Indian Institute of Technology Roorkee Mathematics-II (MAN-002) Assignment-5 Laplace Transforms (II) Spring Semester-2015-16 Solve the following differential equations using Laplace transforms. 1. y 00 − 3y 0 + 2y=4e2t ; y(0) = −3, y 0 (0) = 5 2. y 00 + 2y 0 + 5y=e−t sin t; y(0) = 0, y 0 (0) = 1 3. y 000 − 3y 00 + 3y 0 − y=t2 et ; y(0) = 1, y 0 (0) = 0, y 00 (0) = −2 4. y 00 + 9y= cos 2t; y(0) = 1, y(π/2) = −1 5. y 00 − ty 0 + y=1; y(0) = 1, y 0 (0) = 2 6. x00 + y 0 + 3x = 15e−t ; x(0) = 35, x0 (0) = −48 y 00 − 4x0 + 3y = 15 sin 2t; y(0) = 27, y 0 (0) = −55 7. y iv − y = 1; y(0) = y 0 (0) = y 00 (0) = y 000 (0) = 0 8. (D2 + n2 )y = a sin(nt + α); y(0) = y 0 (0) = 0 9. ty 00 + y 0 + 4ty = 0; y(0) = 3, y 0 (0) = 0 10. ty 00 + 2y 0 + ty = 0; y(0+) = 1, y(π) = 0 11. (D − 2)x − (D + 1)y = 6e3t , (2D − 3) + (D − 3)y = 6e3t ; x(0) = 3, y(0) = 0 12. Solve Initial Value problem: y 00 + 2y 0 + 5y = h(t); where h(t) = 1, 0, y(0) = 0, y 0 (0) = 0 0 < t < π, t > π, 13. In an electrical circuit with e.m.f. E(t), resistance R and inductance L, di + Ri = E(t). If the switch is the current i builds up at the rate given by L dt connected at t = 0 and disconnected at t = a, find the current i at any instant. 14. Obtain the deflection of a weightless beam of length l and freely supported at ends, when a concentrated load W acts at x = a. The differential equation d4 y for deflection being EI dx 4 = W δ(x − a). 15. The coordinate (x, y) of a particle moving along a plane curve at any time dx t, given by dy dt + 2x = sin 2t, dt − 2y = cos t(t > 0). If at t = 0, x = 1 and y = 0, show by Laplace transform that the particle moves along the curve 4x2 + 4xy + 5y 2 = 4. ANSWERS 1. y= −7et + 4e2t + 4te2t 2. y = 13 e−t (sin t + sin 2t) 2 t 5 t 3. y = et − tet − t 2e + t60e 4 4 4. y = 5 cos 3t + 5 sin 3t + 15 cos 2t 5. y = 1 + 2t 6. x = 30 cos t − 15 sin 3t + 3e−t + 2 cos 2t; y = 30 cos 3t − 60 sin t − 3e−t + sin 2t 7. y = −1 + 12 (cosh t + cos t) 8. y = 2na 2 (cos α sin nt − nt cos(α + nt)) 4 9. y = 3(1 − t2 + t4 − ...) 10. y = sint t 11. x = et + ( 2tet + 2e3t , y = et − tet − e3t 1 1 − et cos 2t − 10 sin 2t, 0<t<π 12. y(t) = e−t cos 2t(eπ − 1) + 21 e−t sin 2t(eπ − 1), t > π 13. i= E −Rt/L ), R (1 − e E −Rt/L Ra/L e (e − 1), R 14. y(a) = 1 3 · W EI · a2 b2 l 0<t<a ; t>a
© Copyright 2026 Paperzz