PRODUKTKATALOG Wir unterstützen Sie zu Hause in der Praxis in der Klinik TNI medical AG Hofmannstr. 8 D-97084 Würzburg Tel. Fax +49 931 20 79 29-02 +49 931 20 79 29-01 E-Mail: Internet: [email protected] www.tni-medical.de ARTIKELNUMMER: 30200040 VERSION 1.2 Therapie Vorwort Diagnose Liebe Partner und Kunden, die Medizintechnik gehört zu den größten Wachstumsmärkten weltweit. Mit Innovationszyklen, die im Durchschnitt kleiner als 5 Jahre sind, geht die Entwicklung in der Medizintechnik noch vor der Automobilbranche mit rasantem Tempo voran. Unsere Branche ist geprägt vom intensiven Austausch der medizinischen Forschung mit technologischen Disziplinen und daraus folgender Anwendungsentwicklung. Die gewonnenen Erkenntnisse werden schnell und zielgerichtet in neue Produkte umgesetzt. TNI medical AG ist ein Vorreiter in der Entwicklung neuer Technologien für die Atmungsunterstützung. Wir haben uns dabei der Maximierung des Patientenkomforts bei gleichzeitiger Einhaltung der Kosteneffizienz verschrieben. Unsere Produktneuheit TNI® (Therapie mit nasaler Insufflation – Applikation von warmer und befeuchteter Luft bzw. Luft/Sauerstoffgemische mit hohen Flussraten in die Nase) setzt dabei am wichtigsten Punkt an: der Schnittstelle zum Patienten. Im Austausch mit Medizinern, Patienten und Verbänden ist es unsere Aufgabe, die Entwicklung, die Herstellung und den flächendeckenden, zuverlässigen Vertrieb und Service von Diagnose- und Beatmungsgeräten kontinuierlich voranzutreiben und zu verbessern. In diesem Katalog finden Sie unser Angebot an hochwertigen Geräten und Zubehör. Unsere Produkte zielen auf einen maximalen Patientenkomfort und den damit verbundenen Therapieerfolg. Daneben liegt unser Fokus auf einer intuitiven Bedienbarkeit, so dass die Produkte im Alltag des medizinischen Fachpersonals und beim Patienten zu Hause kostengünstig und sicher einsetzbar sind. Wir sind uns dabei unserer Verantwortung gegenüber den Patienten, den Ärzten und dem Klinikpersonal bewusst und pflegen ein aufwändiges, lückenloses Qualitätsmanagementsystem nach neusten Anforderungen. Neuste Erkenntnisse aus der Forschung an mehreren Zentren in Europa und den USA flossen unmittelbar in die Entwicklung dieser High-Flow Luft- und Sauerstoffbeatmung ein und finden sich in der TNI® Produktfamilie wieder. Die aktuellen Ergebnisse aus der klinischen Forschung sowie daraus resultierende mögliche Anwendungsbereiche sind ebenfalls in diesem Katalog für Sie zusammengefasst. Eine perfekte Dienstleistung und ein hervorragender Service setzen für uns die enge und reibungslose Zusammenarbeit zwischen Ärzten, Klinikpersonal, Patienten und Lieferanten medizintechnischer Geräte voraus - zum Wohle der Patientinnen und der Patienten. Ewald Anger Vorstand TNI medical AG 2 Therapie Diagnose Inhalt Produktübersicht ................................................................................................... 4 Geräteübersicht ................................................................................................... Artikelnummern ............................................................................ Anwendungsbereiche ............................................................................ 6 5 8 Produkte ............................................................................................................... ® TNI Produkte ................................................................................................... TNI®20 ................................................................................................... ................................................................ TNI®20s oxy (Klinik) ................................................................ TNI®20 oxy (Homecare) 9 9 9 9 10 CPAP Produkte ....................................................................................... iSleep 20 i, iSleep 20+ ................................................................ ISleep 22, iSleep 25 ................................................................ 12 12 13 Diagnoseprodukt MS310 Embletta Gold Embla S4500 Embla N7000 14 14 16 17 18 ....................................................................................... ....................................................................................... ........................................................................................ ........................................................................................ ......................................................................................... TNI® Wirkungsweise ................................................................................................... Resultate aus Studien und Tests .................................................... ® .................................................... TNI Wirkungsweise bei COPD 19 21 24 TNI® Studien ............................................................................................................... 25 Fallbeispiele ............................................................................................................... Erwachsene ................................................................................................... TNI®20 ................................................................................................... ................................................................ TNI®20 oxy / TNI®20s oxy Kinder ............................................................................................................... TNI®20 ................................................................................................... 60 60 60 61 65 65 Über uns ............................................................................................................... Kontaktdaten ................................................................................................... 66 66 Kontaktformular 67 .................................................................................................... 3 Therapie Diagnose Produktübersicht Therapie TNI®20 führt dem Patienten einen warmen, befeuchteten Raumluftstrom von maximal 20 Litern Luft pro Minute über einen speziellen, lautstärkeoptimierten Applikator (Nasenbrille) in die Nase. TNI®20 oxy kombiniert die Vorteile der SauerstofftheraO2 pie und der High-Flow Beatmung für die Versorgung in der häuslichen Umgebung. TNI®20s oxy ein Luftbefeuchter für die Klinikdruckluft, kombiniert Sauerstofftherapie und High-Flow Beatmung. Als Zubehör dient der fahrbare Infusionsständer inkl. Halterung für die Befeuchter- und Anschlusseinheit. iSleep 20+/iSleep 20i/iSleep 22/iSleep 25 werden zur Behandlung nächtlicher Schlafapnoen eingesetzt. Der Atemluftbefeuchter HA 20 kann optional an die CPAP/ Bilevel-Geräte angebracht werden. 4 Therapie Diagnose Diagnose MS310 Polygraphiesystem für die portable Diagnose- und Therapiekontrolle der schlafbezogenen Atmungsstörungen, inklusive Auswertesoftware und Praxiskopplung über GDTSchnittstelle. Embletta Gold Polygraphiesystem für die ambulante Schlafuntersuchung, inklusive RIP-Technologie und Auswertesoftware. Embla S4500 Polysomnographiesystem für die robuste und zuverlässige kardiorespiratorische Schlafuntersuchung. Embla N7000 Polysomnographiesystem für die robuste und zuverlässige kardiorespiratorische und neurologische Schlafuntersuchung 5 Therapie Geräteübersicht Diagnose Artikelnummern Gerät und Beschreibung 405 00001 TNI®20 - High Flow Beatmung durch Therapie mit nasaler Insufflation (TNI®) Das TNI®20 System liefert einen Raumluftstrom, der erwärmt und befeuchtet ist. Dieser wird dem Patienten durch einen speziellen, lautstärkeoptimierten und beheizten Applikator (Nasenbrille) verabreicht. Das System kann einen Gesamtfluss von bis zu 20 Liter pro Minute liefern, individuell nach Verordnung regelbar. 405 00002 TNI®20s oxy - High Flow Beatmung durch Therapie mit nasaler Insufflation (TNI®) Das TNI®20s oxy Gerät appliziert dem Patienten ein warmes befeuchtetes Luft-Sauerstoffgemisch von maximal 20 Liter Luft pro Minute. Dieses wird dem Patienten durch einen speziellen, lautstärkeoptimierten und beheizten Applikator (Nasenbrille) verabreicht. Das Luft-Sauerstoffgemisch wird aus den klinikseitig vorhandenen Wandanschlüssen bezogen, individuell nach Verordnung regelbar. 405 00003 TNI®20 oxy - High Flow Beatmung durch Therapie mit nasaler Insufflation (TNI®) Das TNI®20 oxy System liefert einen Gesamtfluss, bestehend aus Raumluft und Sauerstoff welcher erwärmt und befeuchtet ist. Dieser wird dem Patienten durch einen speziellen, lautstärkeoptimierten und beheizten Applikator (Nasenbrille) verabreicht. Dem durch das TNI®20 oxy System generierten Luftstrom kann individuell Sauerstoff bis zu 8 Liter pro Minute beigemischt werden, aus gebräuchlichen Quellen wie einem Sauerstoffkonzentrator oder Flaschen mit Flüssigsauerstoff entnommen. Das System kann einen Gesamtfluss von bis zu 20 Liter pro Minute liefern, individuell nach Verordnung regelbar. 402 00050 iSleep 20 i Das iSleep 20 i ist ein fortschrittliches, automatisch den Therapiedruck anpassendes CPAPGerät. 402 00051 iSleep 20 + Das iSleep 20 + ist ein hochwertiges CPAP-Gerät, entwickelt für die Anwendung zu Hause. 402 00015 iSleep 22 Das iSleep 22 ist ein BI-LEVEL S-Gerät, entwickelt für die Anwendung zu Hause. 402 00014 iSleep 25 Das iSleep 25 ist ein BI-LEVEL ST-Gerät, entwickelt für schlafbezogenen Atemstörungen. THERAPIE 6 Art. Nr. Therapie Geräteübersicht Diagnose Artikelnummern Gerät und Beschreibung 9A00002 MS310 Polygraphiesystem für die portable Diagnose- und Therapiekontrolle der schlafbezogenen Atmungsstörungen, inklusive Auswertesoftware und Praxiskopplung über GDT-Schnittstelle. 404 00550 Embletta Gold Polygraphiesystem für die ambulante Schlafuntersuchung, inklusive RIP-Technologie und Auswertesoftware. 405 00501 Embla PSG S4500 Polysomnographiesystem für die robuste und zuverlässige kardiorespiratorische Schlafuntersuchung. 404 00500 Embla PSG N7000 Polysomnographiesystem für die robuste und zuverlässige kardiorespiratorische und neurologische Schlafuntersuchung. DIAGNOSE Art. Nr. 7 Therapie Diagnose Geräteübersicht Anwendungsbereiche TNI® THERAPIE TNI®20 TNI Therapie Anwendungsbereiche TNI®20 oxy TNI®20s oxy 5 bis 20 5 bis 25 0 bis 8 0 bis 16 Erwachsene: OSA mit leichter bis mittelschwerer Ausprägung UARS Overlap Syndrom COPD Stadium I COPD Stadium II COPD Stadium II und III mit Partial-Insuffizienz COPD Stadium III und IV mit Global-Insuffizienz Fibrose Nach Lungen-Teilresektion und Transplantation Kinder und Jugendliche (sehr große Effektivität und Therapieakzeptanz): Bei Strömungsbehinderung OSA und OSA Symptome Gesichtsfehlbildungen mit spez. Gesichtsanatomien Down-Syndrom Frühgeborene und Kleinkinder: Pulmonale Dysplasie mit Sauerstoffbedarf Chronisch respiratorische Insuffizienz Alternative bei nicht durchführbarer Heim CPAP-Therapie Homecare Anwendungen TNI Therapie Allgemeines Einstellungen: Gesamtfluss (L/min) 5 bis 20 O2 (L/min) Anzeige Ist-Flow Technische Daten: Medizinprodukteklasse (93/42/EWG) Schallabstrahlung < 32 dB (A) < 32 dB (A) Betriebsspannung 100-240 V AC 100-240 V AC 100-240 V AC 50-60 Hz 50-60 Hz 50-60 Hz 25/21/23,5 26/21/23,5 < 8,5 < 8,5 26/22/10 26/22/10 26/22/10 < 2,0 < 2,5 < 3,0 1,8 1,8 1,8 Lüftereinheit (Kompressoreinheit): Abmessung L/B/H (cm) Gewicht (kg) Befeuchtereinheit: Abmessung L/B/H (cm) Gewicht (ohne Wasser) (kg) Applikator: TNI Applikator für Erwachsene (Standard) TNI Applikator für Erwachsene (Komfort) TNI Pediatric Applikator TNI Pediatric Adapter TNI Paed Adapter (BC 2745, BC 2755) Schlauchlänge (m) Legende: 8 ja eingeschränkt nein Therapie Diagnose Produkte TNI® Produkte TNI® - Therapie mit nasaler Insufflation Methode TNI® (Therapie mit nasaler Insufflation) ist eine weltweit neue Methode zur Atmungsunterstützung. Sie arbeitet nicht mit Überdruck, sondern ist eine High-Flow-Beatmungsmethode, wobei ein konstanter warmer und feuchter Luftstrom durch eine dünne Nasenbrille in die Nase des Patienten appliziert wird und zu einer Verbesserung der Ventilation führt. Diese Methode bietet einen hohen Komfort für den Patient. Im Gegensatz zu den bereits seit mehreren Jahren erhältlichen nasalen „Prongs“-Masken bleibt die Nase bei TNI® offen, d.h. die Enden des Applikators verschließen die Nase nicht. TNI®20 Indikationen Im Bereich Heimbeatmung werden mit dem Therapiegerät TNI®20 schlafbezogene Atmungsstörungen behandelt. Bei Patienten mit einem vergleichbaren CPAP Druck bis ca. 8 mBar zeigt die Methode eine gute Effektivität1. Zusätzlich wurde TNI® bereits erfolgreich als Ersatztherapie bei Patienten mit schwerer Symptomatik, die CPAP nicht tolerieren, eingesetzt. VORTEILE: • • • • • • • • Mit TNI® ist die Bauchlage während des Schlafs möglich • • Hoher Tragekomfort, einfache Bedienung Keine Nebenwirkungen durch eine Maske (wie z. B. Drucknekrosen, Bindehautentzündungen) Ständige Kommunikationsmöglichkeit (kein Absetzen der Maske nötig) Entlastung der Atemanstrengung Patient wird nur minimal in seiner Mobilität eingeschränkt. Keine Aspirationsgefahr durch Erbrechen Keine Unterbrechung der Beatmung beim Abhusten von Bronchialsekret Kein Austrocknen von Mund und Nase Keine Druckeinstellung oder individuelle Anpassung nötig Lieferumfang: → Lüftereinheit • → • • Befeuchtereinheit • • steht in Bettnähe typisch auf dem Nachttisch wird vom Patienten entfernt platziert steht in Bodenhöhe Entfernung im Radius max. 5 Meter → - 1 Lüftereinheit - 1 Befeuchtereinheit - 1 Applikator für Erwachsene - 1 Verbindungsschlauch - 1 Verbindungskabel - 1 Netzanschlussleitung - 1 Gebrauchsanweisung für den Patienten - 2 Bestellformulare - 1 Kurzanleitung - 1 Patientenpass - 1 Rückumschlag Applikator • • • bildet die Schnittstelle zum Patienten hat die Optik einer Nasenbrille Besteht aus weichem Material mit angenehmem Tragekomfort 1 Nilius G et al (2007): “Multicenterstudie zur Wirksamkeit der transnasalen Insufflation (TNI®) bei leichter bis mittelgradiger pharyngealer Obstruktion und Schlafapnoe”, Somnologie 11, Supplement 1:26 [conference abstract] 9 Therapie Diagnose Produkte TNI®20s oxy (Klinik) & TNI®20 oxy (Homecare) Indikationen Mit TNI®20s oxy und TNI®20 oxy existiert eine neue, sehr einfach anzuwendende Therapiemöglichkeit zur Behandlung respiratorischer Insuffizienz, welche die Lücke zwischen einer einfachen Sauerstofftherapie mit niedrigen Flüssen und der nicht-invasiven Beatmung füllt. Die Therapie ist sehr einfach anwendbar und für den Patienten wegen der Erwärmung und Befeuchtung des Luft/Sauerstoffflusses und des geringen Einflusses auf seine Spontanatmung deutlich angenehmer als vergleichbare Therapieformen. • • Anschlusseinheit Befeuchtereinheit → • • • • COPD Respiratorische Insuffizienz post-operative Atmungsunterstützung prophylaktische Anwendung nach herzchirurgischen Eingriffen Atmungsunterstützung nach einer Extubation Atmungsunterstützung nach der Anästhesie Atmungsunterstützung nach einem Schlaganfall Erkrankungen mit schwerer chronischer Hypoxämie (z.B. pulmonale Hypertonie) Rehabilitation bei Lungererkrankungen Entwöhnung nach Beatmung (Weaning) → • • • • KLINIK → Möglichkeiten der klinischen Anwendung: Applikator Atmungsunterstützung zu Hause mit dem TNI®20 oxy TNI®20s oxy ist auch als preisgünstige Version für den Einsatz in der Homecare erhältlich, mit einer angenehm leisen und zuverlässigen Luftquelle, die ursprünglich für die Schlafmedizinversion des Gerätes, das TNI®20, entwickelt wurde. Es kann Druckluft aus der mobilen Luftquelle mit Sauerstoff aus gebräuchlichen Quellen wie einem Sauerstoffkonzentrator oder Flaschen mit Flüssigsauerstoff kombinieren. → 10 Applikator → → • Atmungsunterstützung bei respiratorischer Insuffizienz • Overlap syndrom • Lungenfibrose • Mukoviszidose • Asthma Attacken, vor allem im Zusammenhang mit kalter Luft oder Entzündung der Atemwege • Rhinitis oder Sinusitis • Kongestive Herzinsuffizienz O2 • Neuromuskuläre- und Thoraxwanderkrankungen (z.B. Amyotrophe Lateralsklerose (ASL), Muskeldystrophie Duchenne (DMD), spinalen Muskel atrophie (SMA), Post-Polio-Syndrom, Post-Tuber kulose-Syndrom) Sauerstoffquelle → Befeuchtereinheit Lüftereinheit HOMECARE Mögliche Einsatzgebiete in der Homecare: Therapie Diagnose Produkte VORTEILE: Patienten können durch die Homecare-Variante TNI®20 oxy früher wieder in ihr soziales Umfeld zu Hause eingegliedert werden, ohne auf die Atmungsunterstützung verzichten zu müssen oder komplizierte und teure Betreuung zu organisieren. • • • • • • • • • • • Entlastung der Atemanstrengung Keine Aspirationsgefahr durch Erbrechen Wärmt und befeuchtet den beigemischten Sauerstoff, dadurch kein Austrocknen von Mund und Nase Verbessert das Abhusten durch die feuchte und warme Luft Keine Unterbrechung der Beatmung beim Abhusten von Bronchialsekret Keine Druckeinstellung oder individuelle Anpassung nötig Verwirbelt das Luft-O2-Gemisch im Totraumvolumen Erhöht dadurch die Ventilation und sorgt für eine CO2-Auswaschung. Verbessert die Atemeffizienz: (VD/VT) und damit die Belüftung der Lunge (VA) Reichert das VD mit „brauchbarem“ Luft-O2-Gemisch an Vermindert den arteriellen CO2 Gehalt durch die Verbesserung der VA. (Mit Verabreichung von nur reinem Sauertoff nicht erreichbar.) Lieferumfang TNI®20 oxy: Lieferumfang TNI®20s oxy: - 1 Lüftereinheit mit Ventil zur Sauerstoffbeimischung (techn. Rückflussreduzierventil) - 1 Befeuchtereinheit - 1 Applikator für Erwachsene - 1 Verbindungsschlauch - 1 Verbindungskabel - 1 Netzanschlussleitung - 1 Sauerstoff- und Sicherheitsschlauch - 1 Gebrauchsanweisung - 1 Mischtabelle - 1 Patientenpass - 1 Befeuchtereinheit - 1 Anschlusseinheit - 1 Applikator für Erwachsene - 1 Verbindungsschlauch - 1 Netzanschlussleitung - 1 Gebrauchsanweisung - 1 Kurzanleitung mit Mischtabelle - 1 Sensorkabel als Zubehör dient der TNI® Gerätewagen als Zubehör dient der Infusionsständer für das TNI®20s oxy Halterung Anschlusseinheit Halterung Befeuchtereinheit → → → Korb Halterung Lüftereinheit → → → Fahrbarer Gerätewagen inklusive der Halterung für die Befeuchter- und Lüftereinheit sowie Korb. Fahrbarer Infusionsständer inklusive der Halterung für die Befeuchter- und Anschlusseinheit sowie Korb. 11 Therapie Produkte Diagnose CPAP Produkte Methode Kontinuierliche positive Überdruckbeatmung, CPAP abgekürzt. Dabei wird bei dem Patienten ein kontinuierlicher, hoher Überdruck über eine Nasen- oder Gesichtsmaske in den oberen Atemwegen aufgebaut. iSleep 20i, 20+ Das iSleep 20i ist ein fortschrittliches, automatisch den Therapiedruck anpassendes CPAPGerät. • • • • • • • • • • Erweitertes und dennoch leicht ver ständliches Bedienfeld mit großen Tasten Grosses grafisches Display mit Hintergrundbeleuchtung Integrieter Wecker Rückseitiger Schlauchanschluss Automatischer Start nach kurzem Stromausfall Flexible Spannunsversorgung für den mobilen Patienten Kompatibel zu einer Vielzahl von Masken Einzigartige Snooze-Funktion Detaillierter Patientenspeicher mit optionaler Speicherkarte (CF) Integrierter AHI und Leckagekalkulation Lieferumfang - Tasche - Netzkabel - Netzteil - Schlauch - Ersatzfeinfilter - Gebrauchsanweisung - Patientenkurzanleitung Das iSleep 20+ ist ein hochwertiges CPAP-Gerät, entwickelt für die Anwendung zu Hause. Dank der einzigartigen eAdapt-Technologie wurde der Therapiekomfort wesentlich erhöht. • • • • • • • • • • eAdapt für höchsten Anwenderkomfort Erweitertes und dennoch leicht verständliches Bedienfeld mit großen Tasten Grosses grafisches Display mit Hintergrundbeleuchtung Integrierter Wecker Rückseitiger Schlauchanschluss Flexible Spannungsversorgung für den mobilen Patienten Kompatibel zu einer Vielzahl von Masken Einzigartige Snooze-Funktion Detaillierter Patientenspeicher mit optionaler Speicherkarte (CF) Integrierter AHI und Leckagekalkulation Warmluftbefeuchter HA 20 • • • • • 12 Vollständig integrierbar Permanente Überwachung des Wasserspiegels durch den transparenten Wasserbehälter Optionale Befeuchtung Individuell einstellbare Befeuchterleistung in 9 Stufen Einfach zu befüllen und leicht zu reinigen Therapie Diagnose CPAP Produkte Methode Kontinuierliche positive Überdruckbeatmung, Bi-LEVEL abgekürzt. Dabei wird bei dem Patienten ein kontinuierlicher, hoher Überdruck über eine Nasen- oder Gesichtsmaske in den oberen Atemwegen aufgebaut. iSleep 22, 25 Das iSleep 22 ist ein BI-LEVEL S-Gerät. • • • • • • • eSync, synchrone Atemzugstriggerung Einstellbarer Inspirationstrigger Automatisch Leckage-kompensierter Exspirationstrigger Fixe Backup-Frequenz Integrierter Wecker Optionale Speicherkarte Integrierte Leckagekalkulation Das iSleep 25 ist ein BI-LEVEL ST-Gerät Lieferumfang • • • • - Tasche - Netzkabel - Netzteil - Schlauch - Ersatzfeinfilter - Gebrauchsanweisung - Patientenkurzanleitung • • • eSync, synchrone Atemzugstriggerung Einstellbare Trigger (Inspiration und Exspiration) Einstellbare Backup-Frequenz und Anstiegszeit Detaillierter Patientenspeicher mit Druck, Flow, Leckage, Frequenz und Tidalvolumen Integrieter Wecker Optionale Speicherkarte Integriete Leckagekalkulation Warmluftbefeuchter HA 20 • • • • • Vollständig integrierbar Permanente Überwachung des Wasserspiegels durch den transparenten Wasserbehälter Optionale Befeuchtung Individuell einstellbare Befeuchterleistung in 9 Stufen Einfach zu befüllen und leicht zu reinigen 13 Therapie Diagnose Produkte Diagnoseprodukt MS310 - portables Screening für schlafbezogene Störungen MS310 ist ein Medizinprodukt zur Aufzeichnung und Diagnostik von schlafbezogenen Störungen in der gewohnten Umgebung des Patienten, insbesondere zur Erkennung und Analyse von Apnoen und Hypopnoen, Entsättigungen, Schnarchgeräuschen, Atemfrequenz, Schnarchfrequenz und Pulsfrequenzänderungen. Außerdem kann das MS310 auch zur CPAP - Therapiekontrolle eingesetzt werden. Aufgezeichnet werden können: • Atemfluss mit einem Thermistor (nasal/oral) oder einer Nasenbrille (Drucksignal) • Atemantrieb (Thorax und Abdomen) mit piezoelektrischen Dehnungssensoren (2 Piezosensoren pro Sensor für optimale Signalqualität) • Sauerstoffsättigung (SpO2) und Pulsfrequenz (inkl. Pulswellenkurve) mit einem Fingerclip (integriertes Pulsoximeter) • Körperlage (Rücken, Bauch, Links, Rechts, Stehend) mit dem integrierten Lagesensor • Schnarchengeräusche, gemessen mit dem integrierten Mikrofon • Schnarchfrequenz, Schnarchpegel, gemessen mit dem integrierten Mikrofon • nCPAP/BiLevel Druck • CPAP/BiLevel- Atmung • Erweiterungsanschluss (Extension-Bus, AUX) steht für weitere Sensoren zur Verfügung Die Sensoren wurden speziell für den ambulanten Einsatz entwickelt und zeichnen sich durch einfache Handhabung aus. Das Design des MS310 Polygraph ist kompakt und benutzerfreundlich. Mit der MS300 Software lassen sich individuelle Reports erstellen. Auf einfachste Weise lassen sich Analyseergebnisse in Form von Farbgraphiken, Wertetabellen und freien Textfeldern zusammenstellen und für den ausgewählten Patienten ausdrucken. Durch die GDT Schnittstelle können Messergebnisse an die Praxissoftware weitergeben werden. Von der Praxissoftware aus kann ein beliebiger Patient in der MS300 Software aufgerufen und dessen Ergebnisse auch graphisch dargestellt werden. 14 Therapie Diagnose Produkte Umfangreiche Optionen 3 PLM Option 3 EKG Option 9 Versichertenkartenlesegerät 3 Softfingerclip VORTEILE: • • • • • • • • • Robuste und einfach anzulegende Sensoren Hoher Tragekomfort (integrierte Sensoren) Schnelle und sichere Diagnostik Automatische und manuelle Analyse Einfache Bedienung Abrechnungsfähigkeit nach EBM (30900) Niedrige Betriebskosten GDT Schnittstelle zur Praxissoftware-Anbindung EKG- / PLM Option (IGEL Leistung) GDT Schnittstelle (Standard 2.1) 1. Kommando: (Satzart 6302) Neue Untersuchung über die Praxis-EDV an die MS310 Software anfordern 2. Kommando: Übermitteln der wichtigsten Untersuchungsergebnisse (Index) an die Praxis-EDV (Satzart 6310) 3. Kommando: Messdaten (Rohdaten) über die Praxis-EDV anfordern und Untersuchungsergebnisse (Satzart 6311) anzeigen lassen Lieferumfang: -1 MS310 Rekorder -1 Sauerstoffsättigungssensor -1 Nasensensor (Thermistor nasal/oral) -1 Trageteller mit Thoraxsensor und Schnarchmikrophon -1 Abdomensensor -2 Tragebänder 1,50m (an der Innenseite farblich markiert) -2 Tragebänder 1,10m -1 Nackengurt -2 Armbänder -1 CPAP Drucksensor, komplett -1 T-Verbindung mit Verbindungsschlauch CPAP -1 USB Kabel -2 Batterien, 1,5 V Mignon -1 Desinfektionsmittel -1 Fixierpflaster -1 CD MS300 Windows Software -1 Gebrauchsanweisung -1 Kurzanleitung für den Patienten -1 Tragekoffer und tasche n e t n e i t inkl. Pa u-Ladegerät Akk 15 Therapie Diagnose Diagnoseprodukt Embletta Gold - tragbares Diagnosegerät Das Embletta Gold ist ein flexibles, kompaktes und optimiertes Aufzeichnungsgerät, das leicht zu handhaben ist. Durch ihre Robustheit eignet sich die Embletta Gold sowohl für das klinische Umfeld, als auch für den Gebrauch im häuslichen Umfeld - ohne Beeinträchtigung der einwandfreien Qualität und der Leistungsstärke, die für das Fachpersonal in der Schlafmedizin inzwischen selbstverständlich geworden sind. Aufgezeichnet werden können: • • • • • • • Atemflussstaudruck (Nasenkanüle) Oraler Atemfluss Maskendruck XFlow* (von XactTrace-Gurten mit RIP-Technologie) Schnarchen (von Nasenkanüle) Differenzdruck Abdominale Bewegung (von XactTrace-Gurten mit RIP-Technologie) Thoraxbewegung (von XactTrace-Gurten mit RIP-Technologie) Sp02 Mittelwert (Oximeter) • • • • • • • • • • • • • • Sp02 Beat-to-Beat (Oximeter) Pulsfrequenz (Oximeter) Pulswelle (Oximeter) Körperlage Bewegung Ereignismarkierung EKG EEG EOG AUX-Eingang (Gleichstrom) (0 – 1 Volt) Online-Aufzeichnung AutoSet-Schnittstelle *Zusätzliches Atemflusssignal als zuverlässiger Ausfallschutz bei Untersuchungen ohne Atemflusssensoren Überragendes Konzept Flexibel • • • 16 Schnittstelle für externe Geräte, z. B. zur PtCO2- Überwachung Aufzeichnung des Atemflusssignals mit gängigen Flussgeneratoren oder Beatmungsgeräten Geeignet für ambulante und stationäre Aufzeichnungen Präzise • • • Benutzerfreundlich • • • • • Praktische wiederaufladbare Batterien Leicht und robust Farbcodierte Anschlüsse erleichtern das Anlegen der Sensoren • Präziser und schneller Druckmesswandler zur Evaluierung von Atemfluss und Atemflusslimitation Hervorragende Qualität des Atemanstrengungssignals vom XactTrace-Gurt dank RIPTechnologie (respiratorische Induktionsplethysmographie) Höchste Genauigkeit bei Titrationsuntersuchungen mit Geräten beliebiger Hersteller Zusätzliches Atemflusssignal von XFlowTM als zuverlässiger Ausfallschutz bei Untersuchungen ohne Atemflusssensoren Eingebauter Aktometer und 3D-Körperlagesensor Automatische Plethysmogramm-Analyse für die Auswertung autonomer Arousals Therapie Diagnose Diagnoseprodukt Embla S4500 Der Embla S4500 PSG-Verstärker erfüllt die Akkreditierungsvoraussetzungen der AASM. Die Ausstattung des Geräts wurde optimiert und besitzt ein farbcodiertes Anschlussfeld auf einem Patienten-Layout. Dieses gestraffte Zweikomponentensystem kommt mit weniger Kabeln aus und erhöht die Zuverlässigkeit der Schlafuntersuchung. Kanäle • • • • • • 8 x EEG 2 x EOG 3 x EMG 1 x EKG 2 x frei definierbar 1 x Thermistor • • • • • • 1 x Schnarchen 1 x Körperlage 2 x Atemanstrengung 1 x Druckmesswandler 1 x Oximeter 8 x DC-Kanäle Abgeleitete Signale Zuverlässig und robust Flow (Nasenkanüle) Schnarchen (Nasenkanüle) Atemflusslimitation/Flattening (Nasenkanüle) R-R Intervalle (EKG) Sp02-Mittelwert Sp02-Beat-to-Beat Pulsfrequenz Pulswelle (Plethysmogramm) Herzfrequenz (EKG) XFlow* XSum* Atemzugvolumen* Phasenanalyse* Atemfrequenz* *XactTrace-Gurte RMI* • • • Intuitives Design • • • • • • • • • Farbcodiertes Anschlussfeld mit Patienten-Layout Impedanzprüfung am Patientenbett mit LED-Statusanzeige Embla PSG-Software – leistungsstark, flexibel und AASM-konform: Vorteile der Embla-Sensoren Komplette Palette an Sensoren und Zubehör Konkurrenzlose Genauigkeit der Messung der Atemanstrengung mittels XactTrace-Sensoren Zusätzliches Atemflusssignal von XFlowTM als zuverlässiger Ausfallschutz bei Untersuchungen ohne Atemflusssensoren Hervorragende Nasaldruckmessung für Atemfluss- und Schnarchsignale Aufzeichnung von bis zu 32 Kanälen Verfügbarkeit von zusätzlichen abgeleiteten Signalen über die Software Integrierter Druckmesswandler mit Luer Lock-Anschluss aus Stahl • • Zeitsparende Auswerte- und Bearbeitungsfunktionen Optimiertes Konzept für Routineaufgaben und natürliche Arbeitsabläufe Beliebige Referenzierung der Kanäle während und nach der Erfassung möglich Einstellbare Abtastraten Verarbeitung von zusätzlichen, mit XactTrace-Sensoren abgeleiteten Signalen, wie Flow, Lungenvolumen und RMI; die XactTrace-Sensoren verwenden die von der AASM empfohlene RIP-Technologie (respiratorische Induktionsplethysmographie) 17 Therapie Diagnose Diagnoseprodukt Embla N7000 Das Embla N7000-System bietet hohe Flexibilität und beste Signalqualität und entspricht so den hohen Anforderungen im klinischen Bereich und der Forschung. Der Embla N7000-Verstärker ist für eine ganze Reihe von Aufgaben unverzichtbar, die ein Höchstmaß an Flexibilität und Effizienz in der Datenabfrage verlangen. Das N7000-System verkörpert eine gelungene Integration von digitaler Technologie und Feinwerktechnik. Das Resultat ist ein ergonomisches PSG und EEG-System. Embla N7000 Spezifikationen • • • • Insgesamt bis zu 60 Aufzeichnungen, wie z. B.: - 32 referenzierte Kanäle (EEG, EOG) - 8 bipolare Kanäle (EEG, EMG) - 11 respiratorische Eingänge - 1 Ereignis-Kanal - 8 DC-Kanäle Integrierter Impedanzcheck Große Auswahl an wählbaren Abtastraten Integrierter Umgebungslichtdetektor Neueste Technologie für höchste Ansprüche Abgeleitete Signale Flow (Nasenkanüle) Schnarchen (Nasenkanüle) Atemflusslimitation/Abflachung (Nasenkanüle) Herzfrequenz (EKG) R-R Intervalle (EKG) XFlow* XSum* Atemzugvolumen* Phasenanalyse* Atemfrequenz* RMI* *XactTrace-Gurte Der Embla Sensor-Vorteil • • • • • 18 • Sowohl für routine- und wissenschaftliche Schlafaufzeichnungen, als auch für ein komplettes 32-KanalEEG Leistungsstarke und flexible Software • • • • • • Rembrandt und Somnologica Schlafdiagnosesoftware, die auf dem Markt führend sind Zeitsparende Auswerte- und Bearbeitungsfunktionen Optimiert für Routineaufgabenstellungen und natürliche Arbeitsabläufe Option, Kanäle während und nach der Erfassung nochmals zu re-referenzieren Einstellbare Abtastrate Berechnung von zusätzlichen Signalen, wie Atemfluss, Lungenvolumen und RMI, von den XactTraceGurten Komplette Palette an Sensoren und Zubehör Unerreichte Genauigkeit der Atemanstrengungsmessung mit Respiratorischer Induktionsplethysmographie durch XactTrace-Sensoren Zusätzliches Atemflusssignal mit XFlow für Schlafstudien ohne Atemflusssensor oder als verlässliche Absicherung Hervorragende Nasaldruckmessung für Atemfluss- und Schnarchsignale Optimierte Länge der Sensorenkabel Therapie Diagnose TNI® Wirkungsweise Allgemeine Informationen Atemhilfe ist u.a. notwendig bei nächtlichen Atmungsstörungen (Schlafapnoen), verschiedenen Arten der respiratorischen Insuffizienz (wie z.B. die chronisch obstruktive Lungenerkrankung, COPD) und bei diversen weiteren Indikationen in der Klinik. Ein hoher Anteil der Bevölkerung leidet unter Atemschwierigkeiten. An Schlafapnoe leidet mindestens 4% der Bevölkerung. Zu den langfristigen Risiken gehören Schlaganfall und Herzinfarkt. Kurzfristig führt die allnächtliche Absenkung des Sauerstoffs im Blut zu: Bluthochdruck, massiver Tagesmüdigkeit und Einschlafattacken, verantwortlich auch für Sekundenschlaf am Steuer. Eine Therapie ist notwendig, wird aber häufig nicht ausreichend vom Patienten angewendet, weil die entsprechende Diagnose oder die Akzeptanz der bestehenden Therapieformen fehlt. So z.B. bei der CPAP (continuous positive airway pressure) Therapie, die nur eine Akzeptanzrate von 60-70% 1,2,3 durch bestehende Probleme mit der Beatmungsmaske hat. Eine weltweit neue Technik zur Atemhilfe ist die Therapie mit nasaler Insufflation (TNI®)4,5,6. TNI® unterstützt die Atmung des Patienten mit einem hohen Fluss befeuchteter und erwärmter Luft oder Luft/Sauerstoff-Mischungen. Bisher wird vorwiegend eine Überdruckbeatmung angewendet, die auf eine fest anliegende und dicht abschließende Nasen- oder Gesichtsmaske angewiesen ist. Durch den Verzicht auf die Maske bei der TNI®-Methode treten keine der massiven Nebenwirkungen wie z.B. Druckstellen, chronische Augenentzündungen und Angstzustände wegen des Überdrucks auf. Dadurch ist diese einfache und anwenderfreundliche Therapieform der Atemhilfe für die Nutzung im Schlaf und für chronisch Kranke eine echte Alternative. Die soziale und klinische Situation der Patienten wird verbessert. Die bisher angefallenen Kosten einer Diagnosestellung und Therapieeinweisung bei Schlafapnoeikern sinken, da ein Aufenthalt im Schlaflabor bei einem Teil der Patienten ganz entfällt. TNI® Wirkungsweise Messungen von der Johns Hopkins Klinik7,8 zeigten bereits, dass die Atmung unter High-Flow-Beatmung, wie beispielsweise mit dem Gerät TNI®20, effektiv entlastet wird. Der PEEP (positive end-expiratory pressure) wird messbar höher, so dass der maximale inspiratorische Fluss und das Tidalvolumen erhöht werden. Dieser unterstützende Effekt erhöht die Ventilation und verringert die Atmungsanstrengung. Als Folge konnte auch eine Reduzierung der Atemfrequenz beobachtet werden. Dadurch eröffnet sich für die vergleichsweise angenehme atmungsunterstützende Methode im Klinikbereich neben der schlafmedizinischen Anwendung ein großes Potential. TNI Off TNI 20L/min Expiration Flow (ml/s) Inspiration PSG Hypopnea Hypopnea 0 (cmH2O) -15 Microphone 100 97 95 SaO2 (%) 93 90 30s Figure 2: Effect on Sleep Disordered Breathing 1 Rauscher H et al (1993), “Self-reported vs. measured compliance with nasal CPAP for obstructive sleep ap-nea.” Chest 103:1675-1680 2 Kribbs, NB et al (1993), “Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea.” Am. Rev. Respir. Dis. 147:887-895 3 Lavie P (1999), “Treatment of Sleep Apnea: Unmet Needs.“ Chest 116:1501-1503 4 Stoohs RA, Schneider H (2005), „Eine neue therapeutische Strategie zur Behandlung der oberen Atemwegs-obstruktion im Schlaf: Insufflation von Luft durch eine Nasenkanüle.“ Pneumologie 2005:59 5 McGinley BM et al (2007), “A nasal cannula can be used to treat obstructive sleep apnea.” Am. J. Respir. Crit. Care Med. 176(2):194-200 6 Nilius G et al (2007), “Multicenterstudie zur Wirksamkeit der transnasalen Insufflation (TNI®) bei leichter bis mittelgradiger pharyngealer Obstruktion und Schlafapnoe“ Somnologie 11, Supplement 1:26 [conference abstract] 7 Stoohs RA, Schneider H (2005), Eine neue therapeutische Strategie zur Behandlung der oberen Atemwegsobstruktion im Schlaf: Insufflation von Luft durch eine Nasenkanüle [Abstrakt]. Pneumologie 59(4) 8 McGinley BM et al (2007), A nasal cannula can be used to treat obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 176(2):194-200 19 Therapie Diagnose TNI® Wirkungsweise Wirkungsweise 1: Erhöhung des Außendrucks Erhöhter Widerstand nach Außen und Verwirbelungen erhöhen den Druck Auch ein hoher Fluss bei offener Nase außen führt zu geringerer Druckdifferenz Die TNI® Therapie vermindert die Druckdifferenz, die der Atemantrieb zwischen Thorax und oberen Atemwegen erzeugt, bei 20 Liter pro Minute Fluss je nach Anatomie der oberen Atemwege um ca. 2-4 mBar. Die Beziehung zwischen Druck und Fluss ist dabei nicht linear! Wirkungsweise 2: Erhöhung des "PEEP" PEEP: “Positive End Expiratory Pressure” 1. Erhöhung des PEEP ↓ 2. Verbesserter inspiratorischer Fluss ↓ 3. Erhöhung des Tidalvolumens ↓ • Die TNI® Therapie erzeugt einen PEEP von ca. 2 – 4 mBar • Ersatz der „Lippenbremse“ in der Nacht – aktive Ausatmung 4. Verminderung der Atemarbeit ↓ 5. Verschiebung des Pcrit • Entlastet die Atemmuskulatur Atemfluss Oesophagusdruck PEEP ohne TNI PEEP mit TNI Nach Schneider und Schwartz, APSS 2005 Mögliche Wirkungsweise 3: "Spannung" der oberen Atemwege? 1. Erhöhung des PEEP 2. Verminderung der Druckschwankungen während der Atmung 3. Anatomische „Streckung“ der oberen Atemwege vermindern die Kollapsibilität Wird in wissenschaftlichen Studien untersucht 20 Therapie Diagnose TNI® Wirkungsweise Mögliche Wirkungsweise 4: Erhöhung des Außendrucks Atemfluss Aktivierung eines Kontrollmechanismus über Rezeptoren in der Nase und/oder den oberen Atemwegen. Hinweis: Ein Teil des Effektes ist erst nach einigen Atemzügen zu sehen. Oesophagusdruck TNI ON Wesentliche Stabilisierung erst nach 6-7 Atemzügen Resultate aus Studien und Tests Erwachsene OSA 50 Events/hr 40 RDI 30 60 60 60 60 50 50 50 50 40 40 40 40 30 30 30 30 20 20 20 20 10 10 10 10 0 0 0 20 10 0 0 1 Kinder OSA 60 Total 60 NREM 40 p <0.01 40 AHI (Events/hr) AHI (Events/hr) 30 30 20 20 20 10 10 10 0 0 BSL TNI REM p <0.01 40 30 Figure 3: Sleep Disordered Breathing Indices On and Off TNI 50 p <0.01 AHI (Events/hr) 60 50 50 2 Pre - Post treatment 0 BSL TNI BSL TNI 21 Therapie TNI® Wirkungsweise Diagnose Allgemeine Informationen zu COPD und respiratorische Insuffizienz COPD wird nach Schätzungen bereits im Jahre 2010 die vierthäufigste Todesursache in Europa darstellen, 2002 starben weltweit 2,75 Mio. Menschen an den Folgen der Erkrankung. COPD kann nicht geheilt werden, daher ist im Krankheitsverlauf u.a. die langfristige, häusliche Atmungsunterstützung maßgeblich. Damit die notwendige Unterstützung der Atmung vom Patienten angenommen wird, ist eine angenehme Therapieform sehr wichtig. Mannino et al. (2007), Global burden of COPD: risk factors, prevalence, and future trends. The Lancet 370:765-773. Die übliche reine Sauerstofftherapie reicht bei „Overlap Syndromen“ (z.B. Obstruktionen und COPD) nicht aus (s. Arbeitshilfe schlafbezogene Atmungsstörungen, Sozialmedizinische Expertengruppe Versorgungsstrukturen der MDK Gemeinschaft, September 2006). Hyperkapnische Patienten, also mit einem erhöhten Kohlendioxidgehalt im Blut ( > ca. 45 mmHg) können mit CPAP in Verbindung mit O2 nicht behandelt werden, da die Rückatmung in das Gerät die CO2 Problematik verschlimmert. Das führt zum Einsatz teurer Beatmungsgeräte (BiLevel). TNI® eignet sich sehr gut für Patienten mit Overlap Syndromen. Erste Studien zeigen, dass TNI® besser CO2 auswäscht als CPAP und besser für die Apnoen geeignet ist als Sauerstofftherapie, welche diese sogar verschlimmert1. Um mit der traditionellen NIV die PaCO2 –Werte zu verbessern,werden sehr hohe Drücke benötigt (im Durchschnitt Einatmungsdruck 27,7 +/- 5,9 cm H2O2. Studien konnten zeigen, dass sowohl der Sauerstoffanteil in der Inspirationsluft (FIO2) als auch die Sauerstoffsättigung, gekoppelt mit einer Reduzierung der Atemfrequenz, bei einer High-Flow-Beatmungstherapie höher waren als mit der Maske bei NIV3,4. TNI® Wirkungsweise Die aktuellen Ergebnisse zeigen, dass TNI ® 20 oxy die Blutgaswerte deutlich verbessert, und im Unterschied zur einfachen Sauerstofftherapie mit niedrigen Flüssen nicht nur einen Anstieg der Sauerstoffsättigung bewirkt, sondern auch einen Rückgang des CO 2 Partialdrucks. Die Atmung wird nachweislich unterstützt, die Atemarbeit verringert und der Patient erholt sich spürbar. 1 Brown C et al (2007), Treatment of Sleep-Disordered Breathing in Chronic Obstructive Pulmonary Disease with Nocturnal Nasal Insufflation. Proc. Am. Thor. Soc. 2007: A709 [conference abstract] 2 Windisch W et al (2006), Outcome of patients with stable COPD receiving controlled noninvasive positive pressure ventilation aimed at a maximal reduction of Pa(CO2). 3 Walsh J (2002): “Winning by a nose”. Advance for Respiratory Practioners 22. 4 Tiep B. & Barnett M. (2002): “High flow nasal vs. high flow mask oxygen delivery: tracheal gas concentrations through a head extension airway model”, Respir. Care 47(9). 22 Therapie Diagnose TNI® Wirkungsweise BGA Gruppen unter herkömmlicher Therapie Progression der Respiratorischen Insuffizienz Gruppe 1: paO2 ↑ und paCO2 ↓ ► wünschenswert Gruppe 2: paO2 ↑ und paCO2 = ► akzeptabel Gruppe 3: paO2 ↑ und paCO2 ↑ ► Problem Gruppe 4: paO2 = und paCO2 =↑ ► großes Problem NIV Nächtliche Hypoventilation Vorbote der nächsten Stufe •Lippenbremse Resp. Insuffizienz LTOT Kaum merklich TNI CO2 - Auswaschung durch TNI® TNI+O2 Applikator Zeit TNI anstatt NIV Luft-/Sauerstoff Gemisch CO2 Fallbeispiele respiratorischer Insuffizienz 23 Therapie Diagnose TNI® Wirkungsweise TNI® Wirkungsweise bei COPD TNI® ... • verwirbelt das Luft-O2-Gemisch im Totraumvolumen. • erhöht dadurch die Ventilation und sorgt für eine CO2-Auswaschung. • verbessert die Atemeffizienz: (VD/VT) und damit die Belüftung der Lunge (VA). • reichert das VD mit „brauchbarem“ Luft-O2-Gemisch an. • vermindert den arteriellen CO2 Gehalt durch die Verbesserung der VA. (Mit Verabreichung von nur reinem Sauertoff nicht erreichbar.) • wärmt und befeuchtet den beigemischten Sauerstoff. • verbessert das Abhusten durch die feuchte und warme Luft. • ist nebenwirkungsfrei. • die positiven Ergebnisse können in der BGA nachgewiesen werden. ... 24 IST EINE NEUE THERAPIE Therapie TNI® Studien Diagnose 25 Therapie TNI® Studien 26 Diagnose Therapie TNI® Studien Diagnose 27 Therapie TNI® Studien 28 Diagnose TNI® Studien Therapie Diagnose Correct Citation for publication: Treatment of Sleep-Disordered Breathing in Chronic Obstructive Pulmonary Disease with Nocturnal Nasal Insufflation. C.D. Brown, M.D., L.B. Herpel, M.D., K.L. Goring, M.D., P.L. Smith, M.D., R.A. Wise, M.D., H. Schneider, M.D., Ph, A.R. Schwartz. Proc Am Thor Soc 2007,, A709 Poster Board #F64] Treatment of Sleep-Disordered Breathing in Chronic Obstructive Pulmonary Disease with Nocturnal Nasal Insufflation, [Publication Page: A709] C.D. Brown, M.D., L.B. Herpel, M.D., K.L. Goring, M.D., P.L. Smith, M.D., R.A. Wise, M.D., H. Schneider, M.D., Ph, A.R. Schwartz, M.D., Baltimore, MD Introduction: Sleep-disordered breathing (SDB) with inspiratory flow limitation (IFL) is common in patients with COPD, even without frank apneas or hypopneas. Nocturnal nasal insufflation (NNI) may relieve IFL and upper airway obstruction during sleep to improve gas exchange and sleep quality in COPD. Methods: Non-hypoxemic individuals with a wide range of COPD severity underwent baseline polysomnography to determine the severity of sleep-disordered breathing. On a separate night, subjects were exposed to alternating trials of NNI (20 L/min), oxygen (2 L/min), and room air during NREM sleep. SDB indices including arousal-terminated IFL event rates, the apnea-hypopnea index (AHI) and transcutaneous carbon dioxide (TcCO2) were compared among conditions. Results: NNI decreased the arousal frequency, AHI, and TcCO2 from the room air and oxygen conditions. NNI resulted in a 50% reduction in IFL events compared to room air (p=0.04) whereas oxygen was associated with a 120% increase in IFL events. TcCO2 increased during oxygen treatment and fell during NNI compared to the room air condition (Figure 1, p=0.001 for NNI vs. room air). Conclusion: NNI decreased SDB and improved nocturnal ventilation in patients with COPD. The CO2 response to NNI suggests that IFL contributes to the development of nocturnal hypoventilation in COPD and that NNI may constitute a novel treatment for SDB in COPD. 29 Therapie TNI® Studien Diagnose Predictors for Treating Obstructive Sleep Apnea With an Open Nasal Cannula System (Transnasal Insufflation) Georg Nilius, Thomas Wessendorf, Joachim Maurer, Riccardo Stoohs, Susheel P. Patil, Norman Schubert and Hartmut Schneider Chest 2010;137;521-528; Prepublished online December 1, 2009; DOI 10.1378/chest.09-0357 The online version of this article, along with updated information and services can be found online on the World Wide Web at: http://chestjournal.chestpubs.org/content/137/3/521.full.html CHEST is the official journal of the American College of Chest Physicians. It has been published monthly since 1935. Copyright 2010 by the American College of Chest Physicians, 3300 Dundee Road, Northbrook, IL 60062. All rights reserved. No part of this article or PDF may be reproduced or distributed without the prior written permission of the copyright holder. (http://chestjournal.chestpubs.org/site/misc/reprints.xhtml) ISSN:0012-3692 Downloaded from chestjournal.chestpubs.org at Welch Medical Library - JHU on April 13, 2010 © 2010 American College of Chest Physicians 30 Therapie TNI® Studien CHEST Diagnose Original Research SLEEP MEDICINE Predictors for Treating Obstructive Sleep Apnea With an Open Nasal Cannula System (Transnasal Insufflation) Georg Nilius, MD; Thomas Wessendorf, MD; Joachim Maurer, MD; Riccardo Stoohs, MD; Susheel P. Patil, MD, PhD; Norman Schubert, R-PSGT; and Hartmut Schneider, MD, PhD Background: Obstructive sleep apnea (OSA) is a disorder that is associated with increased morbidity and mortality. Although continuous positive airway pressure effectively treats OSA, compliance is variable because of the encumbrance of wearing a sealed nasal mask throughout sleep. In a small group of patients, it was recently shown that an open nasal cannula (transnasal insufflation [TNI]) can treat OSA. The aim of this larger study was to find predictors for treatment responses with TNI. Methods: Standard sleep studies with and without TNI were performed in 56 patients with a wide spectrum of disease severity. A therapeutic response was defined as a reduction of the respiratory disturbance index (RDI) below 10 events/h associated with a 50% reduction of the event rate from baseline and was used to identify subgroups of patients particularly responsive or resistant to TNI treatment. Results: For the entire group (N 5 56), TNI decreased the RDI from 22.6 6 15.6 to 17.2 6 13.2 events/h (P , .01). A therapeutic reduction in the RDI was observed in 27% of patients. Treatment responses were similar in patients with a low and a high RDI, but were greater in patients who predominantly had obstructive hypopneas or respiratory effort-related arousals and in patients who predominantly had rapid eye movement (REM) events. The presence of a high percentage of obstructive and central apneas appears to preclude efficacious treatment responses. Conclusion: TNI can be used to treat a subgroup of patients across a spectrum from mild-to-severe sleep apnea, particularly if their sleep-disordered breathing events predominantly consist of obstructive hypopneas or REM-related events but not obstructive and central apneas. CHEST 2010; 137(3):521–528 Abbreviations: CPAP 5 continuous positive airway pressure; NREM 5 nonrapid eye movement; OSA 5 obstructive sleep apnea; RDI 5 respiratory disturbance index; REM 5 rapid eye movement; RERA 5 respiratory effort-related arousal; TNI 5 transnasal insufflation; TST 5 total sleep time sleep apnea (OSA) is a common disorObstructive der that is associated with increased morbidity and mortality.1,2 Continuous positive airway pressure (CPAP) is the only treatment shown to reduce both cardiovascular and neurobehavioral morbidities.3,4 Approximately 25% to 50% of patients with OSA will either refuse or not tolerate the use of CPAP therapy,5,6 primarily because of the mask and head gear required for maintaining positive pressure during sleep.7,8 Thus, improvements in nasal interfaces and overall comfort might improve adherence to therapy. Manuscript received February 10, 2009; revision accepted September 24, 2009. Affiliations: From the HELIOS-Klinik Hagen-Ambrock Germany (Dr Nilius), University Witten-Herdecke; Ruhrlandklinik (Dr Wessendorf), Essen, Germany; HNO-Klinik der Universität (Dr Maurer), Mannheim, Germany; Somnolab (Dr Stoohs), Dortmund, Germany; and the Department of Pulmonary and Critical Care Medicine (Drs Patil and Schneider, Mr Schubert), Johns Hopkins University, Baltimore, MD. Funding/Support: This study was sponsored by Selion Inc. (HL 72126, P50 HL084945-01). Correspondence to: Georg Nilius, MD, Ambrocker Weg 60, 58091 Hagen, Germany; e-mail: [email protected] © 2010 American College of Chest Physicians. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (www.chestpubs.org/ site/misc/reprints.xhtml). DOI: 10.1378/chest.09-0357 www.chestpubs.org CHEST / 137 / 3 / MARCH, 2010 521 Downloaded from chestjournal.chestpubs.org at Welch Medical Library - JHU on April 13, 2010 © 2010 American College of Chest Physicians 31 Therapie TNI® Studien Recently, it has been demonstrated that the transnasal insufflation (TNI) of warm and humidified air at a flow rate of 20 L/min through an open nasal cannula system led to a therapeutic reduction of the sleep-disordered event rate in approximately onethird of the patients studied.9 Because of the small number of patients studied, it was not possible to determine polysomnographic predictors for treatment responses. In the current study, we examined the polysomnographic responses to TNI in a larger clinical sample of patients. The primary goal of this study was to identify polysomnographic characteristics on a baseline sleep study that may be used to predict TNI treatment responses. Because the major mechanism of action of TNI appears to be through a small increase in end-expiratory pharyngeal pressure, lower levels of pressure should be sufficient to alleviate hypopneas.4,10 We therefore hypothesized that TNI would have a positive therapeutic effect in patients with sleep-disordered breathing and that TNI would be more effective in treating patients who predominantly have hypopneas rather than apneas. Materials and Methods The study was conducted under the supervision of the ethics committees of the Universität Witten-Herdecke and according to “Good Clinical Practices” and the Declaration of Helsinki.11 In addition, the study was reviewed and approved by the institutional review board of each participating center, including the reading center at the Johns Hopkins Sleep Disorders Center, which scored all sleep studies and performed the data analysis. Study procedures, risks, and benefits were reviewed, and written informed consent was obtained for each participant prior to enrollment in the study. Subjects Recruitment of participants for the study was conducted at four sleep disorder centers between November 2006 and August 2007. Participants were eligible if they met all of the following inclusion criteria: (1) a baseline sleep study that demonstrated a total nonrapid eye movement (NREM) and rapid eye movement (REM) sleep stage respiratory disturbance index (RDI) of . 5 events per hour, (2) presence of excessive daytime sleepiness by self-report, (3) clinical criteria for CPAP treatment according to the standard practice of care of each sleep laboratory, (4) patients had not previously used CPAP in the management of their disease, and (5) a CPAP titration study that demonstrated a nasal pressure less than the median prescribed pressure of each laboratory (range of CPAP pressure was from 8-11 cm H2O). Patients were excluded from participating in the study, if they had significant comorbidities, including (1) a past surgery of the nose or pharyngeal structure in the last 12 months or other medical and mechanical treatment of OSA; (2) other sleep-associated disorders, such as restless leg syndrome, periodic leg movement disorder, central sleep apnea disorders, or Cheyne-Stokes breathing; (3) lung disorders (COPD) and heart failure; and (4) bleeding disorders or use of oral anticoagulation medication. 522 Diagnose Study Materials Polysomnography: Standard sleep studies were conducted using the study sites’ local recording platform (Alice [Respironics Deutschland GmbH & Co. KG; Herrsching, Germany], Rembrandt [Medcare Deutschland GmbH; Wessling, Germany], Somnologica [Embla Systems GmbH; Munich, Germany], and Jaeger [VIAASYS Healthcare GmbH; Höchberg, Germany]) according to standard clinical practice of each center and the guidelines of the German Sleep Medicine Society (Deutsche Gesellschaft fuer Schlafmedizin). All sleep studies consisted of the following signals: EEG (montage C3/A2 and C4/A4); right and left electrooculogram; chin, left and right leg electromyogram; a single, bipolar ECG; oxyhemoglobin saturation by finger pulse oximeter; nasal and oral airflow monitored by a nasal pressure transducer and an oronasal thermistor; chest and abdominal excursions by inductive plethysmography or strain gauges; snoring sounds with a neck microphone; and body position by a mercury gauge and video monitoring. Recordings were stored in real time (European Data Format) and sent to a central reading center at the Johns Hopkins Sleep Disorders Center via an independent study monitoring agency (Marshall Assoc.; Maxismedical; Frankfurt, Germany). At the reading center, recordings were first deidentified and formatted to provide uniform scoring platforms for all studies. Sleep studies were scored by experienced registered polysomnographic technicians who were unaware of the purpose and hypotheses of the current study. Finally, all scored sleep studies were reviewed by a Diplomate of American Board of Internal Medicine, Sleep Medicine (S. P. P.), who was also masked to the treatment status. Polysomnographic indices were then entered into a custom-made database after quality assurance assessments confirmed reliability for scoring and reviewing sleep stages, respiratory events, and respiratory arousals, as previously published.9 Study Protocols The study protocol consisted of three consecutive nights. Night 1 (baseline sleep study) was used for characterizing standard sleep and breathing indices off TNI. Night 2 (CPAP titration study) was used for the stepwise increase in nasal pressure and the observation of the airflow signal from the built-in pneumotachographs of the CPAP devices. The effective nasal pressure for CPAP was defined as the pressure at which inspiratory flow limitation was abolished and a normal non-flow limited airflow contour ensued during NREM and REM sleep. On the third night (TNI treatment night), participants were asked to initiate sleep on 10 L/min on TNI for reasons of comfort. After lights out, TNI was then increased in a ramplike fashion (automatically) to 20 L/min over a period of 5 to 10 min. Sleep Study Analysis Polysomnographic indices were obtained from sleep studies that had at least 240 min of recording time or 180 min of sleep, and signal quality of airflow and respiratory effort belts allowed discerning the type and duration of sleep-disordered respiratory events. Out of a total of 65 enrolled patients, 56 patients met these criteria. Sleep stages and arousal were defined according to published criteria.12 Respiratory events were defined as follows: Obstructive apnea and presence of central sleep apnea was identified if the airflow was absent or nearly absent for at least 10 s. Hypopnea was identified when there was a . 30% reduction in airflow that was associated with a decrease in oxyhemoglobin desaturation of more than 3%. In addition, respiratory effort-related arousals (RERAs) were identified as a series (more than three breaths) of flow-limited breaths that demonstrated either a discernible reduction in airflow from baseline of , 30% or an increase in respiratory effort without concordant increases in airflow that was terminated by an arousal. Central apnea was identified if the absence of airflow was associated without discernable excursions of either the Original Research Downloaded from chestjournal.chestpubs.org at Welch Medical Library - JHU on April 13, 2010 © 2010 American College of Chest Physicians 32 Therapie TNI® Studien chest or abdomen. The RDI was defined as the number of apneas, hypopneas, and RERAs per hour for NREM, REM, and total sleep. The predominance of specific events was used to define three subgroups with mild upper airway obstruction: (1) Patients with increasing proportions of obstructive hypopneas were identified by the percent rate of hypopneas, which was computed by calculating the proportions of obstructive hypopneas to all respiratory events (apneas, hypopneas, and RERAs) for each patient during NREM sleep and creating subgroups of patients with increasing proportions of hypopneas (. 50%, . 66%, and . 90% hypopneas, respectively). (2) Patients with a predominance of RERAs (upper airway resistance syndrome) were identified if the apnea and hypopnea rate was , 10 events/h and if they had an RERAs to apnea + hypopnea ratio of . 2:1. (3) Patients with REM-dependent sleep-disordered breathing had a NREM event rate of , 10 events/h and a REM-to-NREM event ratio of . 2:1, as described previously.13,14 Statistical Analysis The primary outcome of treatment efficacy of TNI was defined as follows: for individuals with a baseline RDI . 10 events/h, if the RDI fell more than 50% and below 10 events/h sleep, and for individuals whose baseline RDI was , 10, if the RDI fell below five events/h and by more than 50% from baseline. Based on the findings of the previous study,9 a sample size calculation revealed that 40 subjects were needed with 80% power and type 1 error of 5% in order to detect a change in RDI of 20 events/h. A paired Student t test was used to compare the RDI between baseline and treatment conditions in all sleep states. In secondary analyses, we examined potential polysomnographic, demographic, and anthropometric factors that might predict a treatment response or nonresponse to TNI. These factors included the effects of age, sex, BMI, prescribed CPAP pressure, the proportion of hypopneic events, and central sleep apnea. To determine whether the treatment responses observed differed from normal night-to-night variability of the RDI, we first determined the proportion of patients that were effectively treated for the entire group and for subgroups with increasing proportions of hypopneas (. 50%, . 66%, and . 90% hypopneas, respectively). Since the treatment night was not randomized, the observed therapeutic effects of TNI may be attributed to the expected spontaneous night-to-night variability in sleep apnea severity. We therefore compared TNI response rates to the reported night-to-night variability in sleep apnea severity reported in the study of Stepnowsky et al,15 (13%), using the one-sample test of proportions. In the subset of patients who predominantly have REM-related obstructive sleep apnea, the Wilcoxon matchedpairs signed-rank test was used to compare differences between baseline and treatment condition, because of the nonnormal distribution of the data. Diagnose Table 1—Anthropometric and Polysomnographic Indices at Baseline Data Numbers Sex, male (female) 42 (12) Age, y 50.5 6 10.4 2 BMI, kg/m 28.0 6 3.5 Polysomnographic indices Prescribed CPAP, cm H2O 7.5 6 1.9 TST, min 332.0 6 65.0 SE, % TST 82.2 6 12.2 N1, % TST 14.0 6 11.8 N2, % TST 56.3 6 12.7 N3, % TST 10.7 6 9.5 REM, % TST 19.0 6 7.0 RDI, events/h 22.6 6 15.6 NREM-RDI, events/h 21.9 6 16.4 REM-RDI, events/h 24.4 6 21.3 Sleep apnea subgroups Predominance of RERAs (UARS), No. of patients (%) 3 (5) REM event predominance, No. of patients (%) 11 (20) 26 (46) Predominance of hypopneas (. 50%), No. of patients (%) 16 (29) Predominance of apneas (. 50%), No. of patients (%) CPAP 5 continuous positive airway pressure; N1 5 sleep stage 1; N2 5 sleep stage 2; N3 5 sleep stage 3; NREM 5 nonrapid eye movement; RDI 5 respiratory disturbance index; REM 5 rapid eye movement; RERA 5 respiratory effort-related arousal; SE 5 sleep efficiency; TST 5 total sleep time; UARS 5 upper airway resistance syndrome. Polysomnographic Responses to TNI Figure 1 shows mean and individual responses of the RDI to TNI compared with baseline for the entire night, and for NREM and REM sleep stages. On average, TNI led to a slight reduction of the RDI in NREM, REM, and the entire night, due to heterogeneous response rates between participants. Although TNI decreased RDI in the majority of patients, eight participants demonstrated a marked increase in the RDI (as defined by in increase of more Results Subjects Table 1 shows the anthropometric and polysomnographic characteristics of the baseline sleep study of all participants. The study population consisted mostly of men (79%). The majority of patients had obstructive hypopnea or obstructive apnea, suggesting a moderateto-severe degree of upper airway obstruction, whereas only a minority had milder degrees of upper airway obstruction (upper airway resistance syndrome, n 5 3; or predominant REM events, n 5 11). www.chestpubs.org Figure 1. Responses of RDI to TNI. 5 mean ± SD; x 5 example of a single responder (see Figure 2, case 1); * 5 example of a nonresponder (see Figure 2, case 2); NREM 5 nonrapid eye movement; RDI 5 respiratory disturbance index; REM 5 rapid eye movement; TNI 5 transnasal insufflation. CHEST / 137 / 3 / MARCH, 2010 523 Downloaded from chestjournal.chestpubs.org at Welch Medical Library - JHU on April 13, 2010 © 2010 American College of Chest Physicians 33 Therapie TNI® Studien than 10 events/h compared with baseline) due to positional apneas and technical limitations. (See Limitations in “Discussion” section.) Figure 2 shows the respiratory pattern at baseline and on TNI in one patient (see asterisk in Fig 1) who had a complete resolution of sleep-disordered breathing (Fig 2A) and in another patient (see x in Fig 1) in whom the RDI increased significantly with TNI (Fig 2B). In the patient shown in Figure 1A, TNI abolished inspiratory flow limitation and stabilized the breathing pattern. In contrast, in the patient shown in Figure 1B the RDI increased from 20 to 58 events/h because of a positional effect on sleep apnea severity. This patient spent considerably more time supine on the treatment night compared with baseline (43% vs 23% total sleep time [TST], respectively). When comparing the RDI for the supine position, the RDI decreased from 72 events/h with 54% apneas to 51 events/h with no apneas. Thus, albeit there was no clinical efficacious reduction in the RDI, TNI converted apneas to hypopneas. For the entire group, we observed that TNI led to a conversion of apneas to hypopneas without increasing the rate of RERAs. Specifically, the percent rate of apneas to all events (apneas/hypopneas and RERAs) decreased from 46.3% 6 4.4% to 18.4% 6 4.1% (P , .05) during REM sleep and 34.4% 6 7.4% vs 27.4% 6 8.1% TST (not significant) during NREM sleep. The rate of RERAs during NREM and REM sleep combined was 5.8 6 0.9 events/h at baseline and 3.9 6 0.5 events/h at treatment night on TNI. Diagnose Predictors for Efficacious Responses to TNI Anthropometric and Clinical Characteristics; Event Type and Rate: Anthropometric characteristics, including sex, age, BMI, prescribed CPAP pressure, and baseline polysomnograph, indies, did not differ between those participants who met our definition for a response to those who had a suboptimal reduction in the RDI (see Table 2). Figure 3 shows how polysomnographic characteristics including sleep apnea severity (Fig 3A), event type (Fig 3B), and the degree of upper airway obstruction as defined by the proportion of hypopneas to all events in percent (Fig 3C) influence the response rate to TNI. First, we found that RDI did not predict response rates to TNI (Fig 3A). Second, in the eight individuals who had .10 % central apneas at baseline (Fig 3B), none had a positive response rate to TNI. The response rate was greatest in patients who predominantly had obstructed compared with central events. Third, a greater hypopnea rate was associated with an increased response rate in a dose-dependent fashion (Fig 3C). Although patients who predominantly had apneas (. 50% of all events) had a low response rate of 18.8% (three of 16 patients), the response rate increased from 33% (. 50% hypopnea), 38% (. 66% hypopnea), and to 50% (. 90% hypopnea) with increasing degrees of hypopneas, respectively. The response rate to TNI was significantly greater in all patients with obstructive events (Fig 3B) and all groups independent of the proportion of hypopneas (Fig 3C) compared with the expected night-to-night variability in sleep apnea severity of 13%.15 Figure 2. Respiratory pattern of a responder. (A) Case 1, marked with x in Fig 1. (B) Case 2, a nonresponder (marked with * in Fig 1). Spo2 (%) 5 oxyhemoglobin saturation. See Figure 1 legend for expansion of other abbreviations. 524 Original Research Downloaded from chestjournal.chestpubs.org at Welch Medical Library - JHU on April 13, 2010 © 2010 American College of Chest Physicians 34 Therapie TNI® Studien Diagnose Table 2—Comparison of Anthropometric and Clinical Data Between Responder and Nonresponder Variable Sex, male (female) Age, y BMI, kg/m2 Prescribed CPAP, cm H2O TST, min SE, % TST N1, % TST N2, % TST N3, % TST REM, % TST RDI, events/h NREM-RDI, events/h Suboptimal Response Therapeutic Response 34 (7) 50.1 6 10.0 28.4 6 3.1 7.6 6 1.9 15 (5) 51.5 6 11.7 26.8 6 4.3 7.1 6 1.9 334.2 6 69.8 81.0 6 0.1 14.0 6 0.1 58.0 6 0.1 9.0 6 0.1 19.0 6 0.1 21.6 6 15.0 20.9 6 15.1 325.9 6 48.7 84.0 6 0.1 15.0 6 0.2 52.0 6 0.2 14.0 6 0.1 19.0 6 0.1 25.2 6 17.5 24.6 6 19.7 See Table 1 for expansion of abbreviations. Subgroups With Mild Upper Airway Obstruction: A predominance of RERAs (upper airway resistance syndrome) was observed in three individuals at baseline and in six on TNI. The total RDI decreased in two individuals below five events/h, and the third developed central apneas on TNI at a rate of 12 events/h, offsetting the reduction in RERAs in individuals with REM-sleep-disordered breathing. A predominance of REM-sleep-disordered breathing was observed in 10 individuals at baseline and five on TNI. As shown in Figure 4A, all but one individual with REM-sleep-disordered breathing at baseline reduced the REM RDI on TNI (mean decrease from 24.3 6 2.0 to 11.6 6 2.9 events/h). The nonresponder slept predominantly on his side during the baseline sleep study but mostly supine during TNI treatment night. For this group, 55% had an efficacious decrease in REM RDI as defined above (Fig 4B). Moreover, four of the 10 individuals decreased the total RDI below five events/h. Discussion In this study, we confirmed that TNI reduced the overall sleep-disordered breathing event rate below a clinically acceptable threshold in approximately onequarter of patients who required CPAP therapy. Our findings indicate that: (1) Patients with a wide range of RDI had similar response rates, indicating that treatment responses to TNI are independent of the sleep apnea disease severity. (2) The response rate was markedly increased in patients who predominantly had hypopneas and patients with mild upper airway obstruction as indicated by a predominance of RERAs and REM-related events. (3) The presence of . 10% central apneas predicted poor response. (4) Anthropometric characteristics and the level of prescribed CPAP pressure did not predict treatment responses. Thus, TNI treatment responses depend on the severity, but not the frequency, of upper airway obstruction. Predictors of Response to TNI As in our prior TNI pilot study,9 we found that TNI reduced apneas and hypopneas. The major reason for decreased RDI can be attributed primarily to the increase in pharyngeal pressure that is associated with an increase in the inspiratory airflow.16 At a rate of 20 L/min, TNI increases nasal pressure by approximately 2 cm H2O and increases inspiratory airflow by approximately 100 mL/s.9 In general, the peak inspiratory airflow for hypopneas and for flow-limited breaths averages approximately 150 to 200 mL/s.10 Figure 3. Predictors of efficacious responses to TNI. RERAS 5 respiratory effort-related arousals. See Figure 1 legend for expansion of abbreviations. www.chestpubs.org CHEST / 137 / 3 / MARCH, 2010 525 Downloaded from chestjournal.chestpubs.org at Welch Medical Library - JHU on April 13, 2010 © 2010 American College of Chest Physicians 35 Therapie TNI® Studien Diagnose sleep.26 Our current data suggest that response rates to TNI would also be higher in adults with a predominance of REM-sleep-disordered breathing events. Predictors of No Response to TNI Figure 4. TNI efficacy to REM sleep apnea. See Figure 1 legend for expansion of abbreviations. The additional flow from TNI, therefore, will increase the inspiratory airflow to 250 to 300 mL/second, a level previously associated with stabilization of breathing patterns.10,17,18 In the current study, we did not quantify airflow; thus, it was not possible to determine whether the individuals with hypopnea who did not respond had more severe upper airway obstruction as reflected by reduced levels of inspiratory airflow. Additional, nonquantifiable factors that may have contributed to the therapeutic response include the following: First, small increases in pharyngeal pressure may have increased lung volume, which may improve both oxygen stores and upper airway patency.19-21 Second, as ventilation improves during sleep, enhanced sleep continuity (decreased arousal frequency) may further stabilize breathing and reduce the RDI.22,23 Finally, additional benefits may have accrued from insufflating air directly into the nose, producing concomitant reductions in dead space ventilation. REM Sleep Apnea: TNI was more effective in improving sleep-disordered breathing in REM sleep compared with NREM sleep, as indicated by a shift from apneas to hypopneas for REM events and by the response rate in individuals with predominant REM apneas in which all but one patient had a significant reduction in the REM event rate with TNI. REM sleep is associated with a loss in muscular tone and a decrease in ventilatory demand. It is possible that small increases in pharyngeal pressure are more effective in stabilizing upper airway musculature in the presence of a hypotonic musculature of the pharynx and chest wall during REM sleep as compared with a more tonic state in NREM sleep.24,25 Alternatively, TNI might have increased tidal inspiratory volumes and satisfied patient’s ventilatory demand during REM sleep. Regardless of the mechanism, our finding is comparable to that of a recently documented study in which a high response rate to TNI was observed in children if they had predominant REM events but flow limitation during NREM 526 Patients with predominate obstructive or central apneas (. 50% apneas to all events) responded poorly (three of 18, 16.6%) to TNI for several reasons. First, as noted, inspiratory airflow would be expected to increase to a maximum of 100 mL/s at a TNI flow rate of 20 L/min.9 In patients with apnea, such an increase in airflow would not be enough, would correspond to hypopneas, and would not eliminate sleep-disordered breathing altogether.27,28 Second, in patients with a significant proportion of central sleep apnea, it is possible that the additional airflow from TNI led to an exaggeration of ventilatory overshoot.22,29 Third, it is possible the insufflation of air into the nose may have washed out the anatomic dead space, which may have reduced CO2 rebreathing and thereby contributed to the occurrence of central apneas. Further studies are required to explore possible mechanisms. Limitations There are several limitations that merit consideration. First, nine initially enrolled patients were excluded from the analysis because the sleep studies did not meet our criteria for study participation as mentioned in the “Methods” section. We do not believe that the exclusion affected our results because insufficient sleep at baseline rather than at TNI nights was the primary reason for exclusion. Second, our primary intention was to emulate usual clinical care, which includes changes in body position and displacement of the nasal cannula (which occurred), and thus the effectiveness of therapy in certain individuals was underestimated. The major limitation of the study was the lack of quantification of airflow that might have helped to predict responses to TNI more accurately. We predict that patients with RERAs or hypopneas of at least 150 mL/s would be the most likely to respond for the reasons noted above. Additional logistical concerns include the following: First, we did not determine the night-to-night variability of the RDI in our study population. Instead, we used reported night-to-night variability in RDI. The therapeutic response rate was twice as high as the 13% one would anticipate, making polysomnographic responses to TNI most likely attributable to the mechanisms of action as discussed above. Second, all patients were first titrated on CPAP according to clinical standards in each laboratory. Although a comparison on the efficacy of CPAP vs TNI would be potentially of interest, it would have required randomizing TNI and CPAP nights, which was beyond the scope of the current Original Research Downloaded from chestjournal.chestpubs.org at Welch Medical Library - JHU on April 13, 2010 © 2010 American College of Chest Physicians 36 Therapie TNI® Studien study. Finally, we observed an increase in the RDI in eight individuals. Increases were related to (1) positional sleep apnea (n 5 5), wherein subjects spent disproportionately more time supine with TNI compared with the baseline, (2) an inadvertent reduction the TNI flow rate below 17 L/min (n 5 1), and (3) an increase in central apneas on the night with TNI (n 5 2). These limitations have to be considered in future clinical trials. Clinical Implication TNI offers an alternative to the standard CPAP therapy in patients who predominantly have obstructive hypopnea. The efficacy of TNI can be easily assessed within a single night and can be predicted on the basis of the presence of at least 90% hypopnea and RERAs. It is of note that a predominance of hypopneas are seen in children,30,31 and RERAs are seen in patients with upper airway resistance syndrome32 and females with fibromyalgia;33 therefore, these populations may be ideal for this form of therapy. Finally, more precise measurements of inspiratory airflow may provide a quantitative way of predicting patients who will respond to TNI. Thus, further trials, on subgroups of patients with sleep-disordered breathing using TNI over a longer period of time are necessary to determine its clinical usefulness. Acknowledgments Author contributions: Dr Nilius: contributed to conception and design of the study, acquisition of data in the study center Hagen, analysis and interpretation of data, draft of article, critical revision, and final approval. Dr Wessendorf: contributed to conception and design of the study, acquisition of data in the study center Essen, critical revision of the draft, and final approval. Dr Maurer: contributed to conception and design of the study, acquisition of data in the study center Mannheim, critical revision of the draft, and final approval. Dr Stoohs: contributed to conception and design of the study, acquisition of data in the study center Dortmund, critical revision of the draft, and final approval. Dr Patil: contributed to conception and design of the study, analysis of the data in the central reading center, statistical analysis, draft of the article, critical revision of the draft, and final approval. Dr Schubert: contributed to analysis of the data in the central reading center, statistical analysis, critical revision of the draft, and final approval. Dr Schneider: contributed to conception and design of the study, interpretation of data, draft of article, critical revision, and final approval. Financial/nonfinancial disclosures: The authors have reported to CHEST the following conflicts of interest: Dr Nilius has received funds from Weimann, Heinen und Löwenstein, and Fisher & Paykel. Dr Wessendorf has received funds from ResMed. Dr Maurer has received funds from Weinmann, Heinen & Löwenstein, MPV Truma, and ResMed. Funding for the study on TNI described in this presentation was in part provided by Seleon GmbH. Under a separate licensing agreement between Seleon GmbH and the Johns Hopkins University, Dr Schneider is entitled to a share of royalties received by the University on sales of products described in this manuscript. The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies. Drs Stoohs, Patil, www.chestpubs.org Diagnose and Schubert have reported to CHEST that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article. References 1. Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoeahypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005;365(9464):1046-1053. 2. Young T, Peppard P, Palta M, et al. Population-based study of sleep-disordered breathing as a risk factor for hypertension. Arch Intern Med. 1997;157(15):1746-1752. 3. Aloia MS, Ilniczky N, Di Dio P, Perlis ML, Greenblatt DW, Giles DE. Neuropsychological changes and treatment compliance in older adults with sleep apnea. J Psychosom Res. 2003;54(1):71-76. 4. Giles TL, Lasserson TJ, Smith BH, White J, Wright J, Cates CJ. Continuous positive airways pressure for obstructive sleep apnoea in adults. Review. Cochrane Database Syst Rev. 2006;19(3):CD001106. 5. Dinges DF, Kribbs NB, Schwartz AR, et al. Objective measurement of nasal continuous positive airway pressure use: ethical considerations. Am J Respir Crit Care Med. 1994;149(2):291292. 6. McArdle N, Devereux G, Heidarnejad H, Engleman HM, Mackay TW, Douglas NJ. Long-term use of CPAP therapy for sleep apnea/hypopnea syndrome. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1108-1114. 7. Weaver TE, Laizner AM, Evans LK, et al. An instrument to measure functional status outcomes for disorders of excessive sleepiness. Sleep. 1997;20(10):835-843. 8. Stepnowsky CJ Jr, Marler MR, Ancoli-Israel S. Determinants of nasal CPAP compliance. Sleep Med. 2002;3(3):239-247. 9. McGinley BM, Patil SP, Kirkness JP, Smith PL, Schwartz AR, Schneider H. A nasal cannula can be used to treat obstructive sleep apnea. Am J Respir Crit Care Med. 2007;176(2):194-200. 10. Gleadhill IC, Schwartz AR, Schubert N, Wise RA, Permutt S, Smith PL. Upper airway collapsibility in snorers and in patients with obstructive hypopnea and apnea. Am Rev Respir Dis. 1991;143(6):1300-1303. 11. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. JAMA, 2000;284:3043-3045. 12. Iber C, Ancoli-Israel S, Chesson AL, Quan SF. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. Westchester, IL; American Academy of Sleep Medicine; 2007. 13. Koo BB, Dostal J, Ioachimescu O, Budur K. The effects of gender and age on REM-related sleep-disordered breathing. Sleep Breath. 2008;12(3):259-264. 14. Haba-Rubio J, Janssens JP, Rochat T, Sforza E. Rapid eye movement-related disordered breathing: clinical and polysomnographic features. Chest. 2005;128(5):3350-3357. 15. Stepnowsky CJ Jr, Orr WC, Davidson TM. Nightly variability of sleep-disordered breathing measured over 3 nights. Otolaryngol Head Neck Surg. 2004;131(6):837-843. 16. Smith PL, Wise RA, Gold AR, Schwartz AR, Permutt S. Upper airway pressure-flow relationships in obstructive sleep apnea. J Appl Physiol. 1988;64:789-795. 17. Patil SP, Schneider H, Marx JJ, Gladmon E, Schwartz AR, Smith PL. Neuromechanical control of upper airway patency during sleep. J Appl Physiol. 2007;102(2):547-556. 18. Schneider H, O’Hearn DJ, Leblanc K, et al. High-flow transtracheal insufflation treats obstructive sleep apnea. A pilot study. Am J Respir Crit Care Med. 2000;161(6):1869-1876. CHEST / 137 / 3 / MARCH, 2010 527 Downloaded from chestjournal.chestpubs.org at Welch Medical Library - JHU on April 13, 2010 © 2010 American College of Chest Physicians 37 Therapie TNI® Studien 19. Heinzer RC, Stanchina ML, Malhotra A, et al. Effect of increased lung volume on sleep disordered breathing in patients with sleep apnoea. Thorax. 2006;61(5):435-439. 20. Hoffstein V, Zamel N, Phillipson EA. Lung volume dependence of pharyngeal cross-sectional area in patients with obstructive sleep apnea. Am Rev Respir Dis. 1984;130(2):175-178. 21. Sériès F, Cormier Y, Lampron N, La Forge J. Increasing the functional residual capacity may reverse obstructive sleep apnea. Sleep. 1988;11(4):349-353. 22. Wellman A, Malhotra A, Fogel RB, Edwards JK, Schory K, White DP. Respiratory system loop gain in normal men and women measured with proportional-assist ventilation. J Appl Physiol. 2003;94(1):205-212. 23. Younes M. Role of arousals in the pathogenesis of obstructive sleep apnea. Am J Respir Crit Care Med. 2004;169(5): 623-633. 24. Gothe B, Bruce E, Goldman MD. Influence of sleep state on respiratory muscle function. In: Saunders NA, Sullivan CE, eds. Sleep and Breathing. New York, NY: Marcel Dekker, Inc.; 1984:241-282. 25. White DP, Mezzanotte WS. Neuromuscular compensation in the human upper airway. Sleep. 1993;16(8)(Suppl):S90-S91, discussion S91-S92. 528 Diagnose 26. McGinley B, Halbauer A, Patil SP, et al. An open nasal cannula treats obstructive sleep apnea in children. Pediatrics. 2009;124(1):179-188. 27. Gold AR, Schwartz AR. The pharyngeal critical pressure. The whys and hows of using nasal continuous positive airway pressure diagnostically. Chest. 1996;110(4):1077-1088. 28. Patil SP, Schneider H, Schwartz AR, Smith PL. Adult obstructive sleep apnea: pathophysiology and diagnosis. Chest. 2007;132(1):325-337. 29. Dempsey JA, Skatrud JB. A sleep-induced apneic threshold and its consequences. Am Rev Respir Dis. 1986;133(6):11631170. 30. Marcus CL. Sleep-disordered breathing in children. Am J Respir Crit Care Med. 2001;164(1):16-30. 31. Guilleminault C. Obstructive sleep apnea syndrome and its treatment in children: areas of agreement and controversy. Pediatr Pulmonol. 1987;3(6):429-436. 32. Gold AR, Dipalo F, Gold MS, O’Hearn D. The symptoms and signs of upper airway resistance syndrome: a link to the functional somatic syndromes. Chest. 2003;123(1):87-95. 33. Gold AR, Dipalo F, Gold MS, Broderick J. Inspiratory airflow dynamics during sleep in women with fibromyalgia. Sleep. 2004;27(3):459-466. Original Research Downloaded from chestjournal.chestpubs.org at Welch Medical Library - JHU on April 13, 2010 © 2010 American College of Chest Physicians 38 Therapie TNI® Studien Diagnose Predictors for Treating Obstructive Sleep Apnea With an Open Nasal Cannula System (Transnasal Insufflation) Georg Nilius, Thomas Wessendorf, Joachim Maurer, Riccardo Stoohs, Susheel P. Patil, Norman Schubert and Hartmut Schneider Chest 2010;137; 521-528; Prepublished online December 1, 2009; DOI 10.1378/chest.09-0357 This information is current as of April 13, 2010 Updated Information & Services Updated Information and services, including high-resolution figures, can be found at: http://chestjournal.chestpubs.org/content/137/3/521.full. html References This article cites 31 articles, 16 of which can be accessed free at: http://chestjournal.chestpubs.org/content/137/3/521. full.html#ref-list-1 Open Access Freely available online through CHEST open access option Permissions & Licensing Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.chestjournal.org/site/misc/reprints.xhtml Reprints Information about ordering reprints can be found online: http://www.chestjournal.org/site/misc/reprints.xhtml Email alerting service Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article. Images in PowerPoint format Figures that appear in CHEST articles can be downloaded for teaching purposes in PowerPoint slide format. See any online article figure for directions Downloaded from chestjournal.chestpubs.org at Welch Medical Library - JHU on April 13, 2010 © 2010 American College of Chest Physicians 39 Therapie TNI® Studien Diagnose Effect of a High-Flow Open Nasal Cannula System on Obstructive Sleep Apnea in Children Brian McGinley, Ann Halbower, Alan R. Schwartz, Philip L. Smith, Susheel P. Patil and Hartmut Schneider Pediatrics 2009;124;179-188 DOI: 10.1542/peds.2008-2824 The online version of this article, along with updated information and services, is located on the World Wide Web at: http://www.pediatrics.org/cgi/content/full/124/1/179 PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2009 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275. Downloaded from www.pediatrics.org at Welch Medical Library-Jhu on July 14, 2009 40 Therapie TNI® Studien Diagnose ARTICLES Effect of a High-Flow Open Nasal Cannula System on Obstructive Sleep Apnea in Children CONTRIBUTORS: Brian McGinley, MD,a Ann Halbower, MD,b Alan R. Schwartz, MD,c Philip L. Smith, MD,c Susheel P. Patil, MD, PhD,c and Hartmut Schneider, MD, PhDc of Pediatric Pulmonology and cPulmonary and Critical Care Medicine, Johns Hopkins Pediatric Sleep Disorders Center, Johns Hopkins University, Baltimore, Maryland; bChildren’s Hospital Pediatric Sleep Disorders Center, Division of Pediatric Pulmonology, Children’s Hospital and University of Colorado, Aurora, Colorado aDivisions KEY WORDS pediatric obstructive sleep apnea, treatment of sleep apnea, TNI ABBREVIATIONS OSA— obstructive sleep apnea CPAP— continuous positive airway pressure TNI—treatment with nasal insufflation REM—rapid eye movement NREM—nonrapid eye movement AHI—apnea-hypopnea index www.pediatrics.org/cgi/doi/10.1542/peds.2008-2824 doi:10.1542/peds.2008-2824 Address correspondence to Brian McGinley, MD, Johns Hopkins Department of Pediatrics, 200 North Wolfe St, Baltimore, MD 21287. E-mail: [email protected] PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275). Copyright © 2009 by the American Academy of Pediatrics FINANCIAL DISCLOSURE: Dr Schneider received consulting fees from TNI medical in 2006 and is entitled to royalty payments on the future sales of products described in this article. Under a separate licensing agreement between Dr Schneider and TNI medical and Johns Hopkins University, Dr Schneider is entitled to a share of royalty received by the university on sales of products described in this article. The terms of this agreement are being managed by Johns Hopkins University in accordance with its conflict of interest policies. Dr Schneider was not involved in the analysis of the study data, and data collected under this study were masked with respect to patient identifiers and clinical outcomes to Dr Schneider. The nonconflicted faculty members were responsible for all of the data analysis. Funding for the study described in this article was partially provided by TNI medical. WHAT’S KNOWN ON THIS SUBJECT: Adenotonsillectomy is the treatment for children with sleep apnea. For children whom surgery is not recommended or have residual sleep apnea after surgery CPAP is recommended. CPAP, however, is encumbered by poor adherence, leaving a large number of children untreated. WHAT THIS STUDY ADDS: We present a novel treatment for sleep apnea in children. Our data suggest that TNI may offer an alternative to CPAP in some children. The minimally intrusive interface of TNI may improve adherence to treatment. abstract OBJECTIVE: Obstructive sleep apnea syndrome in children is associated with significant morbidity. Continuous positive airway pressure (CPAP) treats obstructive apnea in children, but is impeded by low adherence. We, therefore, sought to assess the effect of warm humidified air delivered through an open nasal cannula (treatment with nasal insufflation [TNI]) on obstructive sleep apnea in children with and without adenotonsillectomy. METHODS: Twelve participants (age: 10 ⫾ 1 years; BMI: 35 ⫾ 14 kg/ m2), with obstructive apnea-hypopnea syndrome ranging from mild to severe (2–36 events per hour) were administered 20 L/min of air through a nasal cannula. Standard sleep architecture, sleepdisordered breathing, and arousal indexes were assessed at baseline, on TNI, and on CPAP. Additional measures of the percentage of time with inspiratory flow limitation, respiratory rate, and inspiratory duty cycle were assessed at baseline and on TNI. RESULTS: TNI reduced the amount of inspiratory flow limitation, which led to a decrease in respiratory rate and inspiratory duty cycle. TNI improved oxygen stores and decreased arousals, which decreased the occurrence of obstructive apnea from 11 ⫾ 3 to 5 ⫾ 2 events per hour (P ⬍ .01). In the majority of children, the reduction in the apneahypopnea index on TNI was comparable to that on CPAP. CONCLUSIONS: TNI offers an alternative to therapy to CPAP in children with mild-to-severe sleep apnea. Additional studies will be needed to determine the efficacy of this novel form of therapy. Pediatrics 2009; 124:179–188 PEDIATRICS Volume 124, Number 1, July 2009 Downloaded from www.pediatrics.org at Welch Medical Library-Jhu on July 14, 2009 179 41 Therapie TNI® Studien Obstructive sleep apnea (OSA) in children is attributed to upper airway collapse1–3 that is associated with intermittent hypoxemia, neurocognitive dysfunction,4–8 and cardiovascular morbidity.9–12 Moreover, recent data suggest that milder degrees of obstructive sleep-disordered breathing are associated with neurobehavioral deficits,13,14 highlighting the social and medical burdens of sleep-disordered breathing in children. Treatment of sleep apnea in children includes both medical15 and surgical options.16 Adenotonsillectomy is the treatment of choice for the presence of adenoid and tonsillar hypertrophy with OSA. For children who are not suitable candidates for surgery, refuse adenotonsillectomy, or have residual sleep apnea after surgical intervention, continuous positive airway pressure (CPAP)17 is the most effective treatment option. CPAP, however, is encumbered by suboptimal adherence,18 leaving a large number of children untreated. Therefore, alternative therapeutic strategies to CPAP are required to treat OSA in children more effectively. Recently, we demonstrated that air delivered at a high flow rate through a nasal cannula (treatment with nasal insufflation [TNI]) alleviated upper airway obstruction in adults with OSA.19 Children with upper airway obstruction during sleep, however, differ markedly with regard to the distribution of obstructive events. They have obstructive apneas predominantly during rapid eye movement (REM) compared with nonrapid eye movement (NREM) sleep.20 In contrast to adults, children commonly exhibit periods of prolonged stable partial upper airway obstruction during sleep, including during NREM sleep.21 Thus, whereas the rate of obstructive events per hour of sleep (apnea-hypopnea index [AHI]) allows for quantification of 180 42 McGINLEY et al Diagnose changes in upper airway obstruction for REM sleep, other measures are needed to assess upper airway obstruction during NREM sleep. It has been demonstrated previously that the inspiratory time relative to the duration of the respiratory cycle, the inspiratory duty cycle, increases linearly with the degree of upper airway obstruction.22–24 Therefore, we determined the effect of TNI on upper airway obstruction in children by assessing both the AHI and the inspiratory duty cycle. We hypothesized that TNI would alleviate upper airway obstruction during both REM and NREM sleep and that, in a significant proportion of children, improvements in the AHI would be similar to CPAP. PATIENTS AND METHODS Study Population Children 5 to 15 years of age were recruited consecutively from the Johns Hopkins Pediatric Sleep Disorders Center if they had OSA and were recommended treatment with CPAP. Patients were excluded if they had a nocturnal oxygen requirement or other serious medical conditions. Informed consent was obtained from 1 parent or guardian, assent was obtained from the children, and the Johns Hopkins Medicine Institutional Review Board approved the protocol. Protocols Each participant underwent 2 overnight polysomnograms, 1 with TNI at 20 L/min and 1 night off TNI, performed in random order. For children who had participated in a clinical CPAP titration study before enrollment, that study was analyzed to compare the AHI between TNI and CPAP at the prescribed nasal pressure level. Children continued home use of CPAP while enrolled in the study. Study Materials Polysomnography Sleep studies were performed with Somnologica (Embla, Broomfield, CO). Signals included electroencephalograms (leads C3-A2, C4-A1, and O1-A2), left and right electro-oculograms, submental electromyogram, tibial electromyogram, electrocardiogram, and oxyhemoglobin saturation (Masimo, Irvine, CA). End-tidal CO2 (Novametrix, Murrysville, PA) was acquired from all of the participants during the baseline night, but the signal could not be obtained during the treatment night because of interference from TNI. Transcutaneous CO2 measurement (TCM3, Radiometer Kopenhagen, Copenhagen, Denmark) was acquired in 5 participants during the baseline and in 3 of those subjects during the treatment night with TNI. Airflow measurement was acquired with a nasal cannula (Salter Labs, Arvin, CA) connected to a differential pressure transducer (ProTech, Mukilteo, WA). Respiratory effort was assessed with thoracic and abdominal inductive plethysmography (Embla), and body position was monitored via infrared video camera. To ensure that the airflow signals acquired from the nasal cannula were not affected by TNI, preliminary studies were conducted comparing the qualitative airflow signals from a nasal cannula with those acquired concurrently from a nasal mask attached to a pneumotachograph while TNI was turned on and off during sleep. The contour and amplitude of the airflow signal acquired from the nasal cannula were consistently similar to those of the nasal mask when TNI was turned on and off, indicating that TNI did not interfere with our ability to detect inspiratory flow limitation (see Fig 1). Nasal Insufflation (TNI) An air compressor (TNI Medical GmbH, Heilbronn, Germany) delivered a con- Downloaded from www.pediatrics.org at Welch Medical Library-Jhu on July 14, 2009 Therapie TNI® Studien Diagnose ARTICLES FIGURE 1 Qualitative airflow signals from a nasal mask attached to a pneumotachograph compared with those acquired concurrently from a nasal cannula attached to a pressure transducer during TNI trials are depicted. Changes in baseline airflow in the nasal cannula at the onset and offset of TNI are attributed to an alternating current-coupled signal with a long time constant. stant flow rate at the level of the nasal prongs of the TNI cannula at a maximum of 20 L/min. A heater and humidifier regulated the temperature and humidity. A heated wire incorporated into the lumen of the nasal cannula maintained a temperature of 30°C to 33°C and a relative humidity of ⬃80% at the nasal outlet (Fig 2). Analysis Sleep and Respiratory Events Standard polysomnographic scoring techniques were used to stage sleep, arousals, and respiratory events.25 An AHI was calculated for obstructive and central respiratory events per hour of sleep separately for each individual for the entire night and for NREM and REM sleep. Because the primary outPEDIATRICS Volume 124, Number 1, July 2009 come was effect on upper airway obstruction, AHI data pertain specifically to obstructive events. If REM sleep time was ⬍20 minutes on either the baseline or TNI treatment night, the participant was excluded from the analysis of REM AHI. Respiratory Pattern Children with sleep-disordered breathing commonly exhibit apneic events during REM as compared with NREM sleep.20 Thus, upper airway obstruction during NREM sleep was also assessed by the following: percentage of time with flow-limited breathing, inspiratory duty cycle (length of the inspiratory time divided by length of the respiratory cycle), and respiratory rate for the baseline and TNI-treatment nights. Inspiratory flow limitation was assessed by visual inspection, as described previously,26–29 and quantified as the percentage of NREM sleep time that it was exhibited. A custom computer program that randomly generated two 3-minute samples per hour of NREM sleep determined breaths analyzed. All of the breaths in each sample were included in the analysis irrespective of the presence or absence of inspiratory flow limitation. Statistical Analysis Data are reported as the means ⫾ SEMs. The Wilcoxon sign-rank test was performed (Stata 8, Stata Corp, College Station, TX) to compare differences in sleep architecture, arousal indexes, oxyhemoglobin saturation, and measures of sleep-disordered breathing between the baseline and Downloaded from www.pediatrics.org at Welch Medical Library-Jhu on July 14, 2009 181 43 Therapie TNI® Studien Diagnose FIGURE 2 One study participant wearing the TNI cannula (left) and the TNI device is depicted (right). Cannula length is 1800.0 mm, outer diameter 5.0-mm cannula and nasal prongs, and inner diameter 3.4 mm. The weight of the TNI device including the compressor is ⬃10 kg. TNI-treatment nights. P values of ⬍.05 were considered significant. RESULTS Participant Characteristics Twelve otherwise healthy children with sleep apnea aged 10 ⫾ 2 years were enrolled. The majority of children were boys and obese (Table 1). Selfreported CPAP use was for ⬍4 hours per night and ⬍5 days per week in half of the children. Although these adherence rates are consistent with previ- ous studies of CPAP use,18 most children in this study were ineffectively treated. Polysomnographic Responses to TNI Sleep-Disordered Breathing Events In Fig 3, the effect of TNI on sleepdisordered breathing is illustrated in 1 child (child No. 7). In this child, obstructive hypopneas were observed primarily during REM sleep without TNI treatment (Fig 2, top left). Each hypop- nea was characterized by decreased inspiratory airflow and a small reduction in oxyhemoglobin saturation and was terminated by a cortical arousal from sleep. The last 4 breaths of each hypopnea had a flattened inspiratory flow contour with increasing inspiratory effort, indicating that these events were obstructive hypopneas. In contrast, on TNI (Fig 2, top right), hypopneas were abolished, leading to a stabilization of sleep and oxyhemoglobin saturation (Table 2). TABLE 1 Patient Anthropometrics and Characteristics Patient ID No. Anthropometrics Gender Age, y Height, cm Weight, kg BMI, kg/m2 BMI z score Previous treatment CPAP, cm H2O Adenotonsillectomy Disordered breathing indexes AHI total, events per hour SPO2 nadir, % Peak CO2, mm Hg % TST CO2 ⬎50 mm Hg Daytime symptoms 1 2 3 F 8 142 53 26 2.2 M 13 159 72 28 1.9 M 10 137 75 40 2.7 11 ⫹ 8 ⫹ 7 ⫹ 2 90 51 0.1 DS, H 2 92 50 0 H, IC 2 96 53 1 H, IC, BD 4 5 6 7 M 7 127 22 14 ⫺1.5 M 9 125 25 16 ⫺0.1 M 11 153 92 36 2.7 M 9 141 54 27 2.2 NA ⫺ 7 ⫹ 8 ⫺ 5 87 60 52 DS, H 8 90 53 1 None 3 95 54 3 H, IC, BD 8 9 10 11 12 F F F 14 14 12 165 161 177 129 116 132 47 45 42 2.8 2.8 1.5 Mean SEM 8 M/4 F 10 145 75 35 1.6 — 1 5 12 4 0.4 M 10 159 134 53 2.9 M 10 161 50 19 1.1 10 ⫹ 5 ⫺ 7 ⫺ 20 ⫹ 5 ⫹ NA ⫹ 9 8⫹/4⫺ 1 — 9 88 59 37 H, IC 9 84 58 5 DS, BD 17 94 55 1 H, IC, BD 20 79 54 7 DS 22 83 56 7 DS 36 68 63 56 H, BD 11 87 56 14 — 3 2 1 6 — SPO2 nadir indicates oxyhemoglobin saturation; CO2 indicates end-tidal CO2; % TST CO2 ⬎50 mm Hg, percentage of total sleep time that CO2 was ⬎50 mm Hg; DS, daytime sleepiness; H, hyperactivity; IC, impaired concentration; BD, behavior disorder; M, male; F, female; —, no data; NA, not applicable. 182 44 McGINLEY et al Downloaded from www.pediatrics.org at Welch Medical Library-Jhu on July 14, 2009 Therapie TNI® Studien Diagnose ARTICLES TABLE 2 Sleep Efficiency and Stage Data Are Presented as the Percentage of Time/Total Sleep Time Variable Sleep architecture Total sleep time, min Sleep efficiency, % Stage N1, % Stage N2, % Stage N3, % Stage R, % Arousal indexes, events per hour of sleep Total Respiratory Spontaneous Oxyhemoglobin saturation Average during sleep, % Average desaturation, % Desaturation nadir, % Similar responses were observed in the total AHI during the baseline compared with treatment with TNI, respectively (11 ⫾ 3 vs 5 ⫾ 2 events per hour) Baseline, Mean ⫾ SEM TNI, Mean ⫾ SEM P 296.6 ⫾ 14.3 91.3 ⫾ 2.7 3.2 ⫾ 0.8 48.1 ⫾ 3.1 21.3 ⫾ 3.7 16.2 ⫾ 3.1 284.9 ⫾ 16.3 86.2 ⫾ 4.3 5.2 ⫾ 1.4 51.1 ⫾ 2.9 20.9 ⫾ 2.6 14.7 ⫾ 2.2 .07 .04 .2 .4 .9 .7 13.9 ⫾ 1.6 8.0 ⫾ 1.9 5.9 ⫾ 0.6 10.1 ⫾ 1.7 4.1 ⫾ 1.5 5.9 ⫾ 0.8 .05 .02 .8 98.0 ⫾ 1.0 5.0 ⫾ 1.0 88.0 ⫾ 2.0 98.0 ⫾ 1.0 3.0 ⫾ 1.0 93.0 ⫾ 1.0 .7 .02 .01 in nearly all of the children (Fig 4, right). Subanalyses were performed separately for REM and NREM sleep to assess the effect of sleep stage on the response to TNI. Four participants were excluded from the REM analysis because they did not have sufficient REM sleep time during the TNI treatment night, leaving 8 participants (boy: girl ratio: 7:1). During TNI treatment, the AHI was markedly reduced during both NREM from 8 ⫾ 3 to 4 ⫾ 2 events per hour (Fig 4, left) and REM sleep from 26 ⫾ 10 to 11 ⫾ 5 events per hour (Fig 4, middle). Central apnea rates were minimal (0.1 ⫾ 0.1 and 0.3 ⫾ 0.2 events per hour) during the baseline and TNI study nights, respectively. The effect of body position on the response was also assessed. During the baseline compared with the treatment night with TNI, respectively, the mean percentages of sleep time in the supine (78.0% ⫾ 8.4% vs 79.0% ⫾ 9.5%; FIGURE 3 Two hypoponeas during REM sleep at baseline are shown (top left), which are abolished on TNI (top right). During NREM sleep, the same child exhibited inspiratory flow limitation characterized by plateauing of the inspiratory contour (bottom left), which was alleviated with TNI (bottom right). EOG indicates electrooculogram; EEG, electroencephalogram; SpO2, oxyhemoglobin saturation. RR indicates respiratory rate. PEDIATRICS Volume 124, Number 1, July 2009 Downloaded from www.pediatrics.org at Welch Medical Library-Jhu on July 14, 2009 183 45 Therapie TNI® Studien Diagnose P ⫽ .5) and side or prone body positions (22.0% ⫾ 8.4% vs 21.0% ⫾ 9.5%; P ⫽ .5) were comparable, but there were differences in 4 participants. Analysis of the AHI in these 4 children was performed while they were in a supine position only, and a greater decline in the AHI was observed with TNI treatment, indicating that changes in body position did not account for the reduction in the AHI observed on TNI treatment. Of note, polysomnographic responses were comparable in children with and without adenotonsillectomy (Fig 4). mean prescribed nasal pressure was 9 ⫾ 4 cm H2O (Table 1). The AHI on TNI treatment compared with CPAP treatment was 5 ⫾ 2 vs 1 ⫾ 1 events per hour (P ⫽ .08). As compared with CPAP, 2 children had suboptimal responses on TNI treatment (participant No. 10 and No. 11; Fig 4, denoted by b). Both of these children had severe sleep apnea (AHI ⬎20 events per hour); 1 required a CPAP pressure of 20 cm H2O to alleviate upper airway obstruction and the other did not tolerate either the CPAP mask or the TNI device, which resulted in significant sleep disruption on both study nights. In the remaining children (n ⫽ 8), the AHI on TNI treatment compared with CPAP treatment was 2 ⫾ 1 vs 1 ⫾ 1 event per hour, indicating that, for the majority of children, treatment with TNI was comparable clinically to CPAP treatment. Sleep Between the baseline and treatment with TNI nights, total sleep time and sleep stage distribution were similar, but we observed a slight decrease in sleep efficiency. The total and respiratory arousal indexes also decreased during the night of treatment with TNI, but the spontaneous arousal index was similar (Table 2). Respiratory Pattern Responses to TNI Comparison With CPAP Sleep-disordered breathing in our study population was generally characterized by apneic events during REM Ten of the 12 children had undergone CPAP titration before this study. The REM NREM Total (n = 8) (n = 12) (n = 12) 80 P < .01 P = .01 P < .01 AHI, events per h 60 40 a a a 20 b b 0 Baseline TNI Baseline TNI Baseline TNI FIGURE 4 The AHIs are displayed for the baseline compared with the TNI-treatment night during NREM (left), REM (middle), and for the entire night (right). Data presented are means ⫾ SEMs. a Participants with residual sleep apnea on TNI. b Participants with suboptimal AHI responses on TNI compared with CPAP. 䡩 Children without adenotonsillectomy. 184 46 McGINLEY et al sleep and prolonged periods of steadystate inspiratory flow limitation during NREM sleep. During the baseline study off of TNI treatment, the periods of inspiratory flow limitation were associated with elevations in respiratory rate and inspiratory duty cycle (Fig 2, bottom left). TNI reduced the amount of inspiratory flow limitation, which resulted in a decreased respiratory rate and inspiratory duty cycle (Fig 2, bottom right). Mean data for all of the participants during NREM sleep demonstrated that TNI reduced the amount of inspiratory flow limitation, which was associated with a decrease in both the inspiratory duty cycle and the respiratory rate (Fig 5). DISCUSSION There were 3 major findings in our study of TNI. First, in a group of predominantly obese children with and without adenotonsillectomy, TNI treated sleep apnea across a wide spectrum of disease severity. Second, in the majority of children, the reduction in the AHI with TNI was comparable to CPAP. Third, during NREM sleep, all of the children had prolonged periods of inspiratory flow limitation that were associated with an increased respiratory rate and inspiratory duty cycle, all of which decreased with TNI. Our data suggest that TNI may offer an alternative to CPAP in some children for whom standard treatment approaches are not successful. Previously, we demonstrated that TNI treated all of the adult participants with mild sleep apnea and approximately half of the adult participants with moderate and severe sleep apnea.19 Children in the current study were equally distributed across a spectrum of disease severity (mild AHI: ⬎2 and ⱕ5 events per hour, n ⫽ 4; moderate AHI: ⬎5 and ⱕ10 events per hour, n ⫽ 4; and severe AHI: ⬎10 events per hour, n ⫽ 4). TNI reduced Downloaded from www.pediatrics.org at Welch Medical Library-Jhu on July 14, 2009 Therapie TNI® Studien Diagnose ARTICLES Inspiratory flow limitation 0.80 100 35 P < .01 P < .01 P < .01 0.70 60 40 20 30 Breaths per min Inspiratory time/respiratory cycle time 80 % of NREM sleep time Respiratory rate Inspiratory duty cycle 0.60 0.50 0.40 TNI Off TNI On 20 15 0.30 0 25 10 TNI Off TNI On TNI Off TNI On FIGURE 5 Graphic representations of the respiratory pattern during NREM sleep for the baseline compared with TNI: percentage of NREM sleep time with inspiratory flow limitation (left); inspiratory duty cycle, which is the inspiratory time/duration of the respiratory cycle (middle); and respiratory rate (right). Data presented are means ⫾ SEMs. the AHI during both NREM and REM sleep, but this effect depended on the disease severity. In the 8 children with mild-to-moderate sleep apnea, TNI decreased the AHI consistently, with a mean reduction from 6 ⫾ 3 to 2 ⫾ 1 events per hour. In contrast, in the 4 children with severe sleep apnea, TNI had an inconsistent response: in 1 child, the AHI was unchanged, in 2 children the AHI decreased by 72% and 36% but the effect was suboptimal, and the fourth child had a marked reduction in the AHI from 17 to 2 events per hour. The 3 children whose AHI remained above 10 events per hour (Fig 4) were unique in the following aspects: they were all girls, markedly obese, and were in Tanner stage 2 to 3 as compared with the other children, who were generally younger and in Tanner stage 1. Thus, TNI might offer a treatment option for children with mild-to-moderate OSA and in selected children with severe OSA. OSA is the result of increased upper airway collapsibility during sleep, as reflected in the critical closing presPEDIATRICS Volume 124, Number 1, July 2009 sure.2,3,30–33 Previously, we demonstrated that TNI primarily acts by slightly increasing pharyngeal pressure19 that was particularly effective in adults with minimal increases in critical closing pressure manifested clinically by snoring and hypopneas.34 Similarly, TNI alleviated inspiratory flow limitation during NREM sleep (Fig 4). The marked reduction in apneic events during REM sleep, however, was greater than anticipated. This finding suggests that TNI might have increased pharyngeal pressure more in children than adults because of the relatively larger size of the nasal cannula compared with the size of the nares. Alternatively, the slight increase in pharyngeal pressure might have increased lung volume to a greater degree in children resulting from higher chest wall and lung compliance,35 particularly during REM sleep, when the chest wall musculature is hypotonic.36 Increases in lung volume might have improved both oxygen stores and upper airway patency.37–40 Finally, it is also possible that insufflation of air might have stimulated upper airway neuromuscular responses, thereby improving upper airway patency.41 Regardless, the improvements in flow limitation, respiratory rate, and inspiratory duty cycle suggest that TNI increased inspiratory tidal volumes through increased inspiratory airflow. Moreover, the improvement in the AHI with TNI suggests that the increases in inspiratory airflow and tidal volumes were sufficient to prevent hypoxia or arousals, which has significant implications for the management of sleepdisordered breathing in children. There are several advantages of TNI. First, the patient interface is a nasal cannula that is less cumbersome than a nasal mask and should be better tolerated by children during sleep. All of the participants readily agreed to sleep with a TNI device, and only 2 participants described mild discomfort once the TNI device began to deliver air. One complaint was temperature related and was easily adjusted to the participant’s preference; 1 participant intermittently removed the cannula during the course of the night but was unable to effectively verbalize her complaint. Second, TNI delivers heated and humidified air at the level of the nares, which avoids nasal dryness and irritation. Third, for the majority of children, the response to TNI was comparable to CPAP. Taken together, if improved comfort with TNI leads to increased adherence to treatment, TNI might ultimately be a more effective treatment option than CPAP, even in children with suboptimal responses. To assess this hypothesis, however, adherence with TNI needs to be assessed in the home setting. Fourth, the use of CPAP in children carries concern for the potential of compression of boney facial structures. TNI is an open system that is not dependent on a tightly sealed nasal mask obviating concerns of facial compression. Downloaded from www.pediatrics.org at Welch Medical Library-Jhu on July 14, 2009 185 47 Therapie TNI® Studien There were several limitations in our study. First, carbon dioxide levels were evaluated during the baseline study, but the high airflow rate of TNI eliminated the end-tidal CO2 measurement during the treatment night. The loss of a consistent CO2 measurement limited our ability to assess the effect of TNI on ventilation during the treatment night. Second, the sample size was limited, and the effect of TNI on severe sleep apnea is not completely understood. The spectrum of patients with regard to disease severity and previous adenotonsillectomy, however, was diverse and likely representative of patients who would require treatment for sleep apnea. Third, the total sleep times during both nights were limited because of testing conditions, which included an early awakening time. Additional evaluation of the effect of TNI on sleep time, sleep latency, and sleep architecture should be assessed in future studies. Fourth, the assessment of Diagnose respiratory pattern changes during NREM sleep with TNI was measured with a random sample of breaths. It is possible that the changes observed in the respiratory pattern on TNI might have been more accurately characterized if the assessment was expanded to include all breaths during NREM sleep. CONCLUSIONS Adenotonsillectomy continues to be the treatment of choice for children with sleep apnea.16,42,43 The reduction in the AHI with TNI was comparable in children with and without adenotonsillectomy, indicating that TNI is a treatment option for children awaiting adenotonsillectomy and for those with residual sleep apnea after adenotonsillectomy (Fig 4). Moreover, there is significant controversy regarding which children with milder degrees of sleep-disordered breathing might benefit from treatment.15,44 The effect of TNI on sleep-disordered breathing in- dicates that TNI might provide an alternative to surgery and, as compared with CPAP, might be a more readily accepted treatment option. The minimally intrusive nasal interface of TNI may improve adherence to treatment in children and may ultimately prove more effective in managing the long-term morbidity and mortality of sleep apnea. Additional studies will be required to extend these findings to additional pediatric populations, including younger children and infants and those children with neuromuscular or craniofacial disorders, to determine the ultimate role for TNI in the management of sleep-disordered breathing in children. ACKNOWLEDGMENTS This study was funded by National Heart, Lung, and Blood Institute grants HL-72126, HL-50381, HL-37379, and HL077137 and National Health and Medical Research Council grant 353705. REFERENCES 1. Eastwood PR, Szollosi I, Platt PR, Hillman DR. Comparison of upper airway collapse during general anesthesia and sleep. Lancet. 2002;359(9313):1207–1209 2. Schwartz AR, Smith PL, Wise RA, Gold AR, Permutt S. Induction of upper airway occlusion in sleeping individuals with subatmospheric nasal pressure. J Appl Physiol. 1988;64(4):535–542 3. Smith PL, Wise RA, Gold AR, Schwartz AR, Permutt S. Upper airway pressure-flow relationships in obstructive sleep apnea. J Appl Physiol. 1988;64(2):789 –795 4. Chervin RD, Archbold KH. Hyperactivity and polysomnographic findings in children evaluated for sleep-disordered breathing. Sleep. 2001;24(3):313–320 5. Owens J, Opipari L, Nobile C, Spirito A. Sleep and daytime behavior in children with obstructive sleep apnea and behavioral sleep disorders. Pediatrics. 1998;102(5):1178 –1184 6. Weissbluth M, Davis A, Poncher J, Reiff J. Signs of airway obstruction during sleep and behavioral, developmental and academic problems. J Dev Behav Pediar. 1983;4(2):119 –121 7. Halbower AC, Degaonkar M, Barker PB, Earley CJ, Marcus CL, Smith PL. Childhood obstructive sleep apnea associates with neuropsychological deficits and neuronal brain injury. PLoS Med. 2006;3(8):e301 8. Gozal D. Sleep-disordered breathing and school performance in children. Pediatrics. 1998;102(3 pt 1):616 – 620 9. Amin RS, Carroll JL, Jeffries JL, Grone C, Bean JA, Chini B. Twenty-four-hour ambulatory blood pressure in children with sleep-disordered breathing. Am J Respir Crit Care Med. 2004;169(8): 950 –956 10. Enright PL, Goodwin JL, Sherrill DL, Quan JR, Quan SF. Blood pressure elevation associated with sleep-related breathing disorder in a community sample of white and Hispanic children: the Tucson Children’s Assessment of Sleep Apnea Study. Arch Pediatr Adolesc Med. 2003;157(9): 901–904 11. Marcus CL, Greene MG, Carroll JL. Blood pressure in children with obstructive sleep apnea. Am J Respir Crit Care Med. 1998;57(4 pt 1):1098 –1103 186 48 McGINLEY et al Downloaded from www.pediatrics.org at Welch Medical Library-Jhu on July 14, 2009 Therapie TNI® Studien Diagnose ARTICLES 12. Quan SF, Gersh BJ. Cardiovascular consequences of sleep-disordered breathing: past, present and future: report of a workshop from the National Center on Sleep Disorders Research and the National Heart, Lung, and Blood Institute. Circulation. 2004;109(8):951–957 13. Blunden S, Lushington K, Lorenzen B, Martin J, Kennedy D. Neuropsychological and psychosocial function in children with a history of snoring or behavioral sleep problems. J Pediatrics. 2004; 146(6):780 –786 14. O’Brien LM, Mervis CB, Holbrook CR, Bruner JL, Klaus CJ, Rutherford J. Neurobehavioral implications of habitual snoring in children. Pediatrics. 2004;114(1):44 – 49 15. Kheirandish-Gozal L, Gozal D. Intranasal budesonide treatment for children with mild obstructive sleep apnea syndrome. Pediatrics. 2008;122(1). Available at: www.pediatrics.org/cgi/content/full/ 122/1/e149 16. Guilleminault C, Li K, Khramtsov A, Pelayo R, Martinez S. Sleep disordered breathing: surgical outcomes in prepubertal children. Laryngoscope. 2004;114(1):132–137 17. Sullivan CE, Issa FG, Berthon-Jones M, Eves L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet. 1981;1(8225):862– 865 18. Marcus CL, Rosen G, Ward S, Halbower AC, Halbower AC, Sterni L, Lutz J. Adherence to and effectiveness of positive airway pressure therapy in children with obstructive sleep apnea. Pediatrics. 2006;117(3). Available at: www.pediatrics.org/cgi/content/full/117/3/e442 19. McGinley BM, Patil SP, Kirkness JP, Smith PL, Schwartz AR, Schneider H. A nasal cannula can be used to treat obstructive sleep apnea. Am J Respir Crit Care Med. 2007;176(2):194 –200 20. Goh DY, Galster P, Marcus CL. Sleep architecture and respiratory disturbances in children with obstructive sleep apnea. Am J Respir Crit Care Med. 2000;162(pt 2):682– 686 21. Marcus CL. Obstructive sleep apnea syndrome: differences between children and adults. Sleep. 2000;23(suppl 4):S140 –S141 22. Marcus CL, Moreira GA, Bamford O, Lutz J. Response to inspiratory resistive loading during sleep in normal children and children with obstructive apnea. J Appl Physiol. 1999;87(4):1448 –1454 23. Badr M S, Skatrud JB, Dempsey JA, Begle RL. Effect of mechanical loading on expiratory and inspiratory muscle activity during NREM sleep. J Appl Physiol. 1990;68(3):1195–1202 24. Schneider H, Patil SP, Canisius S, Gladmon EA, Schwartz AR, O’Donnell CP. Hypercapnic duty cycle is an intermediate physiological phenotype linked to mouse chromosome 5. J Appl Physiol. 2003; 95(1):11–19 25. Iber C, Ancoli-Israel S, Chesson A Jr, Quan S, eds. The AASM Manual for the Scoring of Sleep and Associated Events Rules, Terminology and Technical Specifications, 1st edition. Westchester, IL: American Academy of Sleep Medicine; 2007 26. Ayappa I, Norman RG, Krieger A, Rosen A, O’malley RL, Rapoport DM. Non-invasive detection of respiratory effort-related arousals (RERAS) by a nasal cannula/pressure transducer system. Sleep. 2000;23(6):763–771 27. Hosselet JJ, Norman RG, Ayappa I, Rapoport DM. Detection of flow limitation with a nasal cannula/ pressure transducer system. Am J Respir Crit Care Med. 1998;157(5 pt 1):1461–1467 28. Serebrisky D, Cordero R, Mandeli J, Kattan M, Lamm C. Assessment of inspiratory flow limitation in children with sleep-disordered breathing by a nasal cannula pressure transducer system. Pediatr Pulmonlol. 2002;33(5):380 –387 29. Pichard LE, Patil SP, Gladmon E, Smith PL, Schwartz AR, Schneider H. Women have a greater ventilatory responses to upper airway obstruction than men. Conf Proc IEEE Eng Med Biol Soc. 2004;5:3878 –3880 30. Boudewyns A, Punjabi N, Van de Heyning PH, DeBacker WA, O’Donnell CP, Scheider H. Abbreviated method for assessing upper airway function in obstructive sleep apnea. Chest. 2000;118(4): 1031–1041 31. Issa FG, Sullivan CE. Upper airway closing pressures in obstructive sleep apnea. J Appl Physiol. 1984;57(2):520 –527 32. Marcus CL, Katz ES, Lutz J, Black CA, Galster P, Carson KA. Upper airway dynamic responses in children with the obstructive sleep apnea syndrome. Pediatr Res. 2005;57(1):99 –107 33. Marcus CL, Fernandes Do, Prado LB, Lutz J, Katz ES, Black CA. Developmental changes in upper airway dynamics. J Appl Physiol. 2004;97(1):98 –108 34. Gleadhill IC, Schwartz AR, Schubert N, Wise RA, Permutt S, Smith PL. Upper airway collapsibility in snorers and in patients with obstructive hypopnea and apnea. Am Rev Respir Dis. 1991;143(6): 1300 –1303 35. Papastamelos C, Panitch HB, England SE, Allen JL. Developmental changes in chest wall compliance in infancy and early childhood. J Appl Physiol. 1995;78(1):179 –184 36. Tabachnik E, Muller NL, Bryan AC, Levison H. Changes in ventilation and chest wall mechanics during sleep in normal adolescents. J Appl Physiol. 1981;51(3):557–564 PEDIATRICS Volume 124, Number 1, July 2009 Downloaded from www.pediatrics.org at Welch Medical Library-Jhu on July 14, 2009 187 49 Therapie TNI® Studien Diagnose 37. Heinzer RC, Stanchina ML, Malhotra A, Jordan AS, Patel SR, Lo YL. Effect of increased lung volume on sleep disordered breathing in patients with sleep apnoea. Thorax. 2006;61(5):435– 439 38. Hoffstein V, Zamel N, Phillipson EA. Lung volume dependence of pharyngeal cross-sectional area in patients with obstructive sleep apnea. Am Rev Respir Dis. 1984;130(2):175–178 39. Series F, Cormier Y, Desmeules M. Influence of passive changes of lung volume on upper airways. J Appl Physiol. 1990;98(5):2159 –2164 40. Series F, Cormier Y, Lampron N, La Forge J. Increasing the functional residual capacity may reverse obstructive sleep apnea. Sleep. 1988:11(4):349 –353 41. McGinley BM, Schwartz AR, Schneider H, Kirkness JP, Smith PL, Patil SP. Upper airway neuromuscular compensation during sleep is defective in obstructive sleep apnea. J Appl Physiol. 2008; 105(1):197–205 42. Stradling JR, Thomas G, Warley AR, Williams P, Freeland A. Effect of adenotonsillectomy on nocturnal hypoxaemia, sleep disturbance, and symptoms in snoring children. Lancet. 1990;335(8684): 249 –253 43. Section on Pediatric Pulmonology and Subcommittee on Obstructive Sleep Apnea Syndrome, American Academy of Pediatrics. Clinical practice guideline: diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics. 2002;109(4):704 –712 44. Sans Capdevila O, Kheirandish-Gozal L, Gozal D. Pediatric obstructive sleep apnea. complications, management, and long-term outcomes. Proc Am Thoracic Soc. 2008;5(2):274 –282 188 50 McGINLEY et al Downloaded from www.pediatrics.org at Welch Medical Library-Jhu on July 14, 2009 Therapie TNI® Studien Diagnose Effect of a High-Flow Open Nasal Cannula System on Obstructive Sleep Apnea in Children Brian McGinley, Ann Halbower, Alan R. Schwartz, Philip L. Smith, Susheel P. Patil and Hartmut Schneider Pediatrics 2009;124;179-188 DOI: 10.1542/peds.2008-2824 Updated Information & Services including high-resolution figures, can be found at: http://www.pediatrics.org/cgi/content/full/124/1/179 References This article cites 41 articles, 20 of which you can access for free at: http://www.pediatrics.org/cgi/content/full/124/1/179#BIBL Subspecialty Collections This article, along with others on similar topics, appears in the following collection(s): Office Practice http://www.pediatrics.org/cgi/collection/office_practice Permissions & Licensing Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.pediatrics.org/misc/Permissions.shtml Reprints Information about ordering reprints can be found online: http://www.pediatrics.org/misc/reprints.shtml Downloaded from www.pediatrics.org at Welch Medical Library-Jhu on July 14, 2009 51 Therapie TNI® Studien Diagnose A Nasal Cannula Can Be Used to Treat Obstructive Sleep Apnea Brian M. McGinley1, Susheel P. Patil1, Jason P. Kirkness1, Philip L. Smith1, Alan R. Schwartz1, and Hartmut Schneider1 1 Johns Hopkins Sleep Disorders Center, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland Rationale: Obstructive sleep apnea syndrome is due to upper airway obstruction and is associated with increased morbidity. Although continuous positive airway pressure efficaciously treats obstructive apneas and hypopneas, treatment is impeded by low adherence rates. Objectives: To assess the efficacy on obstructive sleep apnea of a minimally intrusive method for delivering warm and humidified air through an open nasal cannula. Methods: Eleven subjects (age, 49.7 ⴞ 5.0 yr; body mass index, 30.5 ⴞ 4.3 kg/m2), with obstructive apnea–hypopnea syndrome ranging from mild to severe (5 to 60 events/h), were administered warm and humidified air at 20 L/minute through an open nasal cannula. Measurements and Main Results: Measurements were based on standard sleep-disordered breathing and arousal indices. In a subset of patients pharyngeal pressure and ventilation were assessed to determine the mechanism of action of treatment with nasal insufflation. Treatment with nasal insufflation reduced the mean apnea– hypopnea index from 28 ⴞ 5 to 10 ⴞ 3 events per hour (p ⬍ 0.01), and reduced the respiratory arousal index from 18 ⴞ 2 to 8 ⴞ 2 events per hour (p ⬍ 0.01). Treatment with nasal insufflation reduced the apnea–hypopnea index to fewer than 10 events per hour in 8 of 11 subjects, and to fewer than 5 events per hour in 4 subjects. The mechanism of action appears to be through an increase in end-expiratory pharyngeal pressure, which alleviated upper airway obstruction and improved ventilation. Conclusions: Our findings demonstrate clinical proof of concept that a nasal cannula for insufflating high airflows can be used to treat a diverse group of patients with obstructive sleep apnea. Keywords: treatment with nasal insufflation, TNI; pharyngeal pressure Obstructive sleep apnea syndrome is due to upper airway obstruction leading to intermittent hypoxemia, sleep fragmentation, metabolic dysfunction (1, 2), and increased cardiovascular morbidity and mortality (3, 4). Current treatment options, including continuous positive airway pressure (5), oral appliances (6), and surgical procedures (7), are often intrusive or invasive, and not well tolerated, leaving a vast number of subjects untreated (8, 9). Therefore, improved therapeutic strategies are required to treat sleep apneas and hypopneas and their associated morbidity and mortality. Upper airway obstruction is due to increased pharyngeal collapsibility (10–12), which decreases inspiratory airflow as manifested by snoring and obstructive hypopneas and apneas (13). This defect in upper airway collapsibility can be overcome by elevating nasal pressure. In fact, somewhat greater levels of nasal (Received in original form September 18, 2006; accepted in final form March 14, 2007 ) Supported by HL-72126, HL-50381, HL-37379, HL-077137, NHMRC-353705, and Seleon GmbH, Germany. Correspondence and requests for reprints should be addressed to Hartmut Schneider, M.D., Ph.D., Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Room 4B47, Baltimore, MD 21224. E-mail: [email protected] Am J Respir Crit Care Med Vol 176. pp 194–200, 2007 Originally Published in Press as DOI: 10.1164/rccm.200609-1336OC on March 15, 2007 Internet address: www.atsjournals.org 52 AT A GLANCE COMMENTARY Scientific Knowledge on the Subject High levels of continuous positive airway pressure (CPAP) are needed to alleviate obstructive apneas; low compliance with CPAP impedes its therapeutic effectiveness; and, because hypopneas can be treated with low levels of CPAP, nasal insufflation of air might effectively treat mild obstructive sleep apnea. What This Study Adds to the Field Nasal insufflation can provide distinct clinical advantages over CPAP for a substantial proportion of the patient population with sleep apnea. pressure are required to abolish apneas than hypopneas, and to restore normal levels of inspiratory airflow (12, 14). Thus, minimally intrusive methods for delivering low levels of airway pressure may be remarkably effective in treating hypopneas. At present, continuous positive airway pressure (CPAP) is most effective in eliminating apneas and hypopneas, although long-term effectiveness is compromised by low adherence that is estimated at only 50 to 60% (15, 16). Poor adherence has been attributed to the side effects associated with nasal CPAP, including difficulty tolerating pressure and the nasal mask interface, nasal irritation, claustrophobia, and skin breakdown (17, 18). To address these issues, we developed a simplified method for increasing pharyngeal pressure by delivering warm and humidified air at a continuous high flow rate through an open nasal cannula. The present study was designed to determine whether treatment with nasal insufflation (TNI) alleviates obstructive sleep apnea and hypopnea across a spectrum of disease severity. Some of the results of these studies have been previously reported in the form of abstracts (19, 20). METHODS Participants Subjects were recruited from the Johns Hopkins Sleep Disorders Center (Johns Hopkins University, Baltimore, MD) if they had more than five obstructive disordered breathing episodes per hour of sleep on a standard overnight polysomnogram. Patients were selected to provide a balanced range of disease severity encompassing a spectrum of mild (apnea–hypopnea index [AHI] ⭓ 5–15 events/h, n ⫽ 3), moderate (AHI, 15–30 events/h, n ⫽ 5), and severe (AHI ⭓ 30 events/h, n ⫽ 3) sleep apnea (Table 1), with a comparable mix of sex and body mass index. Seven patients were receiving CPAP, four of whom (subjects 3, 6, 9, and 10) participated in the study because they had difficulties tolerating CPAP, with compliance defined as CPAP use for 4 hours or Therapie Diagnose TNI® Studien McGinley, Patil, Kirkness, et al.: Obstructive Sleep Apnea Treatment 195 TABLE 1. ANTHROPOMETRICS AND SLEEP-DISORDERED BREATHING INDICES Disease Severity Mild Moderate Severe Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Subject 11 Mean SEM Anthropometric data Sex Age, yr Height, cm Weight, kg BMI, kg/m2 Sleep-disordered breathing AHI, events/h HI, events/h AI, events/h Average base SaO2, % Average low SaO2, % M 33 168 70.9 25.2 M 24 190.5 120.9 33.2 M 49 180.0 74 22.6 F 39 152.4 63.9 27.4 F 31 160 70.9 27.6 M 56 182.9 91.7 27.4 F 42 154.9 169.1 70.3 M 53 172.7 72.0 24 F 70 157.5 60.0 24.1 M 77 182.9 86.8 25.9 F 56 172.7 66.67 22.35 5 4 1 96.7 94.5 8 7 1 95.2 93.4 13 12 1 94.2 92.3 19 19 0 97.5 93.3 20 20 0 96.5 92.4 21 20 1 96 91.3 22 19 3 97.3 91.9 30 26 4 94.7 90.9 39 4 35 97.2 87.1 46 29 17 93.8 87.3 58 23 35 95.4 90.4 49.7 5.0 170.7 4.1 81.9 12.7 30.5 4.3 27.7 17.9 9.8 95.8 91.0 4.7 2.4 4.3 0.4 0.7 Definition of abbreviations: AHI ⫽ apnea–hypopnea index; AI ⫽ apnea index; BMI ⫽ body mass index; HI ⫽ hypopnea index; SaO2 ⫽ oxygen saturation. more per night, for 70% or more of nights. Patients were excluded if they had central sleep apnea or serious medical conditions. Informed consent was obtained from all subjects, and the Johns Hopkins University Institutional Review Board approved the protocol. Study Procedures Polysomnography. Polysomnography was performed with Somnologica biosignal recording and analysis software (Embla, Broomfield, CO). Signals included electroencephalograms (C3-A2, A2-O1), left and right electrooculograms, submental electromyogram, tibial electromyogram, electrocardiogram, oxyhemoglobin saturation, body position via infrared video camera, nasal cannula for measuring airflow (Nights 2 and 3), and thoracic and abdominal belts for measuring respiratory effort. On Night 1, a pneumotachometer (21) attached to a nasal CPAP mask (Respironics, Murraysville, PA) and a fluid-filled catheter (CooperSurgical, Trumbull, CT) were used to measure ventilation and supraglottic pressure on and off TNI. Nasal insufflation. An air compressor (Seleon, Freiburg, Germany) delivered at the nose a constant flow rate of up to 20 L/minute, which was the upper limit of the current technology, given the dimensions of the cannula. A heater and humidifier regulated the temperature and humidity. A heated wire was incorporated into the lumen of the nasal cannula tubing to achieve a temperature of 30 to 33⬚C and relative humidity of approximately 80% at the nasal outlet (Figure 1). (For nasal cannula dimensions, see the caption to Figure 1). sleep or oxyhemoglobin desaturation equal to or greater than 3%. Each respiratory event (apnea and hypopnea) was subclassified as either central or obstructive on the basis of assessment of the respiratory flow and effort signals (supraglottic pressure catheter or abdominal and thoracic plethysmography) (24). Body position was carefully monitored during both the baseline and treatment nights, and an AHI for each individual was calculated for the supine and side positions separately. An overall AHI was then produced by weighting the time spent in each body position on the first night. On the second night, we applied a positional weighting factor from the first night to calculate an overall AHI. Arousal analysis. Arousals were scored as an abrupt shift in frequency that included , ␣, and  frequencies greater than or exceeding 16 Hz, but not spindles after a minimum of 10 consecutive seconds of stable sleep, and arousals in REM were scored only if accompanied by an increase in submental electromyogram amplitude (23). Assessment Study Protocols On Night 1 (titration night), subjects initiated sleep on 5 L/minute on TNI for reasons of comfort. When subjects had established a stable period (⬎ 10 min) of non–rapid eye movement (NREM) sleep, TNI was applied at 0, 10, or 20 L/minute for 5-minute intervals in random order. These trials were repeated a minimum of three times at each TNI level in the supine position during NREM sleep. Subjects were then randomized to separate nights on and off TNI at 20 L/minute. Standard polysomnographic recording techniques were employed to characterize sleep and breathing patterns on these nights. On the basis of the findings in the TNI titration study, we anticipated that patients who had predominantly hypopneas would experience a greater effect than those who also had obstructive apneas. Analysis Polysomnography. Standard polysomnographic scoring techniques were used to stage sleep (22), arousals (23), and respiratory events, which were scored according to the “Chicago criteria” (24). Respiratory indices. In brief, an apnea was defined as complete cessation of airflow for more than 10 seconds. Hypopnea was defined as a greater than 30% reduction of airflow. Flow-limited events were scored as hypopneas if airflow was reduced less than 30% compared with adjacent breaths and was associated with either an arousal from Figure 1. Nasal cannula for delivery of warm humidified air to a patient (treatment with nasal insufflation). As can be seen, the cannula is designed to leave the nose open, and thus a patient can expire freely through the nose. Dimensions of the cannula are as follows: length, 1,800 mm; outer diameter, 5 mm. Dimensions of the tube after the Y piece: length, 440 mm each; inner diameter, 3.4 mm; dimension of the prongs, 5 mm (outer diameter, each nostril). The cannula has been designed to decrease any potential noise caused by the high flow of air, minimizing noise-induced sleep disruption. 53 Therapie Diagnose TNI® Studien 196 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 176 2007 of interrater variability was performed by two board-certified sleep physicians in a subset of subjects (n ⫽ 9). Breathing dynamics. End-expiratory pharyngeal pressure, peak inspiratory airflow, and respiratory effort were measured on the basis of the 10 breaths immediately preceding and the last 10 breaths of each TNI trial. Statistical Analysis Data are reported as means ⫾ SEM. A sign rank test was performed (Stata 8; StataCorp, College Station, TX) to compare (1 ) differences in polysomnographic indices between baseline diagnostic and clinical treatment night and (2 ) differences in breathing dynamics on and off TNI. p Values less than 0.05 were considered significant. RESULTS Subject Demographics Eleven subjects (6 men and 5 women; age, 49.7 ⫾ 5.0 yr; body mass index, 30.5 ⫾ 4.3 kg/m2) completed the study. By design, our study population encompassed a wide spectrum from mild to severe disease severity (Table 1). In general, patients with milder disease severity had predominantly obstructive hypopneas (AHI, 5–15 events/h), whereas those with more severe sleep apnea (AHI, ⭓ 30 events/h) had many more obstructive apneas. TNI Titration at 10 versus 20 L/Minute: Night 1 Figure 2 illustrates the effect of TNI at 10 and 20 L/minute on air flow dynamics and supraglottic pressure in one subject with predominantly obstructive hypopnea (subject 1, indicated by open circles in Figure 4). Breaths off TNI (Figure 2, left) during a hypopnea were characterized by a plateauing of inspiratory flow as supraglottic pressure continued to fall, and snoring (microphone signal). A TNI flow rate of 10 L/minute (Figure 2, middle) slightly increased end-expiratory supraglottic pressure and decreased inspiratory effort swings. Nevertheless, inspiratory flow limitation and snoring persisted. In contrast, breaths on TNI at 20 L/minute (Figure 2, right) were no longer flow limited as indicated by a rounded inspiratory flow contour, an increase in peak inspiratory airflow, a marked decline in supraglottic pressure swings, and the absence of snoring. Similar results were found in all our study participants. Effect on Sleep-disordered Breathing Indices In Figure 3, the effect of TNI at 20 L/minute on the sleepdisordered breathing pattern is illustrated for one subject with obstructive hypopneas. Figure 3 (left) depicts two obstructive hypopneas (see horizontal bars) as indicated by decreased inspiratory airflow, progressively increasing respiratory effort (Psg), snoring (see microphone trace), and oxygen desaturations. When TNI was administered (Figure 3, right), sleep and breathing patterns stabilized, as reflected by the reduction in supraglottic pressure swings, and resolution of inspiratory flow limitation, snoring, and oxyhemoglobin desaturation. In Figure 4, the sleep-disordered breathing responses of subjects to TNI (20 L/min) are presented for the clinical treatment night (TNI on) and the baseline diagnostic night (TNI off). Two main effects can be discerned. First, TNI led to a reduction in the overall AHI (28 ⫾ 5 to 10 ⫾ 3 events/h, p ⬍ 0.01; Figure 4, left) and some improvement of the AHI was observed in each subject (Figure 4, left). In eight of these subjects, the AHI fell below 10 events/hour. Of the three remaining subjects, the nasal cannula dislodged for 2.5 hours in one subject (Figure 4, left, solid diamonds), and hence the AHI fell only minimally from 19 to 17, whereas more marked reductions in the AHI, from 46 to 27 and from 39 to 23 events/hour, were observed for the other two (Figure 4, left, bars and plus symbols). Second, TNI responses in hypopneas and apneas are shown separately (Figure 4, middle and right, respectively). TNI decreased the hypopnea index (Figure 4, middle) from 18 ⫾ 2 to 8 ⫾ 2 events/hour (p ⬍ 0.01), and also reduced the number of obstructive apneas in the three subjects who had an apnea index greater than 10 events/hour during sleep (subjects 9, 10, and 11 in Table 1, and represented by plus, bar, and solid triangle symbols, respectively, in Figure 4, right). As can be seen, apneic subjects 9, 10, and 11 had a reduction in apnea index from 36 to 17, from 17 to 11, and from 35 to 6 events per hour of sleep, respectively, suggesting that TNI can decrease apneas as well as hypopneas. Assessment of interrater variability was performed with an intraclass correlation coefficient (ICC) for obstructive respiratory events (ICC, 1.0), respiratory arousals (ICC, 0.98), and spontaneous arousals (ICC, 0.8), indicating good agreement between reviewers in all categories; disagreements between reviewers were minor (Table 2). Figure 2. Airflow and supraglottic pressure (Psg) response to treatment with nasal insufflation (TNI) in one subject (subject 1). During baseline, with TNI off (left), large swings in supraglottic pressure and flattening of the inspiratory airflow contour occurred as supraglottic pressure continued to fall, indicating upper airway obstruction (left). Whereas TNI at 10 L/ minute had no significant effect on airflow and supraglottic pressure swings (middle), TNI at 20 L/minute increased end-expiratory Psg from 0 to 2.2 cm H2O, which was associated with an increase in peak inspiratory airflow from 290 to 360 ml/second, and respiratory effort markedly declined as indicated by reductions of the supraglottic pressure swings from –15 to –3 cm H2O. 54 Therapie TNI® Studien McGinley, Patil, Kirkness, et al.: Obstructive Sleep Apnea Treatment Diagnose 197 Figure 3. Effect of treatment with nasal insufflation (TNI) on obstructive hypopneas in one subject during non–rapid eye movement (NREM) sleep. Left: TNI off. Right: TNI 20 L/minute. Horizontal lines below the flow signal demarcate individual hypopnea events with oxyhemoglobin desaturations of 4 and 3%, respectively. Note the marked decline in the snoring signal on TNI compared with TNI off. Microphone ⫽ digitally displayed snoring auditory signal; Psg ⫽ supraglottic catheter pressure (cm H2O); SaO2 ⫽ oxygen saturation. Mechanism of Action To explore the underlying mechanisms responsible for the effect of TNI on sleep-disordered breathing we assessed inspiratory airflow, end-expiratory supraglottic pressure, and respiratory effort in a subgroup of subjects (n ⫽ 7). In Figure 5, the immediate respiratory responses to TNI at a rate of 20 L/minute for one subject with obstructive hypopneas are demonstrated. As can be seen in Figure 5, breaths off TNI were characterized by inspiratory flow limitation indicated by a plateauing of inspiratory flow as supraglottic pressure continued to fall (see inspiratory flow limitation threshold marked by the horizontal dashed line). After TNI was initiated, there was an instantaneous increase Figure 4. Sleep-disordered breathing indices. Shown are apnea and hypopnea indices during the baseline (Bsl) diagnostic night and the clinical treatment night for individual subjects. Individual subject symbols are consistent between panels. TNI ⫽ treatment with nasal insufflation. 55 Therapie Diagnose TNI® Studien 198 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE TABLE 2. INTERRATER RELIABILITY Respiratory Arousal Indices AHI Subject Spontaneous Arousal Indices Scorer 1 Scorer 2 Scorer 1 Scorer 2 Scorer 1 Scorer 2 C D E F G H I J K 20 16 7 7 24 8 10 5 86 21 15 6 7 25 8 10 5 86 21 16 9 3 20 8 5 5 64 23 15 7 3 24 8 15 5 64 7 7 4 0 8 2 1 6 0 5 5 3 0 4 1 0 3 0 Mean SE ICC 20 26 20 26 1.00 17 19 18 19 0.98 4 3 2 2 0.80 Definition of abbreviations: AHI ⫽ apnea–hypopnea index; ICC ⫽ intraclass correlation coefficient. Individual data are presented for a subset of patients (n ⫽ 9), scored by two experienced board-certified sleep medicine physicians, for the analysis of interscorer agreement for the apnea–hypopnea indices, respiratory and spontaneous arousal indices. in end-expiratory supraglottic pressure (Figure 5, circled 1) and mean inspiratory airflow (Figure 5, circled 2). Nevertheless, inspiratory flow limitation was still present over a short period of breaths in which supraglottic pressure swings declined gradually on a breath-by-breath basis (Figure 5, circled 3), indicating that improvements in airflow were associated with progressive reductions in respiratory drive. Once the supraglottic pressure swings no longer fell below the threshold for flow limitation (Figure 5, circled 4), the inspiratory airflow contour assumed a round, non–flow-limited pattern (Figure 5, circled 5). Pooled data for a subset of subjects (n ⫽ 7) demonstrate that TNI increased end-expiratory pharyngeal pressure from atmospheric to 1.8 ⫾ 0.1 cm H2O (p ⫽ 0.04), increased inspiratory airflow from 255.1 ⫾ 54.2 to 363.5 ⫾ 26.7 ml/second (p ⫽ 0.04), and decreased supraglottic pressure swings from 11.3 ⫾ 0.5 to 4.4 ⫾ 0.6 cm H2O (p ⫽ 0.04). Thus, TNI alleviates upper airway VOL 176 2007 obstruction through an immediate increase in pharyngeal pressure in combination with gradual reflexive reductions in ventilatory drive. Sleep Characteristics and Arousal Indices As shown in Table 3, TNI reduced the respiratory-related arousal frequency (18 ⫾ 4 to 8 ⫾ 2 events/h, p ⬍ 0.01), without a change in the spontaneous arousal frequency (3 ⫾ 1 to 3 ⫾ 1, p ⫽ 0.65). There was no overall change in total sleep time, sleep efficiency, or sleep stage distribution, perhaps as a result of our relatively small sample size. However, each patient exhibited an improvement in sleep stage distribution, with either a greater percentage of time in deeper stages of NREM sleep (subjects 3, 4, 5, 6, 8, and 11) or a greater percentage of total sleep time spent in REM sleep (subjects 1, 2, 7, 9, and 10), suggesting that TNI improved sleep quality. DISCUSSION Our study was designed to examine the effect of treatment with nasal insufflation (TNI) on obstructive sleep apnea. In a broad spectrum of patients, we found a significant reduction in inspiratory flow limitation severity on TNI at 20 versus 10 L/minute, and improvement in sleep apnea severity as reflected by a marked fall in both the apnea–hypopnea and arousal indices on TNI at 20 L/minute. The relief of upper airway obstruction was most likely due to small but consistent increases in pharyngeal pressure on TNI, which decreased the severity of inspiratory flow limitation. Mechanism of Action of TNI To determine the mechanism of action of TNI, we assessed airflow dynamics and supraglottic pressure responses to TNI at a low rate (10 L/min) and a high rate (20 L/min) during periods of hypopneas during NREM sleep. Whereas TNI at 10 L/minute had no effect on airflow dynamics, TNI at 20 L/minute increased peak inspiratory airflow and reduced supraglottic pressure swings. Although these changes were relatively modest, sleep and breathing patterns improved markedly in all subjects receiving TNI. These improvements can be attributed primarily to the increase in pharyngeal pressure while receiving TNI. Inspiratory airflow increases approximately 50 ml/second per cm H2O of Figure 5. Mechanism of action. Airflow and supraglottic pressure are shown during the transition from flow-limited breathing with TNI off, to non– flow-limited breathing with TNI at 20 L/minute. Psg ⫽ supraglottic catheter pressure (cm H2O). Numbers in circles: 1, increase in end-expiratory Psg; 2, increase in mean inspiratory airflow; 3, decrease in supraglottic pressure swings on a breath-by-breath basis; 4, Psg threshold for inspiratory flow limitation; and 5, a round, non–flow-limited inspiratory pattern. 56 Therapie Diagnose TNI® Studien McGinley, Patil, Kirkness, et al.: Obstructive Sleep Apnea Treatment TABLE 3. SLEEP CHARACTERISTICS AND AROUSAL INDICES Baseline TST, min Sleep efficiency, % NREM, % TST Stage 1, % Stage 2, % Stage 1, % REM, % TST Arousal indices Respiratory Spontaneous Total TNI, 20 L/min Mean SEM Mean SEM p Value 317.9 79.5 84.2 12.7 65.2 6.3 14.1 26.0 5.2 1.9 3.1 4.0 1.8 2.2 326.7 85.5 87.2 13.2 68.2 6.3 12.8 12.3 3.3 2.6 4.0 4.2 1.8 2.6 0.64 0.24 0.43 0.56 0.56 0.84 0.87 18.3 3.4 21.6 3.7 2.2 3.6 8.3 3.1 11.4 1.5 0.4 1.5 0.005 0.65 0.007 Definition of abbreviation: NREM ⫽ non–rapid eye movement; TST ⫽ total sleep time. Group data are presented for both the baseline and clinical treatment night with TNI at 20 L/minute. CPAP pressure applied (25). TNI at a rate of 20 L/minute led to a similar increase in inspiratory airflow (45 ml/s per cm H2O). The peak inspiratory airflows of our patients during hypopneas were only mildly reduced to approximately 230 ml/second, and rose to approximately 300 ml/second, a level previously associated with the elimination of inspiratory flow limitation and stabilization of breathing patterns (25). Thus, improvements in peak inspiratory airflow were likely due to increases in pharyngeal pressure, which were of sufficient magnitude to treat hypopneas when inspiratory airflow levels are only mildly reduced. Effect of TNI on Sleep-disordered Breathing Although we expected marked improvements in the AHI primarily in patients with hypopneas rather than obstructive apneas, TNI lowered the AHI in all subjects, regardless of the apnea– hypopnea distribution. Although the primary mechanism of action appears to be related to increases in end-expiratory pharyngeal pressure, other factors may have further improved ventilation in addition to alleviating upper airway obstruction. First, even small increases in pharyngeal pressure may have increased lung volume. Increases in lung volume lead to improvements in both oxygen stores and upper airway patency (26–30), both of which may further stabilize breathing patterns during sleep. As ventilation improved in our patients during sleep, enhanced sleep continuity (decreased arousal frequency) may have also contributed to further reductions in the apnea–hypopnea indices (31, 32). Indeed, we found a trend toward improvement in sleep stage distribution in all subjects, with a reduction in respiratory arousals, and no change in spontaneous arousals. Additional benefits may have accrued from insufflating air directly into the nose, which may produce concomitant reductions in dead space ventilation. Therefore, improvements in oxygen stores, ventilation, and sleep continuity, along with enhanced upper airway patency, are likely responsible for the beneficial responses to TNI. We acknowledge that obstructive sleep apnea was not completely eliminated in all of our patients, and that nasal CPAP might still be more efficacious in reducing the AHI during treatment nights. Nevertheless, reduced compliance with CPAP can significantly compromise long-term therapeutic effectiveness, leaving a significant portion of patients untreated over time (33). Poor CPAP compliance has been attributed to cumbersome masks, and to difficulties in exhaling against a high backpressure (17). In contrast, TNI offers a simplified nasal interface for delivering relatively low levels of pharyngeal pressure, which may enhance long-term compliance, and overall 199 therapeutic effectiveness, and thus might reduce long-term cardiovascular and metabolic complications of obstructive sleep apnea. Limitations There are several limitations in the current study. First, we used only flow rates of 10 and 20 L/minute in our study. It is possible that higher flow rates would have been even more effective in eliminating all respiratory events. However, we used relatively low flow rates to balance the comfort of nasal insufflation with efficacy. Indeed, there were no reports of significant discomfort or side effects after a full night of treatment with TNI at 20 L/ minute, with the exception of reports that air temperatures were either too warm (n ⫽ 2) or cold (n ⫽ 1) for initiating sleep. Nevertheless, the majority of subjects did not have difficulty initiating or maintaining sleep as compared with baseline. None of the patients complained about noise related to the use of TNI, which we acknowledge might result from patient motivation, or perception relative to their previous experience with CPAP. Moreover, assessment of sleep architecture between nights on and off TNI indicates a trend toward improvement, without change in spontaneous arousal indices. Second, it is possible that the cannula may have dislodged during the night, accounting for the treatment failure in at least one patient. Although it is not yet clear how a minor dislodgement of the cannula can affect efficacy, the fact that the majority of our patients had a substantial reduction in sleep-disordered breathing indices suggests that the exact position of the nasal cannula is not critical. Third, the occurrence of apneas might be dependent on body position. We accounted for body position between the two nights, thus eliminating the impact of a change in position on the treatment effect. Fourth, TNI was used for only one night. Although patients did not report any discomfort when using it for one night, the response might be different when using TNI repeatedly over several nights. Further studies of TNI administered over several nights would be required to examine its effect relative to CPAP. Fifth, assessment of both spontaneous and respiratory arousals is potentially associated with poor agreement between scorers. All data in this study were reviewed by two experienced board-certified sleep physicians (H.S. and S.P.). To assess quality assurance of our scoring, the interrater reliability was analyzed for a subset of patients (n ⫽ 9), and was comparable to previous assessments of interrater reliability of both spontaneous and respiratory arousal indices (ICC, 0.72; 95% confidence interval: 0.44, 0.88) with experienced full-time scorers (34). Implications There are several clinical implications of our findings. First, our findings provide evidence that TNI may offer a viable treatment alternative to patients with obstructive hypopneas and apneas. The finding that TNI alleviated obstructive hypopneas in all but one patient predicts a high likelihood of treatment success in a similar patient population. A retrospective analysis of our patient database with 4,746 patients with obstructive sleep apnea– hypopnea syndrome studied between 1981 and 2000, whose AHI was greater than 10, showed that 28.4% of these patients had predominantly obstructive hypopneas (more than 90% of all events) and would meet the polysomnographic and anthropometric characteristics of our study population. Second, our findings that TNI also had an effect on obstructive apnea in our patients with an apnea index of greater than 15 implies that TNI may be beneficial in some patients with obstructive apneas as well. Further studies are required to elucidate the polysomnographic and/or clinical predictors of a TNI response. Third, we used a fixed flow rate and cannula size, which may obviate the need for titration studies. Indeed, it may be possible to offer an 57 Therapie Diagnose TNI® Studien 200 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 176 2007 empiric, streamlined therapeutic approach with TNI for a large proportion of patients with sleep apnea. In summary, our study provides clinical proof of concept for employing TNI as a novel treatment for patients with obstructive sleep apnea–hypopnea syndrome. Because one flow rate and cannula size was sufficient to stabilize breathing patterns in the majority of our subjects, titration may be obviated, thereby streamlining the initiation of treatment. Moreover, the minimally intrusive nasal interface of TNI may improve patient adherence, and may ultimately prove more effective in managing the longterm morbidity and mortality of sleep apnea. Further studies will be required to extend these findings and to determine the ultimate role of TNI in managing obstructive sleep apnea. Conflict of Interest Statement : B.M.M. does not have a financial relationship with a commercial entity that has an interest in the subject of this manuscript. S.P.P. does not have a financial relationship with a commercial entity that has an interest in the subject of this manuscript. J.P.K. does not have a financial relationship with a commercial entity that has an interest in the subject of this manuscript. P.L.S. does not have a financial relationship with a commercial entity that has an interest in the subject of this manuscript. A.R.S. received $18,000 in 2006, under a private licensing agreement between Dr. Schwartz and Seleon GmbH. The terms of this arrangement are being managed by Johns Hopkins University in accordance with its conflict of interest policies. H.S. received $78,000 from 2003 to 2006. Under a private licensing agreement between Dr. Schneider and Seleon GmbH, Dr. Schneider receives consulting fees (U.S. $18,000 in 2006) and is entitled to royalty payments on the future sales of products described in this article. Under a separate licensing agreement between Dr. Schneider and Seleon GmbH and Johns Hopkins University, Dr. Schneider is entitled to a share of royalty received by the university on sales of products described in this article. The terms of this arrangement are being managed by Johns Hopkins University in accordance with its conflict of interest policies. Funding for the study described in this article was partially provided by Seleon GmbH. Acknowledgment : The authors thank Mr. Peter DeRosa and Mr. Christopher Smith for contributions to this study, which included technical support, data collection, and help in the preparation of tables and figures. References 1. Babu AR, Herdegen J, Fogelfeld L, Shott S, Mazzone T. Type 2 diabetes, glycemic control, and continuous positive airway pressure in obstructive sleep apnea. Arch Intern Med 2005;165:447–452. 2. Punjabi NM, Shahar E, Redline S, Golttlieb DJ, Givelber R, Resnick HE. Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. Am J Epidemiol 2004;160:521–530. 3. Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea–hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 2005;365:1046–1053. 4. Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V. Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med 2005;353:2034–2041. 5. Sullivan CE, Issa FG, Berthon-Jones M, Eves L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 1981;1(8225):862–865. 6. Kushida CA, Morgenthaler TI, Littner MR, Alessi CA, Bailey D, Coleman J Jr, Friedman L, Hirshkowitz M, Kapen S, Kramer M, et al.; American Academy of Sleep. Practice parameters for the treatment of snoring and obstructive sleep apnea with oral appliances. American Sleep Disorders Association. Sleep 2005;18:511–513. 7. Sher AE, Schechtman KB, Piccirillo JF. The efficacy of surgical modifications of the upper airway in adults with obstructive sleep apnea syndrome. Sleep 1996;19:156–177. 8. Kribbs NB, Pack AI, Kline LR, Smith PL, Schwartz AR, Schubert NM, Redline S, Henry JN, Getsy JE, Dinges DF. Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea. Am Rev Respir Dis 1993;147:887–895. 9. McArdle N, Deveruex G, Heidarnejad H, Engleman HM, Mackay TW, Douglas NJ. Long-term use of CPAP Therapy for sleep apnea/hypopnea syndrome. Am Rev Respir Dis 1999;159:1108–1114. 10. Eastwood PR, Szollosi I, Platt PR, Hillman DR. Comparison of upper airway collapse during general anesthesia and sleep. Lancet 2007;359: 1207–1209. 58 11. Mansour KF, Rowley JA, Meshenish AA, Shkoukani MA, Badr MS. A mathematical model to detect inspiratory flow limitation during sleep. J Appl Physiol 2002;93:1084–1092. 12. Schwartz AR, Smith PL, Wise RA, Bankman I, Permutt S. Effect of positive nasal pressure on upper airway pressure–flow relationships. J Appl Physiol 1989;66:1626–1634. 13. Gleadhill IC, Schwartz AR, Schubert N, Wise RA, Permutt S, Smith PL. Upper airway collapsibility in snorers and in patients with obstructive hypopnea and apnea. Am Rev Respir Dis 1991;143:1300–1303. 14. Smith PL, Wise RA, Gold AR, Schwartz AR, Permutt S. Upper airway pressure–flow relationships in obstructive sleep apnea. J Appl Physiol 1988;64:789–795. 15. Aloia MS, Stanchina M, Arnedt T, Malhotra A, Millman R. Treatment adherence and outcomes in flexible vs standard continuous positive airway pressure therapy. Chest 2005;127:2085–2093. 16. Drake CL, Day R, Hudgel D, Stefadu Y, Parks M, Syron ML, Roth T. Sleep during titration predicts continuous positive airway pressure compliance. Sleep 2003;26:308–311. 17. Olson EJ, Moore WR, Morgenthaler TI, Gay PC, Staats BA. Obstructive sleep apnea–hypopnea syndrome. Mayo Clin Proc 2003;78:1545–1552. 18. Weaver TE, Maislin G, Dinges DF, Younger J, Cantor C, McCloskey S, Pack AI. Self-efficacy in sleep apnea; instrument development and patient perceptions of obstructive sleep apnea risk, treatment benefit and volition to use continuous positive airway pressure. Sleep 2004;26: 727–732. 19. McGinley BM, Patil SP, Kirkness JP, Schwartz AR, Smith PL, Schneider H. Continuous nasal airflow (TNI) through a nasal cannula treats obstructive sleep hypopnea [abstract]. Proc Am Thorac Soc 2006;3: A869. 20. McGinley BM, DeRosa P, Schwartz AR, Kirkness JP, Patil SP, Smith PL, Schneider H. A novel strategy for treating upper airway obstruction (UAO) with transnasal insufflation [abstract]. Sleep 2005;28:A208. 21. Hager DN, Fuld M, Kaczka DW, Fessler HE, Brower RG, Simon BA. Four methods of measuring tidal volume during high-frequency oscillatory ventilation. Crit Care Med 2006;34:751–757. 22. Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring systems for deep states of human subjects. Bethesda, MD: National Institutes of Health; 1968. NIH Publication No. 204. 23. Sleep Disorders Task Force of the American Sleep Disorders Association. EEG arousals: scoring rules and examples. Sleep 1992;15:174–184. 24. American Academy of Sleep Medicine Task Force. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep 1999;22:667–689. 25. Patil SP, Punjabi NM, Schneider H, O’Donnell CP, Smith PL, Schwartz AR. A simplified method for measuring critical pressures during sleep in the clinical setting. Am J Respir Crit Care Med 2004;170:89–93. 26. Heinzer RC, Stanchina ML, Malhotra A, Jordan AS, Patel SR, Lo YL, Wellman A, Schory K, Dover L, White DP. Effect of increased lung volume on sleep disordered breathing in patients with sleep apnoea. Thorax 2006;61:435–439. 27. Hoffstein V, Zamel N, Phillipson EA. Lung volume dependence of pharyngeal cross-sectional area in patients with obstructive sleep apnea. Am Rev Respir Dis 1984;130:175–178. 28. Series F, Cormier Y, Desmeules M. Influence of passive changes of lung volume on upper airways. J Appl Physiol 1990;98:2159–2164. 29. Series F, Cormier Y, Lampron N, La Forge J. Increasing the functional residual capacity may reverse obstructive sleep apnea. Sleep 1988;11: 349–353. 30. Stanchina M, Malhotra A, Fogel R, Trinder J, Edwards J, Schory K, White DP. The influence of lung volume on pharyngeal mechanics, collapsibility, and genioglossus muscle activation during sleep. Sleep 2003;26:851–856. 31. Wellman A, Malhotra A, Fogel R, Edwards JK, Schory K, White DP. Respiratory system loop gain in normal men and women measured with proportional-assist ventilation. J Appl Physiol 2002;94:205–212. 32. Younes M. Role of arousals in the pathogenesis of obstructive sleep apnea. Am J Respir Crit Care Med 2004;169:623–633. 33. Grote L, Hedner J, Grunstein R, Kraiczi H. Therapy with nCPAP: incomplete elimination of sleep related breathing disorder. Eur Respir J 2006;16:921–927. 34. Whitney CW, Gottlieb DJ, Redline S, Norman RG, Dodge RR, Shahar E, Surovec S, Nieto FJ. Reliability of scoring respiratory disturbance indices and sleep staging. Sleep 2007;21:749–757. Therapie TNI® Studien Diagnose 59 Therapie Diagnose Fallbeispiele Erwachsene TNI®20 Geschlecht: männlich Diagnose: Alter: 67 Jahre Gewicht/Größe: 110 kg, 189 cm COPD IV mit akuter Exazerbation (BODE 4), hochgradig respiratorische Globalinsuffizienz, Chron. Cor pulmonale, mäßiggradiges zentrilobuläres Lungenemphysem Bisherige Therapieform/Werte: Sauerstofftherapie: 2l/min O2 in häuslicher Umgebung pCO2: 64,6 mmHg pO2: 39,9 mmHg 75,1% sO2: TNI®20 Therapie/Werte: 20l/min nur Raumluft (ohne Sauerstoffzugabe) Werte nach 12 Tagen pCO2: 43,0 mmHg pO2: 55,2 mmHg sO2: 88,7% Bewertung des Patienten: Wohlgefühl verbunden mit gutem Schlaf, Wunsch nach Therapiefortsetzung Geschlecht: männlich Diagnose: Alter: 73 Jahre Gewicht/Größe: 88 kg, 173 cm Schwere OSA Bisherige Therapieform/Werte: TNI®20 Therapie/Werte: CPAP sO2: mindestens RDI tot: RDI–REM: 79 % 46,6 33,8 20l/min Raumluft sO2: mindestens RDI tot: RDI–REM: 83 % 4 11,7 Bewertung des Patienten: guter Schlaf Geschlecht: männlich Diagnose: 60 Alter: 78 Jahre COPD Stadium 4 mit respiratorischer Globalinsuffizienz Bisherige Therapieform/Werte: Sauerstofftherapie: 1l/min O2, pCO2: 60 mmHg pO2: 46 mmHg sO2: 79% TNI®20 Therapie/Werte: 20l/min Raumluft Werte nach: 30 min: pCO2: 55mmHg pO2: 56 mmHg sO2: 88% Therapie Diagnose Fallbeispiele TNI®20 oxy / TNI®20s oxy Geschlecht: männlich Diagnose: Alter: 50 Jahre Gewicht/Größe: 145 kg, 170 cm Obesitas-Hypoventilationssyndrom mit respiratorischer Globalinsuffizienz Bisherige Therapieform/Werte: Sauerstoff 3-4 l/min Unter TNI®20s oxy: Verbesserte Werte: pCO2 Situation als Trend verbessert Sauerstoffsituation unwesentlich verbessert keine Sauerstoffzugabe Nachtpersonal hat Therapie beendet, war nicht eingewiesen Geschlecht: männlich Alter: 78 Jahre Diagnose: COPD Stadium 4, hyperkapnisch, chronische Cor pulmonale mit respiratorischer Globalinsuffizienz, will nach eigener Aussage sterben, lehnt Maske ab Ausgangswerte: pCO2: ca 70 mmHg sO2: unter 45% Bisherige Therapieform/Werte: Sauerstofftherapie: 2l/min O2 pCO2: 75mmHg sO2: 92% TNI®20s oxy Therapie/Werte: 2l/min O2 und 12l/min Raumluft Werte nach 24 h Behandlungsdauer pCO2: 50 mmHg sO2: 92% Bewertung des Patienten: bereits nach 2 h nachlassende Dyspnoe Geschlecht: männlich Diagnose: Alter: 72 Jahre Obesitas-Hypoventilationssyndrom Bisherige Therapieform/Werte: Sauerstofftherapie: 2l/min O2 sO2: 74% TNI®20s oxy Therapie/Werte: 18l/min Raumluft Werte nach: 1h: keine Verbesserung im Trend erkennbar sO2: 74% Sauerstofftherapie: 2l/min O2 und 18l/min Raumluft Werte nach: 15 min: pCO2: unverändert sO2: 92% Schlafnacht: sO2: 74% Bewertung des Patienten: Schläft so gut, wie lange nicht mehr 61 Therapie Diagnose Fallbeispiele TNI®20 oxy / TNI®20s oxy Geschlecht: weiblich Diagnose: Alter: 72 Jahre AZ-Verschlechterung mit zunehmender Ruhe-Dyspnoe, vermehrte zentrale Bronchialzeichnung und deutliche zentrale und periphere Stauungszeichen sowie ein pneumonisches Infiltrat mit freiem Erguss im rechten Unterlappen Therapie Ausgangssituation ohne Sauerstofftherapie 3l/min O2 TNI®-Therapie TNI® 16+5 O2 TNI® 16+5 O2 TNI® 16+5 O2 Gegencheck ohne 4l/min O2 Datum/Zeit pCO2 pO2 sO2 11.07.07 / 12.32 h 29 mmHg 47 mmHg 87% 11.07.07 / 13.00 h 31 mmHg 54 mmHg 90% 11.07.07 / 14.55 h 11.07.07 / 16.11 h 12.07.07 / 8.03 30 mmHg 33 mmHg 33 mmHg 62 mmHg 65 mmHg 62 mmHg 94% 95% 93% 13.07.07 / 8.41 h 14.07.07 / 10.12 h 32 mmHg 35 mmHg 43 mmHg 62 mmHg 83% 93% Bemerkung: Mit nur O2 konnten die Blutgase nicht aufrechterhalten werden, was unter TNI® nicht der Fall war. Unter TNI®-Therapie: gute Oxygenierung, niedrigere CO2 Werte, daher die bessere Alternative zur reinen O2 Gabe Geschlecht: männlich Diagnose: Alter: 75 Jahre COPD Stadium 4 mit respiratorischer Globalinsuffizienz, Pneumonie beidseitig, nach Acetabul umfraktur zunehmende Dekompensation, Ruhe-Dyspnoe, somnolent Bisherige Therapieform/Werte: NIV Beatmung (BiPAP, p=18/10 mbar, AF: 15/min), Patient hat Maske nicht toleriert TNI®20s oxy Therapie/Werte: 8l/min O2 und 14l/min Raumluft pCO2: 39 mmHg pO2: 78 mmHg sO2: 95,9% Bemerkung: Stabilisierung der Blutwerte ohne NIV, Entlassung auf Normalstation 62 Therapie Diagnose Fallbeispiele TNI®20 oxy / TNI®20s oxy Geschlecht: weiblich Diagnose: COPD mit akuter Exazerbation Aufnahme der Pat. Stat. 1 wegen klin. CO2 Narkose Stat. 1 Stat. 2 Rückverlegung Beginn High-Flow Stat. 2 10 min vor Transport auf D1 wegen Sepsis Stat. 1 Transport ohne High-Flow Stat. 1 Therapie 2 lpm O2 über Brille pO2 (mmHg) 71 pCO2 (mmHg) 54 4 lpm O2 über Brille 217 135 2 lpm O2 über Brille 20 lpm High-Flow (4 lpm O2 /16 lpm Luft) 20 lpm High-Flow (4 lpm O2 /16 lpm Luft) 20 lpm High-Flow (4 lpm O2 /16 lpm Luft) 67 105 42 88 50 80 54 48 CPAP mit 6 lpm O2 44 77 Castor Helm 7 lpm O2 66 91 Bemerkung: Durch die Atmungsunterstützung kann die Erschöpfung der Atemmuskulatur kompensiert werden, die mangels Kraft zu einer flachen Atmung mit verminderter Ventilation der Lunge führt und keine suffiziente O2-Aufnahme ermöglicht. Durch den aufgebauten PEEP wird der expiratorische Kollaps der Atemwege bei der COPD verringert und eine suffiziente CO2Abatmung erreicht. Die Patientin hat den hohen Fluss sehr gut akzeptiert. Fallbeispiel Flow / O2 Ohne CO2 / O2 16/2 8,4/6,8 18/2 8,5/5,3 20/2 8,3/6,8 30 min 1,5 h 2,5 h 4h 8,2/6,7 8,1/6,5 8,1/7,2 8,2/6,9 8,1/6,3 7,9/7,1 7,8/6,8 7,3/6,9 7,2/7,0 7,6/6,6 6h 7h 9h 7,6/6,9 7,5/7,6 7,8/6,5 7,7/6,9 7,6/6,7 7,9/6,8 63 Therapie Diagnose Fallbeispiele TNI®20 oxy / TNI®20s oxy Geschlecht: männlich Diagnose: Alter: 72 Jahre 1. Bronchial – CA re OL, T2 N2 Mx, inoperabel wegen 2. schwere COPD mit respiratorischer Globalinsuffizienz Problem: schwere, insbesondere nächtliche Dyspnoe, häufiges nächtliches Alarmieren des ärztlichen Notdienstes. Ruhe – BGA: O2: 52 mm Hg CO2: 48 mm Hg Weiterhin phasische nächtliche Entsättigungen bis minimal 65 % Ruhe – BGA unter 2,5l O2: O2 : 59 mm Hg CO2: 56 mm Hg, somit wegen CO2-Retention O2 – Gabe über Nasensonde nicht möglich. Bisherige Therapieform/Werte: BIPAP-Therapie mit O2-Gabe bei subjektiver Unverträglichkeit und deutlich überblähter Lunge gescheitert (FEV1: o,7 l; ITGV 180 % Soll, TLC 160 % Soll) TNI®20 oxy Therapie/Werte: 2l/min O2 und 16l/min Raumluft: Ruhe – BGA: O2: 65 mm Hg CO2: 43 mm Hg Bemerkung: Subjektiv beschwerdefrei, nächtliches Durchschlafen möglich, nächtliche Mindestsättigung: 85 % (versus 65 % vor Therapie) Geschlecht: männlich Diagnose: 64 Alter: 72 Jahre 1. Zentrale schlafbezogene Atmungsstörung ( AHI 40 pro Stunde ) bei 2. Morbus Parkinson 3. Z. n. apoplektischem Insult Bisherige Therapieform/Werte: CPAP / BIPAP: Therapie wegen Maskenintoleranz nicht möglich, O2: Insufflation per Nasensonde (2l und 4l) ohne Effekt auf AHI TNI®20 oxy Therapie/Werte: 2l/min O2 und 18l/min Raumluft: AHI 11 pro Stunde und deutliche Besserung der Tagessymptomatik. Therapie Diagnose Fallbeispiele Kinder TNI®20 Fallbeispiel 1-jähriges Kind: Erfolgreiche Atmungsunterstützung eines ehemals Frühgeborenen mit nasaler Insufflation Zusammenfassung des Fallbeispiels: Der Patient war ein 1-jähriger Knabe, ehemaliges Frühgeborenes der 27. SSW, mit multiplen Erkrankungen: akute respiratorische Insuffizienz, Epilepsie, infantile Zerebralparese, Tetraspastik, Retinopathie, BDP, Versorgung eines Gastrostromas und Bronchopneumonie. Er wurde mit fieberhaftem, pulmonalem Infekt mit deutlich obstruktiver Komponente stationär in die Abteilung eingewiesen. Durch reichliche tracheobronchiale Sekretion lag eine akute respiratorische Insuffizienz mit Hypoxämie und Hyperkapnie vor. Eine zunehmende Verschlechterung der pulmonalen Situation mit einer Sauerstoffentsättigung zwischen 9% und 25% (über Monitor bestimmt) konnte trotz intensivem Absaugen von Sekret und der Gabe von Sauerstoff nicht verhindert werden. Unter Sedierung wurde danach die nasale Insufflation mit initialem Fluss von 10-12 Liter/min medizinischer Luft und zusätzlich 3-4 Liter/min Sauerstoff über 24 Stunden angewendet. Nach erfolgter Stabilisierung konnte der Fluss auf 8 Liter/min Luft und 1-2 Liter/min Sauerstoff reduziert werden. Die Therapie wurde mehrere Tage bis zur deutlichen Besserung der pulmonalen Situation angewandt. Fallbeispiel Frühchen (w): aus der 38. Schwangerschaftswoche Diagnose: Eutrophes Neugeborenes aus der 38.Schwangerschaftswoche CHARGE-Syndrom, zentrales Schlafapnoe-Syndrom, rezidivierenden Apnoeanfällen, z.n.Aspirationspneumonie Bisherige Therapieform/Werte: NIV Beatmung, hat Maske nicht toleriert TNI®20 Therapie: wird gut akzeptiert, durchschnittliche sO2 Abfälle Fallbeispiel 3 jähriger (m) Diagnose: Schwerstes obstruktives Schlafapnoe-Syndrom M.Crouzon mit multiplen Nahtsynostosen, betont im Bereich der Coronar- und Sagittalnähte, z.N. Choanalstenose, operative Erweiterung bds. 06/06, Einsatz von intranasalen Platzhatern Bisherige Therapieform/Werte: NIV Beatmung, hat Maske nicht toleriert TNI®20 Therapie: wird gut akzeptiert Fallbeispiel 3 jähriger (m) Diagnose: Schwerstes obstruktives Schlafapnoe-Syndrom Freie Trisomie 21 mit typischen dysmorphen Stigmata, extreme psychomotorische Entwicklungsstörung, z.N. atrioventrikulärem Septumdefekt, AV-Klappen Insuffizienz, sekundärer pulmonaler Hypertonie Bisherige Therapieform/Werte: NIV Beatmung, hat Maske nicht toleriert, autistisches Einschlafritual, daher Maskenanpassung nicht möglich TNI®20 Therapie: wird gut akzeptiert, subjektiv und objektiv OSAS deutlich besser 65 Therapie Diagnose Über uns Die TNI medical AG entwickelt, produziert und vertreibt Diagnose- und Therapiegeräte im Bereich der Atmungsunterstützung. Unsere Therapieprodukte sind in erster Linie für die Behandlung des Patienten zu Hause bestimmt, vor allem auch während des Schlafs. Mit ihrer neu eingeführten TNI® Atmungsunterstützung fokussiert die TNI medical AG auf eine Maximierung des Patientenkomforts bei gleichzeitiger Vereinfachung der Anwendung. Das führt auch zu einer höheren Kosteneffizienz. Das Unternehmen mit der Firmenzentrale in Freiburg und weiteren Sitzen in Würzburg und Dessau wurde im Herbst 2007 als Spin-off der seleon gmbh gegründet, einem weltweit führenden Technologieunternehmen im Bereich der mechanischen Atmungstherapien. Die mit unseren Anwendungen primär behandelten Krankheitsbilder Schlafapnoe und chronisch obstruktive Lungenerkrankung zeigen derzeit weltweit die höchsten Fallzuwachsraten. Kontaktdaten TNI medical AG Hofmannstr. 8 D-97084 Würzburg Tel. Fax Service-Hotline 0800 463 68 64 (kostenlos) Technischer Service 08000 73 53 66 (kostenlos) 66 +49 931 20 79 29-02 +49 931 20 79 29-01 E-Mail: Internet: [email protected] www.tni-medical.de Therapie Diagnose Kontaktformular Ausfüllen und zurückschicken an FAX 0931 20 79 29-01 Wir interessieren uns für folgende Produkte: THERAPIE TNI® DIAGNOSE CPAP TNI®20 Dorado MS310 TNI 20 oxy Delphinus Embletta Gold TNI®20s oxy Aquila Embla S4500 iSleep 20+ Embla N7000 ® iSleep 20i iSleep 22 iSleep 25 Bitte senden Sie uns weiteres Informationsmaterial zu. Bitte vereinbaren Sie einen Termin vor Ort mit uns. Krankenhaus: Name: Abteilung: Funktion: Stempel Straße: PLZ/Ort: Telefon: Fax: E-Mail: Ort, Datum Unterschrift 67 TNI medical AG Hofmannstr. 8 D-97084 Würzburg Tel. Fax +49 931 20 79 29-02 +49 931 20 79 29-01 E-Mail: Internet: [email protected] www.tni-medical.de
© Copyright 2026 Paperzz