Solid-State Lithium Batteries Using Glass

International Workshop on Scientific Challenges on New Functionalities in Glass
April 15-17, 2007
Solid-State Lithium Batteries Using
Glass Electrolytes
Masahiro TATSUMISAGO
Department of Applied Chemistry
Graduate School of Engineering
Osaka Prefecture University
Japan
AGENDA
• Introduction – Why all-solid-state battery?
Why glass-based electrolytes?
• Preparation of lithium ion conducting glasses and
glass-ceramics
• All-solid-state lithium secondary batteries using
Li2S-based glass-ceramics
• Preparation of glassy electrode materials for allsolid-state lithium secondary batteries - A new
concept of all-glass-based battery systems
• Conclusions
Introduction
Development of the battery business
Development of miniaturized electric appliances
Share of battery in the world
others
Korea
Li-ion battery
Japan
China
x
2
.
5
rin
u
d
Ni-H
Ni-Cd
Development of lithium ion battery market
number amount
Amount / billion yen
Li-ion
Ni-H
Ni-Cd
rs Li-ion
a
ye
5
g1
Number
Energy density / Wh/L
Change of energy density of batteries
The lithium ion secondary battery is very promising not only for miniaturized
electric appliances but also as a large energy storage device for HEV and EV.
There are serious safety problems
present in lithium ion secondary
batteries using flammable organic
liquid electrolytes.
All-solid-state lithium secondary battery system
using non-flammable inorganic solid electrolytes
Ultimate goal of
rechargeable energy sources
・ high safety
・ high reliability
・ high energy density
Studies on all-solid-state lithium secondary battery
Thin-film battery
Bulk-type battery
Film battery
IC
Smart card Antenna
EV
Inorganic glassy solid electrolytes
………. very promising for use in
all-solid-state batteries
・ wide selection of
compositions
・ isotropic properties
・ no grain boundaries
・ easy film formation
・ nonflammability
・ etc.
Inorganic glassy solid electrolytes
1. Ion conductivity is generally higher in glass than that
in corresponding crystal due to the so-called “open structure.”
Large amounts of
free volume
crystal
glass
2. Single cation conduction is realized because glassy
materials belong to the so-called “decoupled systems” in which
the mode of ion conduction relaxation is decoupled from the
mode of structural relaxation.
cathode
anode
C
Li+ Li+
Li+ Li+
X-
anode
Inorganic glassy electrolyte
cathode
Co O 2
Li+
Li+
X-
X- Li +
Li+ Li+
+
Li+ Li+ Li Li+ Li+ Li+
Li+ Li+
+
+
L i + L i L iL+i L i + L i +
conventional battery
Ideal battery system
with no side reactions
all-solid-state battery
Inorganic glassy solid electrolytes
l iq
uid
liq
uid
3. Superionic coducting crystals
as a metastable phase are easily
formed from inorganic glassy
electrolytes.
: α -AgI
su
pe
r co
ole
d
σ25 =10-1 Scm-1
Volume
In te n s ity (arb .u n it)
74AgI・26(0.33Ag2O・0.67MoO4)
r
pe
u
S
glas
se
a
ph
c
i
ion
s
tal
crys
crystallization
Tg
Tm
Temperature
Tatsumisago et al., NATURE, 354 (1991) 217; Chem. Lett. (2001) 814.
Preparation of lithium ion conducting
glasses and glass-ceramics
Lithium Ion conducting glassy systems
σ25 / Scm-1
System
Li2O-Nb2O5
Li4SiO4-Li3BO3
Li-P-O-N
Li2S-GeS2
Li2S-P2S5
Li2S-B2S3
Li2S-SiS2
Li2S-SiS2-LiI
Li2S-P2S5-LiI
Li2S-SiS2-Li3PO4
Li2S-SiS2-Li4SiO4
10-6
10-6
10-6
10-5
10-4
10-4
10-4
10-3
10-3
10-3
10-3
Procedure
Twin-roller quenching
Twin-roller quenching
Sputtering
Melt quenching
Melt quenching
Melt quenching
Twin-roller quenching
Melt quenching
Melt quenching
Melt quenching
Twin-roller quenching
Researcher
Nassau
Tatsumisago
Bates
Souquet
Malugani
Levasseur
Ribes
Kennedy
Malugani
Kondo
Tatsumisago
High Li+ ion conduction in glass
・ Increase in Li+ ion concentration as much as possible
・ Use of counter anions with high polarizability
Temperature dependence of conductivity of a
variety of high lithium ion conducting materials
-3 Scm-1
=3.2x10
σ
25
LISICON
0
10
-1
10
Conductivity / S cm -1
Li2S-SiS2-Li4SiO4 glass
Li14Zn(GeO4)4
NASICON
Li1.3Al0.3Ti1.7(PO4)3
Li2S-SiS2 glass
Thio-LISICON
Li3.25Ge0.25P0.75S4
-2
10
-3
-4
10
Li2S-SiS2–P2S5-LiI glass
Li2O-Nb2O5 glass
10
Li2S-P2S5
glass-ceramics
Li2O-B2O3-LiI glass
Li3N
Li3.4V0.4Ge0.6O4
10-6
Li3.3PO3.8N0.22 glass (LiPON)
1
1.5
2
2.5
1000 / T (K-1)
3
Li2O-Al2O3-TiO2-P2O5 (OHARA gc)
glass-ceramic
Perovskite
La0.51Li0.34TiO2.94
-5
10
Advanced Materials
17 (2005) 918.
3.5
4
Mechanochemical preparation of
95(0.6Li2S・0.4SiS2)・5Li4SiO4
glass
Planetary ball mill
Mechanochemical synthesis
・ Room temperature process
・ Obtaining fine powders
directly
。。
。
。
。。
。
。
。
。
。。
。。
。
。。
。
。
95(0.6Li2S・0.4SiS2)・5Li4SiO
。
。
。
。
。
。
。
。。。
。
。。
。。
。
。
。
。
。
。
。。 。
。
。
。
。。
。 。。
。
。 。。
。。
100
Rotation of base disk
Rotation of pot
。
Centrifugal
。
。
。
。
。
。
。。
force
。
。
。
。
。。
。
。
。。
。
。
。
。。
。
。。
。
。
。
。
。
。
。。
。
。。。
。
。。
。
。
。
。
。 。
Ball
Mechanical energy
pulverization
chemical reaction
Conduct ivi t y / S c m-1
Melt quenched glass
10-2
10h,20h
10-4
5h
10-6
1h
10-8
0h
10-10
2.0
2.5
3.0
1000K / T
3.5
100
Conductivity / S cm
-1
Temperature dependence of conductivity for the
70Li2S・30P2S5 glass and glass-ceramic
glass
Heating at 360 ℃
10-2
σ25 = 3.2 x 10-3 S/cm
Ea = 12 kJ/mol
σ25 = 5.4 x 10-5 S/cm
Ea = 38 kJ/mol
10-4
10-6
Solid-state reaction
1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
1000 K / T
Intensity (arb.unit)
10-8
: thio-LISICON III
: Li3PS4
: Li4P2S6
Solid-state
reaction
: new phase
360 oC
as-prepared
10
15
20
25
30
o
2 θ / (C u K α )
35
40
Newformation
superionicofmetastable
The
superioniccrystalline
metastablephase
phase is the most
remarkable
advantage
of glass-based
solid
…….. could
not be obtained
by the usual
solidelectrolytes.
state reaction.
All-solid-state lithium secondary batteries
using Li2S-P2S5 glass-ceramics
All-solid-state batteries( In / Li2S-P2S5 glass-ceramic / LiCoO2 )
Laboratory-scale
all-solid-state cell
Negative electrode
In or
SnS-P2S5 glass: SE:AB
Stainless
steel
Solid electrolyte (SE)
Li2S-P2S5 glass ceramics
Positive electrode
Insulator
LiCoO2:SE:AB=20:30:3 (wt%) or
(S+CuS):SE:AB
Current collector
Stainless
steel
Solid electrolyte
10mm
Composite electrode is a mixture of
three kinds of fine powders
Solid
electrolyte
AB
LiCoO2
Ionic and electronic conduction paths through SE and
conducting additives to active materials
Cell performance of the all-solid-state battery
In / 80Li2S・20P2S5 glass-ceramic / LiCoO2
0.1
25
5
0.2
0.3
64 μA.cm-2
oC
Charge
4
20, 50
5
1
3
5
2
1
1
0
20, 50
Discharge
0
20
200
0.4
40
60
80
Capacity / mAh.g-1
100
Capacity / mAh g-1
Cell Voltage / V
6
0
120
120
100
150
80
100
60
50
0
: Charge capacity
: Discharge capacity
0
100
200
300
400
Cycle number
40
20
0
500
Excellent cycle performance with no loss of capacity up to the cycle number of 500
The advantage of the glass-ceramics with their high conductivity and dense
microstructure would promote smooth charge-discharge reaction in the
solid / solid interface between electrolyte and electrode.
Efficiency / %
x in Li1-xCoO2
All-solid-state cell performance using a variety of electrode active materials
Cell Voltage / V
In or In-Li / 80Li2S・20P2S5 glass-ceramic / Cathode
6
64 μ A cm
5
100th Cycle
In/LiNi0.5 Mn 0.5 O 2
4
3
In/LiCoO 2
In-Li/a-V 2 O 5
2
1
0
-2
In-Li/Li4/3 Ti 5/3 O 4
0
20 40 60 80 100 120 140 160
Capacity / mAh g
-1
All-solid-state batteries with high reversibility and high cycle performance
For high rate performance
0.1 wt% coating
・Coating on active materials with cobalt
sulfide
NaS2CN(C2H5) 2+CoCl2 → Co[S2CN(C2H5)2]2
→
Co[S2CN(C2H5)2]2
CoS
I = 10 mA cm-2 (10C)
In / 80Li2S-20 P2S5 / LiCoO2 -xCoS
Without coating
after 1st charge
-400
0
Z”/Ω
-800
0.1 wt% coating
before
-400
after 1st charge
0
0
400
800
1200
Z’/Ω
1600
2000
Cell Voltage / V (vs. In-Li)
Z”/Ω
6
before
-800
0.1 wt% coating
3rd
5
2nd
1st
4
3
2
2nd
1
0
1st
3rd
0
20
40
60
80 100
Capacity / mAh g-1
120
Preparation of glassy electrode materials for allsolid-state lithium secondary batteries
- A new concept of all-glass-based battery systems -
Cell performance of all-solid-state Li / S battery using Cu-S
composites prepared by MM as a cathode material
Sulfur
Theoretical capacity : 1672
Cheep, Non-toxic
mAh g-1
Candidate of cathode materials for nextgeneration secondary batteries
•Polysulfides formed in the discharge process are soluble in liquid electrolytes.
Cell voltage (V)
In-Li / 80Li2S・20P2S5 glass-ceramic / Cu-S composite
Capacity (mAh g-1 of CuS)
0
400
800
1200
MM S, CuS composite
4
-2
-1
3S
+
Cu
650 mAhg (CuS)
64 μA cm
0.3 - 2.7 V cutoff
3
After Machida (2002)
1st 2nd 5th20th
10th
2
10th
1
2nd
0
0
1st
5th20th
200
400
800
600
-1
Capacity (mAh g of S+Cu)
Sulfur is utilized as
active materials
Sulfur cathode materials,
which could not be used with
liquid electrolytes, can be used
in all-solid-state batteries using
the sulfide glass-ceramic
electrolytes.
Cell performance using SnS-P2S5 glasses as an anode material
Glassy materials contining Sn
MM
SnS + P2S5
anode active material
0
2
80SnS・20P2S5 glass / 80Li2S・20P2S5 glass-ceramic /
Li / Sn
LiCoO2
6
8
10
20 10
5 2
1
3
Discharge
50 20 10 5
1
2 1
Cutoff voltage : 2.0~4.0 V
0
200
400
600
800 1000 1200 1400
Capacity / mAhg
SnS-P2S5 +
Sn0
+
Li+
Li+
+
e-
+
e-
charge
charge
discharge
1000
400 mAhg-1
800
400
Sn0 + Li2S-P2S5
40
Discharge
200
0
60
Charge
600
-1
Li4.4Sn
80
20
Cutoff voltage : 2.0~4.0 V
0
10
20
Efficiency / %
Charge
2
-1
50
4
0
100
1400
1200
5
Cell voltage / V
4
Capacity / mAhg
6
SnS-P2S5 glasses
30
Cycle number
40
50
0
Self-formation of high conductive
solid electrolytes surrounding the
anode active materials
Glassy monolithic cell
A common network former is used for the electrolyte and electrode materials.
SnS-P2S5
glass
Li2S-P2S5
glass-ceramic
Li2S-Cu-S
ceramic
J.L. Souquet et al., Solid State Ionics, 148 (2002) 375.
The glassy monolithic cell is expected to facilitate smooth
solid-solid contact between electrolyte and electrode, and
very promising as a future all-solid-state battery.
Conclusions
CONCLUSIONS
„
„
„
„
Sulfide glass-based solid electrolytes are suitable to be used
in all-solid-state lithium secondary batteries.
The all-solid-state batteries showed excellent cycle
performance.
In order to obtain high rate performance, electrons and ions
should be smoothly supplied to the active materials through
the interface between electrode and electrolyte .
All-solid-state batteries, in which a common sulfide glass
network is used as electrodes and electrolytes, are
successfully constructed.
CONCLUSIONS
In order to approach the ultimate goal of allsolid-state lithium secondary battery, the charge
transfer at the solid/solid interface between
electrolyte and electrode should be analyzed and
optimized to obtain much higher performances.
Solid
electrolyte
Thin film battery
Interface between
electrode and
electrolyte
Electrode active
material
Large scale battery