Chitinous palynomorphs and palynodebris representing crustacean

Chitinous palynomorphs and palynodebris representing
crustacean exoskeleton remains from sediments
of the Banda Sea (Indonesia)
I . M . van Waveren
Waveren, I.M. van. Chitinous palynomorphs and palynodebris representing crustacean exoskeleton
remains from sediments of the Banda Sea (Indonesia). — Scripta Geol., 105: 1-25, 5 figs., 4 pis, Leiden,
August 1994.
I.M. van Waveren, Nationaal Natuurhistorisch Museum, Postbus 9517, 2300 R A Leiden, The Netherlands.
Key words: palynomorphs, copepods, Banda Sea, chitin.
Palynological residues from surface sediments in the Banda Sea (Indonesia) are characterised by the
presence of chitinous palynomorph types that can be correlated with exoskeletons of crustaceans,
notably calanoid copepods. A series of 27 palynomorph types are described and informally categorised. Also the quantitatively prominent transparent palynodebris and its diffuse degradation products
are derived from crustaceans. Selective preservation of the chitinous remains is considered to be related to the effects of high plankton production and high sedimentation rate.
Contents
Introduction
,
Material and methods
1
2
Material
2
S a m p l e p r o c e s s i n g a n d analysis
3
Descriptive terminology
3
P a l y n o m o r p h s o r i g i n a t i n g f r o m c o p e p o d exoskeletons
7
P a l y n o m o r p h s o r i g i n a t i n g f r o m crustacean exoskeletons
9
P a l y n o m o r p h s o r i g i n a t i n g f r o m a r t h r o p o d exoskeletons
10
P a l y n o d e b r i s o r i g i n a t i n g f r o m crustacean exoskeletons
12
Conclusions
14
Acknowledgements
14
References
15
Introduction
Terrigenous a n d p l a n k t o n i c organic matter i n p a l y n o l o g i c a l residues is c o m p o s e d
of a range of b i o m a c r o m o l e c u l e s of a different nature a n d a v a r i e d resistance
to
d e g r a d a t i o n . N o t a b l y i n v a s c u l a r plants, one m a y recognise b i o m a c r o m o l e c u l e s that
are p a r t i c u l a r l y resistant (lignins, tannins, s p o r o p o l l e n i n , cutans, suberans; Tegelaar
et a l . , 1989; Tegelaar, 1990). T h i s also applies to the algaeans, characteristic of v a r i o u s
algal categories. C o n v e r s e l y , it is generally recognised that p o l y s a c c h a r i d e s c a n be
r a p i d l y d e p o l y m e r i s e d a n d h y d r o l y s e d t h r o u g h e n z y m a t i c processes (Stout et a l . ,
1988,1989; M o e r s , 1989; M o e r s et a l . , 1989). Characteristic p o l y s a c c h a r i d e b i o m a c r o m o l e c u l e s , s u c h as cellulose, c h i t i n a n d v a r i o u s h e m i c e l l u l o s e s , are t h u s c o n s i d e r e d
2
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
to h a v e a l o w p r e s e r v a t i o n p o t e n t i a l (Tegelaar et a l , 1989; Tegelaar, 1990).
H o w e v e r , despite the relative l a b i l i t y of p o l y s a c c h a r i d e p l a n t a n d a n i m a l tissues,
p a r a d o x i c a l l y their s t r u c t u r a l l y p r e s e r v e d remains occur t h r o u g h o u t the P a l a e o z o i c
to Recent p a l y n o l o g i c a l record. S u c h records i n c l u d e w e l l - p r e s e r v e d , r i c h a n d d i v e r s e
associations of p r e s u m e d c h i t i n o u s p a l y n o m o r p h s of a r t h r o p o d , a n n e l i d , p r o t i s t
a n d f u n g a l o r i g i n (Traverse, 1988; v a n W a v e r e n & Visscher, i n press). T h e c h e m i c a l
b a c k g r o u n d for their selective p r e s e r v a t i o n d u r i n g diagenesis a n d t h e r m a l m a t u r a t i o n is u n k n o w n . A t least p a r t of the records suggest c h e m i c a l t r a n s f o r m a t i o n of c h i t i n i n t o m o r e resistant organic m a c r o m o l e c u l e s .
O n a g l o b a l basis, c h i t i n is a m o n g the most p r o m i n e n t p o l y s a c c h a r i d e s o c c u r r i n g
i n nature. A n n u a l p r o d u c t i o n of this nitrogenous p o l y s a c c h a r i d e has b e e n estimated
to c o r r e s p o n d to 40.
g organic carbon, a p p r o x i m a t e l y the same as c e l l u l o s e ( P o u licek, 1985). H i g h a n n u a l p r o d u c t i o n is n o t a b l y d u e to c h i t i n f o r m a t i o n b y terrestrial
a n d m a r i n e a r t h r o p o d s . Exoskeletons of arthropods are c o m p o s e d of a c o m p l e x of
c h i t i n (15-27%) a n d p r o t e i n (12-73%), w i t h the rest of the exoskeleton c o n s i s t i n g of
i n o r g a n i c a n d n o n - a m i n o c o n t a i n i n g organic c o m p o u n d s ( A u s t i n et a l . , 1981).
M i c r o s c o p i c remains of a r t h r o p o d exoskeletons m a y be r e g u l a r l y detected i n
p a l y n o l o g i c a l assemblages of N e o g e n e to (sub-)Recent age. R e m a i n s of insects are
w e l l - k n o w n f r o m terrestrial Q u a t e r n a r y deposits (e.g., v a n G e e l , 1978; M a t e u s , 1992).
O c c u r r e n c e s of a r t h r o p o d remains i n m a r i n e sediments, o n the other h a n d , h a v e not
yet b e e n c o m p r e h e n s i v e l y d o c u m e n t e d . T h e y are k n o w n , h o w e v e r , f r o m d e e p m a rine s e d i m e n t a r y settings i n the Pacific, A t l a n t i c a n d I n d i a n Oceans, w h e r e u n i d e n t i fied a p p e n d a g e s of crustaceans h a v e been i l l u s t r a t e d as p a r t of Recent, Q u a t e r n a r y
or P l i o c e n e p a l y n o m o r p h associations (e.g., B o u l o u a r d & D e l a u z e , 1966; C a r a t i n i et
al., 1975,1978; v a n der K a a r s , 1987).
A p a r t f r o m p a l y n o m o r p h s i d e n t i f i e d as c o p e p o d egg-envelopes (van W a v e r e n ,
1992,1994; v a n W a v e r e n & M a r c u s , 1993; v a n W a v e r e n & Visscher, i n press) of w h i c h
the c h e m i c a l c o m p o s i t i o n is s t i l l unclear, a m o r p h o l o g i c a l l y w i d e v a r i e t y of pres u m e d c h i t i n o u s fragments of crustacean exoskeletons has b e e n detected d u r i n g a
palynofacies analysis of box-core samples taken i n the B a n d a Sea, I n d o n e s i a ( v a n
W a v e r e n , 1989; v a n W a v e r e n & Visscher, i n press). A s a c o n t r i b u t i o n to the u n d e r s t a n d i n g of the fate of c h i t i n o u s a n i m a l tissues i n deep sea s e d i m e n t a r y e n v i r o n ments, the present p a p e r is a first attempt to describe a n d classify the crustacean exoskeleton c o m p o n e n t a m o n g b o t h p a l y n o m o r p h s a n d p a l y n o d e b r i s f r o m (sub-)Recent
m a r i n e sediments.
Material and methods
Material
S a m p l e s w e r e collected f r o m
T i m o r transects of the B a n d a Sea,
us-II e x p e d i t i o n i n 1984-1985 (van
& Visscher, i n press). T h e samples
the box-cores.
box-cores taken a l o n g the S e r a m , T a n i m b a r a n d
d u r i n g cruise G - 5 of the I n d o n e s i a n - D u t c h S n e l l i H i n t e et a l . , 1986; S i t u m o r a n g , 1992; v a n W a v e r e n
w e r e taken f r o m the top 7 c m of the s e d i m e n t s i n
van Waverqen. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
3
S a m p l e processing a n d analysis
T h e s a m p l e s w e r e d r i e d a n d d r y w e i g h t w a s m e a s u r e d (for each s a m p l e c. 5 g of
sediment). C a l c i u m carbonate w a s d i s s o l v e d w i t h h y d r o c h l o r i c a c i d ( H C l 30%). S i l i cates w e r e d i s s o l v e d w i t h h y d r o f l u o r i c a c i d ( H F 43%). T h e residue w a s s i e v e d o v e r a
10 u r n m e s h screen, m o u n t e d o n a cover glass u s i n g a w e t t i n g agent ( C e l l o b o n d ) ,
a n d d r i e d . E l v a c i t e w a s u s e d as a p e r m a n e n t m o u n t i n g m e d i u m . A n a l y s i s o f p e r m a nent slides i n c l u d e d the d e s c r i p t i o n a n d i n f o r m a l categorisation of m o r p h o l o g i c a l l y
characteristic exoskeleton fragments.
Identification w a s a c h i e v e d b y c o m p a r i s o n
w i t h the features of a c o p e p o d subjected to p a l y n o l o g i c a l s a m p l e p r e p a r a t i o n t e c h n i ques a n d b y c o m p a r i s o n w i t h literature illustrations (notably Sars, 1903-1918; Scott,
1909). A m o n g the m o r e c o m m o n l y o c c u r r i n g fragments, 27 p a l y n o m o r p h types a n d
one p a l y n o d e b r i s type w e r e d i s t i n g u i s h e d . T h e types w e r e d e s c r i b e d a n d i d e n t i f i e d
w i t h a v a r y i n g degree of p r e c i s i o n (copepod remains, crustacean remains, a r t h r o p o d
remains).
Descriptive terminology
T h e b o d y of a n a r t h r o p o d consists of m a n y segments (or somites), w h i c h m a y be
alike o r different a n d w h i c h constitute three p r i m a r y b o d y d i v i s i o n s (head, t h o r a x
a n d a b d o m e n ) . H e a d somites are a l w a y s fused together; i n m a n y a r t h r o p o d s other
a d d i t i o n a l somites m a y also be fused. E a c h somite of the s i m p l e r a r t h r o p o d s has one
or t w o p a i r s of j o i n t e d appendages. I n m o r e specialised a r t h r o p o d s m o s t or a l l of the
posterior a p p e n d a g e s are lost. T h e appendages s h o w a w i d e range of m o d i f i c a t i o n .
T h e y f u n c t i o n for l o c o m o t i o n , respiration, g r a s p i n g , m a s t i c a t i o n , o v i p o s i t i o n a n d as
sensory organs. I n t y p i c a l arthropods b o d y parts as w e l l as a p p e n d a g e s are encased
i n a j o i n t e d c h i t i n o u s exoskeleton.
Since exoskeleton remains i n p a l y n o l o g i c a l residues f r o m the B a n d a Sea s e d i ments are m o s t frequently d e r i v e d f r o m crustacean z o o p l a n k t o n , their d e s c r i p t i o n
w a s m a i n l y b a s e d o n the f o l l o w i n g c o n v e n t i o n a l t e r m i n o l o g y for c o p e p o d s ( B o r r a daile & Potts, 1961; Barnes, 1987; F i g . 1):
- a b d o m e n : part of the c o p e p o d b o d y c a u d a l of the g e n i t a l somite, i n c l u d i n g the
g e n i t a l somite;
- a n t e n n a : first a n d second a p p e n d a g e o n the h e a d of the c o p e p o d ;
- a p p e n d a g e : antennae, m a n d i b l e s , m a x i l l a e , m a x i l l i p e d s , r a m i , a n d s w i m m i n g feet
of the c o p e p o d ;
- a r t i c u l a t i o n : joint b e t w e e n the different segments of the c o p e p o d ;
- b a s i p o d i t e : segment of the s w i m m i n g foot o n w h i c h b o t h the e n d o p o d i t e a n d the
e x o p o d i t e are attached;
- biramous: forked;
- coxa: segment of the s w i m m i n g foot b e t w e e n the somite a n d the b a s i p o d i t e ;
- e n d o p o d i t e : i n t e r n a l b r a n c h of the fork of a b i r a m o u s appendage;
- e x o p o d i t e : external b r a n c h of the fork of a b i r a m o u s appendage;
- g n a t h o b a s i s : b a s a l lobe of a m a n d i b l e ;
- i m p l a n t a t i o n : joint o n the a p p e n d a g e w h e r e a h a i r or other process has b e e n attached;
4
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
- h e a d : c o n i c a l to r o u n d c u t i c u l a r exoskeleton segment, c a r r y i n g the eye(s), the m a n d i b l e , the m a x i l l a , a n d the antennae;
- i n t e r c o x a l plate: plate p o s i t i o n e d b e t w e e n the t w o coxa of s w i m m i n g feet;
- m a n d i b l e : t h i r d a p p e n d a g e o n the head;
- m a x i l l a : f o u r t h a p p e n d a g e o n the head;
- m a x i l l i p e d : first thoracic appendage;
- p r o t o p o d i t e : the c o x a a n d the b a s i p o d i t e of a s w i m m i n g foot;
- r a m u s : s i n g l e b r a n c h of the last b i r a m o u s somite of the a b d o m e n ;
- r o s t r u m : dorso-frontal p r o l o n g a t i o n of the head;
- s o m i t e : segment b e t w e e n t w o joints of the c y l i n d r i c a l cuticle e n c l o s i n g the c o p e p o d
body;
- sternite: v e n t r a l side of somite;
- s w i m m i n g foot: s e c o n d to s i x t h a p p e n d a g e of the thorax;
- t e l s o n : a b d o m i n a l somite c a r r y i n g the anus;
- tergite: d o r s a l side of the somite;
- thorax: p a r t of the c o p e p o d situated b e t w e e n the h e a d a n d the (first a b d o m i n a l )
s o m i t e c a r r y i n g the genital o p e r c u l u m ;
- u n i r a m o u s : not f o r k e d .
F o r the d e s c r i p t i o n of the s w i m m i n g feet of c o p e p o d s the f o l l o w i n g d e f i n i t i o n s
are u s e d (see F i g . 2):
- l a t e r a l s i d e : denticulate or c o n v e x side;
- m e d i a l s i d e : concave a n d / o r not o r n a m e n t e d side;
- p r o x i m a l a r t i c u l a t i o n : largest of the articulations;
- d i s t a l a r t i c u l a t i o n : smallest articulation;
- i m p l a n t a t i o n s : s m a l l e r t h a n the articulations, o n the m e d i a l a n d lateral edges of the
appendage;
- l e n g t h : d e f i n e d here as p a r a l l e l to the m e d i a l side;
- w i d t h : d e f i n e d here as the m a x i m u m w i d t h p e r p e n d i c u l a r to the l e n g t h .
D e n t i c u l a t e m a n d i b l e parts are described w i t h the d e s c r i p t i v e t e r m i n o l o g y d e v e l o p e d b y Jansonius & C r a i g (1971) for the m o r p h o l o g i c a l l y related a n n e l i d p a l y n o m o r p h s (scolecodonts; see F i g . 3):
- b i g h t : c o n c a v i t y of the outside face of a jaw, o p e n to the posterior side;
- dentary: series of denticles a l o n g the inner d o r s a l m a r g i n ; i n some forms the dentar y is edenticulate;
- d e p t h : largest d i m e n s i o n of the inner or outer face of a j a w p e r p e n d i c u l a r l y to the
d e n t a r y a n d i n the p l a n e g o i n g t h r o u g h the dentary, m e a s u r e d f r o m the base of
the d e n t a r y to the r a m a l extremity;
- f a l c a l arch: concave m a r g i n of the falx, m a y be denticulate or edenticulate;
- falx: s i c k l e - s h a p e d extension of the anterior p a r t of the jaw, often f o r m i n g a h o o k or
a fang;
- fenestra: i n d o r s a l v i e w the translucent part a p p r o x i m a t e l y c o r r e s p o n d i n g to the
myocoelic opening;
- l e n g t h : largest d i m e n s i o n of a j a w p a r a l l e l to the m e d i a n axis, b e t w e e n posteriorm o s t a n d anterior-most points.
- m y o c o e l e : space i n s i d e , a n d m o r e or less enclosed by, the jaw, u s u a l l y e x t e n d i n g to
the t i p of the denticles;
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
5
- m y o c o e l e o p e n i n g : o u t l i n e of the latero-ventral m a r g i n o f the j a w faces, e n c l o s i n g
the m y o c o e l e .
I n a scolecodont the anterior side is the side of the falx. T h e v e n t r a l s i d e is the
side o f the falcal a r c h a n d dentary.
Fig. 1. Copepod descriptive terminology.
1 - Diagrammatic ventral view of Pseudocalanus (after Barnes, 1987); 1: 1st antenna; 2nd antenna; 3:
mandible; 4: maxilla; 5: maxilliped; 6: 1st swimming foot; 7: 2nd swimming foot; 8: 3rd swiming foot;
9:4th swimming foot; 10: genital operculum; 11: 2nd abdominal somite; 12: 3rd abdominal somite; 13:
anal segment; 14: caudal ramus; 15: 2nd maxilla; 16: head with first somite fused; 17: 2nd thoracic
somite; 18: 3rd thoracic somite; 19:4th and 5th thoracic somites (fused); 20: genital segment (6th thoracic somite and 1st abdominal somite). Note that in Pseudocalanus the fifth pair of swimming feet is
missing.
2 - Organisation of a calanoid swimming foot of Candacida norvegica (redrawn from Sars, 1911). 1:
coxa; 2: basipodite; 3: protopodite; 4:1st segment of the exopodite; 5: 2nd segment of the exopodite; 6:
second-most distal segment of the exopodite; 7: most distal segment of the exopodite; 8: exopodite; 9:
processes; 10: brushy hairs; 11: endopodite.
3 - Intercoxal plate of a calanoid copepod of the Candaciidae (drawn after a sample made available by
M . Kouwelaar); 1: intercoxal plate; 2: coxa; 3: basipodite.
6
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
proximal articulation
distal end
distal articulation
Fig. 2. Copepod appendage descriptive terminology.
1 - First or second segment of the exopodite of a swimming foot.
2 - Second-most distal segment of the exopodite of a swimming foot; a-f: implantations.
3 - Most distal segment of the exopodite of a swimming foot.
external side
Fig. 3. Scolecodont descriptive terminology (after Jansonius & Craig, 1971).
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
7
P a l y n o m o r p h s originating from copepod exoskeletons
P a l y n o m o r p h T y p e 1 ( P M 1) (PL 2, f i g . 3)
L e n g t h - w i d t h ratio <1. T w o m a i n articulations; the u p p e r one is a p p r o x i m a t e l y as
w i d e as the l o w e r one. L a t e r a l side w i t h d e n t i c u l a t i o n . Single i m p l a n t a t i o n , h a l f the
size of the articulations, situated b e t w e e n the lateral denticulate o r n a m e n t a t i o n a n d
the l o w e r a r t i c u l a t i o n . Size v a r y i n g b e t w e e n 100 a n d 250 urn. C o l o u r g e n e r a l l y l i g h t
b r o w n , o c c a s i o n a l l y either d a r k to o p a q u e or transparent.
P M 1 represents the first or the second segment of the e x o p o d i t e of a s w i m m i n g
foot of a m e m b e r of the C a n d a c i i d a e .
P a l y n o m o r p h Type 2 ( P M 2) (PI. 2, f i g . 4)
L e n g t h - w i d t h ratio b e t w e e n 2 a n d 4. T w o m a i n articulations; the u p p e r one is
o n l y a little larger t h a n the l o w e r one. L a t e r a l side o r n a m e n t e d w i t h three different
scales of d e n t i c u l a t i o n , each separated b y a n i m p l a n t a t i o n . M e d i a l side w i t h o u t d e n ­
t i c u l a t i o n a n d w i t h five i m p l a n t a t i o n s . Size s t r o n g l y v a r y i n g b e t w e e n 120 a n d 420
urn. P i g m e n t a t i o n sometimes v e r y strong. Short hairs m a y occur o n the u p p e r sur­
face of the p a l y n o m o r p h . V e r y rare specimens occur w i t h o u t the lateral d e n t i c u l a ­
tion. These are less w e l l preserved as denticulated specimens; they are v e r y t h i n a n d
transparent.
A l t h o u g h some C a n d a c i i d a e d o not s h o w a lateral d e n t i c u l a t i o n at the s e c o n d m o s t d i s t a l segment of the e x o p o d i t e of the s w i m m i n g feet, it is a characteristic fea­
ture of the f a m i l y (pers. c o m m . J . C . v o n V a u p e l K l e i n ) . P M 2 is the second-most d i s t a l
segment of the e x o p o d i t e of s w i m m i n g feet of a m e m b e r of the C a n d a c i i d a e .
P a l y n o m o r p h T y p e 3 ( P M 3) (PI. 2, figs. 6,8-9)
L e n g t h - w i d t h ratio >5. S i n g l e s u p e r i o r articulation. N o i m p l a n t a t i o n s . D e n t i c u l a ­
t i o n often occurs o n the lateral side. T h e denticles decrease i n size distally. D e n t i c u l a ­
t i o n is s e l d o m seen o n the m e d i a l side. S o m e specimens assignable to this category
d o not s h o w a n y d e n t i c u l a t i o n at a l l . P a l y n o m o r p h s are bent, faintly s i n u s o i d a l or
straight; they are w i d e s t at the u p p e r half of the a p p e n d a g e . P i g m e n t a t i o n g e n e r a l l y
d a r k e r t h a n i n P M 1 a n d 2. Size v a r y i n g b e t w e e n 130 a n d 200 μ π ι .
A s d e n t i c u l a t i o n of the lateral side of the t e r m i n a l spine is a c o m m o n feature
a m o n g c o p e p o d s , P M 3 c a n o n l y be i d e n t i f i e d as the m o s t d i s t a l e x o p o d i t e of the
s w i m m i n g foot of a c a l a n o i d c o p e p o d .
P a l y n o m o r p h T y p e 4 ( P M 4) (PI. 2, fig. 7)
S i n g l e s u p e r i o r a r t i c u l a t i o n . P a l y n o m o r p h s are bent a n d h a v e n o d e n t i c u l a t i o n . A
faint l o n g i t u d i n a l l i n e a t i o n c a n be seen o n these p a l y n o m o r p h s .
P M 4 is i d e n t i f i e d as the d i s t a l segment of one of the fifth p a i r of s w i m m i n g feet
of several p o s s i b l e species of m a l e calanoids.
8
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
P a l y n o m o r p h T y p e 5 ( P M 5) (PL 2, f i g . 5)
P M 5 is s i m i l a r to P M 4. It c a n be differentiated, h o w e v e r , b y its s p h e r i c a l p r o x i m a l articulation.
Because of its s i m i l a r i t y to P M 4, P M 5 is also i d e n t i f i e d as the d i s t a l segment of
one of the fifth p a i r of s w i m m i n g feet of several possible species of m a l e c a l a n o i d s .
P a l y n o m o r p h T y p e 6 ( P M 6) (PL 2, figs. 4,6)
Shape a p p r o x i m a t e l y p e n t a g o n a l , elongated p e r p e n d i c u l a r l y to the b a s a l side.
T h e three l o w e r sides s l i g h t l y concave, the t w o u p p e r sides s l i g h t l y c o n v e x ; the top is
truncated. A n t e r i o r a n d posterior sides h a v e different structures. T h e anterior side
has four holes i n the u p p e r half of the p e n t a g o n , t w o are p e r p e n d i c u l a r to the p l a n e
of o b s e r v a t i o n a n d t w o are p a r a l l e l to it. These elongate holes are situated s y m m e t r i c a l l y a r o u n d the m i d d l e line, p e r p e n d i c u l a r to the base. S o m e o f the p a l y n o m o r p h s
of this t y p e c a n h a v e a h o l e i n the m i d d l e part of the l o w e r half, some h a v e a m e d i a l
constriction. These plates are thicker t h a n m o s t of the other crustacean p a l y n o m o r p h s . Size v a r y i n g b e t w e e n 50 a n d 100 urn. C o l o u r g e n e r a l l y l i g h t g r e y i s h b r o w n .
P M 6 is i d e n t i f i e d as the intercoxal plate b e t w e e n the t w o coxa of a c o p e p o d
s w i m m i n g - f o o t . T h e t y p e w a s recognised i n a dissected s p e c i m e n b e l o n g i n g to the
genus Candacia.
P a l y n o m o r p h T y p e 7 ( P M 7) (PL 4, f i g . 3)
T u b u l a r segment w i t h a n o r n a m e n t a t i o n of densely spaced p i g m e n t e d hairs. T h e
h a i r s l o o k l i k e a short m a n e . T h e t u b u l a r segment is g r e y i s h b r o w n , the h a i r s are
darker. L e n g t h 180 urn.
P M 7 is a c o p e p o d fragment, representing a segment of the antenna of a m a l e
Candacia at the l o c a t i o n w e r e the m a n e disappears.
P a l y n o m o r p h T y p e 8 ( P M 8) (PL 3, fig. 8)
E l o n g a t e d transparent d o u b l e spine. A t its base this p a l y n o m o r p h has a transparent s h i e l d f r o m w h i c h a d o u b l e spine emerges, c. 8 urn w i d e a n d 150 u r n l o n g .
T h e s h i e l d is larger at the base t h a n at the p o i n t w h e r e the spines are attached.
Spines c o r r e s p o n d i n g to P M 8 are identified as the r o s t r u m of a c a l a n o i d c o p e p o d .
P a l y n o m o r p h T y p e 9 ( P M 9) (PL 4, fig. 1)
Series of c o n v e x denticles o r n a m e n t e d b y a striation c o n v e r g i n g to the t i p . A base
l i n e is present, concave at the t o o t h base. C o l o u r transparent. Size c. 120 urn.
P M 9 is i d e n t i f i e d as the gnathobasis of the m a n d i b l e of a c o p e p o d .
P a l y n o m o r p h T y p e 10 ( P M 10) (PL 4, f i g . 5)
D e p t h to l e n g t h ratio c. 1. F a l c a l a r c h v e r y r e d u c e d . D e n t a r y n e a r l y edenticulate.
A large fenestra a n d a s m a l l e r one are present. A s m a l l b i g h t can be o b s e r v e d .
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
9
L e n g t h 95 urn. C o l o u r l i g h t to d a r k b r o w n .
P M 10 i n c l u d e s t e r m i n a l fragments
calanoid copepods.
of the gnathobasis
of the m a n d i b l e s of
P a l y n o m o r p h T y p e 11 ( P M 11) (PL 4, fig. 6)
Shape t r i a n g u l a r w i t h a r i g h t angle at the posterior v e n t r a l side. D e p t h a n d
l e n g t h a p p r o x i m a t e l y e q u a l . T h e falx is a d o u b l e h o o k . T h e falcal arch is s m a l l . N o
d e n t a r y c a n be seen. A fenestra c a n be o b s e r v e d f r o m the s e c o n d h o o k to the m y o coele o p e n i n g . N o b i g h t can be seen. L e n g t h 45 urn. C o l o u r l i g h t to d a r k b r o w n .
P M 11 i n c l u d e s t e r m i n a l fragments of the gnathobasis of the m a n d i b l e s of the
calanoid copepods.
P a l y n o m o r p h T y p e 12 ( P M 12) (PL 4, f i g . 8)
L e n g t h to d e p t h ratio >1. F a l x f o r m e d b y a s l i g h t l y c u r v e d h o o k . T h e falcal a r c h
s h o w s a faint dentation. A dentary exists b u t w i t h o u t denticles. T h e fenestra is red u c e d . T h e b i g h t is large ( 1 / 3 of the length) a n d is located o n the v e n t r a l p o s t e r i o r
side. L e n g t h 60 urn. C o l o u r opaque to b r o w n .
P M 12 i n c l u d e s t e r m i n a l fragments of the gnathobasis of the m a n d i b l e s of the
calanoid copepods.
P a l y n o m o r p h Type 13 ( P M 13) (PL 3, fig. 1)
P a l y n o m o r p h c o m p o s e d of l i g h t b r o w n tissue. T w o branches bifurcate a p p r o x i m a t e l y h a l f w a y the tissue. T h e branches s h o w a v a r i a b l e pattern of b i f u r c a t i n g s m a l ler branches. A ' h e a d ' is v i s i b l e w i t h t w o less i r r e g u l a r branches. Size v a r y i n g
b e t w e e n 100 to 200 urn.
P M 13 is the sternite of a copepod, caudal of the m o u t h , at the level of the mandibles.
P a l y n o m o r p h T y p e 14 ( P M 14) (PL 3, figs. 2-3)
T u b u l a r segment. L e n g t h / w i d t h ratio variable; l e n g t h v a r y i n g b e t w e e n 80 a n d
100 urn, w i d t h b e t w e e n 40 a n d 30 urn. C o l o u r transparent to l i g h t b r o w n .
These t u b u l a r segments c o u l d represent c o p e p o d tail segments.
P a l y n o m o r p h s o r i g i n a t i n g f r o m crustacean e x o s k e l e t o n s
P a l y n o m o r p h T y p e 15 ( P M 15) (PL 3, figs. 9-11)
E l o n g a t e d a n d c u r v e d p a l y n o m o r p h . Shape c a n be best described as the shape of
a n elephant tusk. C a p i l l a r y c h a n n e l present i n the c o n v e x side of the fragments.
L e n g t h 200-300 urn, w i d t h 4 urn at one e n d to 20 u r n at the other e n d .
These e l o n g a t e d c u r v e d p a l y n o m o r p h s c o u l d not be i d e n t i f i e d w i t h certainty
t h r o u g h direct c o m p a r i s o n . H o w e v e r , a crustacean (probably c o p e p o d ) affinity is
p l a u s i b l e , since their percentages i n sediment samples s h o w a c o r r e l a t i o n coefficient
of 0.9 w i t h the percentage of the s u m of the c o p e p o d e x o p o d i t e segments. P M 15 is
10
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
also k n o w n f r o m sediments of the Sea of O m a n ( C a r a t i n i et a l . , 1978, p l . 3, fig. 7).
P a l y n o m o r p h T y p e 16 ( P M 16) (PI. 4, fig. 2)
Shape s l i g h t l y flattened triangular. The external side is the triangle-base. T h e p o s ­
terior side is one side of the triangle. T h e other side is denticulate. N o falx or falcal
arch c a n be seen here. T h e first denticle is u n d e r d e v e l o p e d , w h i l e the s e c o n d is o v e r ­
d e v e l o p e d . T h e m y o c o e l e o p e n i n g a n d the posterior side c o i n c i d e . H e r e , the o u t l i n e
of the p a l y n o m o r p h n e a r l y coincides w i t h the m y o c o e l e , o n l y the denticle-ends are
not h o l l o w . A s m a l l b i g h t is present o n the d o r s a l side of the p o s t e r i o r m a r g i n .
L e n g t h 60 urn, d e p t h s l i g h t l y smaller. C o l o u r transparent.
P M 16 c o u l d represent the resistant part of a n a m p h i p o d m a n d i b l e (see V o n k ,
1988, fig. 28).
P a l y n o m o r p h s originating from arthropod exoskeletons
P a l y n o m o r p h T y p e 17 ( P M 17) (PI. 4, fig. 7; F i g . 4:1)
Fossa a n d posterior side c o i n c i d e . Sickle-shaped, w i t h a s l i g h t l y f l a r i n g h a n d l e .
M e a n size 60 urn. C o l o u r opaque.
P M 17 is c o n s i d e r e d to represent m a n d i b l e remains of a r t h r o p o d s (? crustaceans).
P a l y n o m o r p h T y p e 18 ( P M 18) (Fig. 4: 2)
Fossa a n d posterior side c o i n c i d e . Feather-shaped, s l i g h t l y c u r v e d at the t i p .
There is a s m a l l c o n s t r i c t i o n b e t w e e n the h a n d l e a n d the feather. M e a n size 60 urn.
C o l o u r opaque.
P M 18 is c o n s i d e r e d to represent m a n d i b l e remains of a r t h r o p o d s (? crustaceans).
P a l y n o m o r p h T y p e 19 ( P M 19) (Fig. 4: 3)
S i m i l a r shape as P M 18, b u t w i t h a denticle of 10 urn rooted just above the c o n ­
striction, p o s i t i o n e d o n the side t o w a r d s w h i c h the feather is c u r v e d . M e a n size 60
urn. C o l o u r opaque.
P M 19 is c o n s i d e r e d to represent m a n d i b l e remains of a r t h r o p o d s (? crustaceans).
P a l y n o m o r p h T y p e 20 ( P M 20) (Fig. 4: 4)
S i m i l a r shape as T y p e 19, b u t the denticle is r e d u c e d to 4 μ ι η a n d p o s i t i o n e d at
1/3 of the distance b e t w e e n the constriction a n d the tip of the p a l y n o m o r p h . T h e t i p
of the p a l y n o m o r p h a n d the denticle diverge. T h e h a n d l e is flaring. M e a n size 60 urn.
C o l o u r opaque.
P M 20 is c o n s i d e r e d to represent m a n d i b l e remains of a r t h r o p o d s (? crustaceans).
P a l y n o m o r p h T y p e 21 ( P M 21) (Fig. 4: 5)
Fossa a n d p o s t e r i o r side c o i n c i d e . N o constriction. R e d u c e d denticle, p o s i t i o n e d
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol, 105 (1994)
11
Fig. 4. Palynomorph types representing opaque arthropod mandible remains. 1: P M 17; 2: P M 18; 3:
P M 19; 4: P M 20; 5: P M 21; 6: P M 22; 7: P M 23; 8: P M 24; 9: P M 25.
at 1/3 of the w h o l e p a l y n o m o r p h . Fossa a n d posterior side c o i n c i d e . Size v a r y i n g
b e t w e e n 40 a n d 80 urn. C o l o u r opaque.
P M 21 is c o n s i d e r e d to represent m a n d i b l e r e m a i n s of a r t h r o p o d s (? crustaceans).
P a l y n o m o r p h Type 22 ( P M 22) (Fig. 4: 6)
O v e r a l l shape resembles that of P M 21, b u t the p a l y n o m o r p h is r e l a t i v e l y w i d e
a n d the denticle is m u c h m o r e p r o n o u n c e d a n d p o s i t i o n e d next to the t i p of the p a l y ­
n o m o r p h . S i z e v a r y i n g b e t w e e n 40 a n d 80 urn. C o l o u r o p a q u e .
P M 22 is c o n s i d e r e d to represent m a n d i b l e r e m a i n s of a r t h r o p o d s (? crustaceans).
P a l y n o m o r p h Type 23 ( P M 23) (Fig. 4: 7)
O v e r a l l shape resembles that of P M 18, b u t the tip is finely denticulate a n d the
h a n d l e is s t r o n g l y flaring. M e a n size 60 urn. C o l o u r o p a q u e .
P M 23 is c o n s i d e r e d to represent m a n d i b l e remains of a r t h r o p o d s (? crustaceans).
P a l y n o m o r p h Type 24 ( P M 24) (Fig. 4: 8)
Fossa a n d p o s t e r i o r side coincide. D e n t i c u l a t e falx. D e n t i c l e s are of i r r e g u l a r
l e n g t h (1 to 4 μ π \ ) . T h e d e n t a r y is edenticulate. Size v a r y i n g b e t w e e n 40 a n d 80 u r n .
Colour opaque.
P M 24 is c o n s i d e r e d to represent m a n d i b l e remains of a r t h r o p o d s (? crustaceans).
12
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
P a l y n o m o r p h T y p e 25 ( P M 25) (Fig. 4: 9)
F o s s a a n d p o s t e r i o r s i d e c o i n c i d e . A c u t e denticles decreasing i n size f r o m the falx
(6 urn) to the dentary. Size v a r y i n g b e t w e e n 40 a n d 80 urn. C o l o u r opaque.
A p a l y n o m o r p h r e s e m b l i n g P M 25, b u t w i t h o n l y three denticles i n c l u d i n g the
falx w a s i d e n t i f i e d b y v a n G e e l et a l . (1989) as the m a n d i b l e s of species of the insect
genus Sialis (alder fly). S i m i l a r l y it is here suggested that P M 25 m i g h t represent the
r e m a i n s of a n insect m a n d i b l e . Yet, a crustacean affinity cannot be c o m p l e t e l y r u l e d
out.
P a l y n o m o r p h T y p e 26 ( P M 26) (Plate 4: 4)
E l o n g a t e d fragments w i t h acute d e n t i c u l a t i o n . T h e denticles are l o o s e l y spaced.
P M 26 represent u n i d e n t i f i e d a r t h r o p o d remains.
P a l y n o m o r p h T y p e 27 ( P M 27) (PL 3, fig. 7)
E l o n g a t e d bifurcated fragments. P M 27 represent u n i d e n t i f i e d a r t h r o p o d remains.
P a l y n o d e b r i s o r i g i n a t i n g f r o m crustacean e x o s k e l e t o n s
P a l y n o d e b r i s T y p e 1 ( P D 1) (PL 1, figs. 3-7; F i g . 5:1-8)
O r g a n i c d e b r i s c o n s i s t i n g of fragmented transparent tissue of v a r y i n g s h a p e a n d
size. Tissue structureless. L a r g e r fragments (60 to 100 urn) h a v e the shape of a n e l o n gated h e x a g o n , of w h i c h one s i d e can be shorter t h a n the other; e l o n g a t e d p e n t a g o n a l shapes w e r e also f o u n d . L a r g e r fragments often f o l d e d a l o n g the l o n g e r axis; this
axis c a n be bent. T h e f o l d e d tissues are sometimes f o u n d connected i n r o w s of t w o or
three elements. O f t e n fragments c a n be f o u n d w i t h grey to o p a q u e i n c l u s i o n s ; s u c h
fragments s h o w also e v i d e n c e of local t h i n n i n g o r d i s i n t e g r a t i o n of the tissue.
Identification of P D 1 i n terms of a crustacean affinity has been e x p e r i m e n t a l l y
s u p p o r t e d . A c o p e p o d w a s subjected to the a c i d treatment a p p l i e d i n s a m p l e p r e p a r a t i o n for p a l y n o l o g i c a l analysis. T h e exoskeleton of this c o p e p o d a p p e a r e d to be
a c i d resistant. A f t e r a c i d treatment, p a r t i c u l a r l y the d o r s a l somites still s h o w e d a
clear d e l i n e a t i o n . T h e remains are frequently constituted of e l o n g a t e d transparent
tissues, f o l d e d a l o n g the l o n g e r axis. T h u s there is a direct c o r r e l a t i o n b e t w e e n at
least the larger fraction of P D 1 a n d the d o r s a l somites of crustacean exoskeletons.
Since the s m a l l e r fraction of the particles d i s p l a y s i d e n t i c a l o p t i c a l properties, the
majority of transparent p a l y n o d e b r i s m a y be c o n s i d e r e d to h a v e a crustacean (possibly even copepod) origin.
Discussion
T h e d e s c r i p t i o n of organic remains of c h i t i n o u s crustacean exoskeletons f r o m
m a r i n e deposits h a v e attracted little attention. Yet, the regular occurrence of p a l y n o m o r p h s representing r e m a i n s of crustacean exoskeletons h a v e earlier b e e n detected
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
13
Fig. 5. Shape variation within PD 1.1: hexagonal; 2: hexagonal with one shorter side; 3: pentagonal; 4:
hexagonal, folded; 5: hexagonal with a shorter side, folded; 6: pentagonal, folded; 7: two attached dorsal somites; 8: three attached dorsal somites.
i n N e o g e n e to Recent p a l y n o l o g i c a l assemblages f r o m a v a r i e t y of s e d i m e n t a r y settings, r a n g i n g f r o m coastal-brackish (Mateus, 1992) to deep-sea ( B o u l o u a r d & D e l a u ze, 1966; C a r a t i n i et a l . , 1975, 1978; v a n der K a a r s , 1987) e n v i r o n m e n t s . T h e large
n u m b e r of d i s t i n c t i v e p a l y n o m o r p h types f o u n d i n the B a n d a Sea e m p h a s i s e s the
v a r i e t y of e x o s k e l e t o n remains that m a y contribute to the c o m p o s i t i o n of p a l y n o m o r p h associations i n y o u n g deep-sea sediments.
M o r e i m p o r t a n t l y , the present p a p e r demonstrates that also the p a l y n o d e b r i s
c o m p o n e n t of p a l y n o l o g i c a l residues from y o u n g sediments m a y p a r t l y originate
from crustacean exoskeletons. A n assessment of the o v e r a l l p a l y n o d e b r i s c o m p o s i t i o n
i n the B a n d a Sea ( v a n W a v e r e n & Visscher, i n press)) suggests that i n a d d i t i o n to
about 72% p a l y n o d e b r i s of terrigenous o r i g i n , about 28% of the debris c o r r e s p o n d s to
P D 1. A l s o f r o m a quantitative p o i n t of v i e w , therefore, the p o s s i b i l i t y of the presence
of a significant crustacean-derived c o m p o n e n t s h o u l d be t a k e n into c o n s i d e r a t i o n
w h e n a t t e m p t i n g to identify the o r i g i n of organic c a r b o n i n y o u n g m a r i n e sediments.
14
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
T h e p o s s i b i l i t y of a quantitative p r o m i n e n c e of exoskeleton m a t e r i a l is further
s u p p o r t e d b y the presence of d e g r a d a t i o n p r o d u c t s of P D 1. A p a r t f r o m p a l y n o d e b r i s a n d p a l y n o m o r p h s , also a m o r p h o u s organic m a t e r i a l represents a n i m p o r t a n t
constituent of the organic matter associations i n the B a n d a Sea. B r o w n or
g r e y i s h / t r a n s p a r e n t diffuse aggregates frequently d o m i n a t e the p a l y n o l o g i c a l residues. A l s o the organic fraction <10 urn, s i e v e d a w a y d u r i n g s a m p l e p r o c e s s i n g ,
m a i n l y consists of a m o r p h o u s m a t e r i a l . N o t a b l y i n the T i m o r transect diffuse aggregates are p r e d o m i n a n t l y of the g r e y i s h / t r a n s p a r e n t type. These aggregates s h o w a n
o p t i c a l affinity to d e g r a d e d g r e y i s h / t r a n s p a r e n t particles that m a y still be categor i s e d as P D 1.
A l t h o u g h the p a l y n o d e b r i s a n d m a n y of the p a l y n o m o r p h types c o u l d n o t yet be
i d e n t i f i e d b e l o w the l e v e l of crustaceans, the present author believes that b y far the
greatest p a r t of the crustacean exoskeleton remains originate f r o m p l a n k t o n i c copep o d s . I n the B a n d a Sea a n d adjacent seas i n the I n d o - M a l a y a n / A u s t r a l i a n r e g i o n ,
c o p e p o d c o m m u n i t i e s largely d o m i n a t e the z o o p l a n k t o n b i o m a s s (Baars et a l . , 1990;
A r i n a r d i et a l . , 1990; O t h m a n et a l . , 1990). Species d i v e r s i t y is p r i n c i p a l l y d e t e r m i n e d
b y representatives of the suborder C a l a n o i d a . A n u m b e r of the p a l y n o m o r p h types
encountered c a n be correlated w i t h exoskeletons of c a l a n o i d species, s p e c i f i c a l l y
w i t h representatives of the f a m i l y C a n d a c i i d a e .
I n o r d e r to e x p l a i n the p r e s e r v a t i o n potential of a v a r i e t y of a n i m a l a n d f u n g a l
p a l y n o m o r p h s , c l a i m s w i t h respect to their c h i t i n o u s nature (Traverse, 1989) n e e d to
be v e r i f i e d b y t h o r o u g h i n v e s t i g a t i o n of b o t h fossil a n d m o d e r n m a t e r i a l . H o w e v e r ,
a m o n g s u c h p a l y n o m o r p h s , remains of a r t h r o p o d skeletons are l i k e l y to be p a r t i a l l y
c o m p o s e d of c h i t i n . I n general, the c h i t i n content of m o d e r n deep-sea sediments is
reported to be v e r y l o w ( P o u l i c e k et a l . , 1986). R a p i d d e c o m p o s i t i o n of c h i t i n is notab l y d u e to the a c t i v i t y of (aerobic) chitinoclastic bacteria ( Z o B e l l & R i t t e n b e r g , 1938;
C a m p b e l l & W i l l i a m s , 1951; S e k i & Taga, 1963; S e k i , 1966). A l t h o u g h rates of bacter i a l d e c o m p o s i t i o n m a y d r a s t i c a l l y decline w i t h decreasing w a t e r temperature (Seki,
1966), chitinoclastic bacteria r e m a i n active u n d e r deep-sea c o n d i t i o n s ( K i m & Z o B e l l ,
1972). O c c u r r e n c e s of w e l l - p r e s e r v e d c h i t i n o u s p a l y n o m o r p h s i n sediments of the
B a n d a Sea, therefore, needs to be ascribed to external p h y s i c a l a n d c h e m i c a l factors
that m a y enhance c h i t i n preservability.
It has b e e n d e m o n s t r a t e d that the b u r i a l rate a n d the degree of organic matter
p r e s e r v a t i o n i n m a r i n e sediments are p o s i t i v e l y correlated w i t h s e d i m e n t a t i o n rate
(Berner, 1989; Betts & H o l l a n d , 1991). I n accordance w i t h the results of a c o m p r e h e n sive palynofacies analysis (see v a n W a v e r e n & Visscher, i n press), it is suggested that
mass-occurrence of crustacean exoskeleton remains i n sediments f r o m the B a n d a Sea
is related to the c o m b i n e d effects of (1) h i g h p l a n k t o n p r o d u c t i v i t y caused b y seasonal u p w e l l i n g (Schalk, 1987; G i e s k e s et a l . , 1988; Baars et a l . , 1990) a n d (2) h i g h s e d i m e n t a t i o n rate (Ganssen et al., 1989; S i t u m o r a n g , 1992).
Conclusions
E n v i r o n m e n t a l conditions that are c o n d u c i v e to the preservation remains of c h i t i n ous crustacean skeletons i n y o u n g sediments p r e v a i l i n the B a n d a Sea. I n p a l y n o l o g i c a l residues these remains i n c l u d e a v a r i e t y of p a l y n o m o r p h types, as w e l l as
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
15
q u a n t i t a t i v e l y p r o m i n e n t t r a n s p a r e n t p a l y n o d e b r i s a n d its diffuse d e g r a d a t i o n p r o ­
d u c t s . Selective p r e s e r v a t i o n of the c h i t i n o u s r e m a i n s is c o n s i d e r e d to b e r e l a t e d to
the effects of h i g h p l a n k t o n p r o d u c t i o n a n d h i g h s e d i m e n t a t i o n ra te.
Acknowledgements
R e s e a r c h ha s b e e n c a r r i e d out a s p a r t of the Snellius­II e x p e d i t i o n , o r g a n i s e d b y
the I n d o n e s i a n Institute of Science (LIPI) a n d the N e t h e r l a n d s C o u n c i l of O c e a n i c
R e s e a r c h ( N R Z ) . M u c h g r a t i t u d e is d u e to J.E. v an H i n t e a n d colla bora tors for m a k i n g
a v a i l a b l e b o x ­ c o r e s a m p l e s f r o m the B a n d a Sea . I gra tefully a c k n o w l e d g e the h e l p of
J . H . Stock, J . C . v o n V a u p e l K l e i n , R . V o n k a n d M . K o u w e l aar w i t h respect to the i d e n ­
tification of crusta cea n r e m a i n s . V a l u a b l e c o m m e n t s w e r e g i v e n b y A . J . T . R o m e i n a n d
H . Visscher. T h e i n v e s t i g a t i o n s w e r e s u p p o r t e d b y the N e t h e r l a n d s F o u n d a t i o n
the A d v a n c e m e n t
for
of T r o p i c a l Resea rch ( W O T R O ) , listed u n d e r n u m b e r W­57­258.
P u b l i c a t i o n of the N e t h e r l a n d s Resea rch S c h o o l of S e d i m e n t a r y G e o l o g y .
References
Arinardi, O.H., M . A . Baars, & Oosterhuis, S.S., 1990. Grazing in tropical copepods, measured by gut
fluorescence, in relation to seasonal upwelling in the Banda Sea (Indonesia). — Netherl. J. Sea
Res., 25, 4: 545­560.
Austin, P.R., C.J. Brine, J.E. Castle & J.P. Zikakis, 1981. Chitin: new facets of research. — Science, 212:
749­753.
Baars, M . A . , A.B. Sutumo, S.S. Oosterhuis & O.H. Arinardi, 1990. Zooplankton abundance in the eas­
tern Banda Sea and northern Arafura Sea during and after upwelling season, August 1984 and
February 1985. — Netherl. J. Sea Res., 25,4: 527­543.
Barnes, R.D., 1987. Invertebrate zoology (5th edition). — Sauder College Publish., Philadelphia: 1­893.
Berner, R.A., 1989. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen
over Phanerozoic time. — Palaeogeogr., Palaeoclimatol., Palaeoecol. (Global Planet. Change
Sect.), 75: 97­122.
Betts, J.N., & H.D. Holland, 1991. The oxygen content of ocean bottom waters, the burial efficiency of
organic carbon, and the regulation of atmospheric oxygen. — Palaeogeogr., Palaeoclimatol., Pala­
eoecol. (Global. Planet. Change Sect.), 97: 5­18.
Borradaile, L.A., & F.A. Potts, 1961. The Invertebrata. — Univ. Press, Cambridge: 1­820.
Boulouard, C , & H . Delauze, 1966. Analyse palynoplanctologique de sédiments prélevés par le
bathyscape 'Archimède' dans la Fosse du Japon. — Marine Geol., 4: 461­466.
Campbell, L .L ., & O.B. Williams, 1951. A study of chitin­decomposing micro­organisms of marine ori­
gin. — J . Gen. Microbiol., 5: 894­905.
Caratini, C , J. Bellet, & C. Tissot, 1975. Étude microscopique de la matière organique: palynologie et
palynofaciès. In: Géochimie Organique des Sédiments Marins Profonds, Orgon II, Atlantique
Nord­Est Brésil. — C.N.R.S., Paris: 157­203.
Caratini, C , J. Bellet, & C. Tissot, 1978. Étude microscopique de la matière organique: palynologie et
palynofaciès. In: Géochimie Organique des Sédiments Marins Profonds, Orgon IV, Golf d'Aden,
Mer d'Oman. — C.N.R.S., Paris: 265­307.
Ganssen, G., S.R. Troelstra, Β. Faber, W.A. van der Kaars, & M . Situmorang, 1989. L ate Quaternary
palaeo­oceanography of the Banda Sea, eastern Indonesian piston cores (Snellius­II Expedition,
cruise G5). — Netherl. J. Sea Res., 24,4: 491­494.
Geel, Β. van, 1978. A palaeoecological study of Holocene peat bog sections in Germany and The
Netherlands, based on the analysis of pollen, spores and macro­ and microscopic remains of
fungi, algae, cormophytes and animals. — Rev. Palaeobot. Palynol., 25:1­120.
16
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
Gieskes, W.W.C., G.W. Kraay, A . Nontji, D. Setiapermana, & A.B. Sutumo, 1988. Monsoonal alterna­
tion of a mixed and a layered structure in the phytoplankton of the euphotic zone of the Banda
Sea (Indonesia); a mathematical analysis of algal pigment fingerprints. — Netherl. J. Sea Res., 22,
2:123­137.
Hinte, J.E. van, & Shipboard Party, 1986. Theme I, Geology and Geophysics of the Banda Arc and
adjacent Areas. The Snellius­II Expedition Report. — R. Netherl. Acad. Arts Sc.­Indon. Inst. Sc.: 1­79.
Jansonius, J., & J.H. Craig, 1971. Scolecodonts: 1. Descriptive terminology and revision of systematic
nomenclature; 2. L ectotypes, new names for homonyms, index of species. — Bull. Can. Petrol.
Geol., 19,1: 251­302.
Kaars, W.A. van der, 1987. Neogene palynology of Deap Sea Drilling Project site 603 on the lower con­
tinental rise, northwestern Atlantic. — Init. Repts. DSDP, 92: 783­788.
Kim, J., & C E . ZoBell, 1972. Agarase, amylase, cellulase and chitinase activity at deap­sea pressure. —
J. Oceanogr. Soc. Japan., 28:131­141.
Mateus, J.E., 1992. Holocene and present­day ecosystems of the Carvalhal Region, Southwest Portu­
gal. — Doctor's Thesis, Univ. Utrecht: 1­184.
Moers, M.E.C., 1989. Occurrence and fate of carbohydrates in Recent and ancient sediments from dif­
ferent environments of deposition. — Doctor's Thesis, Univ. Technology, Delft: 1­195.
Moers, M.E.C., J.J. Boon, J.W. de L eeuw, M . Baas, & P.A. Schenck, 1989. carbohydrate speciation and
Py­MS mapping of peat samples from a subtropical open marsh environment. — Geochim. Cos­
mochim. Acta, 53: 2011­2021.
Othman, B.H.R., J.G. Greenwood, & P.C. Rothlisberg, 1990. The copepod fauna of the Gulf of Carpen­
taria, and its Indo­West Pacific affinities. — Netherl. J. Sea Res., 25,4: 561­572.
Poulicek, M . , 1985. Importance of chitin in the biogeochemical cycling of heavy metals in oceanic
environment. — SCOPE Belgium, Proc. 'Metal Cycling in the Environment': 153­165.
Poulicek, M . , R. Machiroux, & C. Toussaint, 1986. Chitin diagenesis in deep­water sediments. In: R.
Muzzarelli, C. Jeuniaux & G.W. Gooday (eds). Chitin in nature and technology. — Plenum Press,
New York: 523­530.
Sars, G.O., 1903­1918. A n account of the Crustacea of Norway, 5­6. — Bergen Museum, Bergen: 449
pp., 230 pis, suppl. pis 1­45 (5); 225 pp., 118 pis.
Schalk, P.H., 1987. Monsoon related changes in zooplankton biomass in the eastern Banda Sea and
Aru Basin. — Biol. Oceanography, 5:1­12.
Scott, Α., 1909. The Copepoda from the Siboga expedition, 1. Free­swimming, littoral, and semi­para­
sitic Copepoda. — Siboga Expedition Monogr., 29a: 1­323.
Seki, H . , 1966. Microbiological studies on the decomposition of chitin in marine environment. X.
Decomposition of chitin in marine sediments. — J. Oceanogr. Soc. Japan, 21: 265­269.
Seki, H . , & Taga, 1963. Microbiological studies on the decomposition of chitin in marine environment,
3. Aerobic decomposition of chitin by the isolated chitinoclastic bacteria. — J. Oceanogr. Soc.
Japan, 19: 35­38.
Situmorang, M . , 1992. Sedimentology and marine geology of the Banda Arc, Eastern Indonesia. —
Geol. Ultraiectina, 84:1­191 (Doctor's Thesis, Univ. Utrecht).
Stout, S.A., J.J. Boon, & W. Spackman, 1988. Molecular aspects of the peatification and early coalifica­
tion of angiosperm and gymnosperm woods. — Geochim. Cosmochim. Acta, 52: 405­414.
Stout, S.A., W. Spackman, J.J. Boon, P.G. Kistemaker, & D.F. Bensley, 1989. Correlations between the
microscopic and chemical changes in wood during peatification and early coalification: a canoni­
cal variant study. — Int. J. Coal Geol., 13: 41­64.
Tegelaar, E.W., 1990. Resistant biomacromolecules in morphologically characterized constituents of
kerogen: a key to the relationship between biomass and fossil fuel. — Doctor's Thesis, Univ.
Utrecht: 1­191.
Tegelaar, E.W., J.W. de Leeuw, S. Derenne, & C. L argeau, 1989. A reappraisal of kerogen formation. —
Geochim. Cosmochim. Acta, 53: 3103­3106.
Traverse, Α., 1988. Paleopalynology. — Unwin Hyman, Boston, Mass.: 1­600.
Vonk R., 1988. Amsterdam expeditions to the West Indian Islands, Report 55. Psammonelita uncinata n.
sp. (Crustacea, Amphipoda, Melitidae) from infralittoral sand interstices of Curaçao. — Stygolo­
gia, 4­2:166­176.
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
17
Waveren, I.M. van, 1989. Palynofaciès analysis of surface sediments from the northeastern Banda Sea
(Indonesia). —- Netherl. J. Sea Res., 24: 501-509.
Waveren, I.M. van, 1992. Morphology of probable planktonic crustacean eggs from the Holocene of
the Banda Sea (Indonesia). In: M.J. Head & J.H. Wrenn (eds). Neogene and Quaternary Dinoflagellate Cysts. — A.A.S.P. Foundation, Dallas, Texas: 89-120.
Waveren, I.M. van, 1994. Distribution of copepod egg-envelopes in sub-Recent sediments from the
Banda Sea. — Scripta Geol, 105: 53-67,1 pi.
Waveren, I.M. van, & N . H . Marcus, 1993. Morphology of recent copepod egg envelopes and their
implication for acritarch affinity. In: S.G. Molineux & K.J. Doming (eds.). Contribution to acritarch and chitinozoan research. — Spec. Papers Palaeont, 48:111-125.
Waveren, I.M. van, & H . Visscher, in press. Analysis of the composition and selective preservation of
organic matter in surficial deep-sea sediments from a high-productivity area (Banda Sea, Indonesia). — submitted to Palaeogeogr., Palaeoclimatol., Palaeoecol.
ZoBell, C E . , & S.C. Rittenberg, 1938. The occurrence and characteristics of chitinoclastic bacteria in
the sea. — J. Bacteriol., 35: 275-287.
M a n u s c r i p t received 26 J a n u a r y 1993
18
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
Plate 1
1. Specimen of Pseudocalanus elongatus (Boeck), after palynological treatment; slide COP-2; χ 100.
2. Former picture, redrawn with emphasis on the dorsal somite delineation.
3. PD 1; three attached fragments, medially folded; sample SN-379; x 400.
4.
5.
6.
7.
PD 1; two attached fragments, medially folded; sample SN-379; x 400.
PD 1; fragment curled inwards; sample SN-379; x 800.
PD 1; hexagonal fragment; sample SN-379; x 400.
PD 1; pentagonal fragment, medially folded; sample SN-379; x 400.
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
19
20
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
Plate 2
1. Appendages of Pseudocalanus elongatus (Boeck), after palynological treatment; slide COP-2; χ 100.
2.
3.
4.
5.
6.
7.
8.
9.
Former picture, redrawn with emphasis on the segmentation and shape of the terminal foot.
P M 1; copepod exopodite segment; sample SN-240; χ 400.
P M 2; copepod exopodite segment; sample SN-240; x 400.
P M 5; copepod exopodite segment; sample SN-240; x 400.
P M 3; copepod exopodite segment; sample SN-240; χ 400.
P M 4; copepod exopodite segment; sample SN-240; x 400.
P M 3; copepod exopodite segment; sample SN-240; χ 400.
P M 3; copepod exopodite segment; sample SN-240; χ 400.
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
21
22
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
Plate 3
1.
2.
3.
4.
PM
PM
PM
PM
13; copepod sternite; slide SN-192; χ 400.
14; copepod tail fragment; slide SN-192; χ 400.
14; copepod tail fragment; slide SN-192; χ 400.
6; copepod intercoxal plate, front side; slide SN-196; x 800.
5. P M 6; copepod intercoxal plate, back side; slide SN-196; χ 800.
6. P M 6; copepod intercoxal plate, front side; slide SN-196; x 800.
7. P M 27; unidentified arthropod fragment; slide SN-169, x 400.
8. P M 8; copepod rostral spine; slide SN-196; χ 800.
9. P M 15; elongated curved crustacean palynomorph; slide SN-44; χ 400.
10. P M 15; elongated curved crustacean palynomorph; χ 500 (SEM).
11. P M 15; elongated curved crustacean palynomorph; slide SN-188; x 800.
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol, 105 (1994)
23
24
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
Plate 4
1. P M 9; copepod mandible gnathobasis; slide SN-244; χ 800.
2. P M 16; amphipod mandible remain; slide SN-240; χ 800.
3. P M 7; copepod antenna remain; slide SN-168; χ 500.
4. P M 26; unidentified arthropod fragment; slide SN-168; χ 800.
5.
6.
7.
8.
PM
PM
PM
PM
10; copepod mandible gnathobasis; slide SN-233; x 400.
11; copepod mandible gnathobasis; slide SN-196; χ 400.
17; arthropod mandible remain; slide SN-120; χ 1000.
12; copepod mandible gnathobasis; slide SN-233; χ 400.
van Waveren. Chitinous palynomorphs and palynodebris of the Banda Sea. Scripta Geol., 105 (1994)
25