The College at Brockport: State University of New York Digital Commons @Brockport Lesson Plans CMST Institute 3-1-2005 Using a Ballistic Pendulum to Determine Muzzle Velocity of a Marble Launcher Steve Whitman The College at Brockport, [email protected] Follow this and additional works at: http://digitalcommons.brockport.edu/cmst_lessonplans Part of the Physical Sciences and Mathematics Commons Recommended Citation Whitman, Steve, "Using a Ballistic Pendulum to Determine Muzzle Velocity of a Marble Launcher" (2005). Lesson Plans. Paper 311. http://digitalcommons.brockport.edu/cmst_lessonplans/311 This Lesson Plan is brought to you for free and open access by the CMST Institute at Digital Commons @Brockport. It has been accepted for inclusion in Lesson Plans by an authorized administrator of Digital Commons @Brockport. For more information, please contact [email protected]. BHS Physics LAB #12 •BALLISTIC PENDULUM BHS Physics GOALS • TO USE A BALLISTIC PENDULUM TO DETERMINE MUZZLE VELOCITY OF A MARBLE LAUNCHER • TO DETERMINE THE KE LOST IN THE COLLISION • TO SIMULATE A BALLISTIC PENDULUM AND COMPARE RESULTS. BHS Physics PROCEDURE • SHOOT THE PROJECTILE INTO THE BALLISTIC PENDULUM WITH PHOTOGATE TIMER IN PLACE • MEASURE THE MAXIMUM ANGLE OF DEFLECTION OF THE PENDULUM • RECORD PHOTOGATE TIME TO DETERMINE V PHOTO • REPEAT FOR ALL FIVE NOTCHES OF THE LAUNCHER • BUILD AN I.P. BALLISTIC PENDULUM • REPEAT THE EXPERIMENT WITH THE VIRTUAL PENDULUM • COMPARE RESULTS FOR EACH BHS Physics Ballistic Pendulum At Impact Before Impact At Highest Swing Θ Vo = ? m M V Vo Po = Pf mvo = (M+m) V ∆h KE lost = PE gain ½(M+m)V2 = (M+m) g∆h BHS Physics Ballistic Pendulum Equation 2 mvo = (M+m) V ½(M+m)V = (M+m) g∆h vo = (M+m) V m vo = (M+m) m V2 V= = 2g∆h 2g∆h 2g∆h BHS Physics Determine ∆h from Θ At Highest Swing L = length of pend (pivot to center of bob) L Θ Y ∆h = L - Y Y = L cos Θ ∆h ∆h = L - L cos Θ BHS Physics DATA TABLE 1 I I !SAMPLE DATA TABLE: (REAL BALLISTIC PENDULUM) I I !CONSTANTS: NOTCH 1 2 3 4 5 ti.~ M (kg) = 0.077 V Photo ®MAX - m (kg) = 0.028 COS® L COS® I r-- Ah (m) I I L (m) = 0.65 Vf lm/sl I I I I I I I I I I I dia (m) = 0.019 Pf= Po Vo lm/sl Vo dev BHS Physics DATA TABLE 2 I I !SAMPLE DATA TABLE: (I.P. BALLISTIC PENDULUM) I I I !CONSTANTS: TRIAL 1 2 ,1- 3 4 5 I.P.Vo I m (kg)= M (kg)= ®MAX COS® L COS® I J L (m) = Ah (m) Vf I 1 Pf= Po Vo fm/sl I Vo dev . - BHS Physics K.E. ANALYSIS I I I !SAMPLE DATA TABLE: (REAl BAlliSTIC PENDULUM) I I I - !CONSTANTS: M (kg)= TRIAl KE MARBLE (J} KE CATCHER (J} 1 ~ - m (kg)= I KE lOST (Jl %KE lOST 2 - ~ 3 4 5 I - _j_ I SAMPLE DATA TABLE: (I.P. BAlliSTIC PENDULUM) CONSTANTS: TRIAl 1 2 3 4 5 M (kg)= KE MARBLE (J) KE CATCHER (J) I m (kg)= KE lOST {J) %KE lOST BHS Physics Marble Vo GRAPH #1: REAL PENDULUM V= 2g∆h BHS Physics Marble Vo GRAPH #2: I.P. PENDULUM V= 2g∆h BHS Physics WRITE-UP • SCREEN DUMP OF IP PEND – SHOW BALLISTIC PEND EQ PROOF • DATA TABLES • GRAPHS – TRENDLINES – GRAPH ANALYSIS • CONCLUSION BHS Physics LAB #12 DATA ANALYSIS BHS Physics Marble Vo GRAPH #1: REAL PENDULUM vo = (M+m) m 2g∆h y=mx+b (M+m) Slope = m V= 2g∆h
© Copyright 2026 Paperzz