CFC-11(R11) 305 2.33 CFC-11(R11) All equations for CFC-11(R11) are based on the Table from Thermophysical properties of refrigerants by Platzer et al.[1]. 2.33.1 Temperature Scale International practical temperature scale 1968 (IPTS-1968) 2.33.2 The Names of Substance, Library File and Single Shot Program Name of Substance: Library File for UNIX: Library File for DOS,Windows95/NT: Single Shot Program for UNIX: Single Shot Program for DOS,Windows95/NT: CFC-11, R11, Refrigerant 11, Freon 11, Trichlorofluoromethane libjr11.a JR11.LIB r11-ss R11-SS.EXE 2.33.3 Important Constants and Others Molecular Formula: Relative Molecular Mass: Gas Constant: CC3 F 137.380 60.520 J/(kg·K) Critical Constants: Critical Pressure: Critical Temperature: Critical Specific Volume: 4.4026×10 6Pa (44.026 bar) 471.15 K (198.0 ◦ C) 1.7889×10 −3m3 /kg Reference State: At 0◦ C, 1.0000 kJ/(kg·K) and 200.00 kJ/kg are assigned to the specific entropy and the specific enthalpy of saturated liquid, respectively. 2.33.4 Formula Equation of State: The Bender equation of state (II·3·1) in reference [1], which is in a function from of Z = Z(ρ, T ). Here Z= compressibility, ρ=density and T =temperature. Vapor Pressure: Equation (20) in reference [1]. Properties at Vapor-Liquid Equilibrium: saturated state: The Bender equation of state is utilized to obtaining saturated specific volume by the aid of Maxwell’s criterion according to the author’s recommendation. The Bender equation of state shows unreasonable behavior near the critical point. This temperature range is evaluated by Tc ± 1 K. Therefore, in the temperature range and above the critical pressure, the values of u, h and s would include some uncertainity. Also, in the ranges of psat (Tc − 1K) < p < psat (Tc + 1K) and v (Tc − 1K) < v < v (Tc − 1K), the calculated values of p, v, T, cp , cv , isentropic exponent, Laplace coefficient, Prandtl number, velocity of sound and dryness fraction of wet vapor would have some uncertainity. Equations (2), (3), and (5) for specific enthalpy, specific entropy and isobaric specific heat, respectively. However, the sign of the last integration term in Equation (2) for u T ρ dρ ∂p 0 u(T, ρ) = h0 − RT0 + (cp − R)dT + −p 2 T ∂T ρ ρ T0 0 306 P-PROPATH: Pure Substances and Mixtures with Fixed Composition has been corrected to T u(T, ρ) = h0 − RT0 + T0 (c0p − R)dT − ρ 0 dρ ∂p −p 2. T ∂T ρ ρ However, the coefficients of the ideal gas state heat capacity equation (15) (d2 ∼ d5 ) are reviced by kind information from the authors. The correct values are the followings. d2 = 8.285805E − 6, d3 = 8.405900E − 6, d4 = −1.787524E − 8, d5 = 1.149856E − 11 Transport Properties: Equation (2) in reference [2] for thermal conductivity of saturated liquid and gas phase at ordinary pressure. Thermal conductivity of other states and viscosity from refernce [3]. The Other Properties: Equation (3) in reference [4] for surface tension. References [1] [2] [3] [4] B.Platzer, A.Polt and G.Maurer, Thermophysical Properties of Refrigerants (1990), Springer-Verlag N.Kitazawa and A.Nagashima, Trans. JSME, 46-406, B(1978-6),p.1127 Thermophysical Properties of Refrigerants(1976), 2 ASHRAE K.Watanabe and M.Okada, Int. J. Thermophysics, 2-2(1981), p.163 CFC-11(R11) 307 Table II–2.33–1 No. 1 94 8A 8B 82 Name of Function AIPPT(P,T) AJTPT(P,T) AKPD(P) AKPDD(P) AKPT(P,T) CFC-11(R-11) Function Function and Argument(s) AKPT: Isentropic Exponent [–] P∗: Pressure [Pa], [bar] T∗: Temperature [K], [◦ C] Range of Argument(s) 100×103 ≤P≤19.75×106 [Pa] 230≤T≤450 [K] 1.0≤P≤197.5 [bar] -43.15≤T≤176.85 [◦ C] 8C 8D 2 AKTD(T) AKTDD(T) ALAPP(P) 3 ALAPT(T) 4 ALHP(P) 5 ALHT(T) 6 ALMPD(P) 7 ALMPDD(P) 8 ALMPT(P,T) 9 ALMTD(T) 10 ALMTDD(T) 11 AMUPD(P) 12 AMUPDD(P) 13 14 AMUPT(P,T) AMUTD(T) 15 AMUTDD(T) 92 90 91 93 16 BPPT(P,T) BSPT(P,T) BTPT(P,T) BVPT(P,T) CPPD(P) ALAPP: Laplace Coefficient [m] P∗: Pressure [Pa], [bar] ALAPT: Laplace Coefficient [m] T∗: Temperature [K], [◦ C] ALHP: Latent Heat of Vaporization [J/kg] P∗: Pressure [Pa], [bar] ALHT: Latent Heat of Vaporization [J/kg] T∗: Temperature [K], [◦ C] ALMPD: Thermal Conductivity of Saturated Liquid [W/(m·K)] P∗: Pressure [Pa], [bar] ALMPDD: Thermal Conductivity of Saturated Vapor [W/(m·K)] T∗: Temperature [K], [◦ C] ALMPT: Thermal Conductivity at Ordinary Pressure [W/(m·K)] P∗: Pressure [Pa], [bar] T∗: Temperature [K], [◦ C] ALMTD: Thermal Conductivity of Saturated Liquid [W/(m·K)] T∗: Temperature [K], [◦ C] ALMTDD: Thermal Conductivity of Saturated Vapor [W/(m·K)] T∗: Temperature [K], [◦ C] AMUPD: Coefficient of Viscosity of Saturated Liquid [Pa·s] P∗: Pressure [Pa], [bar] AMUPDD: Coefficient of Viscosity of Saturated Vapor [Pa·s] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 200≤T≤471.15 [K] −73.15≤T≤198 [◦ C] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 225≤T≤471.15 [K] −48.15≤T≤198 [◦ C] 2.98×103 ≤P≤1.1595×106 [Pa] 0.0298≤P≤11.595 [bar] AMUTD: Coefficient of Viscosity of Saturated Liquid [Pa·s] T∗: Temperature [K], [◦ C] AMUTDD: Coefficient of Viscosity of Saturated Vapor [Pa·s] T∗: Temperature [K], [◦ C] 170≤T≤390 [K] −103.15≤T≤116.85 [◦C] CPPD: Isobaric Specific Heat of Saturated Liquid [J/(kg·K)] P∗: Pressure [Pa], [bar] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 113.5×103 ≤P≤2.1717×106 [Pa] 1.135≤P≤21.717 [bar] P=Dummy 213≤T≤323 [K] −60.15≤T≤49.85 [◦ C] 165≤T≤390 [K] −108.15≤T≤116.85 [◦C] 300≤T≤465 [K] 26.85≤T≤191.85 [◦ C] 2.98×103 ≤P≤1.1595×106 [Pa] 0.0298≤P≤11.595 [bar] 0.07923×106 ≤P≤4.3132×106 [Pa] 0.7923≤P≤43.132 [bar] 290≤T≤470 [K] 16.85≤T≤196.85 [◦ C] 308 P-PROPATH: Pure Substances and Mixtures with Fixed Composition Table II–2.33–1 No. 17 Name of Function CPPDD(P) 18 CPPT(P,T) 19 CPTD(T) 20 CPTDD(T) 21 CRP(‘A’) 7A 76 CVPD(P) CVPDD(P) 77 CVPT(P,T) CFC-11(R-11) Function (cont’d) Function and Argument(s) CPPDD: Isobaric Specific Heat of Saturated Vapor [J/(kg·K)] P∗: Pressure [Pa], [bar] CPPT: Isobaric Specific Heat [J/(kg·K)] P∗: Pressure [Pa], [bar] T∗: Temperature [K], [◦ C] CPTD: Isobaric Specific Heat of Saturated Liquid [J/(kg·K)] T∗: Temperature [K], [◦ C] CPTDD: Isobaric Specific Heat of Saturated Vapor [J/(kg·K)] T∗: Temperature [K], [◦ C] CRP: Critical Constants H: ‘A’=‘H’: 0.4267×106 [J/kg] Specific Enthalpy P∗: ‘A’=‘P’: 4.4026×106 [Pa], 44.026 [bar] Pressure S: ‘A’=‘S’: 1.589×103 [J/(kg·K)] Specific Entropy T∗: ‘A’=‘T’: 471.15 [K], 198.0 [◦ C] Temperature V: ‘A’=‘V’: 1.789×10−3 [m3 /kg] Specific Volume CVPDD: Isochoric Specific Heat of Saturated Vapor [J/(kg·K)] P∗: Pressure [Pa], [bar] CVPT: Isochoric Specific Heat [J/(kg·K)] P∗: Pressure [Pa], [bar] T∗: Temperature [K], [◦ C] Range of Argument(s) 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 100×103 ≤P≤19.75×106 [Pa] 230≤T≤450 [K] 1.0≤P≤197.5 [bar] -43.15≤T≤176.85 [◦ C] 225≤T≤471.15 [K] −48.15≤T≤198 [◦ C] 225≤T≤471.15 [K] −48.15≤T≤198 [◦ C] one of ‘H’, ‘P’, ‘S’, ‘T’ and ‘V’ 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 100×103 ≤P≤19.75×106 [Pa] 230≤T≤450 [K] 1.0≤P≤197.5 [bar] -43.15≤T≤176.85 [◦ C] 7B 78 CVTD(T) CVTDD(T) 2A 2B 22 2C 2D 89 EPSPD(P) EPSPDD(P) EPSPT(P,T) EPSTD(T) EPSTDD(T) FC(‘A’) 9A 96 95 9B 97 23 GAMPD(P) GAMPDD(P) GAMPT(P,T) GAMTD(T) GAMTDD(T) HPD(P) 24 HPDD(P) 71 HPS(P,S) CVTDD: Isochoric Specific Heat of Saturated Vapor [J/(kg·K)] T∗: Temperature [K], [◦ C] 225≤T≤471.15 [K] −48.15≤T≤198 [◦ C] FC: Fundamental Constants M: ‘A’=‘M’: 137.38 Relative Molecular Mass R: ‘A’=‘R’: 60.522 [J/(kg·K)] Gas Constant one of ‘M’ and ‘R’ HPD: Specific Enthalpy of Saturated Liquid [J/kg] P∗: Pressure [Pa], [bar] HPDD: Specific Enthalpy of Saturated Vapor [J/kg] P∗: Pressure [Pa], [bar] HPS: Specific Enthalpy [J/kg] P∗: Pressure [Pa], [bar] S: Specific Entropy [J/(kg·K)] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 100×103 ≤P≤19.75×106 [Pa] SPT(P,230K)≤S≤ SPT(P,450K) [J/(kg·K)] 1.0≤P≤197.5 [bar] SPT(P,−43.15◦ C)≤S≤ SPT(P,176.85◦ C) [J/(kg·K)] CFC-11(R11) 309 Table II–2.33–1 No. 25 Name of Function HPT(P,T) 26 HPX(P,X) 27 HTD(T) 28 HTDD(T) 29 HTX(T,X) 84 IDENTF(‘A’) 66 68 85 PLDT(T) PMLT(T) PRPD(P) 86 PRPDD(P) 81 87 PRPT(P,T) PRTD(T) 88 PRTDD(T) 99 30 PSBT(T) PST(T) 72 73 31 PSTD(T) PSTDD(T) SIGP(P) 32 SIGT(T) 33 SPD(P) 34 SPDD(P) 35 SPT(P,T) CFC-11(R-11) Function (cont’d) Function and Argument(s) HPT: Specific Enthalpy [J/kg] P: Pressure [Pa], [bar] T∗: Temperature [K], [◦ C] HPX: Specific Enthalpy of Mixture [J/kg] P∗: Pressure [Pa], [bar] X: Dryness Fraction [–] HTD: Specific Enthalpy of Saturated Liquid [J/kg] T∗: Temperature [K], [◦ C] HTDD: Specific Enthalpy of Saturated Vapor [J/kg] T∗: Temperature [K], [◦ C] HTX: Specific Enthalpy of Mixture [J/kg] T∗: Temperature [K], [◦ C] X: Dryness Fraction [–] IDENTF: CHARACTER TYPE FUNCTION for Identification of Substance (Length 20) C: ‘A’=‘C’: ‘CCL3F’ Molecular Formula S: ‘A’=‘S’: ‘CFC-11(R-11)’ Name of Substance V: ‘A’=‘V’: ‘10.1’ Version Number Range of Argument(s) 100×103 ≤P≤19.75×106 [Pa] 230≤T≤450 [K] 1.0≤P≤197.5 [bar] −43.15≤T≤176.85 [◦C] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 0≤X≤1.0 [–] 225≤T≤471.15 [K] −48.15≤T≤198 [◦C] 225≤T≤471.15 [K] −48.15≤T≤198 [◦C] 225≤T≤471.15 [K] −48.15≤T≤198 [◦C] 0≤X≤1.0 [–] one of ‘C’, ‘S’ and ‘V’ PRPD: Prandtl Number of Saturated Liquid [–] P∗: Pressure [Pa], [bar] PRPDD: Prandtl Number of Saturated Vapor [–] P∗: Pressure [Pa], [bar] 2.98×103 ≤P≤1.1595×106 [Pa] 0.0298≤P≤11.595 [bar] 0.1135×106 ≤P≤2.1717×106 [Pa] 1.135≤P≤21.717 [bar] PRTD: Prandtl Number of Saturated Liquid [–] T∗: Temperature [K], [◦ C] PRTDD: Prandtl Number of Saturated Vapor [–] T∗: Temperature [K], [◦ C] 225≤T≤390 [K] −48.15≤T≤116.85 [◦C] 300≤T≤425 [K] 26.85≤T≤151.85 [◦ C] PST∗: Saturation Pressure [Pa], [bar] T∗: Temperature [K], [◦ C] 230≤T≤471.15 [K] −43.15≤T≤198 [◦C] SIGP: Surface Tension [N/m] P∗: Pressure [Pa], [bar] PST(230K)≤P≤4.4026×106 [Pa] (∼4.15×103 ) PST(−43.15 ◦ C)≤P≤44.026 [bar] (∼0.0415) 225≤T≤471.15 [K] −48.15≤T≤198 [◦C] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] SIGT: Surface Tension [N/m] T∗: Temperature [K], [◦ C] SPD: Specific Entropy of Saturated Liquid [J/(kg·K)] P∗: Pressure [Pa], [bar] SPDD: Specific Entropy of Saturated Vapor [J/(kg·K)] P∗: Pressure [Pa], [bar] SPT: Specific Entropy [J/(kg·K)] P: Pressure [Pa], [bar] T∗: Temperature [K], [◦ C] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 100×103 ≤P≤19.75×106 [Pa] 230≤T≤450 [K] 1.0≤P≤197.5 [bar] −43.15≤T≤176.85 [◦C] 310 P-PROPATH: Pure Substances and Mixtures with Fixed Composition Table II–2.33–1 No. 36 Name of Function SPX(P,X) 37 STD(T) 38 STDD(T) 39 STX(T,X) 67 69 64 TLDP(P) TMLP(P) TPH(P,H) CFC(R-11) Function (cont’d) Function and Argument(s) Range of Argument(s) SPX: Specific Entropy of Mixture [J/(kg·K)] P∗: Pressure [Pa], [bar] X: Dryness Fraction [–] STD: Specific Entropy of Saturated Liquid [J/(kg·K)] T∗: Temperature [K], [◦C] STDD: Specific Entropy of Saturated Vapor [J/(kg·K)] T∗: Temperature [K], [◦C] STX: Specific Entropy of Mixture [J/(kg·K)] T∗: Temperature [K], [◦C] X: Dryness Fraction [–] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 0≤X≤1.0 [–] 225≤T≤471.15 [K] −48.15≤T≤198 [◦C] TPH∗: Temperature [K], [◦C] P∗: Pressure [Pa], [bar] H: Specific Enthalpy [J/kg] 100×103 ≤P≤19.75×106 [Pa] HPT(P,230K)≤H≤ HPT(P,450K) [J/kg] 225≤T≤471.15 [K] −48.15≤T≤198 [◦C] 225≤T≤471.15 [K] −48.15≤T≤198 [◦C] 0≤X≤1.0 [–] 1.0≤P≤197.5 [bar] HPT(P,−43.15◦C)≤H≤ HPT(P,176.85◦ C) [J/kg] 6H 65 TPH2(P,H) TPS(P,S) TPS∗: Temperature [K], [◦ C] P∗: Pressure [Pa], [bar] S: Specific Entropy [J/(kg·K)] 100×103 ≤P≤19.75×106 [Pa] SPT(P,230K)≤S≤ SPT(P,450K) [J/(kg·K)] 1.0≤P≤197.5 [bar] SPT(P,−43.15◦ C)≤S≤ SPT(P,176.85◦ C) [J/(kg·K)] 6S 98 70 TPS2(P,S) TPSEUP(P) TPV(P,V) TPV∗: Temperature [K], [◦C] P∗: Pressure [Pa], [bar] V: Specific Volume [m3 /kg] 100×103 ≤P≤19.75×106 [Pa] VPT(P,230K)≤V≤ VPT(P,450K) [m3 /kg] 1.0≤P≤197.5 [bar] VPT(P,−43.15◦C)≤V≤ VPT(P,176.85◦ C) [m3 /kg] 41 100 40 TRPL(‘A’) TSBP(P) TSP(P) 74 75 42 TSPD(P) TSPDD(P) UPD(P) 43 UPDD(P) 79 UPS(P,S) TSP∗: Saturation Temperature [K], [◦ C] P∗: Pressure [Pa], [bar] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] UPD: Specific Internal Energy of Saturated Liquid [J/kg] P∗: Pressure [Pa], [bar] UPDD: Specific Internal Energy of Saturated Vapor [J/kg] P∗: Pressure [Pa], [bar] UPS: Specific Internal Energy [J/kg] P∗: Pressure [Pa], [bar] S: Specific Entropy [J/(kg·K)] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 100×103 ≤P≤19.75×106 [Pa] SPT(P,230K)≤S≤ SPT(P,450K) [J/(kg·K)] 1.0≤P≤197.5 [bar] SPT(P,−43.15◦ C)≤S≤ SPT(P,176.85◦ C) [J/(kg·K)] CFC-11(R11) 311 Table II–2.33–1 No. 44 Name of Function UPT(P,T) 45 UPX(P,X) 46 UTD(T) 47 UTDD(T) 48 UTX(T,X) 49 VPD(P) 50 VPDD(P) 80 VPS(P,S) 51 VPT(P,T) 52 VPX(P,X) 53 VTD(T) 54 VTDD(T) 55 VTX(T,X) 8E 8F 83 WPD(P) WPDD(P) WPT(P,T) CFC-11(R-11) Function (cont’d) Function and Argument(s) UPT: Specific Internal [J/kg] P: Pressure [Pa], [bar] T∗: Temperature [K], [◦C] UPX: Specific Internal Energy of Mixture [J/kg] P∗: Pressure [Pa], [bar] X: Dryness Fraction [–] UTD: Specific Internal Energy of Saturated Liquid [J/kg] T∗: Temperature [K], [◦C] UTDD: Specific Internal Energy of Saturated Vapor [J/kg] T∗: Temperature [K], [◦C] UTX: Specific Internal Energy of Mixture [J/kg] T∗: Temperature [K], [◦C] X: Dryness Fraction [–] VPD: Specific Volume of Saturated Liquid [m3 /kg] P∗: Pressure [Pa], [bar] VPDD: Specific Volume of Saturated Vapor [m3 /kg] P∗: Pressure [Pa], [bar] VPS: Specific Volume [m3 /kg] P∗: Pressure [Pa], [bar] S: Specific Entropy [J/(kg·K)] VPT: Specific Volume [m3 /kg] P: Pressure [Pa], [bar] T∗: Temperature [K], [◦C] VPX: Specific Volume of Mixture [m3 /kg] P∗: Pressure [Pa], [bar] X: Dryness Fraction [–] VTD: Specific Volume of Saturated Liquid [m3 /kg] T∗: Temperature [K], [◦C] VTDD: Specific Volume of Saturated Vapor [m3 /kg] T∗: Temperature [K], [◦C] VTX: Specific Volume of Mixture [m3 /kg] T∗: Temperature [K], [◦C] X: Dryness Fraction [–] WPT: Velocity of Sound [m/s] P: Pressure [Pa], [bar] T∗: Temperature [K], [◦C] Range of Argument(s) 100×103 ≤P≤19.75×106 [Pa] 230≤T≤450 [K] 1.0≤P≤197.5 [bar] −43.15≤T≤176.85 [◦ C] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 0≤X≤1.0 [–] 230≤T≤471.15 [K] −43.15≤T≤198 [◦ C] 230≤T≤471.15 [K] −43.15≤T≤198 [◦ C] 225≤T≤471.15 [K] −48.15≤T≤198 [◦ C] 0≤X≤1.0 [–] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 100×103 ≤P≤19.75×106 [Pa] SPT(P,230K)≤S≤ SPT(P,450K) [J/(kg·K)] 1.0≤P≤197.5 [bar] SPT(P,−43.15◦ C)≤S≤ SPT(P,176.85◦ C) [J/(kg·K)] 100×103 ≤P≤19.75×106 [Pa] 230≤T≤450 [K] 1.0≤P≤197.5 [bar] −43.15≤T≤176.85 [◦ C] 2.98×103 ≤P≤4.4026×106 [Pa] 0.0298≤P≤44.026 [bar] 0≤X≤1.0 [–] 225≤T≤471.15 [K] −48.15≤T≤198 [◦ C] 225≤T≤471.15 [K] −48.15≤T≤198 [◦ C] 225≤T≤471.15 [K] −48.15≤T≤198 [◦ C] 0≤X≤1.0 [–] 100×103 ≤P≤19.75×106 [Pa] 230≤T≤450 [K] 1.0≤P≤197.5 [bar] −43.15≤T≤176.85 [◦ C] 8G 8H WTD(T) WTDD(T) 312 P-PROPATH: Pure Substances and Mixtures with Fixed Composition Table II–2.33–1 No. 56 Name of Function XPH(P,H) 57 XPS(P,S) 58 XPU(P,U) 59 XPV(P,V) 60 XTH(T,H) 61 XTS(T,S) 62 XTU(T,U) 63 XTV(T,V) CFC-11(R-11) Function (cont’d) Function and Argument(s) Range of Argument(s) XPH: Dryness Fraction [–] P∗: Pressure [Pa], [bar] H: Specific Enthalpy of Mixture [J/kg] XPS: Dryness Fraction [–] P∗: Pressure [Pa], [bar] S: Specific Entropy of Mixture [J/(kg·K)] XPU: Dryness Fraction [–] P∗: Pressure [Pa], [bar] U: Specific Internal Energy of Mixture [J/kg] XPV: Dryness Fraction [–] P∗: Pressure [Pa], [bar] V: Specific Volume of Mixture [m3 /kg] XTH: Dryness Fraction [–] T∗: Temperature [K], [◦ C] H: Specific Enthalpy of Mixture [J/kg] XTS: Dryness Fraction [–] T∗: Temperature [K], [◦ C] S: Specific Entropy of Mixture [J/(kg·K)] XTU: Dryness Fraction [–] T∗: Temperature [K], [◦ C] U: Specific Internal Energy of Mixture [J/kg] XTV: Dryness Fraction [–] T∗: Temperature [K], [◦ C] V: Specific Volume of Mixture [m3 /kg] 2.98×103 ≤P<4.4026×106 [Pa] 0.0298≤P<44.026 [bar] HPD(P)≤H≤HPDD(P) [J/kg] 2.98×103 ≤P<4.4026×106 [Pa] 0.0298≤P<44.026 [bar] SPD(P)≤S≤SPDD(P) [J/(kg·K)] 2.98×103 ≤P<4.4026×106 [Pa] 0.0298≤P<44.026 [bar] UPD(P)≤U≤UPDD(P) [J/kg] 2.98×103 ≤P<4.4026×106 [Pa] 0.0298≤P<44.026 [bar] VPD(P)≤V≤VPDD(P) [m3 /kg] 225≤T<471.15 [K] −48.15≤T<198 [◦ C] HTD(T)≤H≤HTDD(T) [J/kg] 225≤T<471.15 [K] −48.15≤T<198 [◦ C] STD(T)≤S≤STDD(T) [J/(kg·K)] 225 ≤T<471.15 [K] −48.15≤T<198 [◦ C] UTD(T)≤U≤UTDD(T) [J/kg] 225 ≤T<471.15 [K] −48.15≤T<198 [◦ C] VTD(T)≤V≤VTDD(T) [m3 /kg]
© Copyright 2026 Paperzz