BIOTECHNOLOGY RESEARCH AND AGRICULTURAL STABILITY Jack Doyle T.72 f o l l o w i n g a r t i c l e h a s been r e p r i n t e d w i t h p e r m i s s i o n o f t h e N a t i o n a l Academy o f S c i e n c e s . I t f i r s t appeared i n I s s u e s i n S c i e n c e and Technology F a l l 1 9 8 5 , volume 11, number 1 , ( p u b l i s h e d b y t h e N a t i o n a l Academy o f S c i e n c e s , t h e N a t i o n a l Academy o f E n g i n e e r i n g , and t h e I n s t i t u t e o f M e d i c i n e ) where i t was one o f f i v e a r t i c l e s on t h e t o p i c o f " A g r i c u l t u r e i n T r a n s i t i o n . " The f u l l i s s u e ($6.00) c a n b e o r d e r e d from t h e NAS P u b l i c a t i o n s Department, 2101 C o n s t i t u t i o n Avenue NW, W a s h i n g t o n , D. C. 20418. A few years ago a t t h e Smithsonian I n s t i t u t i o n ' s National Museum of American History, an exhibition e n t i t l e d "The Changing American Farm: 1831-1981" celebrated the one-hundred-f i f t i e t h anniversary of Cyrus McCormickls invention of the reaper, and more broadly, America's vaunted a g r i c u l t u r a l prod u c t i v i t y . Various displays recounted the h i s t o r i c a l progression of mostly mechanical technology t h a t has made the U.S. farmer the envy of the world: McCormickls reaper, John Deere's s t e e l plow of 1837, Benjami n Hol t ' s horse-drawn combi ne of t h e 1 8 8 0 1 s , Henry Ford's t r a c t o r of 1917, t h e sel f-propel1 ed combine of 1938, the spindle cotton picker of 1943, and International Harvester's Axial-Flow combine of 1977. This technology has helped make the United S t a t e s a world leader in food production. In 1800, f o r example, i t took 373 manhours t o produce 100 bushels of wheat. Today i t takes l e s s than nine manhours t o produce the same quantity. In 1900, one U.S. farmer suppl ied seven other people with food, f i b e r , and other a g r i c u l t u r a l products, Today the average U.S. farmer supplies more than 75 people. Of course, t h i s impressive productivity i s not the r e s u l t of mechanical invention alone, b u t a1 so of s c i e n t i f i c advances in plant breeding, livestock g e n e t i c s , f e r t i l i z e r and p e s t i c i d e use, i r r i g a t i o n technology, and improved farm management practices generally. Because of the i n t e r p l a y of g e n e t i c s , f e r t i l i z e r s , and p e s t i c i d e s , f o r example, corn y i e l d s have increased about a bushel per acre every year since 1930--from an average yield then of 40 bushels per acre t o more than 100 bushels per acre today. Similar productivity gains have been made in 1 ivestock. A1 though the U.S. d a i r y herd has been cut in half since 1950, i t produces the same t o t a l amount of milk on one-third l e s s feed. In a1 1 areas of plant and animal a g r i c u l t u r e , "science power" has been the driving force behind steadi 1 y increasing yields . Our modern a g r i c u l t u r a l system and methods a r e now exported and propounded worldwide. A VULNERABLE SYSTEM Modern agricul t u r e , however, i s high-pedigree a g r i c u l t u r e ; i t i s a pampered system t h a t i s tended and maintained by techno1 ogy and driven t o perform a t peak l e v e l s . In t h a t sense our a g r i c u l t u r a l system might be compared to a thoroughbred race horse. I t i s a system b u i l t increasingly on hybrid crops and 1ivestock, heavy inputs of f e r t i l i z e r , a n t i b i o t i c s , water, and p e s t i c i d e s , a system t h a t i s c a p i t a l , energy, and technology i n t e n s i v e . I t i s , in s h o r t , a demanding, high-strung system. As such, i t has i t s dependencies, i t s s i d e e f f e c t s , and i t s vul nerabi 1i t i e s . Because many of the inputs t h a t s u s t a i n modern a g r i c u l t u r e are petrol eum-based and mechanical 1 y administered, a g r i c u l t u r e has become energy dependent--with the high c o s t s and i n s e c u r i t i e s such dependency e n t a i l s . Despite dramatic hikes in nitrogen prices since the 1970s, heavy use of nitrogen f e r t i l i z e r continues, with attendant problems of runoff and groundwater contamination. Nitrates and n i t r i t e s from f e r t i 1 i z e r runoff have i n f i l t r a t e d some drinking water supplies, posing a health t h r e a t , especia l l y t o young children. P e s t i c i d e s , too, a r e increasingly suspected as carcinogens and mutagens, in addition t o t h e i r well-known delet e r i o u s e f f e c t s on beneficial i n s e c t s and wild1 i f e . Moreover, d e s p i t e our heavy use of pesticides and herbicides, nearly 40 percent of U.S. crops a r e s t i l l l o s t t o diseases and pests -13 percent t o i n s e c t s , 12 percent t o plant pathogens, and 12 percent t o competing weeds. 1 Monocultures of hybrid corn and Holstein cows have been and continue t o be highly vulnerable t o d i s e a s e and p e s t i l e n c e . The e x t e n t of t h e s e vuln e r a b i l i t i e s has been p a r t l y masked by s u r p l u s s t o c k s , crop s u b s t i t u t i o n s , and, i n some c a s e s , sheer luck. Nonetheless, t h e 1 i s t of actual epidemics and near c a l a m i t i e s in t h e p a s t 15 years i s s u b s t a n t i a l : t h e southern corn l e a f b l i g h t of 1970-71, c i t r u s canker i n f e s t a t i o n in F l o r i d a , avian influenza in t h e mid-Atlantic poul t r y s t a t e s , and the Mediterranean f r u i t f l y , among o t h e r s . In a d d i t i o n , t h e p e r i o d i c ravages of drought and f r o s t can humble even t h e stronge s t p l a n t v a r i e t y . Frost damage a l o n e causes some $1 b i l l ion i n l o s s e s annual'ly i n t h e United S t a t e s , and $14 b i l l i o n worldwide, 3 combat a g r i c u l t u r a l p e s t s . G e n e t i c a l l y improved herds of d a i r y cows and beef c a t t l e , a s we1 1 as. hogs ,poul t r y , and sheep, may produce more O n l e s s feed. Work i s a l s o under way on crops t h a t a r e more t o l e r a n t of h e a t , c o l d , drought, f l o o d i n g , and s a l t y s o i l s , and on crop p l a n t s t h a t a r e r e s i s t a n t t o h e r b i c i d e s and p e s t i c i d e s o r t h a t have improved response t o f e r t i l i z e r . Some b i o t e c h n o l o g i s t s promise a new g e n e t i c d i v e r s i t y throughout p l a n t and animal a g r i c u l t u r e , lower c o s t s and higher p r o f i t s f o r farmers, and b e t t e r crops and l i v e stock breeds f o r t h e t h i r d world. Indeed, t h e promises being made in t h e name of biotechnology a r e s u b s t a n t i a l , even though t h e science underlying t h e s e a p p l i c a t i o n s i s s t i l l u n c e r t a i n . Generally, we know l e s s about p l a n t s than we do about animals, i n p a r t because federal support f o r cancer research has focused a t t e n t i o n /lkeathoroughbred on animal c e l l biology. Few genes i n race horse, modern t h e p l a n t realm have even been characagriculture is a t e r i z e d . And when i t comes t o actual demanding, highg e n e t i c engineering, s c i e n t i s t s a r e only beginning t o discover how t o manistrung system, p u l a t e single-gene t r a i t s , l e t alone nourished by technologyanddriven f u n c t i o n s such a s nitrogen f i x a t i o n , toperformatpeak be1 ieved t o be governed by 30 o r more levels. genes. G e n e t i c i s t William L . Brown, former chairman of t h e board of Pioneer HiBred I n t e r n a t i o n a l and now chairman of the National Academy of Sciences' Board on A g r i c u l t u r e , has noted t h a t !hen our a g r i c u l t u r a l system i s r u n n ing r i g h t , i t s performance i s simply dazzling--"but watch out when somet h i n g goes wrong." In 1983 something d i d go wrong f o r corn farmers in t h e Midwest: drought. "Many farmers incurred 1arge economic 1 osses ," Brown explained, "because t h e i r investment in inputs t o support a 150-bushel ( p e r a c r e ) crop withered along with t h e i r corn p l a n t s . " Brown and o t h e r s have begun t o r a i s e concerns about t h e v o l a t i l i t y of our high-tech, high-yield system. "As we o f f e r t h e farmer inc r e a s i n g l y s o p h i s t i c a t e d and c o s t l y technological packages, we i n a d v e r t e n t l y exacerbate two r e l a t e d sources of i n s t a b i l i t y in a g r i c u l t u r e . High-yield production systems a r e o f t e n more v o l a t i l e in terms of harvested production, and more e r r a t i ? in terms of p r o f i t f o r t h e farmer," Brown says. In o t h e r words, t h e thoroughbred runs well only when everything c l i c k s . Into t h i s a g r i c u l t u r a l system, with a l l i t s s t r e n g t h s , complexities, and vul nerabil i t i e s - both biological and pol i t i c a l --comes biotechnology. We a r e now poised on the threshold of a new era of a g r i c u l t u r a l science and technology t h a t may b o l s t e r , f o r t i f y , and e v e n t u a l l y supersede the t r a d i t i o n a l techniques of p l a n t and animal breeding, make o b s o l e t e t h e brute-force use of a g r i c u l t u r a l chemicals, and i n c r e a s e p r o d u c t i v i t y beyond anything ever dreamed o f . Recombinant D N A and t i s s u e c u l t u r e techniques may o f f e r new ways t o enhance t h e n u t r i t i o n a l content of food and forage crops and t o develop crops r e s i s t a n t t o i n s e c t s and d i s e a s e . Engineered biological p e s t i c i d e s may a l s o be used t o B u t assuming t h a t t h e s c i e n t i f i c b a r r i e r s w i l l be overcome--and advances have been coming more r a p i d l y than anyone ever thought they would even f i v e years ago--the key question about a g r i c u l t u r a l biotechnol ogy i s , How w i l l i t be used? Will i t simply add newer increments of pedigree improvement t o t h e hight e c h , high-yield system t h a t i s a l r e a d y in place--exacerbating i t s v u l n e r a b i l i t y , i t s s i d e e f f e c t s , and i t s v o l a t i l i t y ? Or will i t reduce production c o s t s f o r farmers, broaden t h e g e n e t i c and economic base of a g r i c u l t u r e , and reduce negative environmental and public h e a l t h side effects? With t h i s new technology we a r e a t a crossroads, and the path we choose may a f f e c t not only t h e United S t a t e s b u t much of world a g r i c u l t u r e . Our decisions on research d i r e c t i o n and i n v e s t ment must be made c a r e f u l l y f o r i f commitments; of s c a r c e t a l e n t and c a p i t a l a r e made i n one d i r e c t i o n , we may f o r e c l o s e o t h e r o p t i o n s . Commerce and e n t r e p r e n e u r i a l genius have been a d r i v i n g f o r c e in a g r i c u l t u r a l innovation and r i s i n g p r o d u c t i v i t y i n t h e p a s t . The f u t u r e d i r e c t i o n of a g r i c u l t u r a l biotechnology, however, should not be l e f t t o t h e market alone. Thoughtful public p o l i c i e s a r e necessary t o ensure t h a t promising options a r e pursued-including those t h a t a r e f i n a n c i a l 1 y r i s k y , longer term, and perhaps not a s commercially 4 DNA struclure DNA can be described as "a w i n d i n g l a d d e r . " l u c r a t i v e . We need t o examine which h i s t o r i c a l l y negl e c t e d areas o f a g r i c u l t u r a l research may p r o f i t from g e n e t i c engineering, where scarce research d o l l a r s should be p u t f i r s t , t h e research r o l e o f t h e U.S. Department o f A g r i c u l t u r e (USDA) and l a n d g r a n t and p r i v a t e u n i v e r s i t i e s , and what new i n c e n t i v e s m i g h t be c r e a t e d t o encourage i n d u s t r y t o pursue p r o d u c t s i t m i g h t otherwise neglect . As a s t a r t i n t h a t process, i t w i l l be he1 p f u l t o examine what b i o t e c h n o l o g y may o r may n o t do i n terms of i n c r e a s i n g t h e e f f i c i e n c y o f a g r i c u l t u r a l p r o d u c t i o n (and here I mean more emphas i s on p r o d u c t i v i t y and l e s s on gross o u t p u t per a c r e ) , r e d u c i n g farmers ' c o s t s , r e d u c i n g a g r i chemical use, broadening g e n e t i c d i v e r s i t y , and i n c r e a s i n g economic s t a b i l it y i n a g r i c u l t u r a l p r o d u c t i o n and w o r l d markets. YIELD HAS BEEN THE GOAL I n t h e n e x t 30 y e a r s w o r l d food p r o d u c t i o n w i l l have t o double, i t i s estimated, t o meet demand. T h i s c h a l l e n g e cannot be met w i t h o u t s u b s t a n t i a l improvements i n a g r i c u l t u r a l y i e l d s . Y i e l d i s what farmers buy and what p o l i t i c a l l e a d e r s w i t h masses o f people t o f e e d hope most f o r t h e i r s c i e n t i s t s t o achieve, whether b y c l a s s i c a l breeding techniques, t i s s u e c u l t u r e methods, o r g e n e t i c e n g i n e e r i n g . When R a j i v Gandhi v i s i t e d t h e U n i t e d S t a t e s i n June 1985, i t was n o t t h e computer-based sciences and r o b o t i c s t h a t impressed him t h e most, b u t r a t h e r what b i o t e c h n o l o g y m i g h t do t o h e l p him feed h i s n a t i ~ n . ~ The semi-dwarf wheat and r i c e v a r i e t i e s i n t r o duced d u r i n g t h e Green Rev01 u t i o n i n t h e 1960s and 1970s helped p r o v i d e I n d i a w i t h t h e a b i l i t y t o feed i t s e l f ; Gandhi sees even g r e a t e r possibi l i t i e s ahead w i t h b i o t e c h n o l o g y . Today t h e r e i s t a l k o f 300-bushel p e r a c r e c o r n and sorghum, 200-bushel p e r a c r e wheat and b a r l e y , and 100-bushel p e r a c r e soybeans-double and t r i p l e c u r r e n t y i e l d s . Crop y i e l d , however, i s a composite o f many p l a n t processes r a n g i n g from how s t r o n g a c r o p ' s s t a l k i s t o t h e molecular i n t r i c a c i e s o f photosynthesis. High y i e l d i s n o t s i m p l y t h e consequence o f one gene b u t o f t h e i : n t e c a c t i o n o f many. When breeders and b i o t e c h n o l o g i s t s t a l k o f i m p r o v i n g y i e l d , t h e y i n v a r i a b l y t a l k o f hyb r i d i z a t i o n - - t h e process o f c r o s s i n g two d i f f e r e n t p l a n t v a r i e t i e s o r animal breeds t o o b t a i n a g e n e t i c a l l y improved one. Corn and sorghum y i e l ds , f o r exampl e , have i n c r e a s e d more than 300 p e r c e n t s i n c e t h e y were h y b r i d i z e d i n t h e 1930s and 1940s. However, o t h e r m a j o r crops l i k e wheat and soybeans have been d i f f i c u l t t o h y b r i d i z e b y t r a d i t i o n a l techniques, and p r o d u c i n g commercial q u a n t i t i e s o f h y b r i d seed from these crops i s c o s t l y and t i m e Now, however, b i otechnol ogy i s -consuming b e i n g used t o overcome some o f these d i f f i c u l ties. . One company, P l a n t Genetics, I n c . o f Davis, C a l i f o r n i a , i s u s i n g a t i s s u e c u l t u r e technique known as somatic embryogenesis t o produce c l o n e s o f a hand-pol 1 inated c e l e r y h y b r i d . I n t h i s process t i n y p l a n t embryos a r e generated from t h e h y b r i d c e l e r y t i s s u e and t h e n "batched up" b y t h e thousands i n a f e r m e n t a t i o n process. These embryos, c a r r y i n g t h e d e s i r e d t r a i t s o f t h e p a r e n t 1 i n e , a r e then encapsulated i n a polymer seed c o a t t o be s o l d as " s y n t h e t i c " h y b r i d seeds. A g r i g e n e t i cs C o r p o r a t i on o f Boulder , Colorado, has patented a b i o t e c h n o l o g y process t h a t a l l o w s f o r t h e r a p i d development and commerial p r o d u c t i o n o f h y b r i d seed w i t h o u t t h e t r a d i t i o n a l l i m i t a t i o n s on t h e g e n e t i c makeup o f t h e p a r e n t l i n e s . T h i s process, a c c o r d i n g t o t h e company, p e r m i t s one o r b o t h o f t h e p a r e n t 1 i n e s t o be g e n e t i c a l 1y complex (heterozygous) r a t h e r t h a n i n b r e d f o r u n i f o r m i t y (homozygous), p o t e n t i a l l y r e d u c i n g t h e t i m e needed t o develop h y b r i d seed. Biotechnology may a1 so he1p improve c r o p y i e l d by improving t h e e f f i c i e n c y o f c e r t a i n b i o l o g i c a l processes i n p l a n t growth, such as photos y n t h e s i s . Most a g r i c u l t u r a l crops c o n v e r t 1ess t h a n 1 p e r c e n t o f t h e energy t h e y absorb f r o m t h e sun, and even a t i n y i n c r e a s e i n t h i s conv e r s i o n process c o u l d mean a s u b s t a n t i a l i n c r e a s e i n crop y i e l d . The f e d e r a l government and a few m a j o r c o r p o r a t i o n s - - i n c l u d i n g Dow Chemical, Monsanto, and E l i L i l l y - - h a v e been r e s e a r c h i n g t h e g e n e t i c s o f p h o t o s y n t h e s i s . S p e c i f i cal.ly, t h e y a r e examining t h e g e n e t i c s o f c h l o r o plasts, t h e s i t e o f photosynthesis w i t h i n t h e 5 c e l l . E v e n t u a l l y , i t may be p o s s i b l e t o genet i c a l l y engineer these o r g a n e l l e s t o improve t h e e f f i c i e n c y o f p h o t o s y n t h e s i s , a1 though t h e r e i s s t i l l a l o n g way t o go on t h i s f r o n t . Other companies a r e c o n c e n t r a t i n g t h e i r e f f o r t s f o r i n c r e a s i n g y i e l d i n one o r more s p e c i f i c crops. DuPont, f o r example, has i n t e g r a t e d i t s chemical growth r e g u l a t o r research w i t h i t s p l a n t b r e e d i n g and p l a n t b i o t e c h n o l o g y research i n an a t t e m p t t o achieve a 10 t o 15 p e r c e n t y i e l d i n c r e a s e i n soybeans, a c c o r d i n g t o G.D. H i l l o f t h e company's a g r i c u l t u r a l chemicals d i v i s i o n . 4 "YIELD" REDEFINED s u p p l i e s . I n 1983, f o r example, farmers spent $18 b i l l i o n f o r purchased feed, $7.4 b i l l i o n f o r f e r t i l i z e r , $4 b i l l i o n f o r p e s t i c i d e s , $4 b i l l i o n f o r seed, $9.8 b i l l i o n f o r f a r m machinery and $15.8 b i l l i o n f o r f u e l , l u b r i c a n t s , and machinery up-keep. The p r i c e s p a i d b y farmers f o r p r o d u c t i o n i n p u t s have r i s e n p r e c i p i t o u s l y d u r i n g t h e l a s t 15 years o r so. USDA's i n d e x f o r general p r o d u c t i o n i n p u t s shows a d o u b l i n g o f p r i c e s p a i d b y farmers between 1973 and 1983. For example, t h e average c o s t p e r farm o f seed and p l a n t s soared b y 164 p e r c e n t between 1972 and 1977. Today a midwestern c o r n farmer spends on t h e average about $46 p e r a c r e on f e r t i l i z e r , $17 p e r a c r e on pest i c i d e s , $17 p e r a c r e f o r seed, and about $18 p e r a c r e f o r f u e l . C a p i t a l investments can be subs t a n t i a l , too. I r r i g a t i o n investments i n t h e Great P l a i n s r e g i o n were $103 p e r a c r e i n 1950, r o s e t o $201 p e r a c r e b y 1970, and exceeded $500 p e r a c r e b y 1979. Some farmers a r e now spending as much as $35,000 a y e a r on h e r b i c i d e s and $50,000 a y e a r t o power i r r i g a t i o n systems. R i s i n g c o s t s a r e p a r t o f t h e reason why many farmers a r e now i n economic t r o u b l e. A1 t e r n a t i v e l y , b i o t e c h n o l o g y a1 so o f f e r s t h e p o s s i b i l i t y o f improving p r o d u c t i v i t y w i t h o u t i n c r e a s i n g y i e l d p e r s e - - i n o t h e r words, i n c r e a s i n g t h e e f f i c i e n c y o f p r o d u c t i o n . For example, some p l a n t s produce n a t u r a l molecules t h a t r e p e l i n s e c t s . As Sam Dryden, p r e s i d e n t o f A g r i g e n e t i cs, says, e n g i n e e r i n g such t r a i t s i n t o a g r i c u l t u r a l crops. " c o u l d be s e v e r a l o r d e r s o f magnitude more c o s t e f f e c t i v e t h a n t r a d i t i o n a l Reversing the highW i l l b i o t e c h n o l o g y change t h a t ? chemical approaches t o formul a t i ng , manufacturing, and a p p l y i n g b i o c i d e s . " ~ieldorientationof Because b i o t e c h n o l o g y i s capable o f U-S-agriculture,even T h i s approach, however, m i g h t a1 so r e t u r n i n g o u t c e r t a i n k i n d s of p l a n t with a powerful tool duce y i e l d somewhat. "The added v a l u e c l o n e s i n t h e m i l 1 i o n s o r producing like biotechnology, i n t h i s case may be one o f c o s t r e 1 i v e s t o c k vaccines i n huge q u a n t i t i e s willbe difficult inded. d u c t i o n [ e l i m i n a t i ng t h e need f o r i n f o r pennies, i t should, presumably, be secticide application], not o f i n a b l e t o d e l i v e r l o w e r c o s t seed, feed, creased h a r v e s t index [ y i e l d ] , " exand p e s t i c i d e s . And i n s o f a r as t h e p l a i n s Dryden. " I n any case, we gene i s t h e c e n t r a l i n g r e d i e n t o f should be he1 ped i f we r e f i n e d o u r use a g r i c u l t u r e - - d e t e r m i n i ng t o a 1arge o f t h e word ' y i e l d ' t o mean r e t u r n on e x t e n t whether-, o r t o what degree, investment r a t h e r than as measure o f gross b i o supplementary i n g r e d i e n t s such as f e r t i 1i z e r , mass p e r acre."5 p e s t i c i d e s , o r w a t e r w i l l be needed--"building i n " t r a i t s t h a t make crops h a r d i e r and a b l e t o That may be e a s i e r s a i d than done, however. I n r e s i s t p e s t s should presumably do away w i t h t h e t h e U n i t e d States, as we1 1 as i n many o t h e r need f o r some expensive supplements and c a p i t a l c o u n t r i e s , p l a n t breeding programs, farm manageequipment. ment p r a c t i c e s , p r i c e support formulas, farm c r e d i t , and a g r i b u s i n e s s p r o d u c t development a r e "Imagine a s t r a i n o f wheat t h a t grows w e l l i n t h e a1 1 p r e d i c a t e d on h i g h - y i e l d a g r i c u l t u r e . Red r y l a n d s o f western Kansas--wi t h o u t heavy i r r i v e r s i n g t h a t h i g h - y i e l d o r i e n t a t i o n , even w i t h gation," s a i d N i c h o l a s Reding, Monsanto's execua powerful t o o l l i k e b i o t e c h n o l o g y , w i l l be t i v e v i c e - p r e s i d e n t , a t a January 1984 meeting o f d i f f i c u l t indeed. Rather, b i o t e c h n o l o g y i s more t h e Kansas Board o f A g r i c u l t u r e . " O r a c o r n l i k e l y t o be used t o make t h e thoroughbred r u n p l a n t t h a t f i x e s i t s own n i t r o g e n . O r soybean f a s t e r , o r produce more, than i t i s t o make i t p l a n t t h a t - have even h i g h e r p r o t e i n , o r d o n ' t s t r o n g e r and more d u r a b l e . need t o be processed b e f o r e animal consumption. O r c a t t l e t h a t c o n v e r t p r o t e i n t o meat w i t h an These e f f i c i e n c y we o n l y dream about today HIGH COSTS OF US. AGRICULTURE new t e c h n o l o g i e s , l i k e t h o s e o f t h e p a s t , w i l l g i v e American farmers t h e edge t h e y need t o r e Biotechnology, as noted above, may o f f e r new main t h e most p r o d u c t i v e i n t h e w o r l d . " o p p o r t u n i t i e s t o reduce farmers ' costs--and those c o s t s a r e s u b s t a n t i a l . I n t h e aggregate continued on page 8 U.S. farmers spend n e a r l y t w o - t h i r d s o f t h e i r cash r e c e i p t s each y e a r t o purchase farm . .. BIOTECHNOLOGY: The Terms of the Trade What k DNA? DNA-deoxyribonucleic acid-is the genetic material found in all living organisms. The characteristics of every living organism can be traced to the code of its DNA. Recombinant DNA, [rDNA), is both the process of combining the DNA of different organisms and the product of this process. What do g m s do? The genetic code is present in every cell of every organism. Depending on the cell's particular function, the code tells the cell what to do, how to act, and when to do it. For example, the human body has a gene, or several genes, that tell cells when to grow. Normally, this gene is b n muntil a person reaches their early twenties or late teens. Then, another gene tells the body to stop producing the chain of reactions that stimulate growth, and the gene turns 'ofP. How do genes worKl Each gene produces an enzyme that contributes to a chain reaction; ultimately, normal functioning of the body is the result of a series of chain reactions. Another way to imagine how genes work would be to think of genes working together to create a domino effect Generally, no one gene is responsible for a single action What is cbnhg? Cloning occurs as a result of isolating the DNA within certain, specific genes. DNA is isolated by using 'restriction enzymes,' that separate segments of DNA from its longer strand. These segments are then transferred into bacteria. By this process, specific segments of DNA can be patched into the genetic code of other organisms. Bacteria provides an especially hospitable habitat for cloning, because it is able to multiply rapidly. Since the piece of transferred DNA has been implanted into the bacterium's permanent genetic code, it is reproduced exactly through every generation of bacteria. When the bacteria are grown in large enough batches, the products from the new gene can be harvested and purified. ~~ What k People often use the terms biotechnology. genetic engineering, and recombinant DNA (rDNA) interchangeably. Actually they describe different classifications of activities in biology. Biotechnology is the broadest category. It describes both old and new techniques of manipulating organisms for specific purposes. According to a 1984 Office of Technology Assessment Report, biotechnology includes any technique % a t uses living organisms (or parts of organisms) to make or modify products, to improve plants and animals, or to develop rnicrowganisms for specific uses." What is somatlc p e therapy and how does R dllfer from germhe gene therapy? The idea behind somatic therapy is to replace genes whose absence or defectiveness causes genetic diseases (like cystic fibrosis or Huntington's disease). Scientists first remove the genetic code from a type of virus called a retrovirus, which is compatible with bone marrow cells, and substitute genetic material from a healthy gene. The altered virus is injected into the bone marmw, where it multiplies and forms healthy pone marrow cells. The bone marrow is then able to produce blood cells with healthy genes, which in turn produce the enzymes necessary for a normal metabolic process. Although still in the experimental stages, somatic therapy has been tested with success in laboratory animals. Most authorities believe that genetic changes mede in somatic therapy do not get passed on to generations via the sex-alled 'germw-cells. The other, more controversial gene therapy would involve changing the genetic make up of the genes carried in germ cells. While germcell alterations could reduce inherited genetic diseases, in the farreaching future it could have the potential to alter genes that determine the hair and eye color, sex, and intelligence of an offspring. Both scientists and ethicists debate the consequences of g e r m a l l therapy, questioning the morality of tampering with 0 already healthy genes. MULTINATIONAL MONITOR FEBRUARY 28,1986 Reprinted with permission. Genetic Engineering: A Chronology First gene cloned. U.S. guidelines for rDNA research outlined at the Asilomar Conference. Genentech, Inc. is the first genetics firm founded for commercial purposes. Somatostatin (human growth hormone) is the f i s t product. In Diamond vs. Chakrabarty the US. Supreme Court rules that microorganisms can be patented under existing law. Genentech is the first biotechnology firm to offer stock publicly. It sets a Wall Street record for the faster price increase per share. Initial public offering by Cetus sets Wall Street record for the largest amount of money raised by an initial public offering--$I25 million. More than 80 new biotechnology firms had been formed by the end of the year. Human insulin is the f i s t rDNA pharmaceutical product approved for use in the United States and the United Kingdom. First plant gene expressed in a plant of a different species. Judge John Sirica blocks the scheduled environmental release of rDNA organism. The Gene Merchants Unilemr, a company that already owns palm oil, rubber, copra, cocoa and tea plantations in West and Central Africa, Colombia, the Solomon Islands and Malaysia, is using biotechnology to improve yields of the oil and coconut palms and has established a subsidiary to sell cloned palm oil seedlings throughout Asia. Mitsubishi. one of Japan's largest companies, has taken a small equity position in Sungene Technologies Corp., a California-based biotechnology company, and may eventually help market and distribute some of Sungene's agricultural inventions in Asia. Kemira OY, Finland's largest chemical concern. and owner of fertilizer terminals in Malaysia, Thailand and Guatemala, has a research contract with Calgene, Inc, to develop herbicide-resistant varieties of turnip rape. Royal Dutch-Shell, the European energy giant, is developing hybrid wheat strains and is also studying the genetics of herbicide resistance in corn. Nestle, the world's largest food corporation, has a research agreement with Calgene, Inc. to develop herbicide-tolerant varieties of soybeans. Kirin Brewery of Japan has invested $1 million in the California-based Plant Genetics, Inc.. and will market that company's 'synthetic seed' technique and products throughout Asia and the Pacific Rim. Upjohn, one of the world's largest veterinary suppliers, signed a 10-year agreement with the Minnesota-based Molecular Genetics, Inc. to distribute that company's genetically-made animal health products in some 57 countries. Hindustan Lever. an affiliate of Unilever, is working on bio-insecticides in India. Carnation, a subsidiary of Nestle that is already involved in Mexico, Peru and the Philippines with dairy and farm assistance programs, has also been active in the livestock engineering business, and has negotiated a number of embryo export deals with several African nations. Rhone-Poulenc, a major French chemical concern, has a research contract with Calgene, Inc. to develop sunflower varieties resistant to the herbicide 0 Bromoxiynil. NEW DANGERS A1 t e r n a t i v e l y, b i o t e c h n o l o g y may be a p p l i e d i n ways t h a t i n c r e a s e t h e need f o r chemical and energy i n p u t s , t h e r e b y r a i s i n g t h e c o s t o f production. I f biotechnology i s successful i n b r i n g i n g more h i g h - y i e l d i n g h y b r i d s t o m a r k e t , f o r example, t h a t w i l l no d o u b t mean i n c r e a s e d f e r t i l i z e r use. A f t e r t h e i n t r o d u c t i o n o f hyb r i d c o r n v a r i e t i e s , t h e average f e r t i l i z e r use o f U.S. f a r m e r s i n c r e a s e d t e n - f o l d . Between 1947 and 1973 t h e average f e r t i l i z e r a p p l i c a t i o n on U.S. c o r n l a n d i n c r e a s e d f r o m a b o u t 20 pounds p e r a c r e t o more t h a n 200 pounds p e r a c r e . S i m i l a r increases i n f e r t i 1i z e r (and p e s t i c i d e ) use c o u l d be e x p e c t e d w i t h t h e i n t r o d u c t i o n o f new h y b r i d wheat, c o t t o n , soybeans, and o t h e r crops. B i o t e c h n o l o g y may h e l p r e d u c e p e s t i c i d e use i n a g r i c u l t u r e and may l e a d t o more s o p h i s t f c a t e d and p r e c i s e methods o f c h e m i c a l a p p l i c a t i o n . But, depending on t h e c o u r s e o f r e s e a r c h and c a p i t a l i n v e s t m e n t i n t h e n e x t few y e a r s , b i o t e c h n o l o g y may be a p p l i e d i n ways t h a t l e a d t o g r e a t e r c h e m i c a l use, e x a c e r b a t i n g e x i s t i n g env i ronmental problems and p e r h a p s c r e a t i n g ent i r e l y new ones. B i o t e c h n o l o g y may h e l p us r e d u c e o u r dependence o n chemical p e s t i c i d e s i n t w o ways: ( 1 ) t h r o u g h t h e g e n e t i c e n g i n e e r i n g o f c r o p s t h a t a r e more b r o a d l y r e s i s t a n t t o o r even t o l e r a n t o f d i s e a s e s and i n s e c t s , and ( 2 ) t h r o u g h t h e i n formed and c a r e f u l use ( a n d p o s s i b l e g e n e t i c enhancement) o f "good" m i c r o b e s and i n s e c t s t h a t d i s p l a c e , r e p e l , o r k i 11 "bad" ones. F o r t h e most p a r t , when b i o t e c h n o l o F i r s t consider crop breeding f o r g i s t s , p l a n t b r e e d e r s , and a g r i c u l td i s e a s e and i n s e c t r e s i s t a n c e . Today u r a l economists t a l k o f reducing t h e i n t h e U n i t e d S t a t e s t h e r e a r e approxf a r m e r ' s c o s t s , t h e y mean i m p r o v i n g Biotechnolog~maybe imately150crop varieties resistant applied in ways that h i s y i e l d and h i s income p e r a c r e , t o one o r more k i n d s o f d i s e a s e , 150 lead togreater thereby lowering h i s costs i n r e l a t i o n v a r i e t i e s r e s i s t a n t t o nematodes, and t o h i s income. I n t h i s c o n t e x t c o s t s chemicaluse, o v e r 100 v a r i e t i e s r e s i s t ? n t t o some can s t i l l r i s e as l o n g a s y i e l d does. exacerbatingexisting 25 t y p e s o f i n s e c t p e s t s . 7 I m p r e s s i v e environmental as t h i s may sound, t h e r e a r e no c r o p T h i s s c e n a r i o assumes, however, t h a t t h e p r i c e farmers w i l l g e t f o r a problemsandperhaps v a r i e t i e s r e s i s t a n t t o many d i s e a s e s b u s h e l o f c o r n o r wheat w i l l r e m a i n creating new ones. and i n s e c t p e s t s . I n t h e m i d w e s t e r n constant. But i f biotechnology r a i s e s Corn Be1 t, f o r example, t h e r e a r e a t y i e l d s t o o d r a m a t i c a l l y , i t c o u l d del e a s t 30 i n s e c t p e s t s and 50 d i s e a s e press market p r i c e s i n t h e aggregate, pathogens t h a t can a t t a c k c o r n . So a c t u a l 1y e x a c e r b a t i n g t h e f a r m e r ' s c o s t - p r i c e f a r , c o r n v a r i e t i e s have been d e v e l oped t h a t squeeze. Some wouid argue, however, t h a t t h i s r e s i s t a b o u t 22 o f t h e most damaging c o r n d i s e a s e s . The r e c o r d f o r d e v e l o p i n g new i n s e c t s c e n a r i o changes i f one assumes t h a t t h e number o f f a r m e r s w i l l be reduced as b i o t e c h n o l o g i c a l - r e s i s t a n t c o r n v a r i e t i e s , however, i s n o t as appl i c a t i o n s increase t h e o v e r a l l e f f i c i e n c y o f good. Corn i s one o f t h e n a t i o n ' s l a r g e s t u s e r s agriculture. o f i n s e c t i c i d e s , a c c o u n t i n g f o b a h e f t y 25 p e r c e n t o f t o t a l i n s e c t i c i d e use. PESTICIDE DEPENDENCY-YES OR NO? N a t i o n w i d e , p e s t i c i d e s and h e r b i c i d e s a r e i n c r e a s i n g l y b e i n g f o u n d i n s u r f a c e and groundw a t e r s u p p l i e s . I n t h e p a s t two y e a r s a l o n e , t h e E n v i ronmental P r o t e c t i o n Agency ( EPA) has i n i t i a t e d r e v i e w s on a t l e a s t h a l f a dozen widel y used a g r i c u l t u r a l p e s t i c i d e s t h a t a r e now suspected as c a r c i n o g e n s . P u b l i c concern about t h e p o t e n t i a l t o x i c i t y o f t h e s e c h e m i c a l s a l s o appears t o be r i s i n g . I n a J a n u a r y 1984 consumer s u r v e y c o n d u c t e d b y t h e Food M a r k e t i n g I n s t i t u t e , 77 p e r c e n t o f t h o s e p o l l e d expressed c o n c e r n o v e r p e s t i c i d e and h e r b i c i d e residues i n food, i n d i c a t i n g t h e problem t o be a " s e r i o u s h a z a r d . " By c o n t r a s t , c h o l e s t e r o l was j u d g e d t o be a s e r i o u s h a z a r d b y 45 p e r c e n t , s a l t b y 37 p e r c e n t , a d d i t i v e s b y 32 p e r c e n t , sugar b y 3 1 p e r c e n t , and a r t i f i c i a l c o l o r i nq b y 26 ~ e r c e n to f t h o s e surveyed. One p e s t , t h e w e s t e r n c o r n rootworm, has been expanding i t s r a n g e b y 140 m i l e s a y e a r i n a n ever-en1 a r g i ng c i r c l e t h a t began i n s o u t h e r n Nebraska i n 1960. I t i s now f o u n d i n 1 8 s t a t e s . I n a d d i t i o n , some o f t h e c h e m i c a l i n s e c t i c i d e s used t o t r e a t t h i s p e s t a r e now showing u p i n m i d w e s t e r n groundwater s u p p l i e s . As o f 1984 no r o o t w o r m - r e s i s t a n t c o r n v a r i e t i e s were a v a i l a b l e . One m a j o r o b s t a c l e i s t h a t no c o r n germplasm w i t h r e s i s t a n c e t o t h i s p e s t has been identified. I n t h e southeastern United States, chemical pesticides--not resistant plant varieties--have been t h e c h i e f means o f c o n t r o l l i n g soybean i n s e c t s , nematodes, and s e v e r a l p l a n t d i s e a s e s . I n Alabama, f o r example, t h e r o o t - k n o t nematode and t h e soybean c y s t nematode a r e p a r t i c u l a r l y v e x i n g problems. B o t h had been a l m o s t e n t i r e l y c o n t r o l l e d b y two n e m a t i c i d e s - - e t h y l e n e d i b r o rnide (EDB) and d i b r o m o c h l o r o p r o p a n e (DBCP)-- until EPA banned them f o r public health reasons. That prohibition revealed how dependent soybean growers were on these pesticides, as well as how l i t t l e breeding has been undertaken t o develop nematode-resistant soybean v a r i e t i e s . In some breeding programs such work i s now under way. Genetic engineering may make i t possible t o avoid some of the limitations of conventional plant breeding f o r resistance. I t could speed the process of germplasm screening and evaluation f o r resistance t r a i t s . And with the newfound a b i l i t y t o t r a n s f e r genes from one speci e s o r genus t o another, genetic engineers need no longer confine t h e i r search f o r resistance genes t o compatible species; some predict t h a t the e n t i r e plant kingdom will become an openThis means f o r example, t h a t ended gene pool certain genetic t r a i t s of the oak tree--a species t h a t i s not bothered by the r u s t s of wheat--could conceivably be moved i n t o commerci a l wheat v a r i e t i e s t o make them permanently r e s i s t a n t t o r u s t . Some biotechnologists even t a l k boldly of making crops "immune" t o disease and insects. By contrast ,pl ant breeders a r e more inclined t o t a l k of " r e l a t i v e resistance" and "re1 a t i v e suscepti bi 1 i t y . I' . Howard Schneiderman, Monsanto's senior vicepresident f o r research and development, predicts t h a t some genetical 1 y engineered major crops r e s i s t a n t t o insects and other pests will be on the market by the 1990s. . The r e s u l t , he adds, will be decreased dependence on pesticides. "We will have shifted the central t h r u s t of plant protection in some key areas from t r e a t ment t o prevention. "9 ADAPTING RESISTANCE This approach may not be without d i f f i c u l t i e s and s i d e e f f e c t s , however. In the development of i n s e c t and disease r e s i s t a n t v a r i e t i e s by conventional means, plant breeders have general 1 y employed a one-genelone-pathogen type of r e s i s tance, sometimes called "gene-for-gene" breeding--a practice t h a t may be followed in genetic engineering as well. Crop v a r i e t i e s with singlegene resistance a r e almost completely r e s i s t a n t t o the predominant s t r a i n of the pest--until an adaptation occurs. J u s t a s a pest can become immune t o a pesticide, so can i t overcome the resistance produced by a s i n g l e plant gene. , Si ngl e-gene resistance more or 1 ess beckons adaptation by the pest and i t s mutation i n t o new s t r a i n s , rendering the crop v a r i e t y , i f widely planted, susceptible t o devastation or epidemics. There i s some evidence suggesting t h a t the use of Isingle-gene breeding may be contributing t o a corresponding increase in the frequency of virulence genes (genes t h a t enable the pathogen t o overcome the p l a n t ' s resistance gene) in the pathogens t h a t attack c e r t a i n crops.10 This has been'reported in Australia, f o r example, in breeding wheat f o r resistance t o stem r u s t , barley f o r resistance t o powdery mildew, tomato f o r resistance t o leaf mold, and l e t t u c e f o r resistance t o downy mi 1 dew. Many pathogenic organisms have the a b i l i t y t o t r a n s f e r genes among themselves asexually, increasing the r a t e a t which they can develop virulence genes and thus adapt t o and overcome single disease resistance genes in new crop v a r i e t i e s . l l This i s one reason why some new crop v a r i e t i e s l a s t as 1 i t t l e as f i v e years before they a r e overtaken by a new s t r a i n of pathogen. "Intensive modern agricultural methods acceler a t e the evolution of new pest types, requiring plant g e n e t i c i s t s to more rapidly breed genes i n t o commerical c u l t i v a r s from r e s i s t a n t re1 a t i v e s , " says Cal gene, a biotechnol ogy company in California, in one of i t s recent brochures. The company holds out biotechnology a s a solution: "bio-engineering wi 1 1 speed t h i s t r a n s f e r process t o keep pace with the pathogens, expand the gene pool t o unrelated organisms, and even create synthetic resistance genes in the t e s t tube." B u t i f genetic engineering continues t o employ gene-for-gene plant breeding, might i t not simply speed and extend the practices of the past, thereby hastening the adaptation of new s t r a i n s of disease and i n s e c t s ? On t h e other hand, biotechnology might help plant breeders t o impart a broader, multiplegene type of disease and i n s e c t r e s i s t a n c e t o agricultural crops, but t h a t will be more d i f f i c u l t t o accomplish i n the short run. S c i e n t i s t s a r e j u s t beginning t o learn of the interaction pest and plant genes, and more basic know1 edge in t h i s area i s needed. And, as noted e a r l i e r , only single-gene t r a i t s have been successfully transferred t o date. Transferring multiple-gene t r a i t s successfully and achieving coordinated expression--without affecting other plant functions--is a considerable challenge. BlOLOGlCAL CONTROLS much headway against conventional pesticides. The biologicals t y p i c a l l y a r e appl icable to only one or a few t a r g e t pests, a r e active only a t certain pest stages or seasons, and are n o t pers i s t e n t . They a r e usually destroyed by sunl i g h t , or are finicky about temperature, s o i l conditions, and moisture. In addition, in t h e i r natural s t a t e they a r e not patentable. In short,potential payback from a commercial point of view has not been worth the e f f o r t , and most major companies have stayed away from them. The second way in which biotechnology could reduce pesticide use i n agriculture i s through t h e development of biological control s . Consider, f o r exam~le. the bacterium Bacillus Biotechnology i s rekindl ing some int h u r i n g i e n s i s , known as BT. This ' t e r e s t in t h i s area. One reason i s the bacterium, which k i l l s the insect On the other hand, 1980 U.S. Supreme Court decision in larvae of the f l o u r moth, was discoverbiotechnology might help plant breeders Diamond v . Chakrabary. I n t h a t case ed in the German province of T h u impart a broader ringia in 1911. Since the 1940s BT the Court ruled t h a t i f microorganisms disease and pest a r e a1 tered by man, they are no 1 onger has been widely used as a biological resistance to crops, a "product of nature" a n d are thus pesticide t o ki 1 1 1 epidopterous insects but that will be more patentable. In addition t o Monsanto, (moth and b u t t e r f l y ) with toxic difficult to accomplish other companies a r e working on fungi c r y s t a l s formed in i t s spores. in the short run. t h a t attack weeds, bacteria t h a t k i l l I n l a t e 1984 a new twist emerged in vegetable worms, and viruses t h a t make BT's history as a biological pesticide. insects i l l . Monsanto announced t h a t i t had spliced BT's toxin gene into another bacterium, One of the goals of biotechnologists Pseudomonas f l uorescens. P . f 1 uonow devel o p i n g genetical 1 y a1 tered bugs rescens inhabits the s o i l of,midi s t o make them more 1 i ke broad specwestern corn f i e l d s , p a r t i c u l a r l y trum chemical pesticides--i . e . , t o make around corn plant roots. Monsanto i s them k i l l more than one specific pest planning to use P . fluorescens, appl ied and to make them more p e r s i s t e n t . as coating on corn seed, a s a vehicle to carry BT's natural pesticide i n t o the corn Monsanto s c i e n t i s t s , f o r example, have expressed f i e l d s t o k i l l black cutworms, which are i n t e r e s t in transferring other toxin genes, in currently control led with synthetic pesticides. addition t o BT's toxin gene, i n t o i t s microbe designed to k i l l black cutworms, giving the miB u t Monsanto's expressed optimism about t h i s crobe the abi l i t y to ki l l other insects . I 3 technique may he clouded by the commercial Ecogen, a biotechnol ogy company formed specif i limitations of some biocontrol products, whether call y to genetical 1 y engineer microbes, i s lookgenetically engineered or not, and by potential ing a t t h i s p o s s i b i l i t y as well. "Cloning of problems with t h e i r s a f e t y and effectiveness. two or more genes for d i s t i n c t pesticide a c t Recent studies suggest t h a t even biologicals i v i t y in the same host c e l l could generate a l i k e BT can i c i t resistance in t a r g e t insect multipurpose pesticide, having a c t i v i t i e s And EPA has announced i t s inpopulations." against two or more very d i f f e r e n t t a r g e t s tention t o regulate nonengineered (but nonindi( e - g . , two d i f f e r e n t i n s e c t s , an insect and a genous) microbial pesticides as well as geneweed, and an insect a n d a fungal d i s e a s e ) . The t i c a l l y a l t e r e d ones. r e l a t i v e ease with which such d i f f e r e n t gene combinations can be potentially constructed by No genetical 1 y engineered biocontrol products recombinant DNA technology makes the possi bi 1 i (microbes, i n s e c t s , or plants) have yet been t i e s virtual l y nl imi ted," says Ecogen s c i e n t i s t marketed, b u t appl ications for f i e l d t e s t i n g are Bruce Carl ton. 11 now pending before EPA and USDA. In f a c t , only a handful of nonengineered biological pesticides have been registered f o r use in the United ECOLOGICAL NIGHTMARE S t a t e s . A t l a s t count 13 microbial agents had been registered for use in about 75 separate B u t by using biotechnology t o build "mu1 t i p l e biological pesticide products. Thi s compares t o warhead" microbes t h a t k i l l more than one some 1,400 chemical pesticide ingredients forspecies of pest, or those t h a t l a s t longer in mulated into 35,000 or more registered products. the environment, we may be creating bigger ecological problems than those we hope t o replace. There has been 1 i t t l e s c i e n t i f i c study or data Traditionally, biological products have not made collection on how existing nonengineered microorganisms behave i n n a t u r e , l e t a l o n e any s o l i d understanding o f how g e n e t i c a l l y a l t e r e d ones m i g h t behave. Some e c o l o g i s t s have r a i s e d concern t h a t g e n e t i c a l l y engineered microorganisms m i g h t have unexpected consequences when r e 1 eased i n t o t h e environment. Any organism, engineered o r n o t , can have d i s r u p t i v e e f f e c t s when i n t r o d u c e d i n t o a new ecosystem, t h e y claim, c i t i n t h e Gypsy moth and t h e s t a r 1 i n g as examples.~5 G e n e t i c a l l y engineered m i c r o b i a l p e s t i c i d e s a l s o r a i s e o t h e r concerns. W i l l t h e t o x i n s k i l l b e n e f i c i a l i n s e c t s as w e l l ? W i l l t h e y p e r s i s t i n t h e environment? M o l e c u l a r b i o l o g i s t s and e c o l o g i s t s a r e j u s t b e g i n n i n g a s c i e n t i f i c i a l o g u e on some o f these questions. 1 g Many e c o l o g i s t s agree t h a t t h e r e i s l i t t l e s c i e n t i f i c i n f o r m a t i o n on which t o base p r e d i c t i o n s about t h e behavior o f engineered organisms.17 L i t t l e i s known about t h e dynamics o f how organisms e s t a b l i s h themselves, o r why some species m u l t i p l y i n n a t u r e and o t h e r s do n o t , o r what a t t r i b u t e s make some organisms good a t d i s semination and o t h e r s poor. Some o f t h i s i n f o r mation does e x i s t , b u t n o t always f o r t h e organisms o f most i n t e r e s t t o g e n e t i c engineers. WHAT HAPPENS TO AG-CHEMICALS? Assuming f o r t h e moment t h a t g e n e t i c a l l y e n g i neered m i c r o b i a l p e s t i c i d e s and o t h e r b i o l o g i c a l p r o d u c t s w i l l be safe and e f f e c t i v e , does t h e i r development mean t h a t chemical p e s t i c i d e s w i l l be phased o u t ? I n t h e l o n g run, maybe; i n t h e s h o r t run, p r o b a b l y n o t . I n f a c t , d u r i n g t h e n e x t 10 t o 15 years, b i o t e c h n o l o g y may 1ead t o t h e d e s i g n o f new, more s o p h i s t i c a t e d a g r i c u l t u r a l chemicals and an i n c r e a s e i n t h e use o f certain pesticides. S c i e n t i s t s a r e now i n v e s t i g a t i n g t h e g e n e t i c mechanisms i n c r o p s and i n s e c t s t h a t may enable them t o b e t t e r t o l e r a t e and r e s i s t t h e ill. e f f e c t s o f p e s t i c i d e s . A t l e a s t 20 companies are involved i n the genetic engineering o f s t r a i n s o f corn, c o t t o n , and soybeans a b l e t o r e s i s t h e r b i c i d e s . ( H e r b i c i d e s a r e sometimes l e t h a l t o t h e c r o p as w e l l as t h e weed and sometimes reduce c r o p y i e l d s . ) I n many crops o n l y a single-gene change i s necessary t o i m p a r t h e r b i c i d e r e s i s t a n c e ; indeed, t h e r e l a t i v e s i m p l i c i t y o f e n g i n e e r i n g h e r b i c i d e r e s i s t a n c e exp l a i n s i n p a r t t h e wide i n t e r e s t i n i t . Some h e r b i c i d e - r e s i s t a n t crop v a r i e t i e s are s l a t e d t o be on t h e market b y 1989. A r e p o r t i n Chemical Week noted t h e "slow b u t steady push" among h e r b i c i d e makers t o g e n e t i c a l l y m a n i p u l a t e corn, soybeans, and o t h e r c r o p s t o increase t h e i r resistance t o herbicides. "The t h e o r y i s t h a t farmers would then be w i l l i n g t o use even more o f t h e weed k i l l e r s s a f e i n knowledge t h a t t h e i r crops w o n ' t be damaged," a c c o r d i n g t o t h e magazi ne.18 Some s c i e n t i s t s , however, say t h a t r e s i s t a n t c r o p v a r i e t i e s a r e b e i n g designed t o work w i t h new, l e s s t o x i c h e r b i c i d e s , and t h a t t h i s s t r a t e g y w i l l a c t u a l 1y reduce h e r b i c i d e use.19 Not much i s known about t h e lofig-term e n v i r o n mental e f f e c t s o f h e r b i c i d e s . A1 though general l y n o t as t o x i c as t h e c h l o r i n a t e d hydrocarbon i n s e c t i c i d e s , h e r b i c i d e s can cause problems. A t r a z i n e , a l a c h l o r , and o t h e r h e r b i c i d e s t h a t were once t h o u g h t t o d i s s i p a t e i n t h e s o i l have contaminated some w e l l s and have been found i n groundwater resources i n a t l e a s t 10 s t a t e s . A few have r e c e n t l y been c i t e d f o r s p e c i a l r e views b y EPA as suspected c a r ~ i n o ~ e n s . ~ o J u s t as b i o t e c h n o l o g y l i n k s h e r b i c i d e s and c r o p v a r i e t i e s i n new ways, i t i s a l s o l i k e l y t o advance a new g e n e r a t i o n o f chemical " p l a n t growth r e g u l a t o r s . " A few m a j o r chemical and pharmaceutical companies a r e d e s i g n i n g and screening these chemical cousins o f p e s t i c i d e s and h e r b i c i d e s . Such chemicals may one day be a d m i n i s t e r e d t o vegetables and f i e l d crops as c o n v e n t i o n a l p e s t i c i d e s now are, b u t t h e i r miss i o n w i l l be t o t u r n on o r o f f c e r t a i n p l a n t genes t h a t c o n t r o l f l o w e r i n g , growth, o r senescence. T h i s "new chemistry," however, may n o t be much d i f f e r e n t from t h e " o l d c h e m i s t r y " i n terms o f i t s environmental and pub1 i c h e a l t h impact. I n J u l y 1984 EPA announced a s p e c i a l r e v i e w o f Uni r o y a l ' s growth r e g u l a t o r A1 a r (daminozide) t o see i f i t poses a d i e t a r y cancer r i s k t o humans. E a r l i e r l a b o r a t o r y t e s t s i n d i c a t e d t h a t t h i s chemical causes tumors i n l a b o r a t o r y animal s - 2 1 Sprayed on apples, A1 a r r e t a r d s r i p e n i n g i n t h e f i e l d , e n a b l i n g growers t o extend t h e h a r v e s t season and employ fewer p i c k e r s o v e r a l o n g e r h a r v e s t . It a l s o makes 12 apples r e d d e r and increases t h e i r s h e l f l i f e b y two t o t h r e e months. I n sum, d e s p i t e some o f t h e more o p t i m i s t i c claims t h a t biotechnology w i l l r e v o l u t i o n i z e p e s t c o n t r o l and reduce chemical t o x i c i t y , i n a c t u a l p r a c t i c e b i o t e c h n o l ogy may do n e i t h e r . I n s t e a d , g e n e t i c and b i o l o g i c a l products may i n c r e a s i n g l y be made t o work t o g e t h e r i n t h e dominant p e s t i c i d e framework. However, if c a p i t a l and t a l e n t a r e i n v e s t e d t o o h e a v i l y i n s t r a t e g i e s t o develop p r o d u c t s such as h e r b i c i d e - r e s i s t a n t crops, o t h e r a1 t e r n a t i v e s , such as c r o p p i n g systems t h a t employ r o t a t i o n s o f a1 l e l o p a t h i c crops, m i g h t r e c e i v e l e s s a t t e n tion. THE DANGER OF MONOCULTURE I n c e r t a i n r e g i o n s o f t h e U n i t e d S t a t e s today, t e n s o f thousands o f a c r e s of farmland a r e p l a n t e d i n continuous b l o c k s o f t h e same v a r i e t i e s o f corn, wheat, c o t t o n , and o t h e r crops. Although more than 250 v a r i e t i e s o f wheat a r e a v a i l a b l e , f o r example, 10 v a r i e t i e s dominate t h e landscape, and s i x v a r i e t i e s accounted f o r n e a r l y 40 p e r c e n t o f wheat acreage i n 1981. The s i t u a t i o n i s s i m i l a r i n o t h e r crops. Four v a r i e t i e s account f o r 65 p e r c e n t o f t h e n a t i o n ' s r i c e acreage; s i x soybean v a r i e t i e s f o r 42 p e r c e n t o f soybean land, and two pea v a r i e t i e s f o r 96 p e r c e n t o f pea acreage. The s i t u a t i o n i n l i v e s t o c k i s n o t much b e t t e r . The H o l s t e i n cow c o n s t i t u t e s about 70 p e r c e n t of ( t h e n a t i o n ' s d a i r y herd. The White Leghorn and i t s d e r i v a t i v e s p r o v i d e most o f t h e n a t i o n ' s eggs. Angus and H e r e f o r d c a t t l e account f o r more than 80 p e r c e n t o f a1 1 r e g i s t e r e d breeds. Cross-breeding among e i g h t purebred hog l i n e s --Berkshire, Chester White, Duroc, Hampshire, Landrace, Poland China, Spot, and Y o r k s h i r e - accounts f o r some 90 p e r c e n t o f U.S. ~ o r kp r o duction. Such g e n e t i c u n i f o r m i t y can c o n t r i b u t e t o disease epidemics and widespread i n s e c t i n f e s t a t i o n when r e s i s t a n c e t r a i t s a r e overcome o r when s u s c e p t i b i l it y e x i s t s t h r o u g h o u t a p l a n t o r l i v e s t o c k p o p u l a t i o n . I n t h e 1970-71 southern c o r n 1e a f b l i g h t , f o r exampl e, t h e fungus Helminthosporium maydis was a b e t t e d b y c o r n ' s manmade g e n e t i c u n i f o r m i t y : 80 p e r c e n t o f t h e h y b r i d c o r n c o n t a i n e d a m a l e - s t e r i l e cytoplasm t h a t was used f o r b r e e d i n g purposes. The s i n g l e gene c o n f e r r i n g ma1e s t e r i 1 it y a1 so c o n f e r r e d s u s c e p t i b i 1 it y t o t h e fungus, enabl ing t h e pathogen t o spread r a p i d l y from F l o r i d a t o Minnesota. More r e c e n t l y , t h e spread o f c i t r u s canker i n F l o r i d a seems t o have been a b e t t e d b y t h e u n i f o r m i t y o f t h e s t a t e ' s c i t r u s v a r i e t i e s . About 90 percent o f t h e s t a t e ' s orange h a r v e s t der i v e s from t h r e e v a r i e t i e s : Valencia, Ham1 i n , and Pineapple. One way t h a t b i o t e c h n o l o g y may h e l p t o reduce g e n e t i c v u l n e r a b i l it y t h r o u g h o u t a g r i c u l t u r e i s through t h e development and d o m e s t i c a t i o n o f new crops and through e f f o r t s t o extend t h e p l a n t i n g range o f some e x i s t i n g s p e c i a l t y c r o p s . On1 y about 1 p e r c e n t o f t h e 300,000 known species o f p l a n t s has been s t u d i e d f o r p o t e n t i a l use i n t h e p r o d u c t i o n o f food, feed, f i b e r , and o t h e r substances. Somewhere between 3,000 and 7,000 p l ant species have been used f o r f o o d t h r o u g h o u t r e corded h i s t o r y . O f these, r o u g h l y 150 have been c u l t i v a t e d t o t h e e x t e n t t h a t t h e y have e n t e r e d w o r l d trade. Most o f t h e w o r l d ' s human populat i o n i s f e d t o a l a r g e e x t e n t b y o n l y 15 p l a n t species. More alarming, perhaps, i s t h a t a mere t h r e e p l a n t species--corn, wheat, and r i c e - - c o n s t i t u t e 75 p e r c e n t o f t h e w o r l d ' s food supply.22 I f b i o t e c h n o l o g y were successful im making j u s t a dozen p l a n t species commercial 1y acceptabl e, a new measure o f b i o l o g i c a l and economic d i v e r s i t y would be gained. From a commercial s t a n d p o i n t , however, t h e r e i s 1 i t t l e i n c e n t i v e t o b e g i n r e search on such crops. True, some energy companies a r e a1 ready s c o u t i n g f o r "energy crops" t o use f o r biomass p r o d u c t i o n i f and when t h e o i l runs o u t , some chemical companies a r e i n v e s t i g a t i n g p l a n t sources o f dyes and chemical substances, and pharmaceutical c o r p o r a t i o n s a r e always l o o k i n g t o p l a n t s as sources of new drugs. Yet t o wnat e x t e n t have these i n d u s t r i e s o r government o f f i c i a l s r e a l l y thought about how such i n d u s t r i a l crops m i g h t be used as a t r a n s i t i o n c r o p f o r some farmers? I f monocultures o f j o j o b a a r e s i m p l y used t o r e p l a c e monocultures o f sorghum, how much b e t t e r o f f w i l l we be? i n 1982, " i s p a r t i c u l a r l y s u s c e p t i b l e t o changes i n i t i a t e d b y b i o t e c h n o l o g y . " Trade p a t t e r n s between i n d u s t r i a l i z e d and developing c o u n t r i e s "may become p r o g r e s s i v e l y d i s l o c a t e d i f indust r i a l i z e d n a t i o n s sudde v become s e l f - s u f f i c i e n t i n c o l o n i a l crops. " P l a n t a t i o n - s t y l e sugar cane p r o d u c t i o n i n some p a r t s o f t h e d e v e l o p i n g world, f o r example, c o u l d be made o b s o l e t e i f i n d u s t r i a l i z e d n a t i o n s adopt cheaper, b i o t e c h n o l o g y - a s s i s t e d f e r m e n t a t i o n processes t o make sugar s u b s t i t u t e s , such as h i g h - f r u c t o s e syrup. sl HYBRIDS: PRO AND CON B i o t e c h n o l o g y may a1 so a s s i s t i n t h e development o f n o n h y b r i d c r o p v a r i e t i e s , b e n e f i t i n g farmers b y making a1 t e r n a t i v e (and perhaps more c o s t e f f e c t i v e ) p r o d u c t s a v a i l a b l e . .Ever s i n c e t h e d e v e l o ~ m e n to f h v b r i d c o r n i n t h e 1930s. much o f p l a n t ; ~ i e n c e - - e ; ~ e c i a l lyi n t h e appl i e d realm-has been caught up i n t h e f e r v o r t o make a1 1 crops h y b r i d s , and b i o t e c h n o l ogy i s no exception. I n a d d i t i o n , OECD s a i d , because o f t h e "keenness o f i n d u s t r i a l i z e d c o u n t r i e s t o e x ~ o r tb i o t e c h no1ogy t o t h e T h i r d World," o t h e r ' t r a d i n g p a t t e r n s c o u l d change " w i t h o u t e i t h e r t r a d i n g p a r t n e r being f u l l y apprised o f t h e r e s u l t . " A t a t i m e when t h e Reagan a d m i n i s t r a t i o n i s i n c r e a s i n g i t s emp h a s i s on e x p o r t markets (as a means o f If biotechnology were s h i f t i n g a g r i c u l t u r e t o a more " f r e e successful in making market" f o o t i n g ) , advances i n b i o t e c h just a dozen plant n o l o g y c o u l d make producer n a t i o n s o u t species commercially o f c o u n t r i e s t h a t have been valued U.S. acceptable, a new customers. Through t h e i n t r o d u c t i o n o f measure of biological improved wheat and r i c e v a r i e t i e s i n and economic t h e 1960s and 1970s, I n d i a was t r a n s diversity in agriculture formed from a g r a i n - i m p o r t i n g c o u n t r y would be gained. t o a s e l f - s u f f i c i e n t one; w i t h b i o t e c h nology, t h i s p a t t e r n may be repeated i n many p a r t s o f t h e w o r l d . H y b r i d seeds a r e more v a l u a b l e than nonhybrid seeds because t h e f i r s t gene r a t i o n o f h y b r i d p l a n t s produces l a r g e r y i e l d s . Using t h a t seed t h e f o l l o w i n g year r e s u l t s i n l e s s " h y b r i d v i g o r " and l o w e r y i e l d . Thus, t h e farm. e r must buy h y b r i d seed e v e r y y e a r . Hybrids a l s o o f f e r another commercial advantage: o n l y t h e seed company knows t h e c o r r e c t parentage o f t h e h y b r i d l i n e , p r o v i d i n g what amounts t o a b u i l t - i n t r a d e s e c r e t . Because o f these commercial i n c e n t i v e s , few seed companies o r chemical f i r m s i n t h e seed business a r e l i k e l y t o conduct g e n e t i c r e s e a r c h on o p e n - p o l l i n a t e d c o r n o r sorghum, and i n t h e near f u t u r e , on wheat o r soybeans. Open-pol 1 inated v a r i e t i e s , however, m i g h t reduce energy, p e s t i c i d e , and water requirements . Perhaps w i t h some c a r e f u l g e n e t i c e n g i n e e r i n g , open-pol 1 i n a t e d 1 i n e s c o u l d reach t h e y i e l d of some h y b r i d l i n e s , o r o f f e r a l i t t l e l e s s y i e l d b u t b e t t e r r e s i s t a n c e t o disease and i n s e c t s than e x i s t i n g h y b r i d l i n e s . I n o t h e r words, b i o t e c h n o l o g y i n t h i s a p p l i c a t i o n m i g h t reduce some o f t h e thoroughbred performance i n crops b u t s i m u l t a n e o u s l y make them l e s s dependent on inputs. STORM-WARNING IN WORLD TRADE The i n t r o d u c t i o n o f g e n e t i c a l l y made crop and 1i v e s t o c k p r o d u c t s may s w i f t 1 y and d r a m a t i c a l 1y transform t r a d i t i o n a l centers o f a g r i c u l t u r a l p r o d u c t i o n , b o t h w i t h i n and among n a t i o n s . Such changes c o u l d d i s r u p t o r c o m p l e t e l y a l t e r t r a d i n g p a t t e r n s and convulse w o r l d markets, w i t h r a m i f i c a t i o n s f o r b o t h U.S. s g r i c u l t u r e and i n ternational trade. "Trade i n a g r i c u l t u r e , " s a i d t h e O r g a n i z a t i o n f o r Economic Cooperation and Development (OECD) If s c i e n t i s t s , f o r example, a r e successful i n g e n e t i c a l l y engineering crops f o r increased c o l d t o l e r a n c e , huge new mark e t s f o r c r o p seed and s u p p o r t i n g m a t e r i a l s c o u l d be c r e a t e d . Across m i l l i o n s o f acres i n China and Russia, crops a r e produced o n l y one o r two years o u t o f f o u r because o f t h e c o l d . ( I n t h e U n i t e d S t a t e s as w e l l , t h e n o r t h e r n range o f c e r t a i n crops c o u l d be extended t h r o u g h improved c o l d t o l e r a n t . ) "Think o f Russia g e t t i n g wheat t o t o l e r a t e f r e e z i n g , " says Ray V a l e n t i n e o f Calgene. "It would change t h e g e o - p o l i t i c s o f Indeed, t h e r e p e r c u s s i o n s on g r a i n t h e world. e x p o r t i n g c o u n t r i e s 1 iice t h e hit e d States, Aust r a l i a , and Canada c o u l d be phenomenal. The S o v i e t s a r e a l r e a d y p u r s u i n g b i o t e c h n o l o g y i n hopes o f r e d u c i n g t h e i r dependency on g r a i n i m p o r t s . According t o E.F. h u t t o n a n a l y s t Z s o l t Harsanyi, t h e S o v i e t Union i s p u t t i n g tremendous e f f o r t i n t o producing s i n g l e - c e l l p r o t e i n - - t h a t i s , t h e use o f s i n g l e - c e l l microorganisms t o make p r o t e i n i n a f e r m e n t a t i o n process. By 1990, he says, t h e S o v i e t s c o u l d be s e l f - s u f f i c i e n t i n animal feed. Even t h e i n t r o d u c t i o n o f t i n y , g e n e t i c a l l y enhanced microbes i n c e r t a i n 1o w - p r o d u c t i v i t y r e g i o n s c o u l d have enormous t r a d e consequences. Much o f t h e s o i l i n t h e Southern Hemisphere, f o r example, s u f f e r s from aluminum t o x i c i t y t h a t l i m i t s phosphate uptake. B i o t e c h n o l o g y may companies have been a c q u i r e d b y chemical, pharproduce p l a n t s o r m i c r o b i a l i n o c u l a n t s t h a t m a c e u t i c a l , energy, a g r i b u s i n e s s , and o t h e r c o r would enable crops t o more e f f e c t i v e l y scavenge porations. This trend i s d r i v e n i n p a r t by the phosphate i n h i g h aluminum s o i l s , a c c o r d i n g t o d e s i r e o f major corporations w i t h i n t e r e s t i n Ralph Hardy, p r e s i d e n t o f B i o t e c h n i c a I n t e r b i o t e c h n o l o g y t o g a i n access t o t h e seed indusn a t i o n a l . Such a development " c o u l d make South t r y ' s m a r k e t i n g reach and p l a n t b r e e d i n g experAmerica an even more s i g n i f i c a n t t i s e . I n t h e U n i t e d S t a t e s alone, Government has a producer o f g r a i n s and t h e r e b y a more t h a n 130 seed companies, horresponsibility to more f o r m i d a b l e c o m p e t i t o r w i t h U.S. t i c u l t u r a l suppl i e r s , and seed conduct research on accessory businesses have been acc r o p a g r i c u l t u r e . I' And a c c o r d i n g t o Hardy, l i v e s t o c k b i o t e c h n o l o g y those orphan quired by corporations. products of may a l s o decrease animal diseases biotechnology for and t h u s enable A f r i c a t o develop a Some seed companies have been bought which no commercial s i g n i f i c a n t meat-packing i n d u s t r y . 2 4 and s o l d b y m a j o r c o r p o r a t i o n s two incentives exist. and t h r e e times. Many o p e r a t e as s u b s i d i a r i e s o r seed d i v i s i o n s o f t h e ' p a r e n t c o r I n q u i t e another v e i n , however, b i o t e c h n o l o g y p o r a t i o n . Name changes, s h i f t s i n research, and c o u l d enhance t h e p o s i t i o n o f t h e developed r e o r g a n i z a t i o n s a r e common. Other companies, w o r l d as f o o d producer t o t h e d e t r i m e n t o f once acquired, a r e then s o l d again i n parts: d e v e l o p i n g n a t i o n s . "The success o f o u r program f o r a g e seed t o one b i d d e r , soybean seed t o a i n enhancing t h e e f f i c i e n c y o f food p r o d u c t i o n another, wheat seed. t o y e t another. On a l e s s key t o t h e economies o f t h e developed w o r l d i s pronounced scale, a s i m i l a r p a t t e r n o f consol iv e r y 1 ik e l y t o cause m a j o r d i s r u p t i o n s i n w o r l d d a t i o n and c o r p o r a t e ownership has o c c u r r e d i n a g r i c u l t u r a l markets ,Ii says Nobel l a u r e a t e t h e l i v e s t o c k g e n e t i c s area. I n years ahead b i o Joshua Lederberg. He adds t h a t we should be technology i s l i k e l y t o f o s t e r product uncertaint h i n k i n g about these d i s r u p t i o n s "much more u r t y and i n s t a b i l i t y i n t h e a g r i c h e m i c a l , farm gent1 y than we a r e today. " Otherwise, "we may equipment, and f e r t i l i z e r i n d u s t r i e s as w e l l . d i s c o v e r t h a t we have t h e technology, we have t h e land, (and) t h a t we can produce a1 1 t h e Despite the i n d i c a t i o n s t h a t a g r i c u l t u r a l b i o w o r l d ' s food--and nobody e l s e can a f f o r d t o do technology may have enormous economic and p o l i t i t because t h e y c a n ' t compete w i t h us. "25 i c a l e f f e c t s , b o t h d o m e s t i c a l l y and i n t e r n a t i o n a l l y , few governments o r c o r p o r a t i o n s a r e p l a n n i n g f o r them. Unless f o r e s i g h t and p l a n n i n g FOOD POWER IN FEWER HANDS a r e brought t o bear on t h e f u t u r e use o f a g r i c u l t u r a l biotechnology, The i n t r o d u c t i o n o f b i o t e c h n o l o g y c a p i t a l resources may be wasted, and products c o u l d a l s o have s i g n i f i c a n t s t r u c t u r a l i n s t a b i l i t i e s exacerbated economic consequences i n t h e U n i t e d w i t h farmers and consumers throughS t a t e s , as Robert K a l t e r p o i n t s o u t o u t t h e world paying t h e steepest [ i n Issues, f a l l 1985 - see "Resp r i c e . ources" p. 221. The widespread adopti o n o f somatotropin, b o v i n e growth hormone, c o u l d i n c r e a s e mi 1 k p r o MAXIMIZING DIVERSITY d u c t i o n b y an e s t i m a t e d 30 p e r c e n t . T h i s m i g h t r e s u l t i n a 25 t o 30 Today we can c l e a r l y see t h e c o s t s p e r c e n t decrease i n t h e number o f and r i s k s a s s o c i a t e d w i t h modern d a i r y farms and d a i r y cows. Those h i g h - y i e l d a g r i c u l t u r a l systems: d a i r y farms t h a t remained c o u l d exh i g h energy costs, p e s t i c i d e t o x i pect up t o a 26 p e r c e n t i n c r e a s e i n c i t y , increasing rates o f pest r e farm r e t u r n s . A s i m i l a r p a t t e r n i s sistance, f e r t i l i z e r r u n o f f , g e n e t i c 1 i k e l y t o ensue i n o t h e r 1 i v e s t o c k u n i f o r m i t y , o v e r s p e c i a l i z a t i o n , and s e c t o r s . O v e r a l l , b i o t e c h n o l ogy market v o l a t i 1 ity'. We know, however seems c e r t a i n t o d r a m a t i c a l l y a f f e c t t h a t biotechnology--as we1 1 as cont h e economics o f farming, a c c e l e r a t v e n t i o n a l a g r i c u l t u r a l research--may i n g t h e pace o f farm c o n s o l i d a t i o n h e l p us reduce o r e l i m i n a t e some of and farm en1 argement these c o s t s and r i s k s . We would do well t o apply t h e best o f these I n c e r t a i n farm s u p p l y i n d u s t r i e s - t e c h n o l o g i e s t o o u r most p r e s s i n g most n o t a b l y t h e N o r t h American and problems. With b i o t e c h n o l ogy, howEuropean seed i n d u s t r i e s - - t h e r e has ever, we must move c a u t i o u s l y t o been a d r a m a t i c s h i f t i n ownership a v o i d c r e a t i n g new r i s k s o f perhaps of seed businesses s i n c e t h e mida more d i f f i c u l t o r d e r . 1970s. Hundreds o f s m a l l e r seed . Biotechnology o f f e r s o p p o r t u n i t i e s t o advance b i o l o g i c a l a l t e r n a t i v e s and p r o v i d e new farm management p r a c t i c e s t h a t may b e n e f i t t h i s n a t i o n and others, both i n terms o f p r o d u c t i v i t y and environmental p r o t e c t i o n . There a r e obvious i n t e r r e l a t i o n s h i p s between reducing a f a r m e r ' s costs, reducing t h e use o f energy, p e s t i c i d e s , and i r r i g a t i o n , reducing demands on scarce natur a l resources, and reducing t h e " e x t e r n a l it i e s 1 ' t h e o f f - s i t e publ i c h e a l t h and environmental costs - o f a g r i c u l t u r e . S p l i c i n g i n o r " t u r n i n g on" t h e r i g h t gene o r genes i n a p a r t i c u l a r crop v a r i e t y o r l i v e s t o c k breed may produce huge savi n g s w h i l e r a i s i n g p r o d u c t i v i t y . F u r t h e r , by r e ducing g e n e t i c u n i f o r m i t y we reduce t h e p o t e n t i a l c o s t s o f emergency response, cumbersome and i n e f f e c t i v e q u a r a n t i n e e f f o r t s , and business l o s s compensation. By i n t r o d u c i n g more g e n e t i c d i v e r s i t y and more "new crop" v a r i e t y i n t o a g r i c u l t u r e , we c r e a t e economic o p p o r t u n i t y . Yet i n t h e commercial sphere, as w e l l as i n t h e ha1 1s o f academe, t h e r e i s a tendency t o t h i n k o n l y o f "adding on" t o what a l r e a d y e x i s t s . How many companies and u n i v e r s i t i e s pursuing h e r b i c i d e - r e s i stance genes, f o r example, a r e spending t h e same amount o f money on making a l l e l o p a t h i c crops t h a t would r e p e l weeds w i t h t h e i r own chemicals, o r a r e seeking t o d i s c o v e r and/or develop n a t u r a l l y o c c u r i ng m i c r o b i a1 h e r b i c i d e s t h a t might rep1ace chemical h e r b i c i d e s ? How much i s USDA d o i n g i n such areas? Government 1eadership and research w i 11 be necessary, s i n c e few commerical i n c e n t i v e s now e x i s t f o r advancing such products o r farming p r a c t i c e s . USDA, t h e l a n d g r a n t u n i v e r s i t i e s , and publ ic - s e c t o r research i n s t i t u t e s have a r e sponsi b i 1it y t o conduct research on those "orphan" products f o r which no commerical i n c e n t i ves e x i s t . The f e d e r a l government should encourage farmers t o experiment w i t h such croppi n g a l t e r n a t i v e s , perhaps on s e t - a s i d e lands. Funding f o r such orphan products must be focused and a p p r o p r i a t e d a t meaningful l e v e l s . The advance o f molecular b i o l o g y w i 11 b r i n g a w i n d f a l l o f knowledge t o b i o l o g y . I t may a l s o b r i n g a new "smartness1' t o a g r i c u l t u r e - - a c l e a r e r understanding o f genes and gene expression, and thus a b e t t e r understanding o f t h e b i o l o g i c a l realm and how t o o p e r a t e farms more s k i l l f u l l y , and perhaps more s u s t a i n a b l y , i n t h e years ahead. Yet t h a t k i n d o f i n t e l l i g e n c e i s n o t p a r t o f t h e general a g r i c u l t u r a l l e x i c o n now, nor does i t appear t o be on t h e h o r i z o n given o u r o r i e n t a t i o n t o thoroughbred a g r i c u l t u r e . A t t h i s j u n c t u r e t h e w i s e s t course i s t o l o o k c a r e f u l l y a t a l l t h e a l t e r n a t i v e s and choices we now have b e f o r e us w i t h t h i s new " a g r i g e n e t i c " technology and c h a r t a course t o maximize economic and b i o l o g i c a l d i v e r s i t y i n t h e v e r y broade s t sense o f those terms. Footnotes 1. Lbvid Pimentel, ''W Genetic Engineer* for Biological Cbntmlk d d n g Eoalogical Risks, " m i u n on Engineered Grganisns in the mvirrrment, CYriLadelphia, l h n q l v a n i a , dme 10-13, 1985. 2. Willian L. Bzcxm, "Sbne Case~yatknson Changing '2lwIds in Agricultural P m d c t i c n 9/stens, " Agricultural R ? & Institute Qnfem~~ chay , Chase, U x y l m d , Febmary 21-23, 1984. Bmce Carlton, "Biological F'edicides: M e t y and 2 g e d € i c i t y ," EW Chemxp (Febmary 20, 1984): 39-40. S e M w t h AZexander, "Genetic Enginering: Emlogical C l x s q m ~ nes, " Issues in Sciaos and !&&nology (Spring 1985): 5768. Ihsenberger, "IWmtic R a a l e - M e Fails t o Captivate 3- mdhilU k&shingtcn M ,&re 13, 1985, p.A-7. 4. "Plant Grcntt~&gdatars:Lcw W i l e , High Hopes, r' Ckmical (at. 12, 1984):22-24. - 6. Tim Hammds, W b l i c Attitudes Z t x e r d Food S e t y , " 1984 &ISUI+ er Rends A s s e a & mnfep~nce,Fcvd M e t i n g Institute, Wash. D.C. , mrch 26,1984; and "Kmy M m khrried By Chanicals In Food, .%I Francisx, Chmzi&l, Eud 27, 1984. 7. QTfiae of !khndcgy AEsesrment, Aest U m q m a t Strategies in SS, D.C. : U.S. C ~ ~ ~ Z F1979). h o t e d i o n , (-on8 8. B i d . S e S.Z. Cbhen et al., ' W x n t i a l far Resticide Cbntaninatim of Csaund keter f m Agricultural h, " in and M s +o f Pesticide hestes, m i c a n awnical S x i e t y W v n S r i e s 259, ~~ W.,D.C.; R.F. E@alding et a l . , k s t i c i d e Mnitaring &utnal 14, no. 2 (1980):70-73; and Cass Pete-rstn, "EPA Tightens R?stridicns cn Widely Used Herbicide," kBshingtcn FM, hbwmber 21, 1984. Barry M i r , "rhircyal Chenical f o r ~ a r n ~ s t o ~ a ~ e ~ e w b Finds M l 5 t ~ &M a l t m y 17, 1984; and Cass F ~ t e r s ~ n"DA , Caner hisk in F m Spray, " k&shingtcn h s t , m y 20, 1984. P a l C. ''Gnetic FBtentials for Increasing field of A.T. Mlr G. Fhlt, and M.D. Lillyr I n t e r n a t i d '2lwIds and W s p f f t i v w in Biotezhrdcgy (Paris, France: GrganiZaticn for E ~ Y + anic m a t i o n and Lkwlopnent, 1982). 12. Willian H. El-'Gaughey, "InsPct &stance to the Biological Ihsscticide Bacillus t h u r i n g i d s , " S e n a e 229 (7-12-1985):193-4. l3. Etrbert , M n s a t n -y, Sterre JdLinek, khshingtcn, D.C., briefing held in o f f i e o f 1984. 24. M p h Ihtdy, "Bi~teohnalcgy:Stahrs~ Forecast, and IS-, I' W d Acadmy of Szkmxs, hbhhgtm, D.C. , H q 1984. 25. &&ua Iederberg, a t Brodcings Institution, kbah. D.C., 8- 1-15-85.
© Copyright 2025 Paperzz