Fuel Cells in Energy Technology Tutorial 8 / SS 2013 - solutions Prof. W. Schindler, Jassen Brumbarov / Celine Rüdiger 26.06.2013 1. List the most common fuel cell types. Write down the reactions taking place on the anode, cathode and the overall reactions. In which temperature and power ranges do these types of fuel cells work? AFC: there are two possibilities to write the reaction equations: + + (i) Anode: H2 -> 2e + 2H , 2 H + 2 OH -> 2 H2O Cathode: ½ O2 + 2e + H2O -> 2OH (ii) - - Anode: H2 + 2OH -> 2e + 2H2O Cathode: ½ O2 + 2e + H2O -> 2OH ; Overall: H2 + ½ O2 -> H2O temperature range: <100°C, power range: 5-150 kW PEMFC: Hydrogen and Alcohols possible fuels at ~ 80°C H2: + Anode: H2 -> 2e + 2H + Cathode: ½ O2 + 2H + 2e H2O Overall: H2 + ½ O2 -> H2O temperature range: ~80°C, power range: 5-250 kW CH3OH: + Anode: CH3OH + H2O CO2 + 6H + 6e + Cathode: 3/2 O2 + 6H + 6e 3H2O Overall: CH3OH + 3/2 O2 CO2 + 2H2O temperature range: ~80°C, power range: 5 kW PAFC: + Anode: H2 -> 2e + 2H + Cathode: ½ O2 + 2H + 2e H2O Overall: H2 + ½ O2 -> H2O temperature range: 160-220°C, power range: 50-11000 kW MCFC: Hydrogen and internally reformed Hydrocarbons are possible fuels H2: 2Anode: H2 + CO3 -> CO2 + 2e + H2O 2Cathode: ½ O2 + CO2 + 2e -> CO3 Overall: H2 + ½ O2 -> H2O CH4: Reforming: CH4 + H2O CO + 3H2 Gas shift: CO + H2O CO2 + H2 Overall Reforming: CH4 + 2H2O CO2 + 4H2 2Anode: 4H2 + 4CO3 -> 4CO2 + 8e + 4H2O 2Cathode: 2O2 + 4CO2 + 8e -> 4CO3 temperature range: 600-800°C, power range: 100-250 kW combined heat and power possible; combination with gas turbine for higher efficiency SOFC: Hydrogen and internally reformed Hydrocarbons are possible fuels H2: 2Anode: H2 + O -> 2e + H2O 2Cathode: ½ O2 + 2e -> O Overall: H2 + ½ O2 -> H2O CH4: Reforming: CH4 + H2O CO + 3H2 Gas shift: CO + H2O CO2 + H2 Overall Reforming: CH4 + 2H2O CO2 + 4H2 2Anode: 4H2 + 4O -> 8e + 4H2O 2Cathode: 2O2 + 8e -> 4O temperature range: 800 – 1000°C, power range: 0.1 - 2000 kW combined heat and power possible; combination with gas turbine for higher efficiency 2. Calculate for a DMFC: a. The maximum cell voltage and the thermodynamic efficiency for standard conditions. b. The theoretical maximum cell voltage at T=100°C. Assume that enthalpy and entropy do not depend on temperature. c. The voltage (electric) efficiency for a measured cell voltage of 0.85V. (CH3OH + 1.5 O2 -> CO2 + 2 H2O; n=6 number of transferred electrons; H =-726.6 kJ/mol; 0 G =-702.5 kJ/mol; F=96485 C/mol) 0 G 0 G 0 1.213V , th 0.967 nF H 0 H 0 G 0 J 0 0 0 0 b. G H TS S , with T=298K 80.87 T mol K H 0 TS 0 U 100C 1.203V , with T=373K nF U measured 0.701 c. V U max a. U max 3. Does the strategy of bottoming cycles make sense? Write down the general equations for the maximum thermodynamic efficiency of a fuel cell operating at ambient temperature T A, the thermodynamic efficiency of the same fuel cell combined with an ideal heat engine operating at temperature TF (TF>TA) and the maximum thermodynamic efficiency of a heat engine with Tcold=TA. Sketch the temperature dependent efficiency curves for the above mentioned systems (fuel cell: H2/O2 fuel cell).
© Copyright 2026 Paperzz