Biotechnology Research and Agricultural Stability

BIOTECHNOLOGY RESEARCH
AND AGRICULTURAL STABILITY
Jack Doyle
T.72 f o l l o w i n g a r t i c l e h a s been r e p r i n t e d w i t h p e r m i s s i o n o f t h e N a t i o n a l
Academy o f S c i e n c e s .
I t f i r s t appeared i n I s s u e s i n S c i e n c e and Technology
F a l l 1 9 8 5 , volume 11, number 1 , ( p u b l i s h e d b y t h e N a t i o n a l Academy o f S c i e n c e s ,
t h e N a t i o n a l Academy o f E n g i n e e r i n g , and t h e I n s t i t u t e o f M e d i c i n e ) where i t
was one o f f i v e a r t i c l e s on t h e t o p i c o f " A g r i c u l t u r e i n T r a n s i t i o n . " The
f u l l i s s u e ($6.00) c a n b e o r d e r e d from t h e NAS P u b l i c a t i o n s Department, 2101
C o n s t i t u t i o n Avenue NW, W a s h i n g t o n , D. C. 20418.
A few years ago a t t h e Smithsonian I n s t i t u t i o n ' s
National Museum of American History, an exhibition
e n t i t l e d "The Changing American Farm: 1831-1981"
celebrated the one-hundred-f i f t i e t h anniversary
of Cyrus McCormickls invention of the reaper, and
more broadly, America's vaunted a g r i c u l t u r a l prod u c t i v i t y . Various displays recounted the h i s t o r i c a l progression of mostly mechanical technology t h a t has made the U.S. farmer the envy of
the world: McCormickls reaper, John Deere's s t e e l
plow of 1837, Benjami n Hol t ' s horse-drawn combi ne
of t h e 1 8 8 0 1 s , Henry Ford's t r a c t o r of 1917, t h e
sel f-propel1 ed combine of 1938, the spindle cotton
picker of 1943, and International Harvester's
Axial-Flow combine of 1977.
This technology has helped make the United S t a t e s
a world leader in food production. In 1800, f o r
example, i t took 373 manhours t o produce 100
bushels of wheat. Today i t takes l e s s than nine
manhours t o produce the same quantity. In 1900,
one U.S. farmer suppl ied seven other people with
food, f i b e r , and other a g r i c u l t u r a l products,
Today the average U.S. farmer supplies more than
75 people.
Of course, t h i s impressive productivity i s not
the r e s u l t of mechanical invention alone, b u t
a1 so of s c i e n t i f i c advances in plant breeding,
livestock g e n e t i c s , f e r t i l i z e r and p e s t i c i d e use,
i r r i g a t i o n technology, and improved farm management practices generally.
Because of the i n t e r p l a y of g e n e t i c s , f e r t i l i z e r s , and p e s t i c i d e s , f o r example, corn y i e l d s
have increased about a bushel per acre every
year since 1930--from an average yield then of
40 bushels per acre t o more than 100 bushels per
acre today. Similar productivity gains have
been made in 1 ivestock. A1 though the U.S. d a i r y
herd has been cut in half since 1950, i t produces
the same t o t a l amount of milk on one-third l e s s
feed. In a1 1 areas of plant and animal a g r i c u l t u r e , "science power" has been the driving
force behind steadi 1 y increasing yields . Our
modern a g r i c u l t u r a l system and methods a r e now
exported and propounded worldwide.
A VULNERABLE SYSTEM
Modern agricul t u r e , however, i s high-pedigree
a g r i c u l t u r e ; i t i s a pampered system t h a t i s
tended and maintained by techno1 ogy and driven
t o perform a t peak l e v e l s . In t h a t sense our
a g r i c u l t u r a l system might be compared to a
thoroughbred race horse. I t i s a system b u i l t
increasingly on hybrid crops and 1ivestock,
heavy inputs of f e r t i l i z e r , a n t i b i o t i c s , water,
and p e s t i c i d e s , a system t h a t i s c a p i t a l ,
energy, and technology i n t e n s i v e . I t i s , in
s h o r t , a demanding, high-strung system.
As such, i t has i t s dependencies, i t s s i d e
e f f e c t s , and i t s vul nerabi 1i t i e s . Because
many of the inputs t h a t s u s t a i n modern a g r i c u l t u r e are petrol eum-based and mechanical 1 y
administered, a g r i c u l t u r e has become energy
dependent--with the high c o s t s and i n s e c u r i t i e s
such dependency e n t a i l s . Despite dramatic
hikes in nitrogen prices since the 1970s, heavy
use of nitrogen f e r t i l i z e r continues, with
attendant problems of runoff and groundwater
contamination. Nitrates and n i t r i t e s from f e r t i 1 i z e r runoff have i n f i l t r a t e d some drinking
water supplies, posing a health t h r e a t , especia l l y t o young children. P e s t i c i d e s , too, a r e
increasingly suspected as carcinogens and
mutagens, in addition t o t h e i r well-known delet e r i o u s e f f e c t s on beneficial i n s e c t s and wild1 i f e . Moreover, d e s p i t e our heavy use of pesticides and herbicides, nearly 40 percent of
U.S. crops a r e s t i l l l o s t t o diseases and pests
-13 percent t o i n s e c t s , 12 percent t o plant
pathogens, and 12 percent t o competing weeds. 1
Monocultures of hybrid corn and Holstein cows
have been and continue t o be highly vulnerable t o
d i s e a s e and p e s t i l e n c e . The e x t e n t of t h e s e vuln e r a b i l i t i e s has been p a r t l y masked by s u r p l u s
s t o c k s , crop s u b s t i t u t i o n s , and, i n some c a s e s ,
sheer luck. Nonetheless, t h e 1 i s t of actual
epidemics and near c a l a m i t i e s in t h e p a s t 15
years i s s u b s t a n t i a l : t h e southern corn l e a f b l i g h t of 1970-71, c i t r u s canker i n f e s t a t i o n in
F l o r i d a , avian influenza in t h e mid-Atlantic
poul t r y s t a t e s , and the Mediterranean f r u i t f l y ,
among o t h e r s .
In a d d i t i o n , t h e p e r i o d i c ravages
of drought and f r o s t can humble even t h e stronge s t p l a n t v a r i e t y . Frost damage a l o n e causes
some $1 b i l l ion i n l o s s e s annual'ly i n t h e United
S t a t e s , and $14 b i l l i o n worldwide,
3
combat a g r i c u l t u r a l p e s t s . G e n e t i c a l l y improved herds of d a i r y cows and beef c a t t l e , a s
we1 1 as. hogs ,poul t r y , and sheep, may produce
more O n l e s s feed. Work i s a l s o under way on
crops t h a t a r e more t o l e r a n t of h e a t , c o l d ,
drought, f l o o d i n g , and s a l t y s o i l s , and on crop
p l a n t s t h a t a r e r e s i s t a n t t o h e r b i c i d e s and
p e s t i c i d e s o r t h a t have improved response t o
f e r t i l i z e r . Some b i o t e c h n o l o g i s t s promise a
new g e n e t i c d i v e r s i t y throughout p l a n t and
animal a g r i c u l t u r e , lower c o s t s and higher
p r o f i t s f o r farmers, and b e t t e r crops and l i v e stock breeds f o r t h e t h i r d world.
Indeed, t h e promises being made in t h e name of
biotechnology a r e s u b s t a n t i a l , even though t h e
science underlying t h e s e a p p l i c a t i o n s i s s t i l l
u n c e r t a i n . Generally, we know l e s s about
p l a n t s than we do about animals, i n
p a r t because federal support f o r
cancer research has focused a t t e n t i o n
/lkeathoroughbred
on animal c e l l biology. Few genes i n
race horse, modern
t h e p l a n t realm have even been characagriculture is a
t e r i z e d . And when i t comes t o actual
demanding, highg e n e t i c engineering, s c i e n t i s t s a r e
only beginning t o discover how t o manistrung system,
p u l a t e single-gene t r a i t s , l e t alone
nourished by
technologyanddriven
f u n c t i o n s such a s nitrogen f i x a t i o n ,
toperformatpeak
be1 ieved t o be governed by 30 o r more
levels.
genes.
G e n e t i c i s t William L . Brown, former
chairman of t h e board of Pioneer HiBred I n t e r n a t i o n a l and now chairman of
the National Academy of Sciences'
Board on A g r i c u l t u r e , has noted t h a t
!hen our a g r i c u l t u r a l system i s r u n n ing r i g h t , i t s performance i s simply
dazzling--"but watch out when somet h i n g goes wrong." In 1983 something
d i d go wrong f o r corn farmers in t h e
Midwest: drought. "Many farmers incurred 1arge economic 1 osses ," Brown
explained, "because t h e i r investment
in inputs t o support a 150-bushel ( p e r
a c r e ) crop withered along with t h e i r corn
p l a n t s . " Brown and o t h e r s have begun t o r a i s e
concerns about t h e v o l a t i l i t y of our high-tech,
high-yield system. "As we o f f e r t h e farmer inc r e a s i n g l y s o p h i s t i c a t e d and c o s t l y technological packages, we i n a d v e r t e n t l y exacerbate two
r e l a t e d sources of i n s t a b i l i t y in a g r i c u l t u r e .
High-yield production systems a r e o f t e n more
v o l a t i l e in terms of harvested production, and
more e r r a t i ? in terms of p r o f i t f o r t h e farmer,"
Brown says.
In o t h e r words, t h e thoroughbred
runs well only when everything c l i c k s .
Into t h i s a g r i c u l t u r a l system, with a l l i t s
s t r e n g t h s , complexities, and vul nerabil i t i e s - both biological and pol i t i c a l --comes biotechnology. We a r e now poised on the threshold of a
new era of a g r i c u l t u r a l science and technology
t h a t may b o l s t e r , f o r t i f y , and e v e n t u a l l y supersede the t r a d i t i o n a l techniques of p l a n t and
animal breeding, make o b s o l e t e t h e brute-force
use of a g r i c u l t u r a l chemicals, and i n c r e a s e
p r o d u c t i v i t y beyond anything ever dreamed o f .
Recombinant D N A and t i s s u e c u l t u r e techniques
may o f f e r new ways t o enhance t h e n u t r i t i o n a l
content of food and forage crops and t o develop
crops r e s i s t a n t t o i n s e c t s and d i s e a s e . Engineered biological p e s t i c i d e s may a l s o be used t o
B u t assuming t h a t t h e s c i e n t i f i c
b a r r i e r s w i l l be overcome--and advances
have been coming more r a p i d l y than anyone ever
thought they would even f i v e years ago--the key
question about a g r i c u l t u r a l biotechnol ogy i s ,
How w i l l i t be used? Will i t simply add newer
increments of pedigree improvement t o t h e hight e c h , high-yield system t h a t i s a l r e a d y in
place--exacerbating i t s v u l n e r a b i l i t y , i t s s i d e
e f f e c t s , and i t s v o l a t i l i t y ? Or will i t reduce
production c o s t s f o r farmers, broaden t h e
g e n e t i c and economic base of a g r i c u l t u r e , and
reduce negative environmental and public h e a l t h
side effects?
With t h i s new technology we a r e a t a crossroads,
and the path we choose may a f f e c t not only t h e
United S t a t e s b u t much of world a g r i c u l t u r e .
Our decisions on research d i r e c t i o n and i n v e s t ment must be made c a r e f u l l y f o r i f commitments;
of s c a r c e t a l e n t and c a p i t a l a r e made i n one
d i r e c t i o n , we may f o r e c l o s e o t h e r o p t i o n s .
Commerce and e n t r e p r e n e u r i a l genius have been
a d r i v i n g f o r c e in a g r i c u l t u r a l innovation and
r i s i n g p r o d u c t i v i t y i n t h e p a s t . The f u t u r e
d i r e c t i o n of a g r i c u l t u r a l biotechnology,
however, should not be l e f t t o t h e market alone.
Thoughtful public p o l i c i e s a r e necessary t o
ensure t h a t promising options a r e pursued-including those t h a t a r e f i n a n c i a l 1 y r i s k y ,
longer term, and perhaps not a s commercially
4
DNA struclure
DNA can be described as "a w i n d i n g l a d d e r . "
l u c r a t i v e . We need t o examine which h i s t o r i c a l l y
negl e c t e d areas o f a g r i c u l t u r a l research may
p r o f i t from g e n e t i c engineering, where scarce
research d o l l a r s should be p u t f i r s t , t h e
research r o l e o f t h e U.S. Department o f A g r i c u l t u r e (USDA) and l a n d g r a n t and p r i v a t e u n i v e r s i t i e s , and what new i n c e n t i v e s m i g h t be c r e a t e d t o
encourage i n d u s t r y t o pursue p r o d u c t s i t m i g h t
otherwise neglect
.
As a s t a r t i n t h a t process, i t w i l l be he1 p f u l
t o examine what b i o t e c h n o l o g y may o r may n o t do
i n terms of i n c r e a s i n g t h e e f f i c i e n c y o f a g r i c u l t u r a l p r o d u c t i o n (and here I mean more emphas i s on p r o d u c t i v i t y and l e s s on gross o u t p u t per
a c r e ) , r e d u c i n g farmers ' c o s t s , r e d u c i n g a g r i chemical use, broadening g e n e t i c d i v e r s i t y , and
i n c r e a s i n g economic s t a b i l it y i n a g r i c u l t u r a l
p r o d u c t i o n and w o r l d markets.
YIELD HAS BEEN THE GOAL
I n t h e n e x t 30 y e a r s w o r l d food p r o d u c t i o n w i l l
have t o double, i t i s estimated, t o meet demand.
T h i s c h a l l e n g e cannot be met w i t h o u t s u b s t a n t i a l
improvements i n a g r i c u l t u r a l y i e l d s . Y i e l d i s
what farmers buy and what p o l i t i c a l l e a d e r s w i t h
masses o f people t o f e e d hope most f o r t h e i r
s c i e n t i s t s t o achieve, whether b y c l a s s i c a l
breeding techniques, t i s s u e c u l t u r e methods, o r
g e n e t i c e n g i n e e r i n g . When R a j i v Gandhi v i s i t e d
t h e U n i t e d S t a t e s i n June 1985, i t was n o t t h e
computer-based sciences and r o b o t i c s t h a t impressed him t h e most, b u t r a t h e r what b i o t e c h n o l o g y m i g h t do t o h e l p him feed h i s n a t i ~ n . ~
The semi-dwarf wheat and r i c e v a r i e t i e s i n t r o duced d u r i n g t h e Green Rev01 u t i o n i n t h e 1960s
and 1970s helped p r o v i d e I n d i a w i t h t h e a b i l i t y
t o feed i t s e l f ; Gandhi sees even g r e a t e r possibi l i t i e s ahead w i t h b i o t e c h n o l o g y .
Today t h e r e i s t a l k o f 300-bushel p e r a c r e c o r n
and sorghum, 200-bushel p e r a c r e wheat and
b a r l e y , and 100-bushel p e r a c r e soybeans-double and t r i p l e c u r r e n t y i e l d s . Crop y i e l d ,
however, i s a composite o f many p l a n t processes
r a n g i n g from how s t r o n g a c r o p ' s s t a l k i s t o
t h e molecular i n t r i c a c i e s o f photosynthesis.
High y i e l d i s n o t s i m p l y t h e consequence o f one
gene b u t o f t h e i : n t e c a c t i o n o f many.
When breeders and b i o t e c h n o l o g i s t s t a l k o f
i m p r o v i n g y i e l d , t h e y i n v a r i a b l y t a l k o f hyb r i d i z a t i o n - - t h e process o f c r o s s i n g two
d i f f e r e n t p l a n t v a r i e t i e s o r animal breeds t o
o b t a i n a g e n e t i c a l l y improved one. Corn and
sorghum y i e l ds , f o r exampl e , have i n c r e a s e d
more than 300 p e r c e n t s i n c e t h e y were h y b r i d i z e d i n t h e 1930s and 1940s. However, o t h e r
m a j o r crops l i k e wheat and soybeans have been
d i f f i c u l t t o h y b r i d i z e b y t r a d i t i o n a l techniques, and p r o d u c i n g commercial q u a n t i t i e s o f
h y b r i d seed from these crops i s c o s t l y and t i m e
Now, however, b i otechnol ogy i s
-consuming
b e i n g used t o overcome some o f these d i f f i c u l ties.
.
One company, P l a n t Genetics, I n c . o f Davis,
C a l i f o r n i a , i s u s i n g a t i s s u e c u l t u r e technique
known as somatic embryogenesis t o produce
c l o n e s o f a hand-pol 1 inated c e l e r y h y b r i d . I n
t h i s process t i n y p l a n t embryos a r e generated
from t h e h y b r i d c e l e r y t i s s u e and t h e n "batched
up" b y t h e thousands i n a f e r m e n t a t i o n process.
These embryos, c a r r y i n g t h e d e s i r e d t r a i t s o f
t h e p a r e n t 1 i n e , a r e then encapsulated i n a
polymer seed c o a t t o be s o l d as " s y n t h e t i c "
h y b r i d seeds.
A g r i g e n e t i cs C o r p o r a t i on o f Boulder , Colorado,
has patented a b i o t e c h n o l o g y process t h a t
a l l o w s f o r t h e r a p i d development and commerial
p r o d u c t i o n o f h y b r i d seed w i t h o u t t h e t r a d i t i o n a l l i m i t a t i o n s on t h e g e n e t i c makeup o f t h e
p a r e n t l i n e s . T h i s process, a c c o r d i n g t o t h e
company, p e r m i t s one o r b o t h o f t h e p a r e n t
1 i n e s t o be g e n e t i c a l 1y complex (heterozygous)
r a t h e r t h a n i n b r e d f o r u n i f o r m i t y (homozygous),
p o t e n t i a l l y r e d u c i n g t h e t i m e needed t o develop
h y b r i d seed.
Biotechnology may a1 so he1p improve c r o p y i e l d
by improving t h e e f f i c i e n c y o f c e r t a i n b i o l o g i c a l processes i n p l a n t growth, such as photos y n t h e s i s . Most a g r i c u l t u r a l crops c o n v e r t 1ess
t h a n 1 p e r c e n t o f t h e energy t h e y absorb f r o m
t h e sun, and even a t i n y i n c r e a s e i n t h i s conv e r s i o n process c o u l d mean a s u b s t a n t i a l i n c r e a s e
i n crop y i e l d . The f e d e r a l government and a
few m a j o r c o r p o r a t i o n s - - i n c l u d i n g Dow Chemical,
Monsanto, and E l i L i l l y - - h a v e been r e s e a r c h i n g
t h e g e n e t i c s o f p h o t o s y n t h e s i s . S p e c i f i cal.ly,
t h e y a r e examining t h e g e n e t i c s o f c h l o r o plasts, t h e s i t e o f photosynthesis w i t h i n t h e
5
c e l l . E v e n t u a l l y , i t may be p o s s i b l e t o genet i c a l l y engineer these o r g a n e l l e s t o improve
t h e e f f i c i e n c y o f p h o t o s y n t h e s i s , a1 though
t h e r e i s s t i l l a l o n g way t o go on t h i s f r o n t .
Other companies a r e c o n c e n t r a t i n g t h e i r e f f o r t s
f o r i n c r e a s i n g y i e l d i n one o r more s p e c i f i c
crops. DuPont, f o r example, has i n t e g r a t e d i t s
chemical growth r e g u l a t o r research w i t h i t s
p l a n t b r e e d i n g and p l a n t b i o t e c h n o l o g y research
i n an a t t e m p t t o achieve a 10 t o 15 p e r c e n t
y i e l d i n c r e a s e i n soybeans, a c c o r d i n g t o
G.D. H i l l o f t h e company's a g r i c u l t u r a l
chemicals d i v i s i o n . 4
"YIELD" REDEFINED
s u p p l i e s . I n 1983, f o r example, farmers spent
$18 b i l l i o n f o r purchased feed, $7.4 b i l l i o n f o r
f e r t i l i z e r , $4 b i l l i o n f o r p e s t i c i d e s , $4 b i l l i o n
f o r seed, $9.8 b i l l i o n f o r f a r m machinery and
$15.8 b i l l i o n f o r f u e l , l u b r i c a n t s , and machinery
up-keep.
The p r i c e s p a i d b y farmers f o r p r o d u c t i o n i n p u t s
have r i s e n p r e c i p i t o u s l y d u r i n g t h e l a s t 15 years
o r so. USDA's i n d e x f o r general p r o d u c t i o n i n p u t s shows a d o u b l i n g o f p r i c e s p a i d b y farmers
between 1973 and 1983. For example, t h e average
c o s t p e r farm o f seed and p l a n t s soared b y 164
p e r c e n t between 1972 and 1977. Today a midwestern c o r n farmer spends on t h e average about
$46 p e r a c r e on f e r t i l i z e r , $17 p e r a c r e on pest i c i d e s , $17 p e r a c r e f o r seed, and about $18 p e r
a c r e f o r f u e l . C a p i t a l investments can be subs t a n t i a l , too. I r r i g a t i o n investments i n t h e
Great P l a i n s r e g i o n were $103 p e r a c r e i n 1950,
r o s e t o $201 p e r a c r e b y 1970, and exceeded $500
p e r a c r e b y 1979. Some farmers a r e now spending
as much as $35,000 a y e a r on h e r b i c i d e s and
$50,000 a y e a r t o power i r r i g a t i o n systems.
R i s i n g c o s t s a r e p a r t o f t h e reason
why many farmers a r e now i n economic
t r o u b l e.
A1 t e r n a t i v e l y , b i o t e c h n o l o g y a1 so o f f e r s t h e
p o s s i b i l i t y o f improving p r o d u c t i v i t y w i t h o u t
i n c r e a s i n g y i e l d p e r s e - - i n o t h e r words, i n c r e a s i n g t h e e f f i c i e n c y o f p r o d u c t i o n . For
example, some p l a n t s produce n a t u r a l molecules
t h a t r e p e l i n s e c t s . As Sam Dryden, p r e s i d e n t
o f A g r i g e n e t i cs, says, e n g i n e e r i n g
such t r a i t s i n t o a g r i c u l t u r a l crops.
" c o u l d be s e v e r a l o r d e r s o f magnitude
more c o s t e f f e c t i v e t h a n t r a d i t i o n a l
Reversing the highW i l l b i o t e c h n o l o g y change t h a t ?
chemical approaches t o formul a t i ng ,
manufacturing, and a p p l y i n g b i o c i d e s . "
~ieldorientationof
Because b i o t e c h n o l o g y i s capable o f
U-S-agriculture,even
T h i s approach, however, m i g h t a1 so r e t u r n i n g o u t c e r t a i n k i n d s of p l a n t
with a powerful tool
duce y i e l d somewhat. "The added v a l u e
c l o n e s i n t h e m i l 1 i o n s o r producing
like biotechnology,
i n t h i s case may be one o f c o s t r e 1 i v e s t o c k vaccines i n huge q u a n t i t i e s
willbe difficult inded.
d u c t i o n [ e l i m i n a t i ng t h e need f o r i n f o r pennies, i t should, presumably, be
secticide application], not o f i n a b l e t o d e l i v e r l o w e r c o s t seed, feed,
creased h a r v e s t index [ y i e l d ] , " exand p e s t i c i d e s . And i n s o f a r as t h e
p l a i n s Dryden. " I n any case, we
gene i s t h e c e n t r a l i n g r e d i e n t o f
should be he1 ped i f we r e f i n e d o u r use
a g r i c u l t u r e - - d e t e r m i n i ng t o a 1arge
o f t h e word ' y i e l d ' t o mean r e t u r n on
e x t e n t whether-, o r t o what degree,
investment r a t h e r than as measure o f gross b i o supplementary i n g r e d i e n t s such as f e r t i 1i z e r ,
mass p e r acre."5
p e s t i c i d e s , o r w a t e r w i l l be needed--"building
i n " t r a i t s t h a t make crops h a r d i e r and a b l e t o
That may be e a s i e r s a i d than done, however. I n
r e s i s t p e s t s should presumably do away w i t h t h e
t h e U n i t e d States, as we1 1 as i n many o t h e r
need f o r some expensive supplements and c a p i t a l
c o u n t r i e s , p l a n t breeding programs, farm manageequipment.
ment p r a c t i c e s , p r i c e support formulas, farm
c r e d i t , and a g r i b u s i n e s s p r o d u c t development a r e
"Imagine a s t r a i n o f wheat t h a t grows w e l l i n t h e
a1 1 p r e d i c a t e d on h i g h - y i e l d a g r i c u l t u r e . Red r y l a n d s o f western Kansas--wi t h o u t heavy i r r i v e r s i n g t h a t h i g h - y i e l d o r i e n t a t i o n , even w i t h
gation," s a i d N i c h o l a s Reding, Monsanto's execua powerful t o o l l i k e b i o t e c h n o l o g y , w i l l be
t i v e v i c e - p r e s i d e n t , a t a January 1984 meeting o f
d i f f i c u l t indeed. Rather, b i o t e c h n o l o g y i s more
t h e Kansas Board o f A g r i c u l t u r e . " O r a c o r n
l i k e l y t o be used t o make t h e thoroughbred r u n
p l a n t t h a t f i x e s i t s own n i t r o g e n . O r soybean
f a s t e r , o r produce more, than i t i s t o make i t
p l a n t t h a t - have even h i g h e r p r o t e i n , o r d o n ' t
s t r o n g e r and more d u r a b l e .
need t o be processed b e f o r e animal consumption.
O r c a t t l e t h a t c o n v e r t p r o t e i n t o meat w i t h an
These
e f f i c i e n c y we o n l y dream about today
HIGH COSTS OF US. AGRICULTURE
new t e c h n o l o g i e s , l i k e t h o s e o f t h e p a s t , w i l l
g i v e American farmers t h e edge t h e y need t o r e Biotechnology, as noted above, may o f f e r new
main t h e most p r o d u c t i v e i n t h e w o r l d . "
o p p o r t u n i t i e s t o reduce farmers ' costs--and
those c o s t s a r e s u b s t a n t i a l . I n t h e aggregate
continued on page 8
U.S. farmers spend n e a r l y t w o - t h i r d s o f t h e i r
cash r e c e i p t s each y e a r t o purchase farm
. ..
BIOTECHNOLOGY: The Terms of the Trade
What k DNA?
DNA-deoxyribonucleic acid-is
the genetic
material found in all living organisms. The
characteristics of every living organism can be traced
to the code of its DNA. Recombinant DNA, [rDNA), is
both the process of combining the DNA of different
organisms and the product of this process.
What do g m s do?
The genetic code is present in every cell of every
organism. Depending on the cell's particular function,
the code tells the cell what to do, how to act, and when
to do it. For example, the human body has a gene, or
several genes, that tell cells when to grow. Normally,
this gene is b n muntil a person reaches their early
twenties or late teens. Then, another gene tells the
body to stop producing the chain of reactions that
stimulate growth, and the gene turns 'ofP.
How do genes worKl
Each gene produces an enzyme that contributes to a
chain reaction; ultimately, normal functioning of the
body is the result of a series of chain reactions. Another
way to imagine how genes work would be to think of
genes working together to create a domino effect
Generally, no one gene is responsible for a single action
What is cbnhg?
Cloning occurs as a result of isolating the DNA
within certain, specific genes. DNA is isolated by using 'restriction enzymes,' that separate segments of
DNA from its longer strand. These segments are then
transferred into bacteria. By this process, specific
segments of DNA can be patched into the genetic code
of other organisms.
Bacteria provides an especially hospitable habitat
for cloning, because it is able to multiply rapidly.
Since the piece of transferred DNA has been implanted into the bacterium's permanent genetic code,
it is reproduced exactly through every generation of
bacteria. When the bacteria are grown in large enough
batches, the products from the new gene can be
harvested and purified.
~~
What k
People often use the terms biotechnology. genetic
engineering, and recombinant DNA (rDNA) interchangeably. Actually they describe different
classifications of activities in biology. Biotechnology
is the broadest category. It describes both old and new
techniques of manipulating organisms for specific
purposes. According to a 1984 Office of Technology
Assessment Report, biotechnology includes any
technique % a t uses living organisms (or parts of
organisms) to make or modify products, to improve
plants and animals, or to develop rnicrowganisms for
specific uses."
What is somatlc p e therapy and how does R dllfer from germhe
gene therapy?
The idea behind somatic therapy is to replace genes
whose absence or defectiveness causes genetic
diseases (like cystic fibrosis or Huntington's disease).
Scientists first remove the genetic code from a type of
virus called a retrovirus, which is compatible with
bone marrow cells, and substitute genetic material
from a healthy gene. The altered virus is injected into
the bone marmw, where it multiplies and forms
healthy pone marrow cells. The bone marrow is then
able to produce blood cells with healthy genes, which
in turn produce the enzymes necessary for a normal
metabolic process. Although still in the experimental
stages, somatic therapy has been tested with success
in laboratory animals.
Most authorities believe that genetic changes mede
in somatic therapy do not get passed on to generations
via the sex-alled
'germw-cells.
The other, more controversial gene therapy would
involve changing the genetic make up of the genes
carried in germ cells. While germcell alterations
could reduce inherited genetic diseases, in the farreaching future it could have the potential to alter
genes that determine the hair and eye color, sex, and
intelligence of an offspring. Both scientists and
ethicists debate the consequences of g e r m a l l
therapy, questioning the morality of tampering with
0
already healthy genes.
MULTINATIONAL MONITOR FEBRUARY 28,1986
Reprinted with permission.
Genetic Engineering:
A Chronology
First gene cloned.
U.S. guidelines for rDNA research outlined
at the Asilomar Conference.
Genentech, Inc. is the first genetics firm
founded for commercial purposes.
Somatostatin (human growth hormone) is
the f i s t product.
In Diamond vs. Chakrabarty the US.
Supreme Court rules that microorganisms
can be patented under existing law.
Genentech is the first biotechnology firm to
offer stock publicly. It sets a Wall Street
record for the faster price increase per
share.
Initial public offering by Cetus sets Wall
Street record for the largest amount of
money raised by an initial public offering--$I25 million.
More than 80 new biotechnology firms had
been formed by the end of the year.
Human insulin is the f i s t rDNA pharmaceutical product approved for use in the
United States and the United Kingdom.
First plant gene expressed in a plant of a
different species.
Judge John Sirica blocks the scheduled environmental release of rDNA organism.
The Gene Merchants
Unilemr, a company that already owns palm oil,
rubber, copra, cocoa and tea plantations in West and
Central Africa, Colombia, the Solomon Islands and
Malaysia, is using biotechnology to improve yields of
the oil and coconut palms and has established a subsidiary to sell cloned palm oil seedlings throughout
Asia.
Mitsubishi. one of Japan's largest companies, has
taken a small equity position in Sungene Technologies
Corp., a California-based biotechnology company, and
may eventually help market and distribute some of
Sungene's agricultural inventions in Asia.
Kemira OY, Finland's largest chemical concern.
and owner of fertilizer terminals in Malaysia,
Thailand and Guatemala, has a research contract with
Calgene, Inc, to develop herbicide-resistant varieties of
turnip rape.
Royal Dutch-Shell, the European energy giant, is
developing hybrid wheat strains and is also studying
the genetics of herbicide resistance in corn.
Nestle, the world's largest food corporation, has a
research agreement with Calgene, Inc. to develop
herbicide-tolerant varieties of soybeans.
Kirin Brewery of Japan has invested $1 million in
the California-based Plant Genetics, Inc.. and will
market that company's 'synthetic seed' technique and
products throughout Asia and the Pacific Rim.
Upjohn, one of the world's largest veterinary suppliers, signed a 10-year agreement with the
Minnesota-based Molecular Genetics, Inc. to distribute
that company's genetically-made animal health products in some 57 countries.
Hindustan Lever. an affiliate of Unilever, is working on bio-insecticides in India.
Carnation, a subsidiary of Nestle that is already
involved in Mexico, Peru and the Philippines with
dairy and farm assistance programs, has also been active in the livestock engineering business, and has
negotiated a number of embryo export deals with
several African nations.
Rhone-Poulenc, a major French chemical concern, has a research contract with Calgene, Inc. to
develop sunflower varieties resistant to the herbicide
0
Bromoxiynil.
NEW DANGERS
A1 t e r n a t i v e l y, b i o t e c h n o l o g y may be a p p l i e d i n
ways t h a t i n c r e a s e t h e need f o r chemical and
energy i n p u t s , t h e r e b y r a i s i n g t h e c o s t o f production. I f biotechnology i s successful i n
b r i n g i n g more h i g h - y i e l d i n g h y b r i d s t o m a r k e t ,
f o r example, t h a t w i l l no d o u b t mean i n c r e a s e d
f e r t i l i z e r use. A f t e r t h e i n t r o d u c t i o n o f hyb r i d c o r n v a r i e t i e s , t h e average f e r t i l i z e r use
o f U.S. f a r m e r s i n c r e a s e d t e n - f o l d .
Between
1947 and 1973 t h e average f e r t i l i z e r a p p l i c a t i o n
on U.S. c o r n l a n d i n c r e a s e d f r o m a b o u t 20 pounds
p e r a c r e t o more t h a n 200 pounds p e r a c r e .
S i m i l a r increases i n f e r t i 1i z e r (and p e s t i c i d e )
use c o u l d be e x p e c t e d w i t h t h e i n t r o d u c t i o n o f
new h y b r i d wheat, c o t t o n , soybeans, and o t h e r
crops.
B i o t e c h n o l o g y may h e l p r e d u c e p e s t i c i d e use i n
a g r i c u l t u r e and may l e a d t o more s o p h i s t f c a t e d
and p r e c i s e methods o f c h e m i c a l a p p l i c a t i o n .
But, depending on t h e c o u r s e o f r e s e a r c h and
c a p i t a l i n v e s t m e n t i n t h e n e x t few y e a r s , b i o t e c h n o l o g y may be a p p l i e d i n ways t h a t l e a d t o
g r e a t e r c h e m i c a l use, e x a c e r b a t i n g e x i s t i n g env i ronmental problems and p e r h a p s c r e a t i n g ent i r e l y new ones.
B i o t e c h n o l o g y may h e l p us r e d u c e o u r dependence
o n chemical p e s t i c i d e s i n t w o ways: ( 1 ) t h r o u g h
t h e g e n e t i c e n g i n e e r i n g o f c r o p s t h a t a r e more
b r o a d l y r e s i s t a n t t o o r even t o l e r a n t o f
d i s e a s e s and i n s e c t s , and ( 2 ) t h r o u g h t h e i n formed and c a r e f u l use ( a n d p o s s i b l e g e n e t i c
enhancement) o f "good" m i c r o b e s and i n s e c t s
t h a t d i s p l a c e , r e p e l , o r k i 11 "bad" ones.
F o r t h e most p a r t , when b i o t e c h n o l o F i r s t consider crop breeding f o r
g i s t s , p l a n t b r e e d e r s , and a g r i c u l td i s e a s e and i n s e c t r e s i s t a n c e . Today
u r a l economists t a l k o f reducing t h e
i n t h e U n i t e d S t a t e s t h e r e a r e approxf a r m e r ' s c o s t s , t h e y mean i m p r o v i n g
Biotechnolog~maybe
imately150crop varieties resistant
applied in ways that
h i s y i e l d and h i s income p e r a c r e ,
t o one o r more k i n d s o f d i s e a s e , 150
lead togreater
thereby lowering h i s costs i n r e l a t i o n
v a r i e t i e s r e s i s t a n t t o nematodes, and
t o h i s income. I n t h i s c o n t e x t c o s t s
chemicaluse,
o v e r 100 v a r i e t i e s r e s i s t ? n t t o some
can s t i l l r i s e as l o n g a s y i e l d does.
exacerbatingexisting
25 t y p e s o f i n s e c t p e s t s . 7 I m p r e s s i v e
environmental
as t h i s may sound, t h e r e a r e no c r o p
T h i s s c e n a r i o assumes, however, t h a t
t h e p r i c e farmers w i l l g e t f o r a
problemsandperhaps
v a r i e t i e s r e s i s t a n t t o many d i s e a s e s
b u s h e l o f c o r n o r wheat w i l l r e m a i n
creating new ones.
and i n s e c t p e s t s . I n t h e m i d w e s t e r n
constant. But i f biotechnology r a i s e s
Corn Be1 t, f o r example, t h e r e a r e a t
y i e l d s t o o d r a m a t i c a l l y , i t c o u l d del e a s t 30 i n s e c t p e s t s and 50 d i s e a s e
press market p r i c e s i n t h e aggregate,
pathogens t h a t can a t t a c k c o r n . So
a c t u a l 1y e x a c e r b a t i n g t h e f a r m e r ' s c o s t - p r i c e
f a r , c o r n v a r i e t i e s have been d e v e l oped t h a t
squeeze. Some wouid argue, however, t h a t t h i s
r e s i s t a b o u t 22 o f t h e most damaging c o r n
d i s e a s e s . The r e c o r d f o r d e v e l o p i n g new i n s e c t
s c e n a r i o changes i f one assumes t h a t t h e number
o f f a r m e r s w i l l be reduced as b i o t e c h n o l o g i c a l
- r e s i s t a n t c o r n v a r i e t i e s , however, i s n o t as
appl i c a t i o n s increase t h e o v e r a l l e f f i c i e n c y o f
good. Corn i s one o f t h e n a t i o n ' s l a r g e s t u s e r s
agriculture.
o f i n s e c t i c i d e s , a c c o u n t i n g f o b a h e f t y 25 p e r c e n t o f t o t a l i n s e c t i c i d e use.
PESTICIDE DEPENDENCY-YES OR NO?
N a t i o n w i d e , p e s t i c i d e s and h e r b i c i d e s a r e i n c r e a s i n g l y b e i n g f o u n d i n s u r f a c e and groundw a t e r s u p p l i e s . I n t h e p a s t two y e a r s a l o n e ,
t h e E n v i ronmental P r o t e c t i o n Agency ( EPA) has
i n i t i a t e d r e v i e w s on a t l e a s t h a l f a dozen widel y used a g r i c u l t u r a l p e s t i c i d e s t h a t a r e now
suspected as c a r c i n o g e n s .
P u b l i c concern about t h e p o t e n t i a l t o x i c i t y o f
t h e s e c h e m i c a l s a l s o appears t o be r i s i n g . I n a
J a n u a r y 1984 consumer s u r v e y c o n d u c t e d b y t h e
Food M a r k e t i n g I n s t i t u t e , 77 p e r c e n t o f t h o s e
p o l l e d expressed c o n c e r n o v e r p e s t i c i d e and h e r b i c i d e residues i n food, i n d i c a t i n g t h e problem
t o be a " s e r i o u s h a z a r d . " By c o n t r a s t , c h o l e s t e r o l was j u d g e d t o be a s e r i o u s h a z a r d b y 45
p e r c e n t , s a l t b y 37 p e r c e n t , a d d i t i v e s b y 32
p e r c e n t , sugar b y 3 1 p e r c e n t , and a r t i f i c i a l
c o l o r i nq b y 26 ~ e r c e n to f t h o s e surveyed.
One p e s t , t h e w e s t e r n c o r n rootworm, has been
expanding i t s r a n g e b y 140 m i l e s a y e a r i n a n
ever-en1 a r g i ng c i r c l e t h a t began i n s o u t h e r n
Nebraska i n 1960. I t i s now f o u n d i n 1 8 s t a t e s .
I n a d d i t i o n , some o f t h e c h e m i c a l i n s e c t i c i d e s
used t o t r e a t t h i s p e s t a r e now showing u p i n
m i d w e s t e r n groundwater s u p p l i e s . As o f 1984 no
r o o t w o r m - r e s i s t a n t c o r n v a r i e t i e s were
a v a i l a b l e . One m a j o r o b s t a c l e i s t h a t no c o r n
germplasm w i t h r e s i s t a n c e t o t h i s p e s t has been
identified.
I n t h e southeastern United States, chemical
pesticides--not resistant plant varieties--have
been t h e c h i e f means o f c o n t r o l l i n g soybean
i n s e c t s , nematodes, and s e v e r a l p l a n t d i s e a s e s .
I n Alabama, f o r example, t h e r o o t - k n o t nematode
and t h e soybean c y s t nematode a r e p a r t i c u l a r l y
v e x i n g problems. B o t h had been a l m o s t e n t i r e l y
c o n t r o l l e d b y two n e m a t i c i d e s - - e t h y l e n e d i b r o rnide (EDB) and d i b r o m o c h l o r o p r o p a n e (DBCP)--
until EPA banned them f o r public health reasons.
That prohibition revealed how dependent soybean
growers were on these pesticides, as well as
how l i t t l e breeding has been undertaken t o
develop nematode-resistant soybean v a r i e t i e s .
In some breeding programs such work i s now under
way.
Genetic engineering may make i t possible t o
avoid some of the limitations of conventional
plant breeding f o r resistance. I t could speed
the process of germplasm screening and evaluation f o r resistance t r a i t s . And with the newfound a b i l i t y t o t r a n s f e r genes from one speci e s o r genus t o another, genetic engineers need
no longer confine t h e i r search f o r resistance
genes t o compatible species; some predict t h a t
the e n t i r e plant kingdom will become an openThis means f o r example, t h a t
ended gene pool
certain genetic t r a i t s of the oak tree--a
species t h a t i s not bothered by the r u s t s of
wheat--could conceivably be moved i n t o commerci a l wheat v a r i e t i e s t o make them permanently
r e s i s t a n t t o r u s t . Some biotechnologists even
t a l k boldly of making crops "immune" t o disease
and insects. By contrast ,pl ant breeders a r e
more inclined t o t a l k of " r e l a t i v e resistance"
and "re1 a t i v e suscepti bi 1 i t y . I'
.
Howard Schneiderman, Monsanto's senior vicepresident f o r research and development, predicts
t h a t some genetical 1 y engineered major crops
r e s i s t a n t t o insects and other pests will be on
the market by the 1990s. . The r e s u l t , he adds,
will be decreased dependence on pesticides.
"We will have shifted the central t h r u s t of
plant protection in some key areas from t r e a t ment t o prevention. "9
ADAPTING RESISTANCE
This approach may not be without d i f f i c u l t i e s
and s i d e e f f e c t s , however. In the development
of i n s e c t and disease r e s i s t a n t v a r i e t i e s by
conventional means, plant breeders have general 1 y
employed a one-genelone-pathogen type of r e s i s tance, sometimes called "gene-for-gene" breeding--a practice t h a t may be followed in genetic
engineering as well. Crop v a r i e t i e s with singlegene resistance a r e almost completely r e s i s t a n t
t o the predominant s t r a i n of the pest--until an
adaptation occurs. J u s t a s a pest can become
immune t o a pesticide, so can i t overcome the
resistance produced by a s i n g l e plant gene.
, Si ngl e-gene resistance more or 1 ess beckons
adaptation by the pest and i t s mutation i n t o new
s t r a i n s , rendering the crop v a r i e t y , i f widely
planted, susceptible t o devastation or epidemics.
There i s some evidence suggesting t h a t the use of
Isingle-gene breeding may be contributing t o a
corresponding increase in the frequency of
virulence genes (genes t h a t enable the pathogen
t o overcome the p l a n t ' s resistance gene) in the
pathogens t h a t attack c e r t a i n crops.10 This has
been'reported in Australia, f o r example, in
breeding wheat f o r resistance t o stem r u s t ,
barley f o r resistance t o powdery mildew, tomato
f o r resistance t o leaf mold, and l e t t u c e f o r
resistance t o downy mi 1 dew. Many pathogenic
organisms have the a b i l i t y t o t r a n s f e r genes
among themselves asexually, increasing the r a t e
a t which they can develop virulence genes and
thus adapt t o and overcome single disease resistance genes in new crop v a r i e t i e s . l l This i s
one reason why some new crop v a r i e t i e s l a s t as
1 i t t l e as f i v e years before they a r e overtaken
by a new s t r a i n of pathogen.
"Intensive modern agricultural methods acceler a t e the evolution of new pest types, requiring
plant g e n e t i c i s t s to more rapidly breed genes
i n t o commerical c u l t i v a r s from r e s i s t a n t re1 a t i v e s , " says Cal gene, a biotechnol ogy company
in California, in one of i t s recent brochures.
The company holds out biotechnology a s a solution: "bio-engineering wi 1 1 speed t h i s t r a n s f e r
process t o keep pace with the pathogens, expand
the gene pool t o unrelated organisms, and even
create synthetic resistance genes in the t e s t
tube." B u t i f genetic engineering continues t o
employ gene-for-gene plant breeding, might i t
not simply speed and extend the practices of the
past, thereby hastening the adaptation of new
s t r a i n s of disease and i n s e c t s ?
On t h e other hand, biotechnology might help
plant breeders t o impart a broader, multiplegene type of disease and i n s e c t r e s i s t a n c e t o
agricultural crops, but t h a t will be more d i f f i c u l t t o accomplish i n the short run. S c i e n t i s t s
a r e j u s t beginning t o learn of the interaction
pest and plant genes, and more basic know1 edge
in t h i s area i s needed. And, as noted e a r l i e r ,
only single-gene t r a i t s have been successfully
transferred t o date. Transferring multiple-gene
t r a i t s successfully and achieving coordinated
expression--without affecting other plant functions--is a considerable challenge.
BlOLOGlCAL CONTROLS
much headway against conventional pesticides.
The biologicals t y p i c a l l y a r e appl icable to only
one or a few t a r g e t pests, a r e active only a t
certain pest stages or seasons, and are n o t pers i s t e n t . They a r e usually destroyed by sunl i g h t , or are finicky about temperature, s o i l
conditions, and moisture. In addition, in t h e i r
natural s t a t e they a r e not patentable. In
short,potential payback from a commercial point
of view has not been worth the e f f o r t , and most
major companies have stayed away from them.
The second way in which biotechnology could reduce pesticide use i n agriculture i s through t h e
development of biological control s . Consider,
f o r exam~le. the bacterium Bacillus
Biotechnology i s rekindl ing some int h u r i n g i e n s i s , known as BT. This
' t e r e s t in t h i s area. One reason i s the
bacterium, which k i l l s the insect
On the other hand,
1980 U.S. Supreme Court decision in
larvae of the f l o u r moth, was discoverbiotechnology might
help plant breeders
Diamond v . Chakrabary. I n t h a t case
ed in the German province of T h u impart a broader
ringia in 1911. Since the 1940s BT
the Court ruled t h a t i f microorganisms
disease and pest
a r e a1 tered by man, they are no 1 onger
has been widely used as a biological
resistance to crops,
a "product of nature" a n d are thus
pesticide t o ki 1 1 1 epidopterous insects
but that will be more
patentable. In addition t o Monsanto,
(moth and b u t t e r f l y ) with toxic
difficult to accomplish other companies a r e working on fungi
c r y s t a l s formed in i t s spores.
in the short run.
t h a t attack weeds, bacteria t h a t k i l l
I n l a t e 1984 a new twist emerged in
vegetable worms, and viruses t h a t make
BT's history as a biological pesticide.
insects i l l .
Monsanto announced t h a t i t had spliced
BT's toxin gene into another bacterium,
One of the goals of biotechnologists
Pseudomonas f l uorescens. P . f 1 uonow devel o p i n g genetical 1 y a1 tered bugs
rescens inhabits the s o i l of,midi s t o make them more 1 i ke broad specwestern corn f i e l d s , p a r t i c u l a r l y
trum chemical pesticides--i . e . , t o make
around corn plant roots. Monsanto i s
them k i l l more than one specific pest
planning to use P . fluorescens, appl ied
and to make them more p e r s i s t e n t .
as coating on corn seed, a s a vehicle
to carry BT's natural pesticide i n t o the corn
Monsanto s c i e n t i s t s , f o r example, have expressed
f i e l d s t o k i l l black cutworms, which are
i n t e r e s t in transferring other toxin genes, in
currently control led with synthetic pesticides.
addition t o BT's toxin gene, i n t o i t s microbe
designed to k i l l black cutworms, giving the miB u t Monsanto's expressed optimism about t h i s
crobe the abi l i t y to ki l l other insects . I 3
technique may he clouded by the commercial
Ecogen, a biotechnol ogy company formed specif i limitations of some biocontrol products, whether
call y to genetical 1 y engineer microbes, i s lookgenetically engineered or not, and by potential
ing a t t h i s p o s s i b i l i t y as well. "Cloning of
problems with t h e i r s a f e t y and effectiveness.
two or more genes for d i s t i n c t pesticide a c t Recent studies suggest t h a t even biologicals
i v i t y in the same host c e l l could generate a
l i k e BT can
i c i t resistance in t a r g e t insect
multipurpose pesticide, having a c t i v i t i e s
And EPA has announced i t s inpopulations."
against two or more very d i f f e r e n t t a r g e t s
tention t o regulate nonengineered (but nonindi( e - g . , two d i f f e r e n t i n s e c t s , an insect and a
genous) microbial pesticides as well as geneweed, and an insect a n d a fungal d i s e a s e ) . The
t i c a l l y a l t e r e d ones.
r e l a t i v e ease with which such d i f f e r e n t gene
combinations can be potentially constructed by
No genetical 1 y engineered biocontrol products
recombinant DNA technology makes the possi bi 1 i (microbes, i n s e c t s , or plants) have yet been
t i e s virtual l y nl imi ted," says Ecogen s c i e n t i s t
marketed, b u t appl ications for f i e l d t e s t i n g are
Bruce Carl ton. 11
now pending before EPA and USDA. In f a c t , only
a handful of nonengineered biological pesticides
have been registered f o r use in the United
ECOLOGICAL NIGHTMARE
S t a t e s . A t l a s t count 13 microbial agents had
been registered for use in about 75 separate
B u t by using biotechnology t o build "mu1 t i p l e biological pesticide products. Thi s compares t o
warhead" microbes t h a t k i l l more than one
some 1,400 chemical pesticide ingredients forspecies of pest, or those t h a t l a s t longer in
mulated into 35,000 or more registered products.
the environment, we may be creating bigger ecological problems than those we hope t o replace.
There has been 1 i t t l e s c i e n t i f i c study or data
Traditionally, biological products have not made
collection on how existing nonengineered
microorganisms behave i n n a t u r e , l e t a l o n e any
s o l i d understanding o f how g e n e t i c a l l y a l t e r e d
ones m i g h t behave. Some e c o l o g i s t s have r a i s e d
concern t h a t g e n e t i c a l l y engineered microorganisms m i g h t have unexpected consequences when
r e 1 eased i n t o t h e environment. Any organism,
engineered o r n o t , can have d i s r u p t i v e e f f e c t s
when i n t r o d u c e d i n t o a new ecosystem, t h e y
claim, c i t i n t h e Gypsy moth and t h e s t a r 1 i n g
as examples.~5 G e n e t i c a l l y engineered m i c r o b i a l
p e s t i c i d e s a l s o r a i s e o t h e r concerns. W i l l t h e
t o x i n s k i l l b e n e f i c i a l i n s e c t s as w e l l ? W i l l
t h e y p e r s i s t i n t h e environment? M o l e c u l a r
b i o l o g i s t s and e c o l o g i s t s a r e j u s t b e g i n n i n g a
s c i e n t i f i c i a l o g u e on some o f these
questions. 1
g
Many e c o l o g i s t s agree t h a t t h e r e i s l i t t l e
s c i e n t i f i c i n f o r m a t i o n on which t o base p r e d i c t i o n s about t h e behavior o f engineered organisms.17 L i t t l e i s known about t h e dynamics o f
how organisms e s t a b l i s h themselves, o r why some
species m u l t i p l y i n n a t u r e and o t h e r s do n o t , o r
what a t t r i b u t e s make some organisms good a t d i s semination and o t h e r s poor. Some o f t h i s i n f o r mation does e x i s t , b u t n o t always f o r t h e organisms o f most i n t e r e s t t o g e n e t i c engineers.
WHAT HAPPENS TO AG-CHEMICALS?
Assuming f o r t h e moment t h a t g e n e t i c a l l y e n g i neered m i c r o b i a l p e s t i c i d e s and o t h e r b i o l o g i c a l p r o d u c t s w i l l be safe and e f f e c t i v e , does
t h e i r development mean t h a t chemical p e s t i c i d e s
w i l l be phased o u t ? I n t h e l o n g run, maybe; i n
t h e s h o r t run, p r o b a b l y n o t . I n f a c t , d u r i n g
t h e n e x t 10 t o 15 years, b i o t e c h n o l o g y may 1ead
t o t h e d e s i g n o f new, more s o p h i s t i c a t e d a g r i c u l t u r a l chemicals and an i n c r e a s e i n t h e use o f
certain pesticides.
S c i e n t i s t s a r e now i n v e s t i g a t i n g t h e g e n e t i c
mechanisms i n c r o p s and i n s e c t s t h a t may enable
them t o b e t t e r t o l e r a t e and r e s i s t t h e ill.
e f f e c t s o f p e s t i c i d e s . A t l e a s t 20 companies
are involved i n the genetic engineering o f
s t r a i n s o f corn, c o t t o n , and soybeans a b l e t o
r e s i s t h e r b i c i d e s . ( H e r b i c i d e s a r e sometimes
l e t h a l t o t h e c r o p as w e l l as t h e weed and sometimes reduce c r o p y i e l d s . )
I n many crops o n l y
a single-gene change i s necessary t o i m p a r t h e r b i c i d e r e s i s t a n c e ; indeed, t h e r e l a t i v e s i m p l i c i t y o f e n g i n e e r i n g h e r b i c i d e r e s i s t a n c e exp l a i n s i n p a r t t h e wide i n t e r e s t i n i t . Some
h e r b i c i d e - r e s i s t a n t crop v a r i e t i e s are s l a t e d t o
be on t h e market b y 1989.
A r e p o r t i n Chemical Week noted t h e "slow b u t
steady push" among h e r b i c i d e makers t o g e n e t i c a l l y m a n i p u l a t e corn, soybeans, and o t h e r c r o p s
t o increase t h e i r resistance t o herbicides.
"The t h e o r y i s t h a t farmers would then be w i l l i n g
t o use even more o f t h e weed k i l l e r s s a f e i n
knowledge t h a t t h e i r crops w o n ' t be damaged,"
a c c o r d i n g t o t h e magazi ne.18 Some s c i e n t i s t s ,
however, say t h a t r e s i s t a n t c r o p v a r i e t i e s a r e
b e i n g designed t o work w i t h new, l e s s t o x i c
h e r b i c i d e s , and t h a t t h i s s t r a t e g y w i l l a c t u a l 1y reduce h e r b i c i d e use.19
Not much i s known about t h e lofig-term e n v i r o n mental e f f e c t s o f h e r b i c i d e s . A1 though general l y n o t as t o x i c as t h e c h l o r i n a t e d hydrocarbon
i n s e c t i c i d e s , h e r b i c i d e s can cause problems.
A t r a z i n e , a l a c h l o r , and o t h e r h e r b i c i d e s t h a t
were once t h o u g h t t o d i s s i p a t e i n t h e s o i l have
contaminated some w e l l s and have been found i n
groundwater resources i n a t l e a s t 10 s t a t e s .
A few have r e c e n t l y been c i t e d f o r s p e c i a l r e views b y EPA as suspected c a r ~ i n o ~ e n s . ~ o
J u s t as b i o t e c h n o l o g y l i n k s h e r b i c i d e s and c r o p
v a r i e t i e s i n new ways, i t i s a l s o l i k e l y t o advance a new g e n e r a t i o n o f chemical " p l a n t
growth r e g u l a t o r s . "
A few m a j o r chemical and
pharmaceutical companies a r e d e s i g n i n g and
screening these chemical cousins o f p e s t i c i d e s
and h e r b i c i d e s . Such chemicals may one day be
a d m i n i s t e r e d t o vegetables and f i e l d crops as
c o n v e n t i o n a l p e s t i c i d e s now are, b u t t h e i r miss i o n w i l l be t o t u r n on o r o f f c e r t a i n p l a n t
genes t h a t c o n t r o l f l o w e r i n g , growth, o r senescence. T h i s "new chemistry," however, may n o t
be much d i f f e r e n t from t h e " o l d c h e m i s t r y " i n
terms o f i t s environmental and pub1 i c h e a l t h
impact. I n J u l y 1984 EPA announced a s p e c i a l
r e v i e w o f Uni r o y a l ' s growth r e g u l a t o r A1 a r
(daminozide) t o see i f i t poses a d i e t a r y cancer
r i s k t o humans. E a r l i e r l a b o r a t o r y t e s t s i n d i c a t e d t h a t t h i s chemical causes tumors i n l a b o r a t o r y animal s - 2 1 Sprayed on apples, A1 a r
r e t a r d s r i p e n i n g i n t h e f i e l d , e n a b l i n g growers
t o extend t h e h a r v e s t season and employ fewer
p i c k e r s o v e r a l o n g e r h a r v e s t . It a l s o makes
12
apples r e d d e r and increases t h e i r s h e l f l i f e b y
two t o t h r e e months.
I n sum, d e s p i t e some o f t h e more o p t i m i s t i c
claims t h a t biotechnology w i l l r e v o l u t i o n i z e
p e s t c o n t r o l and reduce chemical t o x i c i t y , i n
a c t u a l p r a c t i c e b i o t e c h n o l ogy may do n e i t h e r .
I n s t e a d , g e n e t i c and b i o l o g i c a l products may
i n c r e a s i n g l y be made t o work t o g e t h e r i n t h e
dominant p e s t i c i d e framework. However, if
c a p i t a l and t a l e n t a r e i n v e s t e d t o o h e a v i l y i n
s t r a t e g i e s t o develop p r o d u c t s such as h e r b i c i d e
- r e s i s t a n t crops, o t h e r a1 t e r n a t i v e s , such as
c r o p p i n g systems t h a t employ r o t a t i o n s o f
a1 l e l o p a t h i c crops, m i g h t r e c e i v e l e s s a t t e n tion.
THE DANGER OF MONOCULTURE
I n c e r t a i n r e g i o n s o f t h e U n i t e d S t a t e s today,
t e n s o f thousands o f a c r e s of farmland a r e
p l a n t e d i n continuous b l o c k s o f t h e same v a r i e t i e s o f corn, wheat, c o t t o n , and o t h e r crops.
Although more than 250 v a r i e t i e s o f wheat a r e
a v a i l a b l e , f o r example, 10 v a r i e t i e s dominate
t h e landscape, and s i x v a r i e t i e s accounted f o r
n e a r l y 40 p e r c e n t o f wheat acreage i n 1981.
The s i t u a t i o n i s s i m i l a r i n o t h e r crops. Four
v a r i e t i e s account f o r 65 p e r c e n t o f t h e n a t i o n ' s
r i c e acreage; s i x soybean v a r i e t i e s f o r 42 p e r c e n t o f soybean land, and two pea v a r i e t i e s f o r
96 p e r c e n t o f pea acreage.
The s i t u a t i o n i n l i v e s t o c k i s n o t much b e t t e r .
The H o l s t e i n cow c o n s t i t u t e s about 70 p e r c e n t of
( t h e n a t i o n ' s d a i r y herd. The White Leghorn and
i t s d e r i v a t i v e s p r o v i d e most o f t h e n a t i o n ' s
eggs. Angus and H e r e f o r d c a t t l e account f o r
more than 80 p e r c e n t o f a1 1 r e g i s t e r e d breeds.
Cross-breeding among e i g h t purebred hog l i n e s
--Berkshire, Chester White, Duroc, Hampshire,
Landrace, Poland China, Spot, and Y o r k s h i r e - accounts f o r some 90 p e r c e n t o f U.S. ~ o r kp r o duction.
Such g e n e t i c u n i f o r m i t y can c o n t r i b u t e t o
disease epidemics and widespread i n s e c t i n f e s t a t i o n when r e s i s t a n c e t r a i t s a r e overcome o r when
s u s c e p t i b i l it y e x i s t s t h r o u g h o u t a p l a n t o r
l i v e s t o c k p o p u l a t i o n . I n t h e 1970-71 southern
c o r n 1e a f b l i g h t , f o r exampl e, t h e fungus
Helminthosporium maydis was a b e t t e d b y c o r n ' s
manmade g e n e t i c u n i f o r m i t y : 80 p e r c e n t o f t h e
h y b r i d c o r n c o n t a i n e d a m a l e - s t e r i l e cytoplasm
t h a t was used f o r b r e e d i n g purposes. The s i n g l e
gene c o n f e r r i n g ma1e s t e r i 1 it y a1 so c o n f e r r e d
s u s c e p t i b i 1 it y t o t h e fungus, enabl ing t h e pathogen t o spread r a p i d l y from F l o r i d a t o Minnesota.
More r e c e n t l y , t h e spread o f c i t r u s canker i n
F l o r i d a seems t o have been a b e t t e d b y t h e u n i f o r m i t y o f t h e s t a t e ' s c i t r u s v a r i e t i e s . About
90 percent o f t h e s t a t e ' s orange h a r v e s t der i v e s from t h r e e v a r i e t i e s : Valencia, Ham1 i n ,
and Pineapple.
One way t h a t b i o t e c h n o l o g y may h e l p t o reduce
g e n e t i c v u l n e r a b i l it y t h r o u g h o u t a g r i c u l t u r e i s
through t h e development and d o m e s t i c a t i o n o f new
crops and through e f f o r t s t o extend t h e p l a n t i n g
range o f some e x i s t i n g s p e c i a l t y c r o p s . On1 y
about 1 p e r c e n t o f t h e 300,000 known species o f
p l a n t s has been s t u d i e d f o r p o t e n t i a l use i n t h e
p r o d u c t i o n o f food, feed, f i b e r , and o t h e r substances. Somewhere between 3,000 and 7,000 p l ant
species have been used f o r f o o d t h r o u g h o u t r e corded h i s t o r y . O f these, r o u g h l y 150 have been
c u l t i v a t e d t o t h e e x t e n t t h a t t h e y have e n t e r e d
w o r l d trade. Most o f t h e w o r l d ' s human populat i o n i s f e d t o a l a r g e e x t e n t b y o n l y 15 p l a n t
species. More alarming, perhaps, i s t h a t a mere
t h r e e p l a n t species--corn, wheat, and r i c e - - c o n s t i t u t e 75 p e r c e n t o f t h e w o r l d ' s food supply.22
I f b i o t e c h n o l o g y were successful im making j u s t a
dozen p l a n t species commercial 1y acceptabl e, a
new measure o f b i o l o g i c a l and economic d i v e r s i t y
would be gained. From a commercial s t a n d p o i n t ,
however, t h e r e i s 1 i t t l e i n c e n t i v e t o b e g i n r e search on such crops.
True, some energy companies a r e a1 ready s c o u t i n g
f o r "energy crops" t o use f o r biomass p r o d u c t i o n
i f and when t h e o i l runs o u t , some chemical companies a r e i n v e s t i g a t i n g p l a n t sources o f dyes
and chemical substances, and pharmaceutical c o r p o r a t i o n s a r e always l o o k i n g t o p l a n t s as
sources of new drugs. Yet t o wnat e x t e n t have
these i n d u s t r i e s o r government o f f i c i a l s r e a l l y
thought about how such i n d u s t r i a l crops m i g h t be
used as a t r a n s i t i o n c r o p f o r some farmers? I f
monocultures o f j o j o b a a r e s i m p l y used t o r e p l a c e monocultures o f sorghum, how much b e t t e r
o f f w i l l we be?
i n 1982, " i s p a r t i c u l a r l y s u s c e p t i b l e t o changes
i n i t i a t e d b y b i o t e c h n o l o g y . " Trade p a t t e r n s
between i n d u s t r i a l i z e d and developing c o u n t r i e s
"may become p r o g r e s s i v e l y d i s l o c a t e d i f indust r i a l i z e d n a t i o n s sudde v become s e l f - s u f f i c i e n t i n c o l o n i a l crops. "
P l a n t a t i o n - s t y l e sugar
cane p r o d u c t i o n i n some p a r t s o f t h e d e v e l o p i n g
world, f o r example, c o u l d be made o b s o l e t e i f
i n d u s t r i a l i z e d n a t i o n s adopt cheaper, b i o t e c h n o l o g y - a s s i s t e d f e r m e n t a t i o n processes t o make
sugar s u b s t i t u t e s , such as h i g h - f r u c t o s e syrup.
sl
HYBRIDS: PRO AND CON
B i o t e c h n o l o g y may a1 so a s s i s t i n t h e development
o f n o n h y b r i d c r o p v a r i e t i e s , b e n e f i t i n g farmers
b y making a1 t e r n a t i v e (and perhaps more c o s t e f f e c t i v e ) p r o d u c t s a v a i l a b l e . .Ever s i n c e t h e
d e v e l o ~ m e n to f h v b r i d c o r n i n t h e 1930s. much o f
p l a n t ; ~ i e n c e - - e ; ~ e c i a l lyi n t h e appl i e d realm-has been caught up i n t h e f e r v o r t o make a1 1
crops h y b r i d s , and b i o t e c h n o l ogy i s no
exception.
I n a d d i t i o n , OECD s a i d , because o f t h e "keenness
o f i n d u s t r i a l i z e d c o u n t r i e s t o e x ~ o r tb i o t e c h no1ogy t o t h e T h i r d World," o t h e r ' t r a d i n g p a t t e r n s c o u l d change " w i t h o u t e i t h e r
t r a d i n g p a r t n e r being f u l l y apprised o f
t h e r e s u l t . " A t a t i m e when t h e Reagan
a d m i n i s t r a t i o n i s i n c r e a s i n g i t s emp h a s i s on e x p o r t markets (as a means o f
If biotechnology were
s h i f t i n g a g r i c u l t u r e t o a more " f r e e
successful in making
market" f o o t i n g ) , advances i n b i o t e c h just a dozen plant
n o l o g y c o u l d make producer n a t i o n s o u t
species commercially
o f c o u n t r i e s t h a t have been valued U.S.
acceptable, a new
customers. Through t h e i n t r o d u c t i o n o f
measure of biological
improved wheat and r i c e v a r i e t i e s i n
and economic
t h e 1960s and 1970s, I n d i a was t r a n s diversity in agriculture
formed from a g r a i n - i m p o r t i n g c o u n t r y
would be gained.
t o a s e l f - s u f f i c i e n t one; w i t h b i o t e c h nology, t h i s p a t t e r n may be repeated i n
many p a r t s o f t h e w o r l d .
H y b r i d seeds a r e more v a l u a b l e than
nonhybrid seeds because t h e f i r s t gene r a t i o n o f h y b r i d p l a n t s produces
l a r g e r y i e l d s . Using t h a t seed t h e
f o l l o w i n g year r e s u l t s i n l e s s " h y b r i d
v i g o r " and l o w e r y i e l d . Thus, t h e farm. e r must buy h y b r i d seed e v e r y y e a r .
Hybrids a l s o o f f e r another commercial
advantage: o n l y t h e seed company knows
t h e c o r r e c t parentage o f t h e h y b r i d
l i n e , p r o v i d i n g what amounts t o a
b u i l t - i n t r a d e s e c r e t . Because o f
these commercial i n c e n t i v e s , few seed
companies o r chemical f i r m s i n t h e
seed business a r e l i k e l y t o conduct
g e n e t i c r e s e a r c h on o p e n - p o l l i n a t e d
c o r n o r sorghum, and i n t h e near f u t u r e , on
wheat o r soybeans. Open-pol 1 inated v a r i e t i e s ,
however, m i g h t reduce energy, p e s t i c i d e , and
water requirements
.
Perhaps w i t h some c a r e f u l g e n e t i c e n g i n e e r i n g ,
open-pol 1 i n a t e d 1 i n e s c o u l d reach t h e y i e l d of
some h y b r i d l i n e s , o r o f f e r a l i t t l e l e s s y i e l d
b u t b e t t e r r e s i s t a n c e t o disease and i n s e c t s
than e x i s t i n g h y b r i d l i n e s . I n o t h e r words,
b i o t e c h n o l o g y i n t h i s a p p l i c a t i o n m i g h t reduce
some o f t h e thoroughbred performance i n crops
b u t s i m u l t a n e o u s l y make them l e s s dependent on
inputs.
STORM-WARNING IN WORLD TRADE
The i n t r o d u c t i o n o f g e n e t i c a l l y made crop and
1i v e s t o c k p r o d u c t s may s w i f t 1 y and d r a m a t i c a l 1y
transform t r a d i t i o n a l centers o f a g r i c u l t u r a l
p r o d u c t i o n , b o t h w i t h i n and among n a t i o n s . Such
changes c o u l d d i s r u p t o r c o m p l e t e l y a l t e r t r a d i n g p a t t e r n s and convulse w o r l d markets, w i t h
r a m i f i c a t i o n s f o r b o t h U.S. s g r i c u l t u r e and i n ternational trade.
"Trade i n a g r i c u l t u r e , " s a i d t h e O r g a n i z a t i o n
f o r Economic Cooperation and Development (OECD)
If s c i e n t i s t s , f o r example, a r e successful i n g e n e t i c a l l y engineering
crops f o r increased c o l d t o l e r a n c e , huge new mark e t s f o r c r o p seed and s u p p o r t i n g m a t e r i a l s c o u l d
be c r e a t e d . Across m i l l i o n s o f acres i n China
and Russia, crops a r e produced o n l y one o r two
years o u t o f f o u r because o f t h e c o l d . ( I n t h e
U n i t e d S t a t e s as w e l l , t h e n o r t h e r n range o f
c e r t a i n crops c o u l d be extended t h r o u g h improved
c o l d t o l e r a n t . ) "Think o f Russia g e t t i n g wheat
t o t o l e r a t e f r e e z i n g , " says Ray V a l e n t i n e o f
Calgene. "It would change t h e g e o - p o l i t i c s o f
Indeed, t h e r e p e r c u s s i o n s on g r a i n t h e world.
e x p o r t i n g c o u n t r i e s 1 iice t h e hit e d States, Aust r a l i a , and Canada c o u l d be phenomenal.
The S o v i e t s a r e a l r e a d y p u r s u i n g b i o t e c h n o l o g y i n
hopes o f r e d u c i n g t h e i r dependency on g r a i n i m p o r t s . According t o E.F. h u t t o n a n a l y s t Z s o l t
Harsanyi, t h e S o v i e t Union i s p u t t i n g tremendous
e f f o r t i n t o producing s i n g l e - c e l l p r o t e i n - - t h a t
i s , t h e use o f s i n g l e - c e l l microorganisms t o make
p r o t e i n i n a f e r m e n t a t i o n process. By 1990, he
says, t h e S o v i e t s c o u l d be s e l f - s u f f i c i e n t i n
animal feed.
Even t h e i n t r o d u c t i o n o f t i n y , g e n e t i c a l l y enhanced microbes i n c e r t a i n 1o w - p r o d u c t i v i t y
r e g i o n s c o u l d have enormous t r a d e consequences.
Much o f t h e s o i l i n t h e Southern Hemisphere, f o r
example, s u f f e r s from aluminum t o x i c i t y t h a t
l i m i t s phosphate uptake. B i o t e c h n o l o g y may
companies have been a c q u i r e d b y chemical, pharproduce p l a n t s o r m i c r o b i a l i n o c u l a n t s t h a t
m a c e u t i c a l , energy, a g r i b u s i n e s s , and o t h e r c o r would enable crops t o more e f f e c t i v e l y scavenge
porations. This trend i s d r i v e n i n p a r t by the
phosphate i n h i g h aluminum s o i l s , a c c o r d i n g t o
d e s i r e o f major corporations w i t h i n t e r e s t i n
Ralph Hardy, p r e s i d e n t o f B i o t e c h n i c a I n t e r b i o t e c h n o l o g y t o g a i n access t o t h e seed indusn a t i o n a l . Such a development " c o u l d make South
t r y ' s m a r k e t i n g reach and p l a n t b r e e d i n g experAmerica an even more s i g n i f i c a n t
t i s e . I n t h e U n i t e d S t a t e s alone,
Government has a
producer o f g r a i n s and t h e r e b y a
more t h a n 130 seed companies, horresponsibility to
more f o r m i d a b l e c o m p e t i t o r w i t h U.S.
t i c u l t u r a l suppl i e r s , and seed
conduct research on
accessory businesses have been acc r o p a g r i c u l t u r e . I' And a c c o r d i n g
t o Hardy, l i v e s t o c k b i o t e c h n o l o g y
those orphan
quired by corporations.
products of
may a l s o decrease animal diseases
biotechnology for
and t h u s enable A f r i c a t o develop a
Some seed companies have been bought
which no commercial
s i g n i f i c a n t meat-packing i n d u s t r y . 2 4
and s o l d b y m a j o r c o r p o r a t i o n s two
incentives exist.
and t h r e e times. Many o p e r a t e as
s
u
b
s
i
d
i
a
r
i
e
s
o
r seed d i v i s i o n s o f t h e ' p a r e n t c o r I n q u i t e another v e i n , however, b i o t e c h n o l o g y
p
o
r
a
t
i
o
n
.
Name
changes, s h i f t s i n research, and
c o u l d enhance t h e p o s i t i o n o f t h e developed
r
e
o
r
g
a
n
i
z
a
t
i
o
n
s
a r e common. Other companies,
w o r l d as f o o d producer t o t h e d e t r i m e n t o f
once
acquired,
a
r e then s o l d again i n parts:
d e v e l o p i n g n a t i o n s . "The success o f o u r program
f
o
r
a
g
e
seed
t
o
one
b i d d e r , soybean seed t o a
i n enhancing t h e e f f i c i e n c y o f food p r o d u c t i o n
another,
wheat
seed.
t o y e t another. On a l e s s
key t o t h e economies o f t h e developed w o r l d i s
pronounced
scale,
a
s i m i l a r p a t t e r n o f consol iv e r y 1 ik e l y t o cause m a j o r d i s r u p t i o n s i n w o r l d
d
a
t
i
o
n
and
c
o
r
p
o
r
a
t
e
ownership has o c c u r r e d i n
a g r i c u l t u r a l markets ,Ii says Nobel l a u r e a t e
t
h
e
l
i
v
e
s
t
o
c
k
g
e
n
e
t
i
c
s area. I n years ahead b i o Joshua Lederberg. He adds t h a t we should be
technology
i
s
l
i
k
e
l
y
t o f o s t e r product uncertaint h i n k i n g about these d i s r u p t i o n s "much more u r t
y
and
i
n
s
t
a
b
i
l
i
t
y
i
n
t h e a g r i c h e m i c a l , farm
gent1 y than we a r e today. " Otherwise, "we may
equipment,
and
f
e
r
t
i
l
i
z
e r i n d u s t r i e s as w e l l .
d i s c o v e r t h a t we have t h e technology, we have
t h e land, (and) t h a t we can produce a1 1 t h e
Despite the i n d i c a t i o n s t h a t a g r i c u l t u r a l b i o w o r l d ' s food--and nobody e l s e can a f f o r d t o do
technology
may have enormous economic and p o l i t i t because t h e y c a n ' t compete w i t h us. "25
i c a l e f f e c t s , b o t h d o m e s t i c a l l y and i n t e r n a t i o n a l l y , few governments o r c o r p o r a t i o n s a r e
p l a n n i n g f o r them. Unless f o r e s i g h t and p l a n n i n g
FOOD POWER IN FEWER HANDS
a r e brought t o bear on t h e f u t u r e
use
o f a g r i c u l t u r a l biotechnology,
The i n t r o d u c t i o n o f b i o t e c h n o l o g y
c
a
p
i
t a l resources may be wasted, and
products c o u l d a l s o have s i g n i f i c a n t
s
t
r
u
c t u r a l i n s t a b i l i t i e s exacerbated
economic consequences i n t h e U n i t e d
w
i
t
h
farmers and consumers throughS t a t e s , as Robert K a l t e r p o i n t s o u t
o
u
t
t
h
e world paying t h e steepest
[ i n Issues, f a l l 1985 - see "Resp
r
i
c
e
.
ources" p. 221. The widespread adopti o n o f somatotropin, b o v i n e growth
hormone, c o u l d i n c r e a s e mi 1 k p r o MAXIMIZING DIVERSITY
d u c t i o n b y an e s t i m a t e d 30 p e r c e n t .
T h i s m i g h t r e s u l t i n a 25 t o 30
Today we can c l e a r l y see t h e c o s t s
p e r c e n t decrease i n t h e number o f
and r i s k s a s s o c i a t e d w i t h modern
d a i r y farms and d a i r y cows. Those
h i g h - y i e l d a g r i c u l t u r a l systems:
d a i r y farms t h a t remained c o u l d exh i g h energy costs, p e s t i c i d e t o x i pect up t o a 26 p e r c e n t i n c r e a s e i n
c i t y , increasing rates o f pest r e farm r e t u r n s . A s i m i l a r p a t t e r n i s
sistance, f e r t i l i z e r r u n o f f , g e n e t i c
1 i k e l y t o ensue i n o t h e r 1 i v e s t o c k
u n i f o r m i t y , o v e r s p e c i a l i z a t i o n , and
s e c t o r s . O v e r a l l , b i o t e c h n o l ogy
market v o l a t i 1 ity'. We know, however
seems c e r t a i n t o d r a m a t i c a l l y a f f e c t
t h a t biotechnology--as we1 1 as cont h e economics o f farming, a c c e l e r a t v e n t i o n a l a g r i c u l t u r a l research--may
i n g t h e pace o f farm c o n s o l i d a t i o n
h e l p us reduce o r e l i m i n a t e some of
and farm en1 argement
these c o s t s and r i s k s . We would do
well t o apply t h e best o f these
I n c e r t a i n farm s u p p l y i n d u s t r i e s - t e c h n o l o g i e s t o o u r most p r e s s i n g
most n o t a b l y t h e N o r t h American and
problems. With b i o t e c h n o l ogy, howEuropean seed i n d u s t r i e s - - t h e r e has
ever, we must move c a u t i o u s l y t o
been a d r a m a t i c s h i f t i n ownership
a v o i d c r e a t i n g new r i s k s o f perhaps
of seed businesses s i n c e t h e mida more d i f f i c u l t o r d e r .
1970s. Hundreds o f s m a l l e r seed
.
Biotechnology o f f e r s o p p o r t u n i t i e s t o advance
b i o l o g i c a l a l t e r n a t i v e s and p r o v i d e new farm
management p r a c t i c e s t h a t may b e n e f i t t h i s n a t i o n
and others, both i n terms o f p r o d u c t i v i t y and
environmental p r o t e c t i o n . There a r e obvious i n t e r r e l a t i o n s h i p s between reducing a f a r m e r ' s
costs, reducing t h e use o f energy, p e s t i c i d e s ,
and i r r i g a t i o n , reducing demands on scarce natur a l resources, and reducing t h e " e x t e r n a l it i e s 1 ' t h e o f f - s i t e publ i c h e a l t h and environmental
costs - o f a g r i c u l t u r e . S p l i c i n g i n o r " t u r n i n g
on" t h e r i g h t gene o r genes i n a p a r t i c u l a r crop
v a r i e t y o r l i v e s t o c k breed may produce huge savi n g s w h i l e r a i s i n g p r o d u c t i v i t y . F u r t h e r , by r e ducing g e n e t i c u n i f o r m i t y we reduce t h e p o t e n t i a l
c o s t s o f emergency response, cumbersome and i n e f f e c t i v e q u a r a n t i n e e f f o r t s , and business l o s s
compensation. By i n t r o d u c i n g more g e n e t i c d i v e r s i t y and more "new crop" v a r i e t y i n t o a g r i c u l t u r e , we c r e a t e economic o p p o r t u n i t y .
Yet i n t h e commercial sphere, as w e l l as i n t h e
ha1 1s o f academe, t h e r e i s a tendency t o t h i n k
o n l y o f "adding on" t o what a l r e a d y e x i s t s . How
many companies and u n i v e r s i t i e s pursuing h e r b i c i d e - r e s i stance genes, f o r example, a r e spending
t h e same amount o f money on making a l l e l o p a t h i c
crops t h a t would r e p e l weeds w i t h t h e i r own
chemicals, o r a r e seeking t o d i s c o v e r and/or
develop n a t u r a l l y o c c u r i ng m i c r o b i a1 h e r b i c i d e s
t h a t might rep1ace chemical h e r b i c i d e s ? How
much i s USDA d o i n g i n such areas?
Government 1eadership and research w i 11 be
necessary, s i n c e few commerical i n c e n t i v e s now
e x i s t f o r advancing such products o r farming
p r a c t i c e s . USDA, t h e l a n d g r a n t u n i v e r s i t i e s ,
and publ ic - s e c t o r research i n s t i t u t e s have a r e sponsi b i 1it y t o conduct research on those
"orphan" products f o r which no commerical i n c e n t i ves e x i s t . The f e d e r a l government should
encourage farmers t o experiment w i t h such croppi n g a l t e r n a t i v e s , perhaps on s e t - a s i d e lands.
Funding f o r such orphan products must be focused
and a p p r o p r i a t e d a t meaningful l e v e l s .
The advance o f molecular b i o l o g y w i 11 b r i n g a
w i n d f a l l o f knowledge t o b i o l o g y . I t may a l s o
b r i n g a new "smartness1' t o a g r i c u l t u r e - - a c l e a r e r
understanding o f genes and gene expression, and
thus a b e t t e r understanding o f t h e b i o l o g i c a l
realm and how t o o p e r a t e farms more s k i l l f u l l y ,
and perhaps more s u s t a i n a b l y , i n t h e years ahead.
Yet t h a t k i n d o f i n t e l l i g e n c e i s n o t p a r t o f t h e
general a g r i c u l t u r a l l e x i c o n now, nor does i t
appear t o be on t h e h o r i z o n given o u r o r i e n t a t i o n
t o thoroughbred a g r i c u l t u r e .
A t t h i s j u n c t u r e t h e w i s e s t course i s t o l o o k
c a r e f u l l y a t a l l t h e a l t e r n a t i v e s and choices we
now have b e f o r e us w i t h t h i s new " a g r i g e n e t i c "
technology and c h a r t a course t o maximize economic and b i o l o g i c a l d i v e r s i t y i n t h e v e r y broade s t sense o f those terms.
Footnotes
1. Lbvid Pimentel, ''W Genetic Engineer*
for Biological Cbntmlk d d n g Eoalogical Risks, " m i u n on Engineered Grganisns in
the mvirrrment, CYriLadelphia, l h n q l v a n i a , dme 10-13, 1985.
2. Willian L. Bzcxm, "Sbne Case~yatknson Changing '2lwIds in Agricultural P m d c t i c n 9/stens, " Agricultural R
?
&
Institute
Qnfem~~
chay
,
Chase, U x y l m d , Febmary 21-23, 1984.
Bmce Carlton, "Biological F'edicides: M e t y and 2 g e d € i c i t y ,"
EW Chemxp (Febmary 20, 1984): 39-40.
S e M w t h AZexander, "Genetic Enginering: Emlogical C l x s q m ~
nes, " Issues in Sciaos and !&&nology (Spring 1985): 5768.
Ihsenberger, "IWmtic R a a l e - M e Fails t o Captivate
3-
mdhilU
k&shingtcn M ,&re 13, 1985, p.A-7.
4. "Plant Grcntt~&gdatars:Lcw W i l e , High Hopes, r' Ckmical
(at.
12, 1984):22-24.
-
6. Tim Hammds, W b l i c Attitudes Z t x e r d Food S e t y , " 1984 &ISUI+
er Rends A s s e a & mnfep~nce,Fcvd M e t i n g Institute, Wash.
D.C. , mrch 26,1984; and "Kmy M m khrried By Chanicals In Food,
.%I Francisx, Chmzi&l, Eud 27, 1984.
7. QTfiae of !khndcgy AEsesrment, Aest U m q m a t Strategies in
SS,
D.C. : U.S. C ~ ~ ~ Z F1979).
h o t e d i o n , (-on8
8. B i d .
S e S.Z. Cbhen et al., ' W x n t i a l far Resticide Cbntaninatim of
Csaund keter f m Agricultural h,
" in
and M s +o f
Pesticide hestes, m i c a n awnical S x i e t y W v n S r i e s 259,
~~
W.,D.C.;
R.F.
E@alding et a l . , k s t i c i d e Mnitaring &utnal
14,
no. 2 (1980):70-73; and Cass Pete-rstn, "EPA Tightens R?stridicns
cn Widely Used Herbicide," kBshingtcn FM, hbwmber 21, 1984.
Barry M i r , "rhircyal Chenical f o r ~ a r n ~ s t o ~ a ~ e ~ e w b
Finds
M l 5 t ~ &M a l t m y 17, 1984; and Cass F ~ t e r s ~ n"DA
,
Caner hisk in F m Spray, " k&shingtcn h s t , m y 20, 1984.
P a l C.
''Gnetic FBtentials for Increasing field of
A.T. Mlr G. Fhlt, and M.D. Lillyr I n t e r n a t i d '2lwIds and W s p f f t i v w in Biotezhrdcgy (Paris, France: GrganiZaticn for E ~ Y +
anic m a t i o n and Lkwlopnent, 1982).
12. Willian H. El-'Gaughey, "InsPct &stance to the Biological Ihsscticide Bacillus t h u r i n g i d s , " S e n a e 229 (7-12-1985):193-4.
l3. Etrbert ,
M n s a t n -y,
Sterre JdLinek, khshingtcn, D.C.,
briefing held in o f f i e o f
1984.
24. M p h Ihtdy, "Bi~teohnalcgy:Stahrs~
Forecast, and IS-,
I'
W d Acadmy of Szkmxs, hbhhgtm, D.C. , H q 1984.
25. &&ua
Iederberg, a t Brodcings Institution, kbah. D.C.,
8-
1-15-85.