SECTION 6.6 Product-to-Sum and Sum-to-Product Formulas EXAMPLE 2 495 Expressing Sums (or Differences) as a Product y sines or cosines. 50) Express each sum or difference as a product of sines and/or cosines, (a) sin(50) - sin (30) Solution (b) cos(30) + cos(20) (a) We use formula (7) to get 49}} . . . . , . . , . . . . • si n(jo ) — sm^jp ) ^ sin 2 2 = 2 sin 0 cos(4(0 (b) cos(30) + cos(20 )x z.•, COS 3e + O/3 Z.17 'i/J O" O/3 Z.C7 HJ» Formula (&) 50 0 = 2 cos — cos / sin(20)J WORK 4 PROBLEM 11. • 16.6 Assess Your Understanding Skill Building In Problems 1-10, express each product as a sum containing only sines or cosines. \. sin(40) sin(20) 2. cos(40) cos(20) 3. sin(40) cos(20) 4. sin(30) sin(50) 6. sin(40) cos(60) 6 30 0 9. sin — cos — 8. cos (30) cos (40) 7. sin0sin(20) 5. cos(30) cos(50) 10. sin- In Problems 11-18, express each sum or difference as a product of sines and/or cosines. sin(40) - sin(20) 12. sin(40) + sin(20) 13. cos(20) + cos(40) w 15. sin0 + sin(30) 16. COS0 -}- 0 cos(30) 50 COSy 14. cos(50) - cos(30) 0 30 17. cos — — cos — 30 18. sin — - smy In Problems 19-36, establish each identity. 19. 22. sin0 + sin(30) 2sin(20) COS0 - cos(30) sin(30) — sin 0 in ) "" 23 (20) COS0 + COS0 - sin(40) + sin(80) ,.nlf*Q\n ) through (9) 10 11 sin a + sin B sin a - sin B 11 sin a + sin B cos a + cos B 1A cos 0 - cos(50) sm0 + sin(50) sin(40) - sin(80) (60) 2 a + B 2 35. 1 + cos(20) + cos(40) + cos(60) = 4 cos 0 cos(20) cos(30) 36. 1 - cos(20) + cos(40) - cos(60) = 4 sin 0 cos (20) sin(30) l(\Q\ ' cos(40) - cos(80) °0t cos (40) - cos(80) cos(40) + cos(80) Un(i •2A a — )3 1(20) ta 26. sin0[sin(30) + sin(50)] = cos 0[cos(30) - cos(50)] tan(20) a + B tan(30) ' cos(40) + cos(20) cos (30) sin(40) + sin(80) sin(40) - sin(80) = COS0 sin 0 + sin(30) 25. sin0[sin0 + sin(30)] = cos0[cos0 - cos(30)] cos (40) + cos(80) sin(40) + sin(20) cos (30) 2 cos(20) I') JZ. cos a + COS B a cos a - cos B 74 sin a — sin B cos a - cos B C0t a- B a + B cot T2 a + )3 2
© Copyright 2026 Paperzz