ⎤
⎢1 ⎥ , then AB + 2C equals
⎣ ⎦
SECTION B – Module 6: Matrices – continued
)850$7+(;$0
33
4XHVWLRQ
(DFKRIWKHIROORZLQJIRXUPDWUL[HTXDWLRQVUHSUHVHQWVDV\VWHPRIVLPXOWDQHRXVOLQHDUHTXDWLRQV
1 3
x
0 2
y
1 1
x
2 2
y
1 0
x
0 2
y
0 3
x
0 2
y
4
=
8
5
=
3
4
=
8
6
=
12
+RZPDQ\RIWKHVHV\VWHPVRIVLPXOWDQHRXVOLQHDUHTXDWLRQVKDYHDXQLTXHVROXWLRQ"
$ 0
% 1
& 2
' 3
( 4
4XHVWLRQ
0DWUL[ALVDîPDWUL[
0DWUL[BLVDîPDWUL[
:KLFKRQHRIWKHIROORZLQJPDWUL[H[SUHVVLRQVLVGH¿QHG"
$ BA2
% BA – 2A
& A + 2B
' B2 – AB
( A–1
6(&7,21%±0RGXOH0DWULFHV±FRQWLQXHG
785129(5
2011 FURMATH EXAM 1
34
Use the following information to answer Questions 5 and 6.
Two politicians, Rob and Anna, are the only candidates for a forthcoming election. At the beginning of the
election campaign, people were asked for whom they planned to vote. The numbers were as follows.
Candidate
Number of people who plan
to vote for the candidate
Rob
5692
Anna
3450
During the election campaign, it is expected that people may change the candidate that they plan to vote for
each week according to the following transition diagram.
24%
75%
Rob
Anna
76%
25%
Question 5
The total number of people who are expected to change the candidate that they plan to vote for one week after
the election campaign begins is
A.
828
B. 1423
C. 2251
D. 4269
E. 6891
Question 6
The election campaign will run for ten weeks.
If people continue to follow this pattern of changing the candidate they plan to vote for, the expected winner
after ten weeks will be
A. Rob by about 50 votes.
B. Rob by about 100 votes.
C. Rob by fewer than 10 votes.
D. Anna by about 100 votes.
E. Anna by about 200 votes.
SECTION B – Module 6: Matrices – continued
)850$7+(;$0
35
4XHVWLRQ
(DFKQLJKWDODUJHJURXSRIPRXQWDLQJRDWVVOHHSDWRQHRIWZRORFDWLRQVARUB
2QWKH¿UVWQLJKWHTXDOQXPEHUVRIJRDWVDUHREVHUYHGWREHVOHHSLQJDWHDFKORFDWLRQ
)URPQLJKWWRQLJKWJRDWVFKDQJHWKHLUVOHHSLQJORFDWLRQVDFFRUGLQJWRDWUDQVLWLRQPDWUL[T
,WLVH[SHFWHGWKDWLQWKHORQJWHUPPRUHJRDWVZLOOVOHHSDWORFDWLRQAWKDQDWORFDWLRQB
$VVXPLQJWKHWRWDOQXPEHURIJRDWVUHPDLQVFRQVWDQWDWUDQVLWLRQPDWUL[TWKDWZRXOGSUHGLFWWKLVRXWFRPHLV
%
$
T=
this night
this night
A
0.8
B
0.4 A
A
0.7
B
0.1 A
0.2
0.6 B
0.3
0.9 B
next night
&
T=
next night
'
T=
this night
this night
A
0.5
B
0.5 A
A
0.6
B
0.2 A
0.5
0.5 B
0.4
0.8 B
next night
T=
next night
(
this night
T=
A
0.1
B
0.8 A
0.9
0.2 B
next night
6(&7,21%±0RGXOH0DWULFHV±FRQWLQXHG
785129(5
)850$7+(;$0
4XHVWLRQ
&RQVLGHUWKHIROORZLQJPDWUL[A
A=
3
k
–4
–3
ALVHTXDOWRLWVLQYHUVHA–1IRUDSDUWLFXODUYDOXHRIk
7KLVYDOXHRIkLV
$ –4
% –2
&
0
'
2
(
4
4XHVWLRQ
0DWUL[ALVDîPDWUL[6HYHQRIWKHHOHPHQWVLQPDWUL[ADUH]HUR
0DWUL[BFRQWDLQVVL[HOHPHQWVQRQHRIZKLFKDUH]HUR
$VVXPLQJWKHPDWUL[SURGXFWABLVGH¿QHGWKHPLQLPXPQXPEHURI]HURHOHPHQWVLQWKHSURGXFWPDWUL[ABLV
$ 0
% 1
& 2
' 4
( 6
(1'2)08/7,3/(&+2,&(48(67,21%22.
FURTHER MATHEMATICS
Written examinations 1 and 2
FORMULA SHEET
Directions to students
Detach this formula sheet during reading time.
This formula sheet is provided for your reference.
© VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2011
FURMATH EX 1 & 2
2
Further Mathematics Formulas
Core: Data analysis
x−x
sx
standardised score:
z=
least squares line:
y = a + bx where b = r
residual value:
residual value = actual value – predicted value
seasonal index:
seasonal index =
sy
sx
and a = y − bx
actual figure
deseasonalised figure
Module 1: Number patterns
arithmetic series:
n
n
a + (a + d ) + … + (a + (n – 1)d ) =  2a + ( n − 1) d  = ( a + l )
2
2
geometric series:
a + ar + ar2 + … + arn–1 =
infinite geometric series:
a + ar + ar2 + ar3 + … =
a (1 − r n )
,r≠1
1− r
a
, r <1
1− r
Module 2: Geometry and trigonometry
area of a triangle:
1
bc sin A
2
Heron’s formula:
A=
circumference of a circle:
2π r
area of a circle:
π r 2
volume of a sphere:
4 3
π r 3
surface area of a sphere:
4π r 2
volume of a cone:
1 2
π r h
3
volume of a cylinder:
π r 2h
volume of a prism:
area of base × height
volume of a pyramid:
1
area of base × height
3
1
s ( s − a )( s − b)( s − c) where s = (a + b + c)
2
3
FURMATH EX 1 & 2
Pythagoras’ theorem:
c2 = a2 + b2
sine rule:
a
b
c
= =
sin A sin B sin C
cosine rule:
c2 = a2 + b2 – 2ab cos C
Module 3: Graphs and relations
Straight line graphs
y2 − y1
x2 − x1
gradient (slope):
m=
equation:
y = mx + c
Module 4: Business-related mathematics
PrT
100
simple interest:
I=
compound interest:
A = PRn where R = 1 +
hire purchase:
effective rate of interest ≈
r
100
2n
× flat rate
n +1
Module 5: Networks and decision mathematics
Euler’s formula:
v+f=e+2
Module 6: Matrices
determinant of a 2 × 2 matrix:
a b
a b 
; det A =
A=
= ad − bc

c d
c d 
inverse of a 2 × 2 matrix:
A−1 =
1  d −b 
where det A ≠ 0
det A  −c a 
END OF FORMULA SHEET