16.5,16.6 Surface Integrals Review : r u , v x(u , v), y (u , v), z (u , v) Parametrization of a surface: where (u, v) lie in some region in the uv plane surface area element: d ru rv area ( S ) d = S r r u v dudv S Ex: a sphere: r , a sin( ) cos( ), a sin( ) sin( ), a cos( ) , r r a 2 sin( ) Surface area of the graph: z f ( x, y ). area(S ) 1 f x2 f y2 dxdy r u, v u, v, f (u, v) Example : Find the surface area of the portion of the cone z 2 x 2 y 2 lying above the disc (x 1) 2 y 2 1. area( S ) 1 f x2 f y2 dxdy z f ( x, y ) x 2 y 2 fx 1 2 x y 2 2 2x x x y 2 fy 2 2 2 x y 1 f f 1 2 x y 2 x2 y 2 2 x 2 y area( S ) 1 f x2 f y2 dxdy area( S ) 2dxdy 2 area( R) 2 R y x2 y 2 2 x2 y 2 x y 2 2 2 Surface area of a level surface : F ( x, y, z ) c assume that we can solve for z, i.e. z h( x, y ) with F ( x, y, h( x, y )) c h differentiate implicity with respect to x : Fx +Fz 0 x Fy Fx hx = , hy = Fz Fz Surface area element of z h( x, y ) : d 1 hx2 hy2 dxdy 2 Fx Fy 1 Fz Fz 2 1 Fz F F F F = Fz 2 x 2 y 2 z Surface area element of F ( x, y, z ) c : d area( S ) d S R F Fz dxdy F dxdy Fz where R is the projection of S onto the xy plane. (we need to assume S projects uniquely, i.e. no folding) Example : Find the surface area of a spherical cap of height h in a sphere of radius a: x 2 y 2 z 2 a 2 , a h z a. F x2 y 2 z 2 a2 F 2 x, 2 y, 2 z F 4 x 2 4 y 2 4 z 2 4 x 2 y 2 z 2 4 a 2a 2 area( S ) R F dA Fz F 2 a F 2 a a Fz 2z z 1 1 dA a dA a z a2 x2 y 2 R R R is the projection of the cap into the xy plane. A disc whose boundary is a circle. Intersection between x 2 y 2 z 2 a 2 and z a h x 2 y 2 a 2 a h 2ah h 2 2 Surface Area a R 2 a 0 2 1 a2 x2 y 2 2 ah h 2 0 r a r 2 2 dA R: x 2 y 2 2ah h 2 drd u a2 r 2 du 2rdr a d a 2 r 2 0 0 1 2 2 ah h 2 1 2 du rdr 1/2 u du 1/2 u 1 2 1 2 u 2 a a 2 2ah h 2 a 2 a a 2 2ah h 2 a 2 a a h a 2 ah Surface area of a spherical cap of height h in a sphere of radius a is equal to 2 ah (if h 2a, we get the whole sphere with area 2 ah 4 a 2 ) General surface integral G x, y, z d where S is a surface in 3-space. S Gd S 2 2 G 1 f f if z f ( x, y ) and R is the x y dxdy R projection of S onto the xy plane Gd = G r r u S v dudv where r u, v x(u , v), y (u , v), z (u , v) R describes S in parametric form. F S Gd = R G Fz dxdy where F ( x, y, z ) c describes S implicitly, and R is the projection of S onto the xy plane Example : The surface S: y x 2 lies in the first quadrant and is bounded by y 0, y 4, z 0, z 3. It has mass density equal to the distance to the yz plane. What is its total mass? mass density x total mass = xd S cannot project into the xy plane (why not?) instead project into the xz plane (or yz plane): y f ( x, z ) x 2 (or x f ( y, z ) y ) f x 2 x, f z 0 d 1 f x2 f z2 dxdz 1 4 x 2 dxdz total mass x 1 4 x 2 dxdz if 0 y 4, then 0 x 2 S 3 2 x 1 4 x 2 dxdz 0 0 3 2 12 2 3/2 dz 1 4x 0 83 0 1 3/2 17 1 4 Flux through a surface Recall: Outward flux across a simple closed curve C in the plane is Let F x, y, z v be the velocity field of a fluid. Volume of fluid flowing through an element of surface area per unit time is approximated by compn v v n d The total volume of fluid flowing through the surface S per unit time is called the flux through S flux v n d S F nds C In a flux integral, F n d we need to choose a normal n. A surface S is orientable if there exists a continuous unit normal vector function n defined at each point on the surface orientable surface with n and n upward orientation n downward orientation n non-orientable surface since n becomes n 1 To find n, define the surface S by g x, y, z c, then n g g 1 1 2 2 Example : Let F x 2 , y 2 ,z and S the paraboloid z 4 x 2 y 2 , 0 z 4. Compute the flux of F through S, where n is the upward pointing normal. flux F n dS g x2 y 2 z 4 g 2 x, 2 y,1 (upward pointing normal, positive z coordinate) g 4 x 4 y 1 2 x3 y 3 z flux 1 4 x 2 4 y 2 dA 4 x2 4 y 2 1 R 2 1 1 n g 2 x, 2 y,1 2 2 4x 4 y 1 g F n S flux x3 y 3 4 x 2 y 2 dA R 2 2 x3 y 3 z r cos sin 4 r rdrd 4x2 4 y 2 1 z 0 x2 y 2 4 0 r 2, 0 2 3 3 3 2 0 0 2 dS 1 z x z y dA 2 2 cos sin 2r r5 5 3 3 0 2 dS 1 4 x 4 y dA 2 2 2 r4 4 2 d 0 cos sin 4 d 8 3 32 5 0 why is 2 3 cos d 0 3 2 sin 0 3 d 0? F n d Cancellations in Flux integrals S 1 g If S is given by g x, y, z 0, then n g Recall: d dxdy gz | g | F n d = S S F g g | g | gz dxdy = S F g dxdy | gz | If S is given by z f ( x, y ), or f ( x, y ) z 0, then n F n d F f , f Recall: d 1 f x2 f y2 dxdy x S y f x , f y , 1 1 f x2 f y2 , 1 dxdy S If S is given by r u, v x(u, v), y (u , v), z (u , v) , then ru rv is normal to the surface and hence a unit normal is n ru rv Recall: d ru rv dudv ru rv F n d F r r dudv u S S v
© Copyright 2026 Paperzz