2.33 CFC-11(R11)

CFC-11(R11)
305
2.33 CFC-11(R11)
All equations for CFC-11(R11) are based on the Table from Thermophysical properties of refrigerants by
Platzer et al.[1].
2.33.1 Temperature Scale
International practical temperature scale 1968 (IPTS-1968)
2.33.2 The Names of Substance, Library File and Single Shot Program
Name of Substance:
Library File for UNIX:
Library File for DOS,Windows95/NT:
Single Shot Program for UNIX:
Single Shot Program for DOS,Windows95/NT:
CFC-11, R11, Refrigerant 11, Freon 11,
Trichlorofluoromethane
libjr11.a
JR11.LIB
r11-ss
R11-SS.EXE
2.33.3 Important Constants and Others
Molecular Formula:
Relative Molecular Mass:
Gas Constant:
CC3 F
137.380
60.520 J/(kg·K)
Critical Constants:
Critical Pressure:
Critical Temperature:
Critical Specific Volume:
4.4026×10 6Pa (44.026 bar)
471.15 K (198.0 ◦ C)
1.7889×10 −3m3 /kg
Reference State:
At 0◦ C, 1.0000 kJ/(kg·K) and 200.00 kJ/kg are assigned to the specific entropy and the specific enthalpy of
saturated liquid, respectively.
2.33.4 Formula
Equation of State:
The Bender equation of state (II·3·1) in reference [1], which is in a function from of Z = Z(ρ, T ). Here Z=
compressibility, ρ=density and T =temperature.
Vapor Pressure:
Equation (20) in reference [1].
Properties at Vapor-Liquid Equilibrium:
saturated state: The Bender equation of state is utilized to obtaining saturated specific volume by the aid of
Maxwell’s criterion according to the author’s recommendation. The Bender equation of state shows unreasonable
behavior near the critical point. This temperature range is evaluated by Tc ± 1 K. Therefore, in the temperature
range and above the critical pressure, the values of u, h and s would include some uncertainity. Also, in the
ranges of psat (Tc − 1K) < p < psat (Tc + 1K) and v (Tc − 1K) < v < v (Tc − 1K), the calculated values of
p, v, T, cp , cv , isentropic exponent, Laplace coefficient, Prandtl number, velocity of sound and dryness fraction of
wet vapor would have some uncertainity. Equations (2), (3), and (5) for specific enthalpy, specific entropy and
isobaric specific heat, respectively. However, the sign of the last integration term in Equation (2) for u
T
ρ dρ
∂p
0
u(T, ρ) = h0 − RT0 +
(cp − R)dT +
−p 2
T
∂T ρ
ρ
T0
0
306
P-PROPATH: Pure Substances and Mixtures with Fixed Composition
has been corrected to
T
u(T, ρ) = h0 − RT0 +
T0
(c0p
− R)dT −
ρ
0
dρ
∂p
−p 2.
T
∂T ρ
ρ
However, the coefficients of the ideal gas state heat capacity equation (15) (d2 ∼ d5 ) are reviced by kind
information from the authors. The correct values are the followings.
d2 = 8.285805E − 6,
d3 = 8.405900E − 6,
d4 = −1.787524E − 8,
d5 = 1.149856E − 11
Transport Properties:
Equation (2) in reference [2] for thermal conductivity of saturated liquid and gas phase at ordinary pressure.
Thermal conductivity of other states and viscosity from refernce [3].
The Other Properties:
Equation (3) in reference [4] for surface tension.
References
[1]
[2]
[3]
[4]
B.Platzer, A.Polt and G.Maurer, Thermophysical Properties of Refrigerants (1990), Springer-Verlag
N.Kitazawa and A.Nagashima, Trans. JSME, 46-406, B(1978-6),p.1127
Thermophysical Properties of Refrigerants(1976), 2 ASHRAE
K.Watanabe and M.Okada, Int. J. Thermophysics, 2-2(1981), p.163
CFC-11(R11)
307
Table II–2.33–1
No.
1
94
8A
8B
82
Name of
Function
AIPPT(P,T)
AJTPT(P,T)
AKPD(P)
AKPDD(P)
AKPT(P,T)
CFC-11(R-11) Function
Function and Argument(s)
AKPT: Isentropic Exponent [–]
P∗: Pressure [Pa], [bar]
T∗: Temperature [K], [◦ C]
Range of Argument(s)
100×103 ≤P≤19.75×106 [Pa]
230≤T≤450 [K]
1.0≤P≤197.5 [bar]
-43.15≤T≤176.85 [◦ C]
8C
8D
2
AKTD(T)
AKTDD(T)
ALAPP(P)
3
ALAPT(T)
4
ALHP(P)
5
ALHT(T)
6
ALMPD(P)
7
ALMPDD(P)
8
ALMPT(P,T)
9
ALMTD(T)
10
ALMTDD(T)
11
AMUPD(P)
12
AMUPDD(P)
13
14
AMUPT(P,T)
AMUTD(T)
15
AMUTDD(T)
92
90
91
93
16
BPPT(P,T)
BSPT(P,T)
BTPT(P,T)
BVPT(P,T)
CPPD(P)
ALAPP: Laplace Coefficient [m]
P∗: Pressure [Pa], [bar]
ALAPT: Laplace Coefficient [m]
T∗: Temperature [K], [◦ C]
ALHP: Latent Heat of Vaporization [J/kg]
P∗: Pressure [Pa], [bar]
ALHT: Latent Heat of Vaporization [J/kg]
T∗: Temperature [K], [◦ C]
ALMPD: Thermal Conductivity of Saturated
Liquid [W/(m·K)]
P∗: Pressure [Pa], [bar]
ALMPDD: Thermal Conductivity of Saturated
Vapor [W/(m·K)]
T∗: Temperature [K], [◦ C]
ALMPT: Thermal Conductivity at Ordinary
Pressure [W/(m·K)]
P∗: Pressure [Pa], [bar]
T∗: Temperature [K], [◦ C]
ALMTD: Thermal Conductivity of Saturated
Liquid [W/(m·K)]
T∗: Temperature [K], [◦ C]
ALMTDD: Thermal Conductivity of Saturated
Vapor [W/(m·K)]
T∗: Temperature [K], [◦ C]
AMUPD: Coefficient of Viscosity of Saturated
Liquid [Pa·s]
P∗: Pressure [Pa], [bar]
AMUPDD: Coefficient of Viscosity of Saturated
Vapor [Pa·s]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
200≤T≤471.15 [K]
−73.15≤T≤198 [◦ C]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
225≤T≤471.15 [K]
−48.15≤T≤198 [◦ C]
2.98×103 ≤P≤1.1595×106 [Pa]
0.0298≤P≤11.595 [bar]
AMUTD: Coefficient of Viscosity of Saturated
Liquid [Pa·s]
T∗: Temperature [K], [◦ C]
AMUTDD: Coefficient of Viscosity of Saturated
Vapor [Pa·s]
T∗: Temperature [K], [◦ C]
170≤T≤390 [K]
−103.15≤T≤116.85 [◦C]
CPPD: Isobaric Specific Heat of Saturated
Liquid [J/(kg·K)]
P∗: Pressure [Pa], [bar]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
113.5×103 ≤P≤2.1717×106 [Pa]
1.135≤P≤21.717 [bar]
P=Dummy
213≤T≤323 [K]
−60.15≤T≤49.85 [◦ C]
165≤T≤390 [K]
−108.15≤T≤116.85 [◦C]
300≤T≤465 [K]
26.85≤T≤191.85 [◦ C]
2.98×103 ≤P≤1.1595×106 [Pa]
0.0298≤P≤11.595 [bar]
0.07923×106 ≤P≤4.3132×106 [Pa]
0.7923≤P≤43.132 [bar]
290≤T≤470 [K]
16.85≤T≤196.85 [◦ C]
308
P-PROPATH: Pure Substances and Mixtures with Fixed Composition
Table II–2.33–1
No.
17
Name of
Function
CPPDD(P)
18
CPPT(P,T)
19
CPTD(T)
20
CPTDD(T)
21
CRP(‘A’)
7A
76
CVPD(P)
CVPDD(P)
77
CVPT(P,T)
CFC-11(R-11) Function (cont’d)
Function and Argument(s)
CPPDD: Isobaric Specific Heat of Saturated
Vapor [J/(kg·K)]
P∗: Pressure [Pa], [bar]
CPPT: Isobaric Specific Heat [J/(kg·K)]
P∗: Pressure [Pa], [bar]
T∗: Temperature [K], [◦ C]
CPTD: Isobaric Specific Heat of Saturated
Liquid [J/(kg·K)]
T∗: Temperature [K], [◦ C]
CPTDD: Isobaric Specific Heat of Saturated
Vapor [J/(kg·K)]
T∗: Temperature [K], [◦ C]
CRP: Critical Constants
H: ‘A’=‘H’: 0.4267×106 [J/kg] Specific Enthalpy
P∗: ‘A’=‘P’: 4.4026×106 [Pa], 44.026 [bar] Pressure
S: ‘A’=‘S’: 1.589×103 [J/(kg·K)] Specific Entropy
T∗: ‘A’=‘T’: 471.15 [K], 198.0 [◦ C] Temperature
V: ‘A’=‘V’: 1.789×10−3 [m3 /kg] Specific Volume
CVPDD: Isochoric Specific Heat of Saturated
Vapor [J/(kg·K)]
P∗: Pressure [Pa], [bar]
CVPT: Isochoric Specific Heat [J/(kg·K)]
P∗: Pressure [Pa], [bar]
T∗: Temperature [K], [◦ C]
Range of Argument(s)
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
100×103 ≤P≤19.75×106 [Pa]
230≤T≤450 [K]
1.0≤P≤197.5 [bar]
-43.15≤T≤176.85 [◦ C]
225≤T≤471.15 [K]
−48.15≤T≤198 [◦ C]
225≤T≤471.15 [K]
−48.15≤T≤198 [◦ C]
one of ‘H’, ‘P’, ‘S’, ‘T’ and ‘V’
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
100×103 ≤P≤19.75×106 [Pa]
230≤T≤450 [K]
1.0≤P≤197.5 [bar]
-43.15≤T≤176.85 [◦ C]
7B
78
CVTD(T)
CVTDD(T)
2A
2B
22
2C
2D
89
EPSPD(P)
EPSPDD(P)
EPSPT(P,T)
EPSTD(T)
EPSTDD(T)
FC(‘A’)
9A
96
95
9B
97
23
GAMPD(P)
GAMPDD(P)
GAMPT(P,T)
GAMTD(T)
GAMTDD(T)
HPD(P)
24
HPDD(P)
71
HPS(P,S)
CVTDD: Isochoric Specific Heat of Saturated
Vapor [J/(kg·K)]
T∗: Temperature [K], [◦ C]
225≤T≤471.15 [K]
−48.15≤T≤198 [◦ C]
FC: Fundamental Constants
M: ‘A’=‘M’: 137.38 Relative Molecular Mass
R: ‘A’=‘R’: 60.522 [J/(kg·K)] Gas Constant
one of ‘M’ and ‘R’
HPD: Specific Enthalpy of Saturated Liquid [J/kg]
P∗: Pressure [Pa], [bar]
HPDD: Specific Enthalpy of Saturated Vapor [J/kg]
P∗: Pressure [Pa], [bar]
HPS: Specific Enthalpy [J/kg]
P∗: Pressure [Pa], [bar]
S: Specific Entropy [J/(kg·K)]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
100×103 ≤P≤19.75×106 [Pa]
SPT(P,230K)≤S≤
SPT(P,450K) [J/(kg·K)]
1.0≤P≤197.5 [bar]
SPT(P,−43.15◦ C)≤S≤
SPT(P,176.85◦ C) [J/(kg·K)]
CFC-11(R11)
309
Table II–2.33–1
No.
25
Name of
Function
HPT(P,T)
26
HPX(P,X)
27
HTD(T)
28
HTDD(T)
29
HTX(T,X)
84
IDENTF(‘A’)
66
68
85
PLDT(T)
PMLT(T)
PRPD(P)
86
PRPDD(P)
81
87
PRPT(P,T)
PRTD(T)
88
PRTDD(T)
99
30
PSBT(T)
PST(T)
72
73
31
PSTD(T)
PSTDD(T)
SIGP(P)
32
SIGT(T)
33
SPD(P)
34
SPDD(P)
35
SPT(P,T)
CFC-11(R-11) Function (cont’d)
Function and Argument(s)
HPT: Specific Enthalpy [J/kg]
P: Pressure [Pa], [bar]
T∗: Temperature [K], [◦ C]
HPX: Specific Enthalpy of Mixture [J/kg]
P∗: Pressure [Pa], [bar]
X: Dryness Fraction [–]
HTD: Specific Enthalpy of Saturated Liquid [J/kg]
T∗: Temperature [K], [◦ C]
HTDD: Specific Enthalpy of Saturated Vapor [J/kg]
T∗: Temperature [K], [◦ C]
HTX: Specific Enthalpy of Mixture [J/kg]
T∗: Temperature [K], [◦ C]
X: Dryness Fraction [–]
IDENTF: CHARACTER TYPE FUNCTION
for Identification of Substance (Length 20)
C: ‘A’=‘C’: ‘CCL3F’ Molecular Formula
S: ‘A’=‘S’: ‘CFC-11(R-11)’ Name of Substance
V: ‘A’=‘V’: ‘10.1’ Version Number
Range of Argument(s)
100×103 ≤P≤19.75×106 [Pa]
230≤T≤450 [K]
1.0≤P≤197.5 [bar]
−43.15≤T≤176.85 [◦C]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
0≤X≤1.0 [–]
225≤T≤471.15 [K]
−48.15≤T≤198 [◦C]
225≤T≤471.15 [K]
−48.15≤T≤198 [◦C]
225≤T≤471.15 [K]
−48.15≤T≤198 [◦C]
0≤X≤1.0 [–]
one of ‘C’, ‘S’ and ‘V’
PRPD: Prandtl Number of Saturated Liquid [–]
P∗: Pressure [Pa], [bar]
PRPDD: Prandtl Number of Saturated Vapor [–]
P∗: Pressure [Pa], [bar]
2.98×103 ≤P≤1.1595×106 [Pa]
0.0298≤P≤11.595 [bar]
0.1135×106 ≤P≤2.1717×106 [Pa]
1.135≤P≤21.717 [bar]
PRTD: Prandtl Number of Saturated Liquid [–]
T∗: Temperature [K], [◦ C]
PRTDD: Prandtl Number of Saturated Vapor [–]
T∗: Temperature [K], [◦ C]
225≤T≤390 [K]
−48.15≤T≤116.85 [◦C]
300≤T≤425 [K]
26.85≤T≤151.85 [◦ C]
PST∗: Saturation Pressure [Pa], [bar]
T∗: Temperature [K], [◦ C]
230≤T≤471.15 [K]
−43.15≤T≤198 [◦C]
SIGP: Surface Tension [N/m]
P∗: Pressure [Pa], [bar]
PST(230K)≤P≤4.4026×106 [Pa]
(∼4.15×103 )
PST(−43.15 ◦ C)≤P≤44.026 [bar]
(∼0.0415)
225≤T≤471.15 [K]
−48.15≤T≤198 [◦C]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
SIGT: Surface Tension [N/m]
T∗: Temperature [K], [◦ C]
SPD: Specific Entropy of Saturated Liquid
[J/(kg·K)]
P∗: Pressure [Pa], [bar]
SPDD: Specific Entropy of Saturated Vapor
[J/(kg·K)]
P∗: Pressure [Pa], [bar]
SPT: Specific Entropy [J/(kg·K)]
P: Pressure [Pa], [bar]
T∗: Temperature [K], [◦ C]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
100×103 ≤P≤19.75×106 [Pa]
230≤T≤450 [K]
1.0≤P≤197.5 [bar]
−43.15≤T≤176.85 [◦C]
310
P-PROPATH: Pure Substances and Mixtures with Fixed Composition
Table II–2.33–1
No.
36
Name of
Function
SPX(P,X)
37
STD(T)
38
STDD(T)
39
STX(T,X)
67
69
64
TLDP(P)
TMLP(P)
TPH(P,H)
CFC(R-11) Function (cont’d)
Function and Argument(s)
Range of Argument(s)
SPX: Specific Entropy of Mixture [J/(kg·K)]
P∗: Pressure [Pa], [bar]
X: Dryness Fraction [–]
STD: Specific Entropy of Saturated Liquid
[J/(kg·K)]
T∗: Temperature [K], [◦C]
STDD: Specific Entropy of Saturated Vapor
[J/(kg·K)]
T∗: Temperature [K], [◦C]
STX: Specific Entropy of Mixture [J/(kg·K)]
T∗: Temperature [K], [◦C]
X: Dryness Fraction [–]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
0≤X≤1.0 [–]
225≤T≤471.15 [K]
−48.15≤T≤198 [◦C]
TPH∗: Temperature [K], [◦C]
P∗: Pressure [Pa], [bar]
H: Specific Enthalpy [J/kg]
100×103 ≤P≤19.75×106 [Pa]
HPT(P,230K)≤H≤
HPT(P,450K) [J/kg]
225≤T≤471.15 [K]
−48.15≤T≤198 [◦C]
225≤T≤471.15 [K]
−48.15≤T≤198 [◦C]
0≤X≤1.0 [–]
1.0≤P≤197.5 [bar]
HPT(P,−43.15◦C)≤H≤
HPT(P,176.85◦ C) [J/kg]
6H
65
TPH2(P,H)
TPS(P,S)
TPS∗: Temperature [K], [◦ C]
P∗: Pressure [Pa], [bar]
S: Specific Entropy [J/(kg·K)]
100×103 ≤P≤19.75×106 [Pa]
SPT(P,230K)≤S≤
SPT(P,450K) [J/(kg·K)]
1.0≤P≤197.5 [bar]
SPT(P,−43.15◦ C)≤S≤
SPT(P,176.85◦ C) [J/(kg·K)]
6S
98
70
TPS2(P,S)
TPSEUP(P)
TPV(P,V)
TPV∗: Temperature [K], [◦C]
P∗: Pressure [Pa], [bar]
V: Specific Volume [m3 /kg]
100×103 ≤P≤19.75×106 [Pa]
VPT(P,230K)≤V≤
VPT(P,450K) [m3 /kg]
1.0≤P≤197.5 [bar]
VPT(P,−43.15◦C)≤V≤
VPT(P,176.85◦ C) [m3 /kg]
41
100
40
TRPL(‘A’)
TSBP(P)
TSP(P)
74
75
42
TSPD(P)
TSPDD(P)
UPD(P)
43
UPDD(P)
79
UPS(P,S)
TSP∗: Saturation Temperature [K], [◦ C]
P∗: Pressure [Pa], [bar]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
UPD: Specific Internal Energy of Saturated
Liquid [J/kg]
P∗: Pressure [Pa], [bar]
UPDD: Specific Internal Energy of Saturated
Vapor [J/kg]
P∗: Pressure [Pa], [bar]
UPS: Specific Internal Energy [J/kg]
P∗: Pressure [Pa], [bar]
S: Specific Entropy [J/(kg·K)]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
100×103 ≤P≤19.75×106 [Pa]
SPT(P,230K)≤S≤
SPT(P,450K) [J/(kg·K)]
1.0≤P≤197.5 [bar]
SPT(P,−43.15◦ C)≤S≤
SPT(P,176.85◦ C) [J/(kg·K)]
CFC-11(R11)
311
Table II–2.33–1
No.
44
Name of
Function
UPT(P,T)
45
UPX(P,X)
46
UTD(T)
47
UTDD(T)
48
UTX(T,X)
49
VPD(P)
50
VPDD(P)
80
VPS(P,S)
51
VPT(P,T)
52
VPX(P,X)
53
VTD(T)
54
VTDD(T)
55
VTX(T,X)
8E
8F
83
WPD(P)
WPDD(P)
WPT(P,T)
CFC-11(R-11) Function (cont’d)
Function and Argument(s)
UPT: Specific Internal [J/kg]
P: Pressure [Pa], [bar]
T∗: Temperature [K], [◦C]
UPX: Specific Internal Energy of Mixture [J/kg]
P∗: Pressure [Pa], [bar]
X: Dryness Fraction [–]
UTD: Specific Internal Energy of Saturated
Liquid [J/kg]
T∗: Temperature [K], [◦C]
UTDD: Specific Internal Energy of Saturated
Vapor [J/kg]
T∗: Temperature [K], [◦C]
UTX: Specific Internal Energy of Mixture [J/kg]
T∗: Temperature [K], [◦C]
X: Dryness Fraction [–]
VPD: Specific Volume of Saturated Liquid [m3 /kg]
P∗: Pressure [Pa], [bar]
VPDD: Specific Volume of Saturated Vapor [m3 /kg]
P∗: Pressure [Pa], [bar]
VPS: Specific Volume [m3 /kg]
P∗: Pressure [Pa], [bar]
S: Specific Entropy [J/(kg·K)]
VPT: Specific Volume [m3 /kg]
P: Pressure [Pa], [bar]
T∗: Temperature [K], [◦C]
VPX: Specific Volume of Mixture [m3 /kg]
P∗: Pressure [Pa], [bar]
X: Dryness Fraction [–]
VTD: Specific Volume of Saturated Liquid [m3 /kg]
T∗: Temperature [K], [◦C]
VTDD: Specific Volume of Saturated Vapor [m3 /kg]
T∗: Temperature [K], [◦C]
VTX: Specific Volume of Mixture [m3 /kg]
T∗: Temperature [K], [◦C]
X: Dryness Fraction [–]
WPT: Velocity of Sound [m/s]
P: Pressure [Pa], [bar]
T∗: Temperature [K], [◦C]
Range of Argument(s)
100×103 ≤P≤19.75×106 [Pa]
230≤T≤450 [K]
1.0≤P≤197.5 [bar]
−43.15≤T≤176.85 [◦ C]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
0≤X≤1.0 [–]
230≤T≤471.15 [K]
−43.15≤T≤198 [◦ C]
230≤T≤471.15 [K]
−43.15≤T≤198 [◦ C]
225≤T≤471.15 [K]
−48.15≤T≤198 [◦ C]
0≤X≤1.0 [–]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
100×103 ≤P≤19.75×106 [Pa]
SPT(P,230K)≤S≤
SPT(P,450K) [J/(kg·K)]
1.0≤P≤197.5 [bar]
SPT(P,−43.15◦ C)≤S≤
SPT(P,176.85◦ C) [J/(kg·K)]
100×103 ≤P≤19.75×106 [Pa]
230≤T≤450 [K]
1.0≤P≤197.5 [bar]
−43.15≤T≤176.85 [◦ C]
2.98×103 ≤P≤4.4026×106 [Pa]
0.0298≤P≤44.026 [bar]
0≤X≤1.0 [–]
225≤T≤471.15 [K]
−48.15≤T≤198 [◦ C]
225≤T≤471.15 [K]
−48.15≤T≤198 [◦ C]
225≤T≤471.15 [K]
−48.15≤T≤198 [◦ C]
0≤X≤1.0 [–]
100×103 ≤P≤19.75×106 [Pa]
230≤T≤450 [K]
1.0≤P≤197.5 [bar]
−43.15≤T≤176.85 [◦ C]
8G
8H
WTD(T)
WTDD(T)
312
P-PROPATH: Pure Substances and Mixtures with Fixed Composition
Table II–2.33–1
No.
56
Name of
Function
XPH(P,H)
57
XPS(P,S)
58
XPU(P,U)
59
XPV(P,V)
60
XTH(T,H)
61
XTS(T,S)
62
XTU(T,U)
63
XTV(T,V)
CFC-11(R-11) Function (cont’d)
Function and Argument(s)
Range of Argument(s)
XPH: Dryness Fraction [–]
P∗: Pressure [Pa], [bar]
H: Specific Enthalpy of Mixture [J/kg]
XPS: Dryness Fraction [–]
P∗: Pressure [Pa], [bar]
S: Specific Entropy of Mixture [J/(kg·K)]
XPU: Dryness Fraction [–]
P∗: Pressure [Pa], [bar]
U: Specific Internal Energy of Mixture [J/kg]
XPV: Dryness Fraction [–]
P∗: Pressure [Pa], [bar]
V: Specific Volume of Mixture [m3 /kg]
XTH: Dryness Fraction [–]
T∗: Temperature [K], [◦ C]
H: Specific Enthalpy of Mixture [J/kg]
XTS: Dryness Fraction [–]
T∗: Temperature [K], [◦ C]
S: Specific Entropy of Mixture [J/(kg·K)]
XTU: Dryness Fraction [–]
T∗: Temperature [K], [◦ C]
U: Specific Internal Energy of Mixture [J/kg]
XTV: Dryness Fraction [–]
T∗: Temperature [K], [◦ C]
V: Specific Volume of Mixture [m3 /kg]
2.98×103 ≤P<4.4026×106 [Pa]
0.0298≤P<44.026 [bar]
HPD(P)≤H≤HPDD(P) [J/kg]
2.98×103 ≤P<4.4026×106 [Pa]
0.0298≤P<44.026 [bar]
SPD(P)≤S≤SPDD(P) [J/(kg·K)]
2.98×103 ≤P<4.4026×106 [Pa]
0.0298≤P<44.026 [bar]
UPD(P)≤U≤UPDD(P) [J/kg]
2.98×103 ≤P<4.4026×106 [Pa]
0.0298≤P<44.026 [bar]
VPD(P)≤V≤VPDD(P) [m3 /kg]
225≤T<471.15 [K]
−48.15≤T<198 [◦ C]
HTD(T)≤H≤HTDD(T) [J/kg]
225≤T<471.15 [K]
−48.15≤T<198 [◦ C]
STD(T)≤S≤STDD(T) [J/(kg·K)]
225 ≤T<471.15 [K]
−48.15≤T<198 [◦ C]
UTD(T)≤U≤UTDD(T) [J/kg]
225 ≤T<471.15 [K]
−48.15≤T<198 [◦ C]
VTD(T)≤V≤VTDD(T) [m3 /kg]