Identities: (Sum and Difference for cos) 1. cos (A – B) = cos A cos B + sin A sin B cos (A + B) = cos A cos B - sin A sin B Examples: cos (A + 45o) = cos A cos 45o – sin A sin 45o cos 30o cos p + sin 30o sin p = cos (30o – p) Identities: (Sum and Difference for sin) 2. sin (A – B) = sin A cos B – cos A sin B sin (A + B) = sin A cos B + cos A sin B Examples: sin (A + 45o) = sin A cos 45o + cos A sin 45o sin 30o cos p - cos 30o sin p = sin (30o – p) Examples - Simplify the following WITHOUT using a calculator: 1. cos (45o + 30o) = cos 45o cos 30o – sin 45o sin 30o 2 3 2 1 6 2 = 4 2 2 2 2 2. sin 15o = sin (45o – 30o) / sin (60o – 45o) = sin 45o cos 30o – cos 45o sin 30o / sin 60o cos 45o – cos 60o sin 45o 2 3 2 1 2 3 2 1 6 2 6 2 = / 4 4 2 2 2 2 2 2 2 2 3. cos 165o = = = = cos (180o – 15o) - cos 15o - [cos (45o – 30o)] - (cos 45o cos 30o + sin 45o sin 30o) 2 3 2 1 6 2 = 2 2 2 2 4 4. sin 100o cos 20o – cos 280o sin 160o = sin (180o – 80o) cos 20 - cos (360o - 80o) sin (180o – 20o) = sin 80o cos 20o - cos 80o sin 20o = sin (80o – 20o) = sin 60o 3 = 2 5. sin (α – 30o) + sin (α + 30o) = (sin α cos 30o – cos α sin 30o) + (sin α cos 30o + cos α sin 30o) = sin α cos 30o – cos α sin 30o + sin α cos 30o + cos α sin 30o = 2 sin α cos 30o 3 = 2 sin α 2 = 3 sin α 6. sin (-135o) = - sin 45o 2 = 2 7. Given : 5 cos Ө + 3 = 0, where 180o ≤ Ө ≤ 360o and cos β = 12 where β ε [180o ; 360o]. 13 Use sketches to determine the value of sin (Ө + β). cos Ө = 3 5 x ; y = -4 r cos β = 12 13 x ; y = -5 r x = 12 x = -3 y = -4 r=5 r = 13 Ө: x = -3 ; y = -4 ; r = 5 β: x = 12 ; y = -5 ; r = 13 sin (Ɵ + β) = sin Ɵ cos β + cos Ɵ sin β x y x y = + = = = y = -5 rr rr 4 12 3 5 + 5 13 5 13 48 15 + 65 65 33 65 Double – angle Identities: 1. sin 2A = 2 sin A cos A Examples: sin 70o = sin 2(35) = 2 sin 35o cos 35o 2 sin 25o cos 25o = sin 2(25o) = sin 50o Double – angle Identities: 2. cos 2A = cos2 A - sin2 A = 2 cos2 A – 1 = 1 – 2 sin2 A Examples: cos 70o = cos 2(35o) = cos2 35o – sin2 35o = 2 cos2 35o - 1 = 1 – 2 sin2 35o Examples - Simplify the following WITHOUT using a calculator: 1. cos2 22,5o – sin2 22,5o = cos 2(22,5o) = cos 45o 2 = 2 2. If sin 320 = t , determine the value of each, in terms of t: (2.1) cos 58o = cos (90o – 32o) = sin 32o = t (2.2) sin (-32o) = - sin 32o = -t (2.3) cos 64o = cos 2(32o) = 1 – 2 sin2 32o = 1 – 2t2 (2.4) sin 64o = sin 2(32o) = 2 sin32o cos32o 2 t 1 t = 2 1 1 = 2t 1 t 2 t y 1 r x2 = r2 – y2 = (1)2 – (t)2 = 1 – t2 sin 32o = 1 x = 1 t 2 x = 1 t 2 ; y = t ; r = 1 t Exercise 1. Use the sum and difference identities to expand the following: (1.1) sin (Ө + 30o) (1.2) cos (50o + 2x) (1.3) cos (60o – 10a) (1.4) sin (2β – 15o) o o (1.5) cos (65 – 30 ) (1.6) sin (60o – β) (1.7) cos (Ө - 23o) (1.8) sin (17o – 4x) 2. Determine the following, without using a calculator: (2.1) cos 285o (2.2) sin (-105o) cos110o. cos15o (2.3) cos (-195o) (2.4) sin 200 (2.5) cos 15o (2.6) sin 105o 3. Simplify, without using a calculator: (3.1) sin 83o cos 52o + cos 83o sin 52o (3.3) cos 280o cos 20o – sin 80o sin 200o (3.5) sin 73o cos 13o – cos 73o sin 13o (3.2) cos 23o cos 37o – sin 23o sin 37o (3.4) cos 20o cos 320o + sin 140osin 200o (3.6) cos 20o cos 25o - cos 250o cos 115o 4. Simplify, without using a calculator: (4.1) cos (β + 60o) – cos (β - 60o) (4.2) sin (135o – α) – sin (225o – α) 1 1 and tan α = with both Ɵ and α being acute angles, use sketches to: 7 10 (5.1) determine the value of cos (Ɵ - α) 5 (5.2) prove that sin (Ɵ + α) = 5 5. If sin Ɵ = 6. Use the double-angle identities to expand the following: (6.1) sin 2β (6.2) cos 2Ɵ 7. Determine the value of the following using the double-angle identities: (7.1) 1 – 2 sin2 15o (7.2) 2 cos2 22,5o – 1 o o (7.3) 2 sin 30 cos 30 (7.4) cos2 15o – sin2 15o x (7.5) 2 cos2 15o – 1 (7.6) 1 – 2 sin2 2 x x (7.7) 2 sin 22,5o cos 22,5o (7.8) cos2 - sin2 2 2 8. If sin x = k, determine the value of each in terms of k: (8.1) cos2 x (8.2) cos 2x (8.3) sin 2x (8.4) sin 3x 9. Evaluate, without using a calculator: 0 o 2 (9.1) (cos 15 – sin 15 ) cos210o. sin 320o (9.2) sin 160o tan225o sin 650o
© Copyright 2026 Paperzz