06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 53 Home Quit P R AC T I C E T E S T, p a g e s 5 1 6 – 5 2 0 1. Multiple Choice The terminal arm of an angle u in standard position is in Quadrant 4. Which statements are true? I. tan u < 0 II. tan u > 0 III. sin u < cos u IV. sin u > cos u A. I and III D. II and IV B. I and IV C. II and III 1 2. Multiple Choice An angle u is in standard position, with sin u = 5 . Which statement could be true? √ 2 6 B. cos u = 5 4 A. cos u = 5 √ C. cos u = 26 5 2 D. cos u = 5 3. Point P(-2, 7) is on the terminal arm of an angle u in standard position. a) Determine sin u, cos u, and tan u. The distance √ of P from the origin is r. Use: r x2 y2 Substitute: x 2, y 7 r r √ ( 2)2 72 √ 53 y sin U r y x cos U r tan U x 2 7 √ √ 53 53 7 , or 3.5 2 b) Determine the measure of u to the nearest degree. 7 Use: sin U √ 53 The reference angle is: sin1 a√ b ⬟ 74° 7 53 U is approximately 180° 74°, or 106°. 4. Without using a calculator, determine the exact value of each expression. a) (sin 45°)(cos 45°) b) 1 Substitute: sin 45° √ , 2 1 cos 45° √ 2 (sin 45°)(cos 45°) tan 45° cos 60° Substitute: tan 45° 1, cos 60° 0.5 1 tan 45° cos 60° 0.5 2 a√ b a√ b 1 2 1 2 1 2 ©P DO NOT COPY. Chapter 6: Trigonometry—Practice Test—Solutions 53 06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 54 Home c) (tan 120°)(tan 210°) √ Substitute: tan 120° 3, 1 tan 210° √ 3 (tan 120°)(tan 210°) √ ( 3 ) a√ b 1 3 Quit d) sin 330° + cos 120° Substitute: sin 330° 0.5, cos 120° 0.5 sin 330° cos 120° 0.5 (0.5) 1 1 5. For which angles in standard position are the following statements true? Give the angle measures to the nearest degree for 0° ≤ u ≤ 360°. 1 2 a) sin u = - √ The reference angle is: sin 1 1 a√ b 45° 2 sin U is negative in Quadrants 3 and 4, so U 180° 45°, or 225° or U 360° 45°, or 315° 3 b) cos u = 4 The reference angle is: cos1 a b ⬟ 41° 3 4 cos U is positive in Quadrants 1 and 4, so U ⬟ 41° or U ⬟ 360° 41°, or 319° 6. Solve each triangle. Give the angle measures to the nearest degree and the side lengths to the nearest tenth of a unit. a) In ⌬ABC, AB = 20 m, ∠ A = 65°, and ∠ B = 40° Sketch a diagram. Since 2 angles and the contained side are given, only one triangle can be drawn. ∠C 180° (40° 65°) 75° 20 m a c Use: sin A B 40⬚ sin C Substitute: ∠ A 65° A C 20 b sin B sin 75° ∠ C 75°, c 20 Use: a 20 sin 65° sin 75° 20 sin 65° a sin 75° Substitute: ∠B 40° b 65⬚ 20 sin 40° sin 75° a 18.7655. . . b 13.3092. . . So, BC ⬟ 18.8 m and AC ⬟ 13.3 m 54 Chapter 6: Trigonometry—Practice Test—Solutions DO NOT COPY. ©P 06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 55 Home Quit b) In ⌬KMN, KM = 25.0 m, MN = 24.6 m, and ∠ K = 75° Check for the ambiguous case. The ratio of the side opposite ∠ K to the side adjacent to ∠ K is: MN 24.6 , which is 0.984 KM 25.0 sin 75° 0.9659. . . Since sin 75°<0.984<1, then there is an ambiguous case, and 2 triangles can be constructed: ≤ KMN1 is acute; ≤ KMN2 is obtuse. Sketch a diagram. M 24.6 m 25.0 m 75⬚ K N2 N1 This diagram is not drawn to scale. In ≤ KMN1 Determine ∠ N1. Use: sin N1 sin K n k Substitute: ∠ K 75°, n 25, k 24.6 sin N1 sin 75° 25 24.6 25 sin 75° sin N1 24.6 ∠N1 sin1 a 25 sin 75° b 24.6 ∠ N1 79.0014. . .° So, ∠M 180° (75° 79.0014. . .°) 25.9985. . . ° Use: m k sin M sin K Substitute: ∠ M 25.9985. . .° ∠ K 75°, k 24.6 In ≤ KMN2 ∠ N2 180° ∠N1 100.9985. . .° So, ∠ M 180° (75° 100.9985. . .°) 4.0014. . .° Use: m k sin M sin K Substitute: ∠M 4.0014. . .°, ∠K 75°, k 24.6 m 24.6 sin 4.0014. . .° sin 75° m 24.6 sin 4.0014. . .° sin 75° m 1.7771. . . So, ∠N ⬟ 101°, ∠M ⬟ 4°, and KN ⬟ 1.8 m m 24.6 sin 25.9985. . .° sin 75° 24.6 sin 25.9985. . .° m sin 75° m 11.1637. . . So, ∠ N ⬟ 79°, ∠ M ⬟ 26°, and KN ⬟ 11.2 m ©P DO NOT COPY. Chapter 6: Trigonometry—Practice Test—Solutions 55 06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 56 Home Quit c) In ⌬PQR, PQ = 15.0 cm, PR = 11.0 cm, and QR = 10.5 cm Sketch a diagram. Since 3 sides are given, only one triangle can be drawn. Use: r2 p2 q2 2pq cos R Substitute: r 15, p 10.5, q 11 P 15.0 cm 15 10.5 11 2(10.5)(11) cos R 231 cos R 6.25 2 2 11.0 cm 2 Q 10.5 cm 6.25 cos R 231 R ∠ R 88.4496. . .° Use: q2 p2 r2 2pr cos Q Substitute the values above. 112 10.52 152 2(10.5)(15) cos Q 315 cos Q 214.25 cos Q 214.25 315 ∠ Q 47.1439. . .° ∠P 180° (88.4496. . .° 47.1439. . .°) 44.4064. . .° So, ∠P ⬟ 44°, ∠ Q ⬟ 47°, ∠ R ⬟ 88° 7. A cross-country runner runs due east for 6 km, then changes course to E25°N and runs another 9 km. To the nearest tenth of a kilometre, how far is the runner from her starting point? Sketch a diagram. In ≤ STV, ∠T 180° 25° 155° To determine SV, use: t2 s2 v2 2sv cos T Substitute: s 9, v 6, ∠ T 155° t2 92 62 2(9)(6) cos 155° N V N 9 km 25⬚ S 6 km T E √ t 92 62 2(9)(6) cos 155° t 14.6588. . . The runner is approximately 14.7 km from her starting point. 56 Chapter 6: Trigonometry—Practice Test—Solutions DO NOT COPY. ©P 06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 57 Home Quit 8. In parallelogram BCDE, BC = 10 cm, CD = 15 cm, and ∠ B = 135°; determine the lengths of the diagonals to the nearest tenth of a centimetre. Sketch a diagram. ∠C 180° 135° 45° In ≤ BCD, to determine BD, use: c2 b2 d2 2bd cos C Substitute: b 15, d 10, ∠ C 45° c2 152 102 2(15)(10) cos 45° 15 cm C 10 cm 135⬚ B D E √ c 152 102 2(15)(10) cos 45° c 10.6239. . . Diagonal BD is approximately 10.6 cm long. In ≤ BCE, to determine CE, use: b2 c2 e2 2ce cos B Substitute: c 15, e 10, ∠B 135° b2 152 102 2(15)(10) cos 135° √ b 152 102 2(15)(10) cos 135° b 23.1761. . . Diagonal CE is approximately 23.2 cm long. ©P DO NOT COPY. Chapter 6: Trigonometry—Practice Test—Solutions 57
© Copyright 2026 Paperzz