Factoring Unit Review plus Answers

MFM 2P1
1
.
Common factor the following.
•a) 3x+12
2
e) x + 1 Ox
2 + 9x 6
3x
i)
Factoring Unit Review
—
b) 21x—49
c) —2x+8
2
0 9x
g)
6x
—
j) x
3 + 2x
2+x
k)
3
2x
—
—
2
6x
—
d) —5x—25
3
8x
h)
2 + 8x
4x
1)
—
2
3 + 1 8x
6x
2. Factor the following trinomials.
a) x
2 +5x+6
b)
2 +8x+7
x
c) x
2 +llx+30
—13x+36
2
d)x
—15x+56
2
e) x
—15x+36
2
f) x
2 —9x—22
g) x
h) x
2 —11x—12
i) x
2 —4x—32
2 +2x—24
j) x
k) x
2 +4x—21
1) x
2 +x—11O
3 Factor the following difference of squares.
.
.
—9
2
a) x
b) x
—25
2
2
d) 4x
e) 49
g)
—
81
—w
x
2
2
c) 100—x
2
36x
f)
h) 2
—16w
x
i)
—
1
—
2
6x + 7x
2
64x
—
12x
4. Factor the following. These are a mixture of all three types. (common, trinomial, difference of squares)
a) 4x—24
—7m+12
2
b)m
+lOy
2
c)15y
—9
2
d)x
—8x—20
2
e)x
2
f)6xy+18y+6y
—64
2
g)y
+21z
3
h)7z
2
2
i)36—w
j) 2
Y +26y+25
k) 15x
3 —5x
2 +lOx
1) 4x
2 —1
+6x+12x
2
m)8x
3
—llx+30
2
n)x
+2m—24
2
o)m
2 —16
p) 49q
2 +5x—14
q) x
2
r) 81y
2 —4w
.
6. Factor the following by common factoring first, then factoring the trinomial or difference of squares.
a) 3x
2
—
27
2 —8
d) 8x
2
b) 2x
—
16x + 24
y—25w
x
y
e) 2
3
c) x
1)
—
2
2x
—
24x
z+l2xz—96z
2
3x
MFM 2P1
1
.
Common factor the following.
•a) 3x+12
3(i(#”t)
2
e) x + 1 Ox
(HLo)
2 +9x—6
3x
i)
Factorint Unit Review
3(yW&+3)
b) 21x—49
:J(%
:
0
f)
2
0 9x
—
d)—5x—25
c)—2x+8
.2C*-’c)
6x
g)
—
2
6x
—
3
8x
h)
6x + 7x
2
:?IL(3x-2..)
j) x
3 +2x
2 +x
k)
3 —4x
2x
2 +8x
1)
)f(’74i)
2 —12x
3 +18x
—6x
?rø3$APL)
2. Factor the following trinomials.
a) x
+5x+6
2
(x#fl
4
()(PL
—13x+36
2
d)x
.
(ye)($)
g)
2 —9x—22
x
(7(i)
j)
2
X
+2x—24
()‘O)t#Gb
b) x
+8x+7
2
C+’)(vc+
e) x
—15x+56
2
+llx+30
2
c) x
(+r)ec)
f)
(x)())
h) x
2 —llx—12
( 4i)(t)
k) x
2 +4x—21
()(.3)(,Lr;I.-)
—15x+36
2
x
)(x-i2.)
4
()3
i) x
2 —4x—32
(X4(’)
1)
2 +x—11O
x
o)(X*fI)
1
(
3 Factor the following difference of squares.
.
—9
2
a) x
—25
2
b) x
((ca
()L.3)(,(k3)
d)
2
4x
—
81
2
c) 100—x
e) 49
—
2
36x
f)
1
—
‘t
(u’ 4)
2
64x
(a.i’’( tt-c)
.
g)
—w
x
2
h)
—16w
x
2
i)
((It%;%1I*) fIi)
4. Factor the following. These are a mixture of all three types. (common, trinomial, difference of squares)
a) 4x—24
b)m
—
2
7m+12
•L)Lco)
(i4Ab3)(MaP.4)
d)x
—
2
9
(.L
—8x—20
2
e)x
3W3)
C
g)y
—
2
64
j)
c)15y
+
2
lOy
2 +26y+25
Y
3
+
2
m)8x
6x+12x
.
2
f)6xy+18y+6y
C x F? +
o)
4 .r1%)(%)LI. t
2
+
3
h)7z
21z
2
i)36—w
3 —5x
k)15x
2 +lOx
1) 4x
2 —1
n)x
—
2
llx+30
o)m
+
2
2m—24
(()L...Cø)
2 —16
p) 49q
•(7t:(t + )
2
q) x
+
5x 14
r) 81y
2
—
(x (
4
)
.
—
2
4w
2
6. Factor the following by common factoring first, then factoring the trinomial or difference of squares.
2
a) 3x
—
27
2
b) 2x
2
(
3
b
ct)
j
3()e3 ‘(% i)
d)
2
8x
—
8
L k’Z%
16x + 24
3
c) x
—
2
2x
—
24x
(ib4+1øz)
?.(
X%w.
e) x
y
2
)
—
,C
—
)(c.)
z + l2xz 96z
2
f) 3x
y
2
25w
—
)rc,;a)
*c)
:()(.PcM)(
) (4
3(
t )L
‘
z.)