UN DERSTA N D TRA N SLA TION VECTORS DRA W LOCI FROM A POIN T A N D A LIN E DRA W EQUA L DISTA N CE LOCI FROM POIN TS A N D LIN ES DESCRIBE A TRA N SLA TION FULLY USIN G VECTORS TRA N SLA TE A SHA PE BY A GIVEN VECTOR TRANSLATIONS LOCI RELA TION SHIP BETW EEN TRA N SLA TION A N D CON GRUEN CE DRA W REGION S BOUN DED BY A CIRCLE A N D IN TERSECTIN G LIN E IDEN TIFY REGION S A S OR DESCRIBE A N EN LA RGEMEN T FU L L Y CON STRUCT A LL DIFFEREN T TYPES OF TRIA N GLES EN LA RGE A SHA PE BY A GIVEN SCA LE FA CTOR, FROM A POIN T CON STRUCT A REGULA R HEXA GON IN SIDE A CIRCLE ENLARGEMENT CON STRUCT CIRCLES A N D A RCS OF GIVEN RA DII FIN D CEN TRE OF EN LA RGEMEN T IN 2D SHA PES CONSTRUCTING SHAPES RECOGN ISE DIFFEREN CES BETW EEN PROPERTIES OF TRIA N G L E S CA LCULA TE SCA LE FA CTOR OF A N EN LA RGEMEN T FOLLOW IN STRUCTION S TO A CCURA TELY DRA W A SHA PE EFFECT OF EN LA RGEMEN T ON A N GLES PERPEN DICULA R FROM A POIN T AND A LIN E DESCRIBE REFLECTION S FULLY OR PERPEN DICULA R BISECTOR OF A LIN E EXPRESS MIRROR LIN E A S A SIMPLE EQUA TION REFLECTION PA RA LLEL LIN ES CONSTRUCTING LINES AND ANGLES BISECTIN G A N GLES RELA TION SHIP BETW EEN REFLECTION A N D CON GRUEN C E CON STRUCT A N GLES OF 30, 45, 60 A N D 90 DEGREES RECOGN ISE A N D DRA W REFLECTION SYMMETRY ON A SHA PE DESCRIBE A ROTA TION RELA TION SHIP BETW EEN ROTA TION A N D CON GRUEN C E ROTATION SYMMETRY RECOGN ISE ROTA TION A L SYMMETRY OF 2D SHA PES FIN D ORDERS OF ROTA TION A L SYMMETRY FIN D CEN TRES OF ROTA TION OF 2D SHA PES ROTA TION A ROUN D A POIN T (IN CLUDIN G THE ORIGIN ) COMPLETE SYMMETRY DIA GRA MS ) EXPRESS LIN ES OF SYMMETRY ON A GRA PH A S A A LGEBRA IC EQUA TION SUBJECT ON BOTH SIDES USE A XES A N D COORDIN A TES IN 3D INCLUDES POWER OF THE SUBJECT RECOGN ISE A N D PLOT CUBIC FUN CTION S GRA PHS RECOGN ISE A N D PLOT CHA N GIN G THE SUBJECT OF A FORMULA GRA PHS ADVANCED GRAPHS RECOGN ISE A N D PLOT MANIPULATING EXPRESSIONS GRA PHS EXPA N DIN G DOUBLE BRA CKET S SIMPLIFY EXPRESSION S BY CA N CELLIN G, A DDITION , SUBTRA CTION A N D MULTIPL Y I N G RECOGN ISE A N D PLOT AND (-360 o to +360 o ) GRA PHS FRACTIONAL USE IN DEX LA W S POWERS RAISED TO A POWER ZERO AND NEGATIVE POWERS USE A LGEBRA TO DESCRIBE TRA N SFORMA TION S SOLVE USIN G ELIMIN A TION OR SUBSTITUTION stretch left shift along A PPLY SHIFT A N D STRETCH TRA N SFORMA TIONS TO FUN CTION S f(x) (Linear, Quadratic, Sine and Cosine) W RITE SIMULTA N EOUS EQUA TION S FOR A PROBLEM TRANSFORMATION OF FUNCTIONS DRA W A N D FIN D SOLUTION S U S I N G SIMULTANEOUS EQUATIONS IN TERSECTION OF TW O STRA IGHT LIN E GRA PHS stretch shift FIN D A PPROXIMA TE SOLUTION S USIN G ROTATION IN TERSECTION OF LIN EA R A N D QUA DRA TIC GRA PHS USE ELIMIN A TION TO SOLVE COMPLEX SIMULTA N EOUS EQUA TION S (1 linear, 1 quadratic with one variable) REFLECTION A PPLY THE 4 TRA N SFORMA TION S TO FUN CTION S SOLVE SIMULTA N EOUS EQUA TION S BA SED ON CIRCLES TRANSLATION ENLARGEMENT CON VERT IN EQUA LITIES TO EQUA TIO N S SHOW INEQUALITIES ON A GRAPH DRA W GRA PH FOR EA CH EQUA TION FIN D SOLUTION A N D SHA DE THE REGION FA CTORISIN G QUA DRA TICS COMPLETIN G THE SQUA RE FIN D GRA DIEN T OF STRA IGHT LIN E GRA PH FROM EQUA TION S QUADRATICS GRA DIEN TS OF PA RA LLEL LIN ES = SA ME CA LCULA TE GRA DIEN TS OF PERPEN DICULA R LI N E S USIN G THE QUA DRA TIC FORM U L A PLOT A N D DRA W GRA PHS OF QUA DRA TIC FUN CTION S USE GRA PHS TO FIN D SOLUTION S TO QUA DRA TIC PROBLEMS GRADIENTS OF LINES UN DERSTA N D A N D PLOT GRA PHS (m = gradient; c = crosses y-axis) FIN D EQUA TION S OF LIN ES W HICH A RE PA RA LLEL A N D PERPEN DICULAR TO A STRA IGHT LIN E GRA PH SET UP EQUA TION S TO SOLVE CON STRUCT GRA PHS OF SIMPLE LOCI (including circle) PROPORTION GRAPHS OF LOCI FIN D POIN TS OF IN TERSECTION OF CIRCLES A N D STRA IGHT LIN ES USE LOCI TO CON STRUCT GRA PHS (including based on circles and perpendicula r l i n e s) SET UP EQUA TION S TO SOLVE UN DERSTA N D A N D USE GRA PHS IN VOLVIN G W ORD PROBLEMS W ORD PROBLEMS AND PROPORTION CA LCULA TE LEN GTH OF A N A RC PROVE THE CON GRUEN CE OF TRIA N GLES USIN G FORMA L A RGUMEN T (SSS, A SASA , S , RHS) CA LCULA TE A REA OF A SECTOR CA LCULA TE A REA OF TRIA N GLE US I N G PROVE THE SIMILA RITY OF TW O TRIA N GLES USIN G FORMA L A RGUMEN T ADVANCED AREA CONGRUENCE AND SIMILARITY UN DERSTAND IN RULER A N D COMPA SS CON STRUCTION S FIN D A REA OF SEGMEN T OF A CIRCLE (when given radius and length of chord) A DD OR SUBTRA CT TW O VECTORS MULTIPLY A VECTOR BY A N UMBER USE PYTHA GORA S' THEOREM IN 3D PROBLEMS VECTORS PYTHAGORAS' THEOREM CA LCULA TE THE RESULT OF TW O VECTORS CA LCULA TE LEN GTH OF A DIA GON A L OF A CUBOID USE VECTORS IN GEOMETRICA L PROOF USE TRIGON OMETRY IN 2D A N D 3D PROBLEMS FIN D THE A N GLE BETW EEN A CA LCULA TE SURFA CE A REA OF BA SIC SOLIDS (cube, cuboid, cone, pyramid, sphere, hemisphe r e ) TRIGONOMETRY COMPLEX SHAPES AND SOLIDS FIN D USE AND A AND TO SOLVE 2D A N D 3D PROBLEMS CA LCULA TE SURFA CE A REA OF COMPOUN D SOLIDS USE CA LCULA TE VOLUME OF COMPLEX SOLIDS (cones, pyramids, spheres, hemispheres and frustums) A N GLE IN A SEMICIRCLE A LTERN ATE = 90 o A N GLES IN SA ME SEGMEN T SEGMEN T A RE EQUA L THEOREM EN LA RGE BY N EGA TIVE A N D FRA CTION A L SCA LE F A C T O R S ADVANCED TRANSFORMATIONS TA N GEN TS FROM A POIN T A RE TW O RA DII FORM DESCRIBE COMBIN ED TRA N SFORMA TION S EQUA L LEN GTH A N ISOSCELES TRIA N GLE CIRCLE THEOREMS AND PROOFS OPPOSITE A N GLES IN A CYCLIC QUA DRILA TERAL = 180 o A N GLE A T CEN TRE = DOUBLE THE A N GLE A T CIRCUMFERENCE (from the two ends of same chord) TA N GEN T A N D RA DIU S MEET A T 90 o (A T THE EDGE OF THE CIRCLE) PERPEN DICULAR BISECTOR OF A CHORD PA SSES THROUGH THE CEN TRE TO SOLVE 2D A N D 3D PROBLEMS ANY NUMBER TO POWER OF 0 IS ALWAYS 1 ANY NUMBER TO POWER OF 1 IS ALWAYS JUST ITSELF CALCULATE EXPONENTIAL DECAY/GROWTH 1 TO THE POWER OF ANYTHING IS ALWAYS 1 CALCULATE IN STANDARD FORM ADVANCED CALCULATOR NEGATIVE POWERS = 1/ (turn it upside down) INDEX LAWS SIN/COSINE/TAN FUNCTIONS FRACTIONAL POWERS = ROOTS POWERS FUNCTIONS SIMPLIFY AND MANIPULATE SURDS RATIONALISE A DENOMINATOR (denominator = integer not surd) SURDS USE SURDS IN PROBLEMS WITHOUT A CALCULATOR POWER (n) = NUMBER OF PLACES DECIMAL POINT MOVES PYTHAGORAS AND SURDS UNDERSTAND AND USE A x 10 n STANDARD FORM IN MEASUREMENTS IN PERIMETER POSITIVE AND NEGATIVE POWERS UPPER AND LOWER BOUNDS A = BETWEEN 1 AND 10 n+ = BIG NUMBER n- = SMALL NUMBER CONVERT BETWEEN STANDARD AND NORMAL FORM IN AREA IN VOLUME CALCULATE COMPOUND INTEREST USE DIRECT PROPORTION TO FIND AN UNKNOWN QUANTITY USE INVERSE PROPORTION TO FIND AN UNKNOWN QUANTITY PROPORTIONS COMPOUND GROWTH AND DECAY CALCULATE REPEATED PROPORTIONAL CHANGE REPEATED PROPORTIONAL CHANGE USING MULTIPLIERS RAISED TO A POWER CALCULATE DEPRECIATION DRA W A FREQUEN CY DIA GRA M FOR GROUPED DISCRETE DA TA UN DERSTA N D THE A DDITION LA W FOR MUTUA LLY EXCLUS I V E E V E N T S CA LCULA TE PROBA BILITIES W ITH A N D W ITHOUT REPLA CEM E N T DRA W A TW O SIDED STEM A N D LEA F DIA GRA M PROBABILITY OF EVENTS DRA W CUMULA TIVE FREQUEN CY TA BLES A N D GRA PHS CHARTS AND DIAGRAMS UN DERSTA N D THE MULTIPLICA TION LA W FOR IN DEPEN DEN T EV E N T S DRA W BOX PLOTS FROM RA W DA TA OR W HEN GIVEN THE MEDIA N A N D QUA RTILES USE FREQUEN CY DEN SITY TO DRA W HISTOGRA MS (UN EQUA L CLA SS IN TERVA LS) FIN D MEDIA N , QUA RTILES A N D IN TERQUA RTILE RA N GE USE CUMULA TIVE FREQUEN CY GRA P H S TO SOLVE PROBLEMS ESTIMA TE VA LUES EXPLA IN ISOLA TED POIN TS IN SCA TTER GRA PHS DRA W A PROBA BILITY TREE DIA GRA M USE HISTOGRA MS TO SOLVE PROBLEMS (eg:find the median or size of each group) INTERPRETING GRAPHS AND DIAGRAMS PROBABILITY TREES CA LCULA TE PROBA BILITY OF COMPOUN D EV E N T S USE HISTOGRA MS TO COMPLETE FREQUEN CY TA BLES USE BOX PLOTS TO FIN D MEDIA N , QUA RTILES A N D IN TERQUA RTILE RA N GE COMPA RE DA TA USIN G UN DERSTA N D THE DIFFEREN CE BETW E E N AND SA MPLING COMPARING DATA SAMPLING CA LCULA TE SA MPLE SIZES FOR STRA TIFIED SA M P L I N G COMPA RE DA TA USIN G COMPA RE SPREA D USIN G OR UNITS OF TIME READ MAPS USING THE SCALE READ 12 AND 24 HOUR CLOCKS TIME DRAW LINES AND SHAPES TO DIFFERENT SCALES READ ANALOGUE AND DIGITAL CLOCKS MAPS AND SCALE DRAWINGS CONVERT BETWEEN UNITS OF TIME USE 3 FIGURE BEARINGS TO DESCRIBE DIRECTION USE FORMULA TRIA N GLE TO CA LCULA TE SPEED/DISTA N CE/TIME COMPOUND MEASURES MEASURING BEARINGS BEARINGS USE FORMULA TRIA N GLE TO CA LCULA TE MA SS/VOLUME/DENSITY FIN D BEA RIN GS BETW EEN TW O POIN TS MAKE ESTIMATES OF MEASUREMENTS USE APPROPRIATE UNITS TO ESTIMATE ACCURACY AND ESTIMATION ESTIMATE LENGTHS USING SCALE DIAGRAMS RECOGN ISE EN LA RGEMEN TS OF 2D A N D 3D SHA PES USE PROTRACTORS AND RULERS TO CREATE ACCURATE DRAWINGS ENLARGEMENT EFFECTS OF ENLARGEMENT ON PERIMETER AND AREA EFFECTS OF EN LA RGEMEN T ON VOLUME CONVERT BETWEEN METRIC AND IMPERIAL MEASURES VOLUME AND CAPACITY SPEED METRIC AND IMPERIAL UNITS A REA DISTA N CE CONVERTING BETWEEN METRIC UNITS UNITS OF MEASUREMENT EXPECTED FREQUENCIES EFFECT OF MORE THAN ONE TRIAL EFFECT OF INCREASED SAMPLE SIZE MARK EVENTS ON A LIKELIHOOD SCALE ESTIMATING PROBABILITY LIKELIHOOD SCALE ACTUAL FREQUENCIES IDENTIFY EVENTS AS COMPARING RESULTS MARK EVENTS ON A 0-1 PROBABILITY SCALE GIVE EXAMPLES OF MUTUALLY EXCLUSIVE EVENTS PROBABILITY SCALE PROBABILITY TABLES/DIAGRAMS WRITE PROBABILITIES AS FRACTIONS, DECIMALS OR PERCENTAGES MUTUALLY EXCLUSIVE OUTCOMES ADD SIMPLE PROBABILITIES DRAW SAMPLE SPACE DIAGRAM TO SHOW ALL POSSIBLE OUTCOMES OF TWO EVENTS LIST ALL OUTCOMES FOR ONE OR TWO EVENTS SAMPLE SPACE DIAGRAMS FIND PROBABILITIES OF CERTAIN OUTCOMES USING SAMPLE SPACE DIAGRAMS LISTING EVENTS LIST ALL OUTCOMES OF SPECIFIED GROUPS MEASURE SHAPE TO FIND PERIMETER USE FORMULAE TO FIND AREA OF TRIANGLES CALCULATE VOLUME OF A CUBOID FIND VOLUME OF COMPOUND CUBOIDS USE FORMULA TO FIND AREA OF A TRAPEZIUM VOLUME CA LCULA TE VOLUME OF A CYLIN DER AREA AND PERIMETER CALCULATE THE AREA OF OTHER QUADRILATERALS CALCULATE VOLUME OF DIFFERENT PRISMS CALCULATE AREA AND PERIMETER OF COMPOUND SHAPES CA LCULA TE SURFA CE A REA OF PRISMS A N D PYRA MIDS IDEN TIFY AND ON A 3D SHA PE IDENTIFY DIFFERENT TYPES OF SOLID SHAPES (eg: cuboid, prism, sphere, cylinder etc) DRAW THE NET OF A GIVEN 3D SHAPE 3D SHAPES RECOGNISE DIFFERENT TYPES OF TRIANGLE DRAW ELEVATIONS AND PLANS OF SIMPLE SOLIDS IDENTIFY PROPERTIES OF DIFFERENT TRIANGLES TRIANGLES SKETCH A 3D SHAPE WHEN GIVEN THE ELEVATIONS AND PLAN ANGLES IN A TRIANGLE FIN D MISSIN G A N GLES IN A TRIA N GLE USE PYTHAGORAS' THEOREM TO FIND LENGTH OF MISSING SIDE CORRECTLY USE LETTERS TO LABEL ANGLES AND LINES IDEN TIFY A N D CORRECTLY LA BEL PA RA LLEL LIN ES ANGLES ON A STRAIGHT LINE ANGLES BASICS RECOGNISE AND NAME DIFFERENT QUADRILATERALS A N GLES ROUN D A POIN T QUADRILATERALS IDENTIFY PROPERTIES OF DIFFERENT QUADRILATERALS RECOGN ISE CORRESPON DIN G A N D A LTERN A TE A N GLE S (in parallel lines) CALCULATE MISSING ANGLES IN A QUADRILATERAL RECOGNISE VERTICALLY OPPOSITE ANGLES ARE EQUAL RECOGNISE AND NAME DIFFERENT POLYGONS (based on number of sides) LABEL DIFFERENT PARTS OF A CIRCLE USING MATHEMATICAL TERMS EXTERIOR ANGLES IN A POLYGON = 360 ANGLES AT A VERTEX = 180 RELATIONSHIP OF SIDES TO ANGLES (in regular polygons) CALCULATE SUM OF INTERIOR ANGLES CA LCULA TE IN TERIOR A N D EXTERIOR A N GLES TESSELLA TION DRA W A CIRCLE, (USIN G COMPA SSES) TO A GIVEN RA DIUS/DIA METER ANGLES OF POLYGONS CIRCLES FIND CIRCUMFERENCE OF A CIRCLE FIN D PERIMETER A N D A REA OF SEMI A N D QUA RTER CIRCLES CALCULATE SURFACE AREA OF CYLINDERS
© Copyright 2026 Paperzz