9LFWRULDQ&HUWL¿FDWHRI(GXFDWLRQ 2011 )857+(50$7+(0$7,&6 Written examination 1 )ULGD\1RYHPEHU 5HDGLQJWLPHDPWRQRRQPLQXWHV :ULWLQJWLPHQRRQWRSPKRXUPLQXWHV 08/7,3/(&+2,&(48(67,21%22. 6WUXFWXUHRIERRN Section Number of questions Number of questions to be answered A B 13 54 13 27 Number of modules 6 Number of modules to be answered 3 Number of marks 13 27 Total 40 6WXGHQWVDUHSHUPLWWHGWREULQJLQWRWKHH[DPLQDWLRQURRPSHQVSHQFLOVKLJKOLJKWHUVHUDVHUV VKDUSHQHUVUXOHUVRQHERXQGUHIHUHQFHRQHDSSURYHGJUDSKLFVFDOFXODWRURUDSSURYHG&$6 FDOFXODWRURU&$6VRIWZDUHDQGLIGHVLUHGRQHVFLHQWL¿FFDOFXODWRU&DOFXODWRUPHPRU\'2(6127 QHHGWREHFOHDUHG 6WXGHQWVDUH127SHUPLWWHGWREULQJLQWRWKHH[DPLQDWLRQURRPEODQNVKHHWVRISDSHUDQGRUZKLWH RXWOLTXLGWDSH 0DWHULDOVVXSSOLHG 4XHVWLRQERRNRISDJHVZLWKDGHWDFKDEOHVKHHWRIPLVFHOODQHRXVIRUPXODVLQWKHFHQWUHIROG $QVZHUVKHHWIRUPXOWLSOHFKRLFHTXHVWLRQV :RUNLQJVSDFHLVSURYLGHGWKURXJKRXWWKHERRN ,QVWUXFWLRQV 'HWDFKWKHIRUPXODVKHHWIURPWKHFHQWUHRIWKLVERRNGXULQJUHDGLQJWLPH &KHFNWKDW\RXUname DQGVWXGHQWQXPEHUDVSULQWHGRQ\RXUDQVZHUVKHHWIRUPXOWLSOHFKRLFH TXHVWLRQVDUHFRUUHFWDQGVLJQ\RXUQDPHLQWKHVSDFHSURYLGHGWRYHULI\WKLV 8QOHVVRWKHUZLVHLQGLFDWHGWKHGLDJUDPVLQWKLVERRNDUHnotGUDZQWRVFDOH $WWKHHQGRIWKHH[DPLQDWLRQ <RXPD\NHHSWKLVTXHVWLRQERRN 6WXGHQWVDUH127SHUPLWWHGWREULQJPRELOHSKRQHVDQGRUDQ\RWKHUXQDXWKRULVHGHOHFWURQLF GHYLFHVLQWRWKHH[DPLQDWLRQURRP 9,&725,$1&855,&8/80$1'$66(660(17$87+25,7< )850$7+(;$0 7KLVSDJHLVEODQN )850$7+(;$0 6(&7,21$ ,QVWUXFWLRQVIRU6HFWLRQ$ $QVZHUDOOTXHVWLRQVLQSHQFLORQWKHDQVZHUVKHHWSURYLGHGIRUPXOWLSOHFKRLFHTXHVWLRQV &KRRVHWKHUHVSRQVHWKDWLVcorrectIRUWKHTXHVWLRQ $FRUUHFWDQVZHUVFRUHVDQLQFRUUHFWDQVZHUVFRUHV 0DUNVZLOOnotEHGHGXFWHGIRULQFRUUHFWDQVZHUV 1RPDUNVZLOOEHJLYHQLIPRUHWKDQRQHDQVZHULVFRPSOHWHGIRUDQ\TXHVWLRQ &RUH'DWDDQDO\VLV Use the following information to answer Questions 1, 2 and 3. 7KHKLVWRJUDPEHORZGLVSOD\VWKHGLVWULEXWLRQRIWKHSHUFHQWDJHRI,QWHUQHWXVHUVLQFRXQWULHVLQ 35 30 25 20 number of countries 15 10 5 0 0 10 20 30 40 50 60 70 percentage of Internet users 80 90 100 %DVHGRQGDWDREWDLQHGIURPZZZGDWDXQRUJ 4XHVWLRQ 7KHVKDSHRIWKHKLVWRJUDPLVEHVWGHVFULEHGDV $ DSSUR[LPDWHO\V\PPHWULF % EHOOVKDSHG & SRVLWLYHO\VNHZHG ' QHJDWLYHO\VNHZHG ( ELPRGDO 6(&7,21$±FRQWLQXHG 785129(5 )850$7+(;$0 4XHVWLRQ 7KHQXPEHURIFRXQWULHVLQZKLFKOHVVWKDQRISHRSOHDUH,QWHUQHWXVHUVLVFORVHVWWR $ 10 % 16 & 22 ' 32 ( 54 4XHVWLRQ )URPWKHKLVWRJUDPWKHPHGLDQSHUFHQWDJHRI,QWHUQHWXVHUVLVFORVHVWWR $ % & ' ( 4XHVWLRQ 7KHYDULDEOHV region FLW\XUEDQUXUDO population density QXPEHURISHRSOHSHUVTXDUHNLORPHWUH $ % & ' ( DUHERWKFDWHJRULFDO DUHERWKQXPHULFDO DUHFDWHJRULFDODQGQXPHULFDOUHVSHFWLYHO\ DUHQXPHULFDODQGFDWHJRULFDOUHVSHFWLYHO\ DUHQHLWKHUFDWHJRULFDOQRUQXPHULFDO 6(&7,21$±FRQWLQXHG )850$7+(;$0 4XHVWLRQ 7KHER[SORWVEHORZGLVSOD\WKHGLVWULEXWLRQRIDYHUDJHSD\UDWHVLQGROODUVSHUKRXUHDUQHGE\ZRUNHUVLQ FRXQWULHVIRUWKH\HDUVDQG 25 20 15 average pay rate ($/hour) 10 5 0 1980 1990 year 2000 %DVHGRQGDWDREWDLQHGIURPZZZGDWDXQRUJ %DVHGRQWKHLQIRUPDWLRQFRQWDLQHGLQWKHER[SORWVZKLFKRQHRIWKHIROORZLQJVWDWHPHQWVLVnotWUXH" $ ,QRYHURIWKHFRXQWULHVKDGDQDYHUDJHSD\UDWHOHVVWKDQSHUKRXU % ,QRYHURIWKHFRXQWULHVKDGDQDYHUDJHSD\UDWHJUHDWHUWKDQSHUKRXU & ,QWKHDYHUDJHSD\UDWHLQWKHWRSRIWKHFRXQWULHVZDVKLJKHUWKDQWKHDYHUDJHSD\UDWHIRUDQ\ RIWKHFRXQWULHVLQ ' ,QRYHURIWKHFRXQWULHVKDGDQDYHUDJHSD\UDWHOHVVWKDQWKHPHGLDQDYHUDJHSD\UDWHLQ ( ,QRYHURIWKHFRXQWULHVKDGDQDYHUDJHSD\UDWHJUHDWHUWKDQWKHPHGLDQDYHUDJHSD\UDWHLQ 6(&7,21$±FRQWLQXHG 785129(5 )850$7+(;$0 Use the following information to answer Questions 6, 7 and 8. :KHQEORRGSUHVVXUHLVPHDVXUHGERWKWKHV\VWROLFRUPD[LPXPSUHVVXUHDQGWKHGLDVWROLFRUPLQLPXP SUHVVXUHDUHUHFRUGHG 7DEOHGLVSOD\VWKHEORRGSUHVVXUHUHDGLQJVLQPP+JWKDWUHVXOWIURP¿IWHHQVXFFHVVLYHPHDVXUHPHQWVRI WKHVDPHSHUVRQ¶VEORRGSUHVVXUH 7DEOH %ORRGSUHVVXUH 5HDGLQJQXPEHU V\VWROLF GLDVWROLF 1 121 73 2 126 75 3 141 73 4 125 73 5 122 67 6 126 74 7 70 130 72 125 10 121 65 11 66 12 134 77 13 125 70 14 127 64 15 4XHVWLRQ &RUUHFW WR RQH GHFLPDO SODFH WKH PHDQ DQG VWDQGDUG GHYLDWLRQ RI WKLV SHUVRQ¶V V\VWROLF EORRG SUHVVXUH PHDVXUHPHQWVDUHUHVSHFWLYHO\ $ DQG % DQG & DQG ' DQG ( DQG 6(&7,21$±FRQWLQXHG )850$7+(;$0 4XHVWLRQ 8VLQJV\VWROLFEORRGSUHVVXUHsystolicDVWKHGHSHQGHQWYDULDEOHDQGGLDVWROLFEORRGSUHVVXUHdiastolicDV WKHLQGHSHQGHQWYDULDEOHDOHDVWVTXDUHVUHJUHVVLRQOLQHLV¿WWHGWRWKHGDWDLQ7DEOH 7KHHTXDWLRQRIWKHOHDVWVTXDUHVUHJUHVVLRQOLQHLVFORVHVWWR $ systolic =+× diastolic % diastolic =+× systolic & systolic =+× diastolic ' diastolic =+× systolic ( systolic =+× diastolic 4XHVWLRQ )URPWKH¿IWHHQEORRGSUHVVXUHPHDVXUHPHQWVIRUWKLVSHUVRQLWFDQEHFRQFOXGHGWKDWWKHSHUFHQWDJHRIWKH YDULDWLRQLQV\VWROLFEORRGSUHVVXUHWKDWLVH[SODLQHGE\WKHYDULDWLRQLQGLDVWROLFEORRGSUHVVXUHLVFORVHVWWR $ % & ' ( Use the following information to answer Questions 9 and 10. 7KH OHQJWK RI D W\SH RI DQW LV DSSUR[LPDWHO\ QRUPDOO\ GLVWULEXWHG ZLWK D PHDQ RI PP DQG D VWDQGDUG GHYLDWLRQRIPP 4XHVWLRQ )URPWKLVLQIRUPDWLRQLWFDQEHFRQFOXGHGWKDWDURXQGRIWKHOHQJWKVRIWKHVHDQWVVKRXOGOLHEHWZHHQ $ PP DQG PP % PP DQG PP & PP DQG PP ' PP DQG PP ( PP DQG PP 4XHVWLRQ $VWDQGDUGLVHGDQWOHQJWKRIz =±FRUUHVSRQGVWRDQDFWXDODQWOHQJWKRI $ PP % PP & PP ' PP ( PP 6(&7,21$±FRQWLQXHG 785129(5 )850$7+(;$0 4XHVWLRQ )RUDJURXSRI\HDUROGVWXGHQWVZKRUHJXODUO\SOD\HGFRPSXWHUJDPHVWKHFRUUHODWLRQEHWZHHQWKHWLPH VSHQWSOD\LQJFRPSXWHUJDPHVDQG¿WQHVVOHYHOZDVIRXQGWREHr =± 2QWKHEDVLVRIWKLVLQIRUPDWLRQLWFDQEHFRQFOXGHGWKDW $ RIWKHVHVWXGHQWVZHUHQRWYHU\¿W % WKHVHVWXGHQWVZRXOGEHFRPH¿WWHULIWKH\VSHQWOHVVWLPHSOD\LQJFRPSXWHUJDPHV & WKHVHVWXGHQWVZRXOGEHFRPH¿WWHULIWKH\VSHQWPRUHWLPHSOD\LQJFRPSXWHUJDPHV ' WKHVWXGHQWVLQWKHJURXSZKRVSHQWDVKRUWDPRXQWRIWLPHSOD\LQJFRPSXWHUJDPHVWHQGHGWREH¿WWHU ( WKHVWXGHQWVLQWKHJURXSZKRVSHQWDODUJHDPRXQWRIWLPHSOD\LQJFRPSXWHUJDPHVWHQGHGWREH¿WWHU 4XHVWLRQ 7KHVHDVRQDOLQGH[IRUKHDGDFKHWDEOHWVDOHVLQVXPPHULV 7RFRUUHFWIRUVHDVRQDOLW\WKHKHDGDFKHWDEOHWVDOHV¿JXUHVIRUVXPPHUVKRXOGEH $ UHGXFHGE\ % UHGXFHGE\ & UHGXFHGE\ ' LQFUHDVHGE\ ( LQFUHDVHGE\ 4XHVWLRQ 7KHWDEOHEHORZVKRZVWKHQXPEHURIEURDGEDQGXVHUVLQ$XVWUDOLDIRUHDFKRIWKH\HDUVIURPWR Year 1XPEHU 2004 2005 2006 2007 1 012 000 2 016 000 5 140 000 %DVHGRQGDWDREWDLQHGIURPZZZGDWDZRUOGEDQNRUJ $WZRSRLQWPRYLQJPHDQZLWKFHQWULQJLVXVHGWRVPRRWKWKHWLPHVHULHV 7KHVPRRWKHGYDOXHIRUWKHQXPEHURIEURDGEDQGXVHUVLQ$XVWUDOLDLQLV $ % & 3 455 500 ' 3 661 500 ( (1'2)6(&7,21$ )850$7+(;$0 6(&7,21% ,QVWUXFWLRQVIRU6HFWLRQ% 6HOHFWWKUHHPRGXOHVDQGDQVZHUDOOTXHVWLRQVZLWKLQWKHPRGXOHVVHOHFWHGLQSHQFLORQWKHDQVZHU VKHHWSURYLGHGIRUPXOWLSOHFKRLFHTXHVWLRQV 6KRZWKHPRGXOHV\RXDUHDQVZHULQJE\VKDGLQJWKHPDWFKLQJER[HVRQ\RXUPXOWLSOHFKRLFHDQVZHU VKHHWDQGZULWLQJWKHQDPHRIWKHPRGXOHLQWKHER[SURYLGHG &KRRVHWKHUHVSRQVHWKDWLVcorrectIRUWKHTXHVWLRQ $FRUUHFWDQVZHUVFRUHVDQLQFRUUHFWDQVZHUVFRUHV 0DUNVZLOOnotEHGHGXFWHGIRULQFRUUHFWDQVZHUV 1RPDUNVZLOOEHJLYHQLIPRUHWKDQRQHDQVZHULVFRPSOHWHGIRUDQ\TXHVWLRQ 0RGXOH 0RGXOH1XPEHUSDWWHUQV 0RGXOH*HRPHWU\DQGWULJRQRPHWU\ 0RGXOH*UDSKVDQGUHODWLRQV 0RGXOH%XVLQHVVUHODWHGPDWKHPDWLFV 0RGXOH1HWZRUNVDQGGHFLVLRQPDWKHPDWLFV 0RGXOH0DWULFHV 3DJH 6(&7,21%±FRQWLQXHG 785129(5 2011 FURMATH EXAM 1 10 Module 1: Number patterns Before answering these questions you must shade the Number patterns box on the answer sheet for multiple-choice questions and write the name of the module in the box provided. Question 1 Stefan swam laps of his pool each day last week. The number of laps he swam each day followed a geometric sequence. He swam 1 lap on Monday, 2 laps on Tuesday and 4 laps on Wednesday. The number of laps that he swam on Thursday was A. 5 B. 6 C. 8 D. 12 E. 16 Question 2 7KH¿UVWWKUHHWHUPVRIDQDULWKPHWLFVHTXHQFHDUH±±± An expression for the nth term of this sequence, tn , is A. tn = 1 – 4n B. tn = 1 – 8n C. tn =±±n D. tn =±+ 4n E. tn =±+ 4n SECTION B – Module 1: Number patterns – continued 11 2011 FURMATH EXAM 1 Question 3 An 8 0 1 2 3 4 5 n –8 7KHJUDSKDERYHVKRZVWKH¿UVW¿YHWHUPVRIDVHTXHQFH Let An be the nWKWHUPRIWKHVHTXHQFH $GLIIHUHQFHHTXDWLRQWKDWJHQHUDWHVWKHWHUPVRIWKLVVHTXHQFHLV where A1 = 8 A. An+1 = 2An – 2 B. An+1 = 3An where A1 = 8 C. An+1 = –2An where A1 = 8 D. 1 An+1 = An 2 where A1 = 8 E. An+1 = –An – 1 where A1 = 8 Question 4 7KHQXPEHURIEHHVLQDFRORQ\ZDVUHFRUGHGIRUWKUHHPRQWKVDQGWKHUHVXOWVDUHGLVSOD\HGLQWKHWDEOHEHORZ Month 1 2 3 Number of bees 10 30 90 ,IWKLVSDWWHUQRILQFUHDVHFRQWLQXHVZKLFKRQHRIWKHIROORZLQJVWDWHPHQWVLVnot true? A. 7KHUHZLOOEHQLQHWLPHVDVPDQ\EHHVLQWKHFRORQ\LQPRQWKWKDQLQPRQWK B. ,QPRQWKWKHQXPEHURIEHHVZLOOHTXDO C. ,QPRQWKWKHQXPEHURIEHHVZLOOHTXDO D. ,QPRQWKWKHQXPEHURIEHHVZLOOH[FHHG E. ,QPRQWKWKHQXPEHURIEHHVZLOOEHXQGHU SECTION B – Module 1: Number patterns – continued TURN OVER )850$7+(;$0 4XHVWLRQ 7KHGLIIHUHQFHHTXDWLRQ tn+2 = tn+1 + tn ZKHUH t1 = a DQG t2 = 7 JHQHUDWHVDVHTXHQFHZLWKt5 7KHYDOXHRIaLV $ 0 % 1 & 2 ' 3 ( 4 4XHVWLRQ )RUZKLFKRQHRIWKHIROORZLQJJHRPHWULFVHTXHQFHVLVDQLQ¿QLWHVXPnotDEOHWREHGHWHUPLQHG" 1 $ 2 % 1 & ±± 2 1 1 1 ' 2 4 8 1 1 1 ( ± 2 4 8 4XHVWLRQ /HWP2011EHWKHQXPEHURISDLUVRIVKRHVWKDW6LHQQDRZQVDWWKHHQGRI $WWKHEHJLQQLQJRI6LHQQDSODQVWRWKURZRXWWKHROGHVWRISDLUVRIVKRHVWKDWVKHRZQHGLQ 'XULQJVKHSODQVWREX\QHZSDLUVRIVKRHVWRDGGWRKHUFROOHFWLRQ /HWP2012EHWKHQXPEHURISDLUVRIVKRHVWKDW6LHQQDRZQVDWWKHHQGRI $UXOHWKDWHQDEOHVP2012WREHGHWHUPLQHGIURPP2011LV $ % & ' ( P2012 P2012 P2012 P2012 P2012 P2011 + 15 P2011 P2011 + 15 P2011 P2011 + 15 4XHVWLRQ 7KH¿UVWWKUHHWHUPVRIDQDULWKPHWLFVHTXHQFHDUH 7KHVXPRIWKH¿UVWnWHUPVRIWKLVVHTXHQFHSnLV $ Sn = n2 % Sn = n2– n & Sn = 2n ' Sn = 2n – 1 ( Sn = 2n + 1 6(&7,21%±0RGXOH1XPEHUSDWWHUQV±FRQWLQXHG 13 )850$7+(;$0 4XHVWLRQ $WR\WUDLQWUDFNFRQVLVWVRIDQXPEHURISLHFHVRIWUDFNZKLFKMRLQWRJHWKHU 7KHVKRUWHVWSLHFHRIWKHWUDFNLVFHQWLPHWUHVORQJDQGHDFKSLHFHRIWUDFNDIWHUWKHVKRUWHVWLVFHQWLPHWUHV ORQJHUWKDQWKHSUHYLRXVSLHFH 7KHWRWDOOHQJWKRIWKHFRPSOHWHWUDFNLVPHWUHV 7KHOHQJWKRIWKHORQJHVWSLHFHRIWUDFNLQFHQWLPHWUHVLV $ 21 % 47 & ' 55 ( 57 6(&7,21%±FRQWLQXHG 785129(5 )850$7+(;$0 0RGXOH *HRPHWU\DQGWULJRQRPHWU\ %HIRUHDQVZHULQJWKHVHTXHVWLRQV\RXPXVWVKDGHWKH*HRPHWU\DQGWULJRQRPHWU\ER[RQWKHDQVZHU VKHHWIRUPXOWLSOHFKRLFHTXHVWLRQVDQGZULWHWKHQDPHRIWKHPRGXOHLQWKHER[SURYLGHG 4XHVWLRQ ,QWULDQJOHABC BCA DQGAB = BC B x° A 69° C 7KHYDOXHRIxLV $ 42 % & ' 111 ( 4XHVWLRQ P 16 m Q building A building B 23 m 7KHSRLQWQRQEXLOGLQJBLVYLVLEOHIURPWKHSRLQWPRQEXLOGLQJADVVKRZQLQWKHGLDJUDPDERYH %XLOGLQJALVPHWUHVWDOOHUWKDQEXLOGLQJB 7KHKRUL]RQWDOGLVWDQFHEHWZHHQSRLQWPDQGSRLQWQLVPHWUHV 7KHDQJOHRIGHSUHVVLRQRISRLQWQIURPSRLQWPLVFORVHVWWR $ % & ' ( 6(&7,21%±0RGXOH*HRPHWU\DQGWULJRQRPHWU\±FRQWLQXHG 15 )850$7+(;$0 4XHVWLRQ 7KHUDGLXVRIDFLUFOHLVFHQWLPHWUHV $VTXDUHKDVWKHVDPHDUHDDVWKLVFLUFOH 7KHOHQJWKRIHDFKVLGHRIWKHVTXDUHLQFHQWLPHWUHVLVFORVHVWWR $ % & ' ( 4XHVWLRQ ,QWULDQJOH ACBCAB DQGABC 7KHOHQJWKRIVLGHAB P C 60° A 80° 50 m B 7KHOHQJWKRIVLGHAC LVFORVHVWWR $ P % P & P ' P ( P 6(&7,21%±0RGXOH*HRPHWU\DQGWULJRQRPHWU\±FRQWLQXHG 785129(5 )850$7+(;$0 4XHVWLRQ $ULJKWS\UDPLGVKRZQEHORZKDVDUHFWDQJXODUEDVHZLWKOHQJWKPDQGZLGWKP 7KHKHLJKWRIWKHS\UDPLGLVP V 2m C 3m O 4m 7KHDQJOHVCOWKDWWKHVORSLQJHGJHVCPDNHVZLWKWKHEDVHRIWKHS\UDPLGWRWKHQHDUHVWGHJUHHLV $ % & ' ( 4XHVWLRQ ,QSDUDOOHORJUDPPQRSQPS ,QWKLVSDUDOOHORJUDPPQ FPDQGPS FP Q R 18 cm 74° P 25 cm S 7KHOHQJWKRIWKHORQJHUGLDJRQDORIWKLVSDUDOOHORJUDPLVFORVHVWWR $ FP % FP & FP ' FP ( FP 6(&7,21%±0RGXOH*HRPHWU\DQGWULJRQRPHWU\±FRQWLQXHG )850$7+(;$0 17 4XHVWLRQ 7KHVWUXFWXUHRIDURRIIUDPHLVVKRZQLQWKHGLDJUDPEHORZ ,QWKLVGLDJUDPAB = BC = CD PPDQG PAB R Q P A 16° 2400 mm B 2400 mm 2400 mm C D 7KHOHQJWKRIQDLQPPLVFORVHVWWR $ 2741 % 2767 & ' ( 5201 4XHVWLRQ 7KHGLDJUDPEHORZVKRZVDFURVVVHFWLRQPQRSRIDVZLPPLQJSRRO 7KHVZLPPLQJSRROLVPHWUHVORQJDQGWKHGHSWKLQFUHDVHVXQLIRUPO\IURPPHWUHDWWKHVKDOORZHQGWR PHWUHVDWWKHGHHSHQG 11 m 8m Q T R shallow end 1 m 1.8 m deep end P U S 7KHGHSWKRIWKHZDWHUDWDSRLQWPHWUHVIURPWKHVKDOORZHQGUHSUHVHQWHGE\TURQWKHGLDJUDPLVFORVHVWWR $ PHWUHV % PHWUHV & PHWUHV ' PHWUHV ( PHWUHV 6(&7,21%±0RGXOH*HRPHWU\DQGWULJRQRPHWU\±FRQWLQXHG 785129(5 )850$7+(;$0 4XHVWLRQ ,QWKHGLDJUDPEHORZ ABD = $&% ș BD FPDQGBC FP 7KHDUHDRIWULDQJOHABDLVFP2 A D 24 cm ș ș B 40 cm C 7KHDUHDRIWULDQJOHABCLQFP2LVFORVHVWWR $ 167 % & 267 ' ( 6(&7,21%±FRQWLQXHG )850$7+(;$0 0RGXOH *UDSKVDQGUHODWLRQV %HIRUHDQVZHULQJWKHVHTXHVWLRQV\RXPXVWVKDGHWKH*UDSKVDQGUHODWLRQVER[RQWKHDQVZHUVKHHWIRU PXOWLSOHFKRLFHTXHVWLRQVDQGZULWHWKHQDPHRIWKHPRGXOHLQWKHER[SURYLGHG Use the following information to answer Questions 1 and 2. 7KHFKDUJHVIRUSRVWLQJOHWWHUVWKDWZHLJKJRUOHVVDUHVKRZQLQWKHJUDSKEHORZ charge ($) 2.00 1.50 1.00 0.50 0 0 10 20 30 40 50 60 70 80 90 100 weight (grams) 4XHVWLRQ 7KHFKDUJHIRUSRVWLQJDJOHWWHULV $ % & ' ( 4XHVWLRQ 7ZROHWWHUVDUHSRVWHG 7KHWRWDOSRVWDJHFKDUJHcannotEH $ % & ' ( 6(&7,21%±0RGXOH*UDSKVDQGUHODWLRQV±FRQWLQXHG 785129(5 )850$7+(;$0 4XHVWLRQ 7ZROLQHVLQWHUVHFWDWSRLQWARQDJUDSK 7KHHTXDWLRQRIRQHRIWKHOLQHVLV 3x + 4y = 26 7KHFRRUGLQDWHVRISRLQWAFRXOGEH $ % & ' ( 4XHVWLRQ 7KHIDUHFWRWUDYHODGLVWDQFHRInNLORPHWUHVLQDWD[LLVJLYHQE\WKHUXOH F = a + bn 7RWUDYHODGLVWDQFHRINLORPHWUHVWKHWD[LIDUHLV 7RWUDYHODGLVWDQFHRINLORPHWUHVWKHWD[LIDUHLV 7KHFKDUJHSHUNLORPHWUHbLV $ % & ' ( 4XHVWLRQ 7KHFRVWCRIPDNLQJxNLORJUDPVRIFKRFRODWHIXGJHLVJLYHQE\C = 60 + 5x. 7KHUHYHQXHRIURPVHOOLQJxNLORJUDPVRIFKRFRODWHIXGJHLVJLYHQE\R = 15x. $SDUWLFXODUTXDQWLW\RIFKRFRODWHIXGJHZDVPDGHDQGVROG,WUHVXOWHGLQDORVVRI 7KHQXPEHURINLORJUDPVRIFKRFRODWHIXGJHPDGHDQGVROGZDV $ 2 % 4 & ' 12 ( 16 6(&7,21%±0RGXOH*UDSKVDQGUHODWLRQV±FRQWLQXHG )850$7+(;$0 21 4XHVWLRQ $QHZVDJHQWKDVIRXUWKLFNPDJD]LQHVDQGIRXUWKLQPDJD]LQHV 7KHPDJD]LQHVDUHVWDFNHGRQHE\RQHLQWRDSLOH 7KHWKLFNPDJD]LQHVDUHDOOSODFHGLQWKHERWWRPSDUWRIWKHSLOHDQGWKHWKLQPDJD]LQHVDUHDOOSODFHGLQWKH WRSSDUWRIWKHSLOH $JUDSKWKDWLQGLFDWHVWKHFKDQJLQJKHLJKWRIWKHSLOHRIPDJD]LQHVDVHDFKPDJD]LQHLVDGGHGWRWKHSLOHFRXOGEH A. B. height height number of magazines D. C. height height number of magazines E. number of magazines number of magazines height number of magazines 6(&7,21%±0RGXOH*UDSKVDQGUHODWLRQV±FRQWLQXHG 785129(5 2011 FURMATH EXAM 1 22 Use the following information to answer Questions 7, 8 and 9. Craig plays sport and computer games every Saturday. Let x be the number of hours that he spends playing sport. Let y be the number of hours that he spends playing computer games. Craig has placed some constraints on the amount of time that he spends playing sport and computer games. 7KHVHFRQVWUDLQWVGH¿QHWKHIHDVLEOHUHJLRQVKRZQVKDGHGLQWKHJUDSKEHORZ7KHHTXDWLRQVRIWKHOLQHVWKDW GH¿QHWKHERXQGDULHVRIWKHIHDVLEOHUHJLRQDUHDOVRVKRZQ y 10 x=2 9 8 x+y=9 A 7 6 5 B 2x + y = 6 4 3 4x – y = 11 2 1 O E y=1 D 1 2 C 3 4 5 x Question 7 2QHRIWKHFRQVWUDLQWVWKDWGH¿QHVWKHIHDVLEOHUHJLRQLV y A. B. x C. x + y D. 2x + y E. 4x – y Question 8 By spending Saturday playing sport and computer games, Craig believes he can improve his health. Let W be the health rating Craig achieves by spending a day playing sport and computer games. The value of W is determined by using the rule W = 5x – 2y. )RUWKHIHDVLEOHUHJLRQVKRZQLQWKHJUDSKDERYHWKHPD[LPXPYDOXHRIW occurs at A. point A B. point B C. point C D. point D E. point E SECTION B – Module 3: Graphs and relations – continued 23 )850$7+(;$0 4XHVWLRQ %\VSHQGLQJ6DWXUGD\SOD\LQJVSRUWDQGFRPSXWHUJDPHV&UDLJEHOLHYHVWKDWKHFDQLPSURYHKLVPHQWDODOHUWQHVV /HWMEHWKHPHQWDODOHUWQHVVUDWLQJWKDW&UDLJDFKLHYHVE\VSHQGLQJDGD\SOD\LQJVSRUWDQGFRPSXWHUJDPHV )RUWKHIHDVLEOHUHJLRQVKRZQLQWKHJUDSKRQSDJHWKHPD[LPXPYDOXHRIMRFFXUVDWDQ\SRLQWWKDWOLHV RQWKHOLQHWKDWMRLQVSRLQWVADQGBLQWKHIHDVLEOHUHJLRQ 7KHUXOHIRUMFRXOGEH $ M = 2x – 5y % M = 5x – 2y & M = 5x – 5y ' M = 5x + 2y ( M = 5x + 5y 6(&7,21%±FRQWLQXHG 785129(5 2011 FURMATH EXAM 1 24 Module 4: Business-related mathematics Before answering these questions you must shade the Business-related mathematics box on the answer sheet for multiple-choice questions and write the name of the module in the box provided. Question 1 An electrician charges $68 per hour to complete a job. A Goods and Services Tax (GST) of 10% is added to the charge. Including GST, the cost of a job that takes three hours is A. $6.80 B. $20.40 C. $204.00 D. $210.80 E. $224.40 Question 2 An amount of $22 000 is invested for three years at an interest rate of 3.5% per annum, compounding annually. The value of the investment at the end of three years is closest to A. $2 310 B. $9 433 C. $24 040 D. $24 392 E. $31 433 Question 3 A van is purchased for $56 000. Its value depreciates at a rate of 42 cents for each kilometre that it travels. The value of the van after it has travelled 32 000 km is A. $13 440 B. $26 880 C. $29 120 D. $32 480 E. $42 560 Question 4 Nathan bought a $2 500 bedroom suite on a contract that involves no deposit and an interest-free loan for a period of 48 months. He has to pay an initial set-up fee of $25. In addition, he pays an administration fee of $3.95 per month. The total amount that Nathan will have to pay in fees for the entire 48 months, as a percentage of the original price of $2 500, is closest to A. 1.6% B. 4.0% C. 7.6% D. 8.5% E. 8.6% SECTION B – Module 4: Business-related mathematics – continued 25 )850$7+(;$0 4XHVWLRQ -DQHLQYHVWVLQDQRUGLQDU\SHUSHWXLW\WRSURYLGHKHUZLWKDZHHNO\SD\PHQWRI 7KHLQWHUHVWUDWHIRUWKHLQYHVWPHQWLVSHUDQQXP $VVXPLQJWKHUHDUHZHHNVSHU\HDUWKHDPRXQWWKDW-DQHQHHGVWRLQYHVWLQWKHSHUSHWXLW\LVFORVHVWWR $ % & ' ( 4XHVWLRQ 6KDXQGHFLGHVWREX\DQHZVRXQGV\VWHPRQDWLPHSD\PHQWKLUHSXUFKDVHSODQ 7KHVRXQGV\VWHPLVSULFHGDW 6KDXQSD\VDGHSRVLWRIDQGUHSD\PHQWVRISHUPRQWKIRU¿YH\HDUV 7KHÀDWUDWHRILQWHUHVWFKDUJHGSHUDQQXPFRUUHFWWRRQHGHFLPDOSODFHLV $ % & ' ( 4XHVWLRQ $QWKRQ\LQYHVWHGLQDQDFFRXQW,WHDUQHGrLQWHUHVWSHUDQQXPFRPSRXQGLQJPRQWKO\ 7KHDPRXQWRILQWHUHVWWKDWLVHDUQHGLQWKHWKLUG\HDURIWKHLQYHVWPHQWLVJLYHQE\ 3 2 $ r ⎞ r ⎞ ⎛ ⎛ 15000 ⎜1 + ⎟ − 15000 ⎜1 + ⎟ ⎝ 1200 ⎠ ⎝ 1200 ⎠ % r ⎞ r ⎞ ⎛ ⎛ 15000 ⎜1 + ⎟ − 15000 ⎜ 1 + ⎟ ⎝ 1200 ⎠ ⎝ 1200 ⎠ & r ⎞ r ⎞ ⎛ ⎛ 15000 ⎜1 + ⎟ − 15000 ⎜ 1 + ⎟ ⎝ 100 ⎠ ⎝ 100 ⎠ ' r ⎞ r ⎞ ⎛ ⎛ 15000 ⎜1 + ⎟ − 15000 ⎜ 1 + ⎟ 100 100 ⎠ ⎠ ⎝ ⎝ ( r ⎞ r ⎞ ⎛ ⎛ 15000 ⎜1 + ⎟ − 15000 ⎜1 + ⎟ ⎝ 1200 ⎠ ⎝ 1200 ⎠ 36 3 36 4 24 2 24 3 6(&7,21%±0RGXOH%XVLQHVVUHODWHGPDWKHPDWLFV±FRQWLQXHG 785129(5 )850$7+(;$0 4XHVWLRQ 7HUHVDERUURZHGDWDQLQWHUHVWUDWHRISHUDQQXPFRPSRXQGLQJPRQWKO\ 7KHORDQLVWREHUHSDLGZLWKHTXDOPRQWKO\SD\PHQWV 6KHGHFLGHVWRUHSD\WKHORDQE\PDNLQJPRQWKO\SD\PHQWVRI :KLFKRIWKHIROORZLQJVWDWHPHQWVLVWUXH" $ 6KHZLOOSD\RXWWKHORDQIXOO\LQOHVVWKDQWHQ\HDUV % 7KHDPRXQWRILQWHUHVWWKDWVKHSD\VRQWKHORDQZLOOLQFUHDVHHDFK\HDU & $IWHUIRXU\HDUVWKHDPRXQWWKDWVKHRZHVRQWKHORDQZLOOEHOHVVWKDQ ' (YHU\PRQWKO\SD\PHQWWKDWVKHPDNHVUHGXFHVWKHDPRXQWWKDWVKHRZHVRQWKHORDQE\WKHVDPHDPRXQW ( 0RQWKO\SD\PHQWVRILQVWHDGRIZLOOHQDEOHKHUWRUHSD\WKLVORDQLQOHVVWKDQQLQH\HDUV 4XHVWLRQ ;DYLHUERUURZVIURPWKHEDQNWREX\DFDU +HLVRIIHUHGDUHGXFLQJEDODQFHORDQIRUWKUHH\HDUVZLWKDQLQWHUHVWUDWHRISHUDQQXPFRPSRXQGLQJ PRQWKO\ +HFDQUHSD\WKLVORDQE\PDNLQJHTXDOPRQWKO\SD\PHQWV ,QVWHDG;DYLHUGHFLGHVWRUHSD\WKHORDQLQHTXDOPRQWKO\SD\PHQWV ,IWKHUHDUHQRSHQDOWLHVIRUUHSD\LQJWKHORDQHDUO\WKHDPRXQWKHZLOOVDYHLVFORVHVWWR $ % & ' ( 6(&7,21%±FRQWLQXHG 27 )850$7+(;$0 0RGXOH 1HWZRUNVDQGGHFLVLRQPDWKHPDWLFV %HIRUHDQVZHULQJWKHVHTXHVWLRQV\RXPXVWVKDGHWKH1HWZRUNVDQGGHFLVLRQPDWKHPDWLFVER[RQWKH DQVZHUVKHHWIRUPXOWLSOHFKRLFHTXHVWLRQVDQGZULWHWKHQDPHRIWKHPRGXOHLQWKHER[SURYLGHG 4XHVWLRQ ,QWKHQHWZRUNVKRZQWKHQXPEHURIYHUWLFHVRIHYHQGHJUHHLV $ 2 % 3 & 4 ' 5 ( 6 4XHVWLRQ 7KHJUDSKEHORZVKRZVWKHRQHVWHSGRPLQDQFHVEHWZHHQIRXUIDUPGRJV.LS/DE0D[DQG1LP ,QWKLVJUDSKDQDUURZIURP/DEWR.LSLQGLFDWHVWKDW/DEKDVDRQHVWHSGRPLQDQFHRYHU.LS Kip Lab Nim Max )URPWKLVJUDSKLWFDQEHFRQFOXGHGWKDW.LSKDVDWZRVWHSGRPLQDQFHRYHU $ 0D[RQO\ % 1LPRQO\ & /DEDQG1LPRQO\ ' DOORIWKHRWKHUWKUHHGRJV ( QRQHRIWKHRWKHUWKUHHGRJV 6(&7,21%±0RGXOH1HWZRUNVDQGGHFLVLRQPDWKHPDWLFV±FRQWLQXHG 785129(5 )850$7+(;$0 Use the following information to answer Questions 3 and 4. 7KHPDSRI$XVWUDOLDVKRZVWKHVL[VWDWHVWKH1RUWKHUQ7HUULWRU\DQGWKH$XVWUDOLDQ&DSLWDO7HUULWRU\$&7 Northern Territory Queensland Western Australia South Australia New South Wales ACT Victoria Tasmania ,QWKHQHWZRUNGLDJUDPEHORZHDFKRIWKHYHUWLFHV$WR+UHSUHVHQWVRQHRIWKHVWDWHVRUWHUULWRULHVVKRZQRQ WKHPDSRI$XVWUDOLD7KHHGJHVUHSUHVHQWDERUGHUVKDUHGEHWZHHQWZRVWDWHVRUEHWZHHQDVWDWHDQGDWHUULWRU\ E D A B C F G H 4XHVWLRQ ,QWKHQHWZRUNGLDJUDPWKHRUGHURIWKHYHUWH[WKDWUHSUHVHQWVWKH$XVWUDOLDQ&DSLWDO7HUULWRU\$&7LV $ 0 % 1 & 2 ' 3 ( 4 4XHVWLRQ ,QWKHQHWZRUNGLDJUDP4XHHQVODQGLVUHSUHVHQWHGE\ $ YHUWH[A % YHUWH[B & YHUWH[C ' YHUWH[D ( YHUWH[E 6(&7,21%±0RGXOH1HWZRUNVDQGGHFLVLRQPDWKHPDWLFV±FRQWLQXHG )850$7+(;$0 4XHVWLRQ $QHWZRUNLVUHSUHVHQWHGE\WKHIROORZLQJJUDSK :KLFKRQHRIWKHIROORZLQJJUDSKVFRXOGnotEHXVHGWRUHSUHVHQWWKHVDPHQHWZRUN" $ % & ' ( 6(&7,21%±0RGXOH1HWZRUNVDQGGHFLVLRQPDWKHPDWLFV±FRQWLQXHG 785129(5 2011 FURMATH EXAM 1 30 Question 6 $VWRUHPDQDJHULVGLUHFWO\LQFKDUJHRI¿YHGHSDUWPHQWPDQDJHUV (DFKGHSDUWPHQWPDQDJHULVGLUHFWO\LQFKDUJHRIVL[VDOHVSHRSOHLQWKHLUGHSDUWPHQW 7KLVVWDI¿QJVWUXFWXUHFRXOGEHUHSUHVHQWHGJUDSKLFDOO\E\ A. DWUHH B. DFLUFXLW C. DQ(XOHUSDWK D. D+DPLOWRQLDQSDWK E. DFRPSOHWHJUDSK Question 7 $QG\%ULDQDQG&DOHEPXVWFRPSOHWHWKUHHDFWLYLWLHVLQWRWDOK, L and M 7KHWDEOHVKRZVWKHSHUVRQVHOHFWHGWRFRPSOHWHHDFKDFWLYLW\WKHWLPHLWZLOOWDNHWRFRPSOHWHWKHDFWLYLW\LQ PLQXWHVDQGWKHLPPHGLDWHSUHGHFHVVRUIRUHDFKDFWLYLW\ Person Activity Duration Immediate predecessor Andy K 13 – Brian L 5 K &DOHE M 16 L $OOWKUHHDFWLYLWLHVPXVWEHFRPSOHWHGLQDWRWDORIPLQXWHV 7KHLQVWDQWWKDW$QG\VWDUWVKLVDFWLYLW\&DOHEJHWVDWHOHSKRQHFDOO 7KHPD[LPXPWLPHLQPLQXWHVWKDW&DOHEFDQVSHDNRQWKHWHOHSKRQHEHIRUHKHPXVWVWDUWKLVDOORFDWHGDFWLYLW\LV A. 5 B. 13 C. 18 D. E. SECTION B – Module 5: Networks and decision mathematics – continued )850$7+(;$0 31 4XHVWLRQ 7KHGLDJUDPVKRZVWKHWDVNVWKDWPXVWEHFRPSOHWHGLQDSURMHFW $OVRVKRZQDUHWKHFRPSOHWLRQWLPHVLQPLQXWHVIRUHDFKWDVN E, 4 B, 3 start A, 4 dummy D, 2 H, 3 L, 2 I, 2 F, 7 K, 4 finish C, 5 G, 6 dummy J, 5 7KHFULWLFDOSDWKIRUWKLVSURMHFWLQFOXGHVDFWLYLWLHV $ BDQGI % CDQGH & DDQGE ' FDQGK ( GDQGJ 4XHVWLRQ $Q(XOHUSDWKWKURXJKDQHWZRUNFRPPHQFHVDWYHUWH[PDQGHQGVDWYHUWH[Q &RQVLGHUWKHIROORZLQJ¿YHVWDWHPHQWVDERXWWKLV(XOHUSDWKDQGQHWZRUN ,QWKHQHWZRUNWKHUHFRXOGEHWKUHHYHUWLFHVZLWKGHJUHHHTXDOWRRQH 7KHSDWKFRXOGKDYHSDVVHGWKURXJKDQLVRODWHGYHUWH[ 7KHSDWKFRXOGKDYHLQFOXGHGYHUWH[QPRUHWKDQRQFH 7KHVXPRIWKHGHJUHHVRIYHUWLFHVPDQGQFRXOGHTXDOVHYHQ 7KHVXPRIWKHGHJUHHVRIDOOYHUWLFHVLQWKHQHWZRUNFRXOGHTXDOVHYHQ +RZPDQ\RIWKHVHVWDWHPHQWVDUHWUXH" $ 0 % 1 & 2 ' 3 ( 4 6(&7,21%±FRQWLQXHG 785129(5 2011 FURMATH EXAM 1 32 Module 6: Matrices Before answering these questions you must shade the Matrices box on the answer sheet for multiple-choice questions and write the name of the module in the box provided. Question 1 The matrix below shows the airfares (in dollars) that are charged by Zeniff Airlines to fly between Adelaide (A), Melbourne (M) and Sydney (S). from A M S 0 85 89 A 85 0 99 M 97 101 to 0 S 7KHFRVWWRÀ\IURP0HOERXUQHWR6\GQH\ZLWK=HQLII$LUOLQHVLV A. $85 B. $89 C. $97 D. $99 E. $101 Question 2 ⎡0 1 ⎤ ⎡1 ⎤ , B = ⎢ ⎥ and C = If A = ⎢ ⎥ ⎣1 0 ⎦ ⎣0 ⎦ A. ⎡0 ⎤ ⎢3 ⎥ ⎣ ⎦ B. ⎡3 ⎤ ⎢0 ⎥ ⎣ ⎦ C. ⎡1 ⎤ ⎢2⎥ ⎣ ⎦ D. ⎡2⎤ ⎢0 ⎥ ⎣ ⎦ E. ⎡2⎤ ⎢3 ⎥ ⎣ ⎦ ⎡0 ⎤ ⎢1 ⎥ , then AB + 2C equals ⎣ ⎦ SECTION B – Module 6: Matrices – continued )850$7+(;$0 33 4XHVWLRQ (DFKRIWKHIROORZLQJIRXUPDWUL[HTXDWLRQVUHSUHVHQWVDV\VWHPRIVLPXOWDQHRXVOLQHDUHTXDWLRQV 1 3 x 0 2 y 1 1 x 2 2 y 1 0 x 0 2 y 0 3 x 0 2 y 4 = 8 5 = 3 4 = 8 6 = 12 +RZPDQ\RIWKHVHV\VWHPVRIVLPXOWDQHRXVOLQHDUHTXDWLRQVKDYHDXQLTXHVROXWLRQ" $ 0 % 1 & 2 ' 3 ( 4 4XHVWLRQ 0DWUL[ALVDîPDWUL[ 0DWUL[BLVDîPDWUL[ :KLFKRQHRIWKHIROORZLQJPDWUL[H[SUHVVLRQVLVGH¿QHG" $ BA2 % BA – 2A & A + 2B ' B2 – AB ( A–1 6(&7,21%±0RGXOH0DWULFHV±FRQWLQXHG 785129(5 2011 FURMATH EXAM 1 34 Use the following information to answer Questions 5 and 6. Two politicians, Rob and Anna, are the only candidates for a forthcoming election. At the beginning of the election campaign, people were asked for whom they planned to vote. The numbers were as follows. Candidate Number of people who plan to vote for the candidate Rob 5692 Anna 3450 During the election campaign, it is expected that people may change the candidate that they plan to vote for each week according to the following transition diagram. 24% 75% Rob Anna 76% 25% Question 5 The total number of people who are expected to change the candidate that they plan to vote for one week after the election campaign begins is A. 828 B. 1423 C. 2251 D. 4269 E. 6891 Question 6 The election campaign will run for ten weeks. If people continue to follow this pattern of changing the candidate they plan to vote for, the expected winner after ten weeks will be A. Rob by about 50 votes. B. Rob by about 100 votes. C. Rob by fewer than 10 votes. D. Anna by about 100 votes. E. Anna by about 200 votes. SECTION B – Module 6: Matrices – continued )850$7+(;$0 35 4XHVWLRQ (DFKQLJKWDODUJHJURXSRIPRXQWDLQJRDWVVOHHSDWRQHRIWZRORFDWLRQVARUB 2QWKH¿UVWQLJKWHTXDOQXPEHUVRIJRDWVDUHREVHUYHGWREHVOHHSLQJDWHDFKORFDWLRQ )URPQLJKWWRQLJKWJRDWVFKDQJHWKHLUVOHHSLQJORFDWLRQVDFFRUGLQJWRDWUDQVLWLRQPDWUL[T ,WLVH[SHFWHGWKDWLQWKHORQJWHUPPRUHJRDWVZLOOVOHHSDWORFDWLRQAWKDQDWORFDWLRQB $VVXPLQJWKHWRWDOQXPEHURIJRDWVUHPDLQVFRQVWDQWDWUDQVLWLRQPDWUL[TWKDWZRXOGSUHGLFWWKLVRXWFRPHLV % $ T= this night this night A 0.8 B 0.4 A A 0.7 B 0.1 A 0.2 0.6 B 0.3 0.9 B next night & T= next night ' T= this night this night A 0.5 B 0.5 A A 0.6 B 0.2 A 0.5 0.5 B 0.4 0.8 B next night T= next night ( this night T= A 0.1 B 0.8 A 0.9 0.2 B next night 6(&7,21%±0RGXOH0DWULFHV±FRQWLQXHG 785129(5 )850$7+(;$0 4XHVWLRQ &RQVLGHUWKHIROORZLQJPDWUL[A A= 3 k –4 –3 ALVHTXDOWRLWVLQYHUVHA–1IRUDSDUWLFXODUYDOXHRIk 7KLVYDOXHRIkLV $ –4 % –2 & 0 ' 2 ( 4 4XHVWLRQ 0DWUL[ALVDîPDWUL[6HYHQRIWKHHOHPHQWVLQPDWUL[ADUH]HUR 0DWUL[BFRQWDLQVVL[HOHPHQWVQRQHRIZKLFKDUH]HUR $VVXPLQJWKHPDWUL[SURGXFWABLVGH¿QHGWKHPLQLPXPQXPEHURI]HURHOHPHQWVLQWKHSURGXFWPDWUL[ABLV $ 0 % 1 & 2 ' 4 ( 6 (1'2)08/7,3/(&+2,&(48(67,21%22. FURTHER MATHEMATICS Written examinations 1 and 2 FORMULA SHEET Directions to students Detach this formula sheet during reading time. This formula sheet is provided for your reference. © VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2011 FURMATH EX 1 & 2 2 Further Mathematics Formulas Core: Data analysis x−x sx standardised score: z= least squares line: y = a + bx where b = r residual value: residual value = actual value – predicted value seasonal index: seasonal index = sy sx and a = y − bx actual figure deseasonalised figure Module 1: Number patterns arithmetic series: n n a + (a + d ) + … + (a + (n – 1)d ) = 2a + ( n − 1) d = ( a + l ) 2 2 geometric series: a + ar + ar2 + … + arn–1 = infinite geometric series: a + ar + ar2 + ar3 + … = a (1 − r n ) ,r≠1 1− r a , r <1 1− r Module 2: Geometry and trigonometry area of a triangle: 1 bc sin A 2 Heron’s formula: A= circumference of a circle: 2π r area of a circle: π r 2 volume of a sphere: 4 3 π r 3 surface area of a sphere: 4π r 2 volume of a cone: 1 2 π r h 3 volume of a cylinder: π r 2h volume of a prism: area of base × height volume of a pyramid: 1 area of base × height 3 1 s ( s − a )( s − b)( s − c) where s = (a + b + c) 2 3 FURMATH EX 1 & 2 Pythagoras’ theorem: c2 = a2 + b2 sine rule: a b c = = sin A sin B sin C cosine rule: c2 = a2 + b2 – 2ab cos C Module 3: Graphs and relations Straight line graphs y2 − y1 x2 − x1 gradient (slope): m= equation: y = mx + c Module 4: Business-related mathematics PrT 100 simple interest: I= compound interest: A = PRn where R = 1 + hire purchase: effective rate of interest ≈ r 100 2n × flat rate n +1 Module 5: Networks and decision mathematics Euler’s formula: v+f=e+2 Module 6: Matrices determinant of a 2 × 2 matrix: a b a b ; det A = A= = ad − bc c d c d inverse of a 2 × 2 matrix: A−1 = 1 d −b where det A ≠ 0 det A −c a END OF FORMULA SHEET
© Copyright 2026 Paperzz