HOMEWORK #3 – SOLUTIONS Page 899 4) z = y ln x, (1, 4, 0 ) z = f ( a,b ) + fx ( a,b ) ( x − a ) + fy ( a,b ) ( y − b ) y ⇒ fx (1, 4 ) = 4 x fy = ln x ⇒ fy (1, 4 ) = 0 f (1, 4 ) = 0; fx = z = 0 + 4 ( x − 1) + 0 ( y − 4 ) ⇒ z = 4x − 4 18) f ( 0, 0 ) = 1 y + cos 2 x = f ; (0, 0) fx = fy = 1 2 y + cos x 2 1 2 y + cos 2 x ⋅ 2 cos x ( − sin x ) ⇒ fx ( 0, 0 ) = 0 ⋅1 ⇒ fy ( 0, 0 ) = y + cos 2 x ≈ 1 + 0 ⋅ x + 20) f ( x, y ) = ln ( x − 3y ) f ( 7, 2 ) = ln1 = 0 1 2 1 1 y = 1+ y 2 2 ( 7, 2 ) 1 ⋅1 ⇒ fx ( 7, 2 ) = 1 x − 3y 1 fy = ⋅ ( −3) ⇒ fy ( 7, 2 ) = −3 x − 3y ln ( x − 3y ) ≈ 0 + 1( x − 7 ) − 3 ( y − 2 ) = x − 3y − 1 fx = f ( 6.9, 2.06 ) ≈ −.28 Actual value = -.328 26) v = y cos xy dv = vx dx + vy dy = −y 2 sin xy dx + ( −xy sin xy + cos xy ) dy 30) w = xye xz ⇒ dw = wx dx + wy dy + wz dz = 32) 34) ( ) ⎡ x yze xz + ye xz ⎤ dx + xe xz dy + x 2 ye xz dz = ⎣ ⎦ ye xz ( xz + 1) dx + xe xz dy + x 2 ye xz dz ( 3, −1) → ( 2.96, −0.95 ) 2 2 Δz = ( 2.96 ) − ( 2.96 ) ( −0.95 ) + 3 ( −0.95 ) − ( 32 − 3 ( −1) + 3) = −.7189 dz = zx dx + zy dy = ( 2x − y ) dx + ( −x + 6y ) dy = ( 2 ⋅ 3 − ( −1)) ( −.04 ) + ( −3 − 6 ) (.05 ) = −0.73 z = x 2 − xy + 3y 2 S = 2 ( xy + xz + yz ) x = 80, y = 60, z = 50 dS = 2 ( y + z ) dx + 2 ( x + z ) dy + 2 ( x + y ) dz = 2 (110 ) (.2 ) + 2 ⋅130 (.2 ) + 2 ⋅140 (.2 ) = 152cm 2 = max error 40) 0 < x, y, z, w < 50 P = xyzw dP = Px dx + Py dy + Pz dz + Pw dw = yzw dx + xzw dy + xyw dz + xyz dw = 50 3 (.05 ) + 50 3 (.05 ) + 50 3 (.05 ) + 50 3 (.05 ) = 4 ⋅ 50 3 (.05 ) = 25, 000 Page 907 4) ⎛ y⎞ z = tan −1 ⎜ ⎟ , x = et , y = 1 − e−t ⎝ x⎠ dz ∂z dx ∂z dy = ⋅ + ⋅ = dt ∂x dt ∂y dt 1 −y 1 1 ⋅ 2 ⋅ et + ⋅ ⋅ e−t = 2 2 ⎛ y⎞ x ⎛ y⎞ x 1+ ⎜ ⎟ 1+ ⎜ ⎟ ⎝ x⎠ ⎝ x⎠ xe−t − yet ⋅e = 2 = y2 x + y2 x+ x t −t −t t e e − 1− e e 1 − et + 1 2 − et = = 2t −t 2 2t −t 2 e + 1− e e + 1− e e2t + 1 − e−t −y ⋅ et + 2 2 x +y ( ( 6) 1 ) ) −t ( ) ( ) 2 = dz dt w = ln x 2 + y 2 + z 2 , x = sin t, y = cos t, z = tan t dw ∂w dx ∂w dy ∂w dz = ⋅ + ⋅ + ⋅ = dt ∂x dt ∂y dt ∂z dt 1 1 ⋅ 2x ⋅ cos t + ⋅ 2y ⋅ ( − sin t ) + 2 2 2 2 2 2 2 x +y +z 2 x +y +z ( ) ( ) 1 x cos t − y sin t + z sec 2 t 2 ⋅ 2z ⋅ sec t = = x 2 + y2 + z 2 2 x 2 + y2 + z 2 ( 38) ) sin t cos t − cos t sin t + tan t sec 2 t = sin 2 t + cos 2 t + tan 2 t tan t sec 2 t tan t sec 2 t dw = = tan t = 1 + tan 2 t sec 2 t dt 40) 1 V = π r2h r = +1.8 in sec , h = −2.5 in sec 3 dV ∂V dr ∂V dh 2 1 = ⋅ + ⋅ = π rh (1.8 ) + π r 2 ( −2.5 ) ⇒ dt ∂r dt ∂h dt 3 3 dV ⎤ 2 1 2 = π (120 ) (140 ) (1.8 ) + π (120 ) ( −2.5 ) = dt ⎥⎦(120,140 ) 3 3 in 3 in 3 8160π ≈ 25, 635 sec sec V = IR ⇒ I = V R V = −.01, R = +.03 dI ∂I dR ∂I dV = ⋅ + ⋅ = dt ∂R dt ∂V dt −V 1 −I 1 ⋅ (.03) + ( −.01) = (.03) + ( −.01) R2 R R R dI ⎤ −.08 1 −5 A = .03 + −.01 = −3.1 × 10 ( ) ( ) dt ⎥⎦( 400,.08 ) 400 400 sec 44) ⎛ c + v0 ⎞ f0 = ⎜ fs ⎝ c − vs ⎟⎠ c = 332 m m m , v0 = 34 , v0 = 1.2 2 sec sec sec m m , vs = 1.4 sec sec 2 ⎛ 332 + 34 ⎞ f0 = ⎜ ( 460 ) = 576.6Hz ( perceived frequency ) ⎝ 332 − 40 ⎟⎠ df0 ∂f0 dv0 ∂f0 dvs = ⋅ + ⋅ = dt ∂v0 dt ∂vs dt ⎛ 1 ⎞ dv0 c + v0 dvs f ⋅ + f = s ⎜⎝ c − v ⎟⎠ s dt ( c − vs )2 dt s vs = 40 1 332 + 34 Hz ⎛ ⎞ ⋅ 460 (1.4 ) = 4.65 ⎜⎝ ⎟⎠ ⋅ 460 (1.2 ) + 2 332 − 40 sec ( 332 − 40 )
© Copyright 2026 Paperzz