Name ______________________________________________________ Date ___________________ Complete the following two-column proofs. Proof #1: A B D C ̅̅̅̅; 𝐴𝐷 ̅̅̅̅ ≅ 𝐵𝐶 ̅̅̅̅ Given: ̅̅̅̅ 𝐴𝐵 ≅ 𝐶𝐷 Prove: ∠𝐴 ≅ ∠𝐶 Statements Reasons ̅̅̅̅ ≅ 𝐶𝐷 ̅̅̅̅ ; 𝐴𝐷 ̅̅̅̅ ≅ 𝐵𝐶 ̅̅̅̅ 1. 𝐴𝐵 _______________________________________ ̅̅̅̅ ≅ 𝐵𝐷 ̅̅̅̅ 2. 𝐵𝐷 _______________________________________ 3. ∆𝐴𝐵𝐷 ≅ ∆𝐶𝐷𝐵 _______________________________________ 4. ∠𝐴 ≅ ∠𝐶 _______________________________________ M Proof #2: O T ̅̅̅̅; 𝑂𝑇 ̅̅̅̅ bisects ∠𝑀𝑇𝐴 Given: ̅̅̅̅̅ 𝑀𝑇 ≅ 𝑇𝐴 Prove: ∠𝑀 ≅ ∠𝐴 Statements A Reasons ̅̅̅̅; 𝑂𝑇 ̅̅̅̅ bisects ∠𝑀𝑇𝐴 ̅̅̅̅̅ ≅ 𝑇𝐴 1. 𝑀𝑇 _______________________________________ 2. ∠𝑀𝑇𝑂 ≅ ∠𝐴𝑇𝑂 _______________________________________ 3. ___________________________________ Reflexive property (same line) 4. ∆𝑀𝑇𝑂 ≅ ∆𝐴𝑇𝑂 _______________________________________ 5. ∠𝑀 ≅ ∠𝐴 _______________________________________ R Proof #3: F O ̅̅̅̅ Given: ∠𝑅 ≅ ∠𝑆; O is the midpoint of 𝑅𝑆 ̅̅̅̅ Prove: O is the midpoint of 𝐹𝑇 T S Statements Reasons 1. ∠𝑅 ≅ ∠𝑆; O is the midpoint of ̅̅̅̅ 𝑅𝑆 _______________________________________ 2. ___________________________________ Definition of midpoint 3. ∠𝑅𝑂𝐹 ≅ ∠𝑆𝑂𝑇 _______________________________________ 4. ∆𝐹𝑅𝑂 ≅ ∆𝑇𝑆𝑂 _______________________________________ ̅̅̅̅ 5. ̅̅̅̅ 𝐹𝑂 ≅ 𝑂𝑇 _______________________________________ 6. O is the midpoint of ̅̅̅̅ 𝐹𝑇 _______________________________________ Proof #4: S N O W Reasons Given: ∠𝑆 ≅ ∠𝑂; ̅̅̅̅ 𝑆𝑂 ⊥ ̅̅̅̅̅ 𝑁𝑊 ̅̅̅̅̅ ̅̅̅̅̅ Prove: 𝑆𝑊 ≅ 𝑂𝑊 Statements 1. ∠𝑆 ≅ ∠𝑂; ̅̅̅̅ 𝑆𝑂 ⊥ ̅̅̅̅̅ 𝑁𝑊 _______________________________________ 2. ∠𝑆𝑁𝑊 and ∠𝑂𝑁𝑊 are right angles. _______________________________________ 3. ∠𝑆𝑁𝑊 ≅ ∠𝑂𝑁𝑊 _______________________________________ 4. ___________________________________ Reflexive property (same line) 5. ∆𝑆𝑁𝑊 ≅ ∆𝑂𝑁𝑊 _______________________________________ ̅̅̅̅̅ ≅ 𝑂𝑊 ̅̅̅̅̅ 6. 𝑆𝑊 _______________________________________
© Copyright 2026 Paperzz