International Workshop on Scientific Challenges on New Functionalities in Glass April 15-17, 2007 Solid-State Lithium Batteries Using Glass Electrolytes Masahiro TATSUMISAGO Department of Applied Chemistry Graduate School of Engineering Osaka Prefecture University Japan AGENDA • Introduction – Why all-solid-state battery? Why glass-based electrolytes? • Preparation of lithium ion conducting glasses and glass-ceramics • All-solid-state lithium secondary batteries using Li2S-based glass-ceramics • Preparation of glassy electrode materials for allsolid-state lithium secondary batteries - A new concept of all-glass-based battery systems • Conclusions Introduction Development of the battery business Development of miniaturized electric appliances Share of battery in the world others Korea Li-ion battery Japan China x 2 . 5 rin u d Ni-H Ni-Cd Development of lithium ion battery market number amount Amount / billion yen Li-ion Ni-H Ni-Cd rs Li-ion a ye 5 g1 Number Energy density / Wh/L Change of energy density of batteries The lithium ion secondary battery is very promising not only for miniaturized electric appliances but also as a large energy storage device for HEV and EV. There are serious safety problems present in lithium ion secondary batteries using flammable organic liquid electrolytes. All-solid-state lithium secondary battery system using non-flammable inorganic solid electrolytes Ultimate goal of rechargeable energy sources ・ high safety ・ high reliability ・ high energy density Studies on all-solid-state lithium secondary battery Thin-film battery Bulk-type battery Film battery IC Smart card Antenna EV Inorganic glassy solid electrolytes ………. very promising for use in all-solid-state batteries ・ wide selection of compositions ・ isotropic properties ・ no grain boundaries ・ easy film formation ・ nonflammability ・ etc. Inorganic glassy solid electrolytes 1. Ion conductivity is generally higher in glass than that in corresponding crystal due to the so-called “open structure.” Large amounts of free volume crystal glass 2. Single cation conduction is realized because glassy materials belong to the so-called “decoupled systems” in which the mode of ion conduction relaxation is decoupled from the mode of structural relaxation. cathode anode C Li+ Li+ Li+ Li+ X- anode Inorganic glassy electrolyte cathode Co O 2 Li+ Li+ X- X- Li + Li+ Li+ + Li+ Li+ Li Li+ Li+ Li+ Li+ Li+ + + L i + L i L iL+i L i + L i + conventional battery Ideal battery system with no side reactions all-solid-state battery Inorganic glassy solid electrolytes l iq uid liq uid 3. Superionic coducting crystals as a metastable phase are easily formed from inorganic glassy electrolytes. : α -AgI su pe r co ole d σ25 =10-1 Scm-1 Volume In te n s ity (arb .u n it) 74AgI・26(0.33Ag2O・0.67MoO4) r pe u S glas se a ph c i ion s tal crys crystallization Tg Tm Temperature Tatsumisago et al., NATURE, 354 (1991) 217; Chem. Lett. (2001) 814. Preparation of lithium ion conducting glasses and glass-ceramics Lithium Ion conducting glassy systems σ25 / Scm-1 System Li2O-Nb2O5 Li4SiO4-Li3BO3 Li-P-O-N Li2S-GeS2 Li2S-P2S5 Li2S-B2S3 Li2S-SiS2 Li2S-SiS2-LiI Li2S-P2S5-LiI Li2S-SiS2-Li3PO4 Li2S-SiS2-Li4SiO4 10-6 10-6 10-6 10-5 10-4 10-4 10-4 10-3 10-3 10-3 10-3 Procedure Twin-roller quenching Twin-roller quenching Sputtering Melt quenching Melt quenching Melt quenching Twin-roller quenching Melt quenching Melt quenching Melt quenching Twin-roller quenching Researcher Nassau Tatsumisago Bates Souquet Malugani Levasseur Ribes Kennedy Malugani Kondo Tatsumisago High Li+ ion conduction in glass ・ Increase in Li+ ion concentration as much as possible ・ Use of counter anions with high polarizability Temperature dependence of conductivity of a variety of high lithium ion conducting materials -3 Scm-1 =3.2x10 σ 25 LISICON 0 10 -1 10 Conductivity / S cm -1 Li2S-SiS2-Li4SiO4 glass Li14Zn(GeO4)4 NASICON Li1.3Al0.3Ti1.7(PO4)3 Li2S-SiS2 glass Thio-LISICON Li3.25Ge0.25P0.75S4 -2 10 -3 -4 10 Li2S-SiS2–P2S5-LiI glass Li2O-Nb2O5 glass 10 Li2S-P2S5 glass-ceramics Li2O-B2O3-LiI glass Li3N Li3.4V0.4Ge0.6O4 10-6 Li3.3PO3.8N0.22 glass (LiPON) 1 1.5 2 2.5 1000 / T (K-1) 3 Li2O-Al2O3-TiO2-P2O5 (OHARA gc) glass-ceramic Perovskite La0.51Li0.34TiO2.94 -5 10 Advanced Materials 17 (2005) 918. 3.5 4 Mechanochemical preparation of 95(0.6Li2S・0.4SiS2)・5Li4SiO4 glass Planetary ball mill Mechanochemical synthesis ・ Room temperature process ・ Obtaining fine powders directly 。。 。 。 。。 。 。 。 。 。。 。。 。 。。 。 。 95(0.6Li2S・0.4SiS2)・5Li4SiO 。 。 。 。 。 。 。 。。。 。 。。 。。 。 。 。 。 。 。 。。 。 。 。 。 。。 。 。。 。 。 。。 。。 100 Rotation of base disk Rotation of pot 。 Centrifugal 。 。 。 。 。 。 。。 force 。 。 。 。 。。 。 。 。。 。 。 。 。。 。 。。 。 。 。 。 。 。 。。 。 。。。 。 。。 。 。 。 。 。 。 Ball Mechanical energy pulverization chemical reaction Conduct ivi t y / S c m-1 Melt quenched glass 10-2 10h,20h 10-4 5h 10-6 1h 10-8 0h 10-10 2.0 2.5 3.0 1000K / T 3.5 100 Conductivity / S cm -1 Temperature dependence of conductivity for the 70Li2S・30P2S5 glass and glass-ceramic glass Heating at 360 ℃ 10-2 σ25 = 3.2 x 10-3 S/cm Ea = 12 kJ/mol σ25 = 5.4 x 10-5 S/cm Ea = 38 kJ/mol 10-4 10-6 Solid-state reaction 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 1000 K / T Intensity (arb.unit) 10-8 : thio-LISICON III : Li3PS4 : Li4P2S6 Solid-state reaction : new phase 360 oC as-prepared 10 15 20 25 30 o 2 θ / (C u K α ) 35 40 Newformation superionicofmetastable The superioniccrystalline metastablephase phase is the most remarkable advantage of glass-based solid …….. could not be obtained by the usual solidelectrolytes. state reaction. All-solid-state lithium secondary batteries using Li2S-P2S5 glass-ceramics All-solid-state batteries( In / Li2S-P2S5 glass-ceramic / LiCoO2 ) Laboratory-scale all-solid-state cell Negative electrode In or SnS-P2S5 glass: SE:AB Stainless steel Solid electrolyte (SE) Li2S-P2S5 glass ceramics Positive electrode Insulator LiCoO2:SE:AB=20:30:3 (wt%) or (S+CuS):SE:AB Current collector Stainless steel Solid electrolyte 10mm Composite electrode is a mixture of three kinds of fine powders Solid electrolyte AB LiCoO2 Ionic and electronic conduction paths through SE and conducting additives to active materials Cell performance of the all-solid-state battery In / 80Li2S・20P2S5 glass-ceramic / LiCoO2 0.1 25 5 0.2 0.3 64 μA.cm-2 oC Charge 4 20, 50 5 1 3 5 2 1 1 0 20, 50 Discharge 0 20 200 0.4 40 60 80 Capacity / mAh.g-1 100 Capacity / mAh g-1 Cell Voltage / V 6 0 120 120 100 150 80 100 60 50 0 : Charge capacity : Discharge capacity 0 100 200 300 400 Cycle number 40 20 0 500 Excellent cycle performance with no loss of capacity up to the cycle number of 500 The advantage of the glass-ceramics with their high conductivity and dense microstructure would promote smooth charge-discharge reaction in the solid / solid interface between electrolyte and electrode. Efficiency / % x in Li1-xCoO2 All-solid-state cell performance using a variety of electrode active materials Cell Voltage / V In or In-Li / 80Li2S・20P2S5 glass-ceramic / Cathode 6 64 μ A cm 5 100th Cycle In/LiNi0.5 Mn 0.5 O 2 4 3 In/LiCoO 2 In-Li/a-V 2 O 5 2 1 0 -2 In-Li/Li4/3 Ti 5/3 O 4 0 20 40 60 80 100 120 140 160 Capacity / mAh g -1 All-solid-state batteries with high reversibility and high cycle performance For high rate performance 0.1 wt% coating ・Coating on active materials with cobalt sulfide NaS2CN(C2H5) 2+CoCl2 → Co[S2CN(C2H5)2]2 → Co[S2CN(C2H5)2]2 CoS I = 10 mA cm-2 (10C) In / 80Li2S-20 P2S5 / LiCoO2 -xCoS Without coating after 1st charge -400 0 Z”/Ω -800 0.1 wt% coating before -400 after 1st charge 0 0 400 800 1200 Z’/Ω 1600 2000 Cell Voltage / V (vs. In-Li) Z”/Ω 6 before -800 0.1 wt% coating 3rd 5 2nd 1st 4 3 2 2nd 1 0 1st 3rd 0 20 40 60 80 100 Capacity / mAh g-1 120 Preparation of glassy electrode materials for allsolid-state lithium secondary batteries - A new concept of all-glass-based battery systems - Cell performance of all-solid-state Li / S battery using Cu-S composites prepared by MM as a cathode material Sulfur Theoretical capacity : 1672 Cheep, Non-toxic mAh g-1 Candidate of cathode materials for nextgeneration secondary batteries •Polysulfides formed in the discharge process are soluble in liquid electrolytes. Cell voltage (V) In-Li / 80Li2S・20P2S5 glass-ceramic / Cu-S composite Capacity (mAh g-1 of CuS) 0 400 800 1200 MM S, CuS composite 4 -2 -1 3S + Cu 650 mAhg (CuS) 64 μA cm 0.3 - 2.7 V cutoff 3 After Machida (2002) 1st 2nd 5th20th 10th 2 10th 1 2nd 0 0 1st 5th20th 200 400 800 600 -1 Capacity (mAh g of S+Cu) Sulfur is utilized as active materials Sulfur cathode materials, which could not be used with liquid electrolytes, can be used in all-solid-state batteries using the sulfide glass-ceramic electrolytes. Cell performance using SnS-P2S5 glasses as an anode material Glassy materials contining Sn MM SnS + P2S5 anode active material 0 2 80SnS・20P2S5 glass / 80Li2S・20P2S5 glass-ceramic / Li / Sn LiCoO2 6 8 10 20 10 5 2 1 3 Discharge 50 20 10 5 1 2 1 Cutoff voltage : 2.0~4.0 V 0 200 400 600 800 1000 1200 1400 Capacity / mAhg SnS-P2S5 + Sn0 + Li+ Li+ + e- + e- charge charge discharge 1000 400 mAhg-1 800 400 Sn0 + Li2S-P2S5 40 Discharge 200 0 60 Charge 600 -1 Li4.4Sn 80 20 Cutoff voltage : 2.0~4.0 V 0 10 20 Efficiency / % Charge 2 -1 50 4 0 100 1400 1200 5 Cell voltage / V 4 Capacity / mAhg 6 SnS-P2S5 glasses 30 Cycle number 40 50 0 Self-formation of high conductive solid electrolytes surrounding the anode active materials Glassy monolithic cell A common network former is used for the electrolyte and electrode materials. SnS-P2S5 glass Li2S-P2S5 glass-ceramic Li2S-Cu-S ceramic J.L. Souquet et al., Solid State Ionics, 148 (2002) 375. The glassy monolithic cell is expected to facilitate smooth solid-solid contact between electrolyte and electrode, and very promising as a future all-solid-state battery. Conclusions CONCLUSIONS Sulfide glass-based solid electrolytes are suitable to be used in all-solid-state lithium secondary batteries. The all-solid-state batteries showed excellent cycle performance. In order to obtain high rate performance, electrons and ions should be smoothly supplied to the active materials through the interface between electrode and electrolyte . All-solid-state batteries, in which a common sulfide glass network is used as electrodes and electrolytes, are successfully constructed. CONCLUSIONS In order to approach the ultimate goal of allsolid-state lithium secondary battery, the charge transfer at the solid/solid interface between electrolyte and electrode should be analyzed and optimized to obtain much higher performances. Solid electrolyte Thin film battery Interface between electrode and electrolyte Electrode active material Large scale battery
© Copyright 2026 Paperzz