VESIENTUTKIMUSLAITOKSEN JULKAISUJA PUBLICATIONS OF THE WATER RESEARCH INSTITUTE PERTTI HEINONEN QUANTITY AND COMPOSITION OF PHYTOPLANKTON IN FINNISH INLAND WATERS TivisteImä Suomen sisävesien kasviplanktonin määristä ja koostumuksesta VESIHALLITUS—NATIONAL BOARD OF WATERS, FINLAND Helsinki 1980 Tekijä on vastuussa julkaisun sisällöstä, eikä siihen voida vedota vesihallituksen virallisena kannanottona. The author is responsible for the contents of the publication. It may not be referred to as the official view or policy of the National Board of Waters. ISBN 951-46-4612-6 ISSN 0355-0982 HeIsink 1980. Valtion painatuskeskus 3 CONTENTS 1. Introduction 5 2. Aims of the research 6 3. 3.1 3.2 Materiais and methods Sampling Microscopical examination of sampies and the treatment of the results 7 7 7 4. 4.01 4.02 4.03 4.031 4.032 4.033 4.04 4.041 4.042 4.043 4.05 4.06 4.07 4.071 4.072 4.073 4.08 4.09 4.10 4.11 Results Regional division Small river basins draining into Lake Ladoga The Vuoksi river basin Watercourses east of Lake Haukivesi Watercourses north of Lake Haukivesi Lake Haukivesi and watercourses to the south of it The Kymijoki river basin Watercourses north of the rapid of Haapakoski Lake Päijänne and watercourses draining into it Watercourses south of the Kalkkinen canal River basins to the south of Salpausselkä River basins of southwest Finland The Kokemäenjoki river basin Watercourses north of Lake Pyhäjärvi Lake Pyhäjärvi and watercourses to the east of it Watercourses below the River Nokianvirta River basins of Ostrobothnia The Oulujoki, lijoki, Kuivajoki and Simojoki river basins The Kemijoki and Tornionjoki river basins River basins of northern Lapland and Kuusamo 8 8 8 9 9 13 16 18 18 20 20 23 24 24 24 27 29 29 32 32 35 5. 5.1 5.2 5.3 5.31 5.32 5.33 5.4 5.41 5.42 5.43 5.5 5.51 5.52 5.53 5.531 5.532 Discussion Regional survey of phytoplankton biomasses Total phytoplankton biomass leveis Phytoplankton composition Divisions and orders Number of species Diversity Quotients ElO and EVIOV quotients by Järnefelt The species quotients by Thunmark and Nygaard Odourindex Occurrence of species Qualitative analysis Quantitative analysis Indicator species Indicators used by Järnefelt New indicator species 35 35 35 39 39 42 43 43 43 46 48 49 49 49 52 52 54 4 6. Summary 54 7. Acknowledgements 56 Lopputiivistelmä 56 References 57 Appendices 62 5 QUANTITY AND COMPOSITION OF PHYTOPLANK TON IN FINNISH INLAND WATERS Pertti Heinonen Heinonen, P. 1980. Quantity and composition of phytoplankton in Finnish inland waters. Publications of the Water Research lnstitute, National Board ofWaters, Finland, No. 37. A regional survey of the quantity and composition of phytoplankton in Finnish inland waters was carried out on the basis of 826 sampies taken iii the midsummer of 1963 and 1965. On the basis of this investigation and of other data collected for lakes studied, a scale of eutrophication was drawn up according to midsummer phytoplankton leveis. Lakes, in which the phyto plankton biomass (fresh weight) was below 0.2 mg/l, were classified as ultra oligotrophic, while leveis of 0.21—0.50 mg/l were designated oligotrophic. Quantities of biomass between 0.51 and 1.00 mgJl indicated incipient eutrophy, 1.01—2.5 mg/1 mesotrophy, 2.51—10.0 mg/l eutrophy and over 10.0 mg/l hypereutrophy. The dominating species were Centrales diatoms. With increasing eutrophication the amounts of Hormogonales blue-green algae and of PntococcaJes green aigae increased most markedly. A tota] of 680 taxons were identified from the samples. Species number increased with increasing biomass at least to biomass values of 5 mg/1. The usability of different quotients was examined and a new variable, the odour mdcx, was developed. The odour mdcx was very significantly correlated with biomass. On the basis of the research material 21 new indicator species of eutrophica tion and 10 of oligotrophy were proposed. mdcx words; Eutrophication, phytoplankton, water quality, quotiencs, diversity, indicator species, odour mdcx. 1. INTRODUCTION Evaluation of water quality in watercourses is carried out almost entirely on the basis of information concerning the biotope gained from physical and chemical analyses. This information naturally inciudes various changes brought about by the action of biological processes. Direct measurements of the intensity of such processes or of the quantity and quality of the different factors describing biocoenosis are only rarely used in routine investigations of water quality. One of the main problems of watercourse investigations is the detection of the often very slow changes taking place in water quality. The natural ageing of water is in many areas consider ably accelerated by human activity in the form of e.g. regulation of lakes, reduction in water leveis, construction activity in the vicinity of watercourses and, in particular, the discharge of effluents. The effects of these activities are often observed later as increased nutrient con centrations, leading eventually to corresponding increases in primary production. Eutrophication 6 is without doubt at present one of the most difficult processes to control in large watercourse systerns. Several different methods can be employed for the monitoring of eutrophication. If the growth-limiting nutrient (e.g. phosphorus) for a given watercourse is known with certainty, it is possible to estimate resultant leveis of phyto plankton biomass solely on the basis of assays of this nutrient (Sakamoto 1966). The advantages of this method are ease of performance and precision of analysis, while the major restriction arises from variations in the significance of different factors for primary production between different watercourses and different times. Measurements of the intensity of primary production by the 14 C-method (Steemann Nielsen 1952) have also been used to estimate eutrophication. This method has the same advantage as the preceding: complex biological processes are estimated on the basis of simple physical and chemical procedures. A weakness is that the obtained resuit is difficult to utilize e.g. in the estimation of water usability. The C-method also contains several uncertainties 14 of operation and gives only proportional results. One of the oldest biological water research methods is the examination of the biomass and composition of phytoplankton by microscopy. The first investigations carried out in Finland were mainly qua[itative analyses of sampies collected from the photic water layer using nets of different mesh size (Levander 1900, Levander & Wuorentaus 1915 and 1917, Järnefelt 1925), although the need for a quantitative method had for long been appreciated (Järnefelt 1929 and 1930). Only since the development of techniques for analysing sedimented water sampies without further treatment, and of the Utermöhl technique, has quantitative exam ination of phytoplankton been possible (Uter möhl 1931 and 1958, Järnefelt 1934, 1936a and b). The inclusion of algal species volumes to indicator systems (Järnefelt 1952a) has consider ably improved possibilities for realistic com parison between different lakes. In addition to counting by direct microscopy, estimations of total phytoplankton have been carried out by chemical means on the basis of the concentration of photoenergetic pigments (Strickland & Parsons 1965, Tolstoy 1966, 1977 and 1979). This is a rapid method, but has the drawback that the result obtained is dependent on the species composition and growth phase of the plankton (Viljamaa et al. 1978). Investigation of phytoplankton by direct microscopy yields information concerning specles composition in addition to total counts. This information has for Iong been used in studies comparing different lakes. Different parameters and indicator species and groups have been used as a means of following changes in, rather than merely classifying, water quality. The quotient systems of Thunmark (1945) and Nygaard(1949) are based on comparison of species frequencies of phytoplankton groups, whereas that of Järne felt (1952b and 1956a) and Järnefelt et al. (1963) is based on the relationships between the species numbers and volumes of phytoplankton species considered to be useful as indicators. The applicability of quotients is generally considered to be restricted to rather precisely defined geographical areas (Rawson 1956). The estimation of phytoplankton biomass by microscopy is associated with several uncertainty factors arising from e.g. sampling, counting and species identification (Preston 1948, Kutkuhn 1958, van Heusden 1972, Hobro & Wi1ln 1975, Kaatra & Harjula 1976, Hallegraeff 1977). However, this is the only method yielding qualitative information concerning the species composition of phytoplankton in addition to quantitative estimates of total biomass. Such qualitative information is often of considerable significance in the monitoring of water quality in watercourses (Järnefelt 195 2b, Findenegg 1958, Kostiainen 1965, Seppänen 1969). 2. AIMS OF THE RESEARCH The first extensive water sampling programme by the water protection authorities, with the aim of examining the water quality of water courses on a regional basis using a biological method, took place in summer 1963, when a total of 328 phytoplankton sampies were collected from different areas. This investiga tion, covering the whole country, was repeated in the summer of 1965, when sampies were 7 taken from 498 sampling stations. The micro scopic examination of ali 826 sampies was completed by the end of 1970. The aim of the present research was to use the data obtained from the above examinations to determine the quantity and composition of phytoplankton in midsummer in different iakes, to estimate the significance of parameters based on phytoplankton composition and to make a survey of the value of different phytoplankton species as indicators of the state of Finnish watercourses. The resuits under examination constitute a basis for comparison with a later survey of phytoplankton bioniass carried out by the National Board of Waters in the summers of 1971 and 1977 from samplingstations distributed throughout the country. For this reason a part of the primary material has been inciuded in this investigation, in contrast to normal procedure (Appendix 1). — — — MATERIALS AND METHODS 3. 3.1 Sampling Phytopiankton sampies were taken by the research units of 13 Agricultural Engineers’ Districts according to a programme drawn up by the Water Pollution Control Bureau of the National Board of Agricuiture. Sampies were taken from each sampling station only once, during the growing season. Thus the sampling yielded only an impression of the situation in midsummer, but this period is of course the most important from the point of view of water resource utiiization. However, detaiied estima tions concerning the eutrophication process in iakes should not he done on the basis of this one phytoplankton sample only, because of various uncertain factors involved in taking and analysing sampies (Harjula 1979). The location and numbering of the sampling stations can be seen in the maps accompanying the examination of resuits on a regionai basis (Figs. 2—17). The precise coordinates of the sampling stations and the dates of sampling are contained in the primary material (Appendix 1). Sampies were taken mainly as profile sampies from the epilimnion, the depth of which was first determined on the basis of temperature measurements. In the case of stations situated by shaliow, weilmixed water sampies were taken from a depth of one metre with a Ruttner-type water sampier. Sampling depths are given with the results from individual observation sites (Appendix 1). The sampies were transferred to glass botties of volume slightly over 100 ml. Preservation of sampies was carried out immediately by addition of 5 mi 35 % (wlv) formaidehyde per 100 ml of sample (Naulapää 1972, Lepistö et al. 1979). The botties were then closed so that a reserve of air remained for shaking. The sampies were stored at room temperature in the dark until microscopy. 3.2 Microscopical examination of sampies and the treatment of the results The estimation of phytoplankton biomass was carried out in the Water Pollution Control Bureau of the National Board of Agriculture (as from 1.7.1970 in the Water Research Office of the National Board of Waters) by the Uter möhi technique (Utermöhi 1931 and 1958). Different volumes of sampies were used for the sedimentation. A sampie of 2 ml was suf ficient in the case of water sampies with a high biomass content, but the whole sample of 100 ml was used for some waters with very low plankton counts. The sample size most often used was 50 mi. The method used in microscopy has been described in detail eisewhere (Lepistö et al. 1979). The resuit of microscopy was a list of the phytoplankton species observed in each sample, in which the number of each species occurring per 100 ml was presented in taxonomic order. Further treatment of the results was carried out on the basis of these counts. The numerical data of species frequency is not presented in this research, but the information has been deposited in the bioregister of the Nationai Board of Waters and can be obtained from the Water Research Office of the National Board of Waters. The number of each phytopiankton species 8 obtained in microscopy was multiplied by the cell volume appropriate to each species (Naula pää 1972) to calculate the biomass. The density of phytoplankton was assumed to be 1.00, although the true value for most of the phyto plankton species is slightly greater (Hutchinson 1967, Fott 1971). The dimension of biomass used was mg/l and the results were expressed to an accuracy of three significant numbers. In addition to the total biomass of each sample, the major constituent groups of phyto plankton are presented in the same dimensions (mg/i) in the results collected into Appendix 1, in the following order: Cyanophyta, Chloro phyta, Euglenophyta, Chrysopbyta and Pyrro phyta. Furthermore the numbers of different species of phytoplankton observed in each sampie are recorded, as well as the ElO and EV/OV-quotients caiculated according to J ärne feit (1952b) and Järnefelt et al. (1963): E number of species indicating eutrophy number of species indicating oiigotrophy (1) EV Oy total volume of species indicating eutrophy (2) total volume of species indicating oiigotrophy 0 = N = k N E i=1 M (5) number of odour inducing algae i in the sample M= threshold ccli density for odour inducing algae i The threshold values for odour were obtained from the literature (Seppovaara 1971), and those used in this research are presented in Appendix 2. In addition to that presented in Appendix 1, a great amount of other information relating to plankton composition was utilized in the interpre tation of the resuits. This information has been deposited in the bioregister of the National Board of Waters. RESULTS 4. 4.01 Regional division The regional division used for the presentation of the results is aimost identical with that used by Laaksonen (1970 and 1972) (Fig. 1). The grouping of watercourse networks and the num bers of sampies taken are presented in Table 1. - Diversity (d) was calculated in two ways using the foilowing equations: (Margalef 1958) d = S N = number of species number of individuals d = s —E p 2 1 1 og lnN = 1=1 (3) (Shannon diversity) (Hutchinson 1967) (4) Ni pi =-;= number of specimens of the i’th species 5 = total number of specimens N For each sampie the presence of aigae giving rise to odour and/or taste was used to calculate a new variable, the odour index (0), as follows 4.02 Small river basins draining into Lake Latioga Sampies were taken from Lake Tohmajärvi and Lake Kiteenjärvi in the Tohmajoki river basin and from the Lakes Simpeleenjärvi and Torsan järvi in the Hiitolanjoki river basin (Fig. 2). In Lake Tohmajärvi phytoplankton biomass was about 1.0 mgll. The values of the EVIOV quotient were rather high, but the odour mdcx was low. The dominating phytopiankton group was Centrales. The condition of this lake has been reported to have deteriorated since the sampling was carried out, due to the effects of sewage discharge and water level regulation (National Board of Waters 1976). The phyto plankton biomass in Lake Kiteenjärvi was below 1.0 mg/1, and the dominating species were Centrales diatoms. In the 1963 sample the proportion of blue-green algae exceeded 10 %. The odour mdcx was low. At present this lake 9 is classified as polluted by waste water effluents (National Board of Waters 1976). Lake Simpeleenjärvi, the central lake of the Hiitolanjoki river basin, is a clean, oligotrophic lake (Kettunen 1975). The amount of phyto plankton observed was very small in most sampies and the quotient values and odour mdcx were Iow. The dominating species were mostly Chryso phyta algae, and in some sampies Peridineae algae were also fairly abundant. According to Järnefelt (1956a) the total amount of phytoplankton in 1933 was 0.07 mg/1 and both of the quotient values were very small. In 1946 the biomass was 0.25 mg/1 and the volume quotient high, indicating eutrophication. Järnefelt considered this lake to be of the Peridineae type and oli gotrophic. 4.03 The Vuoksi river basin 4.031 Watercourses east of Lake Haukivesi The sampling stations in this sub-area are shown in Fig. 3. Of the waters in this area only Lake Ilomant sinjärvi has previously been described as eutrophic (Surakka 1969). This condition is a result of human activity (National Board of Waters 1976). Biomass values were in this area usually fairly low, the highest biomass for 1963 being recorded in Lake Ilomantsinjärvi. In 1965 the total biomass was lower, but stiil gave a clear indication of eutrophication. The sampies from both years showed relatively high numbers of species and also high diversity values. The biomass of species indicating eutrophication (Järnefelt 1952b) was high, and the volume quotients were also of a magnitude corresponding to considerable eutrophication. The odour index was rather high in 1963. The dominating species were in 1963 Ulotrichales green algae and in 1965 Centrales diatoms. In Lake Nuorajärvi, draining into the sarne Koitajoki river basin as Lake Ilomantsinjärvi, a rather high level of biomass was recorded in 1963. The volume quotient and odour mdcx were also quite high. The dominating species were Pennales diatoms. In 1965 the corresponding sample was typical of an unpolluted water body. Fig. 1. Regional division. This lake has since been classified as polyhumic (National Board ofWaters 1976). Lake Viekinjärvi, situated in the Viekinjoki river basin draining into Lake Pielinen, is on the basis of this research in the process of eutro phication. This can be seen both in high phyto plankton biomass values and, particularly in the values of volume quotients. Values of the odour mdcx were not, however, very high in either year. The dominating species were in 1963 Centrales diatoms and Chroococcales blue-green 10 algae, and in 1965 Pennales diatoms. Of the large lakes in the eastern section of the Vuoksi river basin, Lake Pielinen showed some signs of increased biomass leveis resulting from sewage discharge, particularly near the town of Nurmes and to a certain extent, the town of Lieksa. The highest leveis were, however, only slightly over 1 mg/1, whereas in the unpoiluted part of Lake Pielinen phytoplankton biomass was of the order of 0.2—0.3 mg/1. Lake Pielinen is a Chrysophyta type lake. According to Järnefelt (1952a) lakes of this type are oiigotrophic but show some effects of humus content. In his own research Järnefelt (1 956a) classified the lake as oligotrophic in 1946, when phytoplankton biomass was 0.01 mg/1 and the number of species very limited. Eutrophicating effects of effluents from the city of Joensuu can be detected in the northern part of Lake Pyhäselkä. Typical biomass leveis in this lake during this research were of the order of 0.2 mg/1, the dominating species belonging to the division Chrysophyta. In Autumn 1945 Järnefelt (1956a) recorded a level of biomass of 0.05 mg/1, the dominating plankton being diatoms and biue-green algae. On this basis the lake was classified as slightly eutrophic. Lake Höytiäinen is one of the most oligo trophic waters of this area, classified by Järnefelt (1956a) as oligotrophic and oligohumic. Phyto plankton leveis in the present research were around 0.1 mg/i, with Iow number of species and quotient values. The odour index was below 0.10 in ali sampies. The dominant phytoplankton species were Cbrysomonadinae algae. Water quality in Lake Koitere has apparently Table 1. The regional division and the numbers of sampies in 1963 and 1965. The number of river basin (bySeunal97l) Area 1. Small river basins draining into Lake Ladoga The Vuoksi river basin 2. 2.1 Watercourses east of Lake Haukivesi 2.2 Watercourses north of Lake Haukivesi 2.3 Lake Haukivesi and watercourses to the south of it 2 and 3 Number of sampies total 1963 1965 6 6 12 4 4.22, 4.3, 4.4, 4.8, 4.9 4.24—4.28, 4.5, 4.6, 4.7 4.1 and 4.21 96 39 35 22 159 54 63 42 255 93 98 64 3. 3.1 3.2 3.3 The Kymijoki river basin Watercoursesnorth of the rapidofHaapakoski Lake Päijänne and watercourses draining into it Watercourses south of the Kalkkinen canal 14 14.3, 14.4, 14.6, 14.7 14.2, 14.5, 14.8 14.1, 14.9 76 54 13 9 152 84 42 26 228 138 55 35 4. River basins to the south of Salpausselkä 6, 16, 21, 22, 23 10 11 21 5. River basins of southwest Finland 27, 34 7 4 11 6. 6.1 6.2 6.3 The Kokemäenjoki river basin Watercourses north of Lake Pyhäjärvi Lake Pyhäjärvi and watercourses to the east of it Watercourses below the River Nokianvirta 35 35.3, 354, 35.5, 35.6 35.2, 35.7, 35.8 35.1, 35.9 75 31 39 5 104 42 55 7 179 73 94 12 7. River basins of Ostrobothnia 36, 44, 47, 51, 53, 54, 57 18 6 24 8. The Oulujoki, lijoki, Kuivajoki and Simojoki river basins 59, 61, 63, 64 23 29 52 9. The Kemijoki and Tornionjoki river basins 65, 67 9 13 22 10. River basins of northern Lapland and Kuusamo 71, 73, 74 8 14 22 328 498 826 Totais 11 i’ 0 Fig. 2. Sampling stations in 10 20 30 40 50km the smaJl river basins draining into Lake Ladoga. deteriorated as a resuit of regulation. This is evidenced by reduced oxygen leveis and increased salt concentratjons (National Board of Waters 1976). Biomass leveis of around 0.2 mg/I mdi cated a rather oligotrophic water, the major planktonic component being Chrysopbyta algae. Lake Viinijärvi, situated near the town of Outokumpu, is divided into two different parts. The eastern section, Venepohjanselkä, is poor in nutrients compared to the richer western 12 10 0 111 20 30 1 1 40 50km Fig. 3. Sampling stations of the Vuoksi river basin to the east of Lake Haukivesi. 13 section Kulkevaisenselkä (National Board of Waters 1976). In the present research no great differences were observed between these two sections, although biomass leveis in the western area were slightly higher. The dominant species were Cbrysomonadinae and Centrales algae. Lake Pyhäjärvi, near Uukuniemi, draining from the southeast into Lake Orivesi proper, is an oligotrophic lake (National Board of Waters 1976). Phytoplankton leveis were around 0.1— 0.2 mg/i and both quotient and odour index values were low. Heposelkä, the northern part of Lake Orivesi, has undergone a slight change, largely due to waste waters from the nearby mining industry (Ry hänen 1961, National Board of Waters 1976). In 1963 the values of phytoplankton biomass and odour mdcx were slightly increased. Dominating species were Centrales diatoms and blue-green algae. In 1965 biomass leveis were lower and the odour mdcx was below 0.10. The main species were Chrysomonadinae algae. Järnefelt (1956a) classified the lake in 1946 as oligotrophic on the basis of an autumn sample, although he conjectured that a summer sample might well have indicated slight eutrophication. Biomass leveis in the other sections of Lake Orivesi were of the order of 0.2—0.3 mg/1. An exception was the sound of Kivisalmi between Lake Jänisselkä and Lake Orivesi proper, in which the phytoplankton amounts were slightly elevated (0.37—0.58 mg/1), probably because of the proximity of the shores. The major species throughout the whole area of Lake Orivesi belonged to the division Chrysophyta. In summary, the waters of the Vuoksi river basin lying to the east of Lake Haukivesi can on the basis of biomass measurements be described as oligotrophic. Biomasses varied between 0.05 and 2.15 mg/l, with a mean value of 0.37 mg/1. The number of species was on average 54 (min. 20, max. 105). Quotient and odour index values were usually Iow. 4.032 Watercourses north of Lake Haukivesi The sampling stations in this sub-area are shown in Fig. 4. The highest phytoplankton biomass values analysed in this research were recorded in Lake Maaninkajärvi (Vianta) in the Iisalmi route and in Lake Kevätönjärvi in the Nilsiä route. In these waters, in which biomass leveis of over 10 mg/1 were observed, eutrophication was aiso indicated by an abundance of indicator species and high quotient values, particularly in the case of the volume quotient. The number of species and odour mdcx also had high values in the sampies taken from these lakes. In Lake Maaninkajärvi the dominant species were algae of the genus Melosira. Lake Kevätönjärvi has recently been classified as being of very bad quality because of eutrophication resulting from the discharge of sewage (National Board of Waters 1975). The major phytoplanktonic components in this lake were in 1963 diatoms and blue-green algae, while in addition Protococcales green algae were also abundant in 1965. Järnefelt (1956a) reported eutrophication in Lake Kevätönjärvi in 1946 and 1947, the maxi mum recorded biomass in his investigation being 3.69 mg/l. The dominant phytoplankton were in 1946 diatoms and in 1947 blue-green algae. The effects of sewage discharge are also discernible in the Lakes Porovesi, Nerkoonjärvi and Onkivesi near the town of Iisalmi. Lake Onki vesi is also affected by sewage from the village of Lapinlahti (National Board of Waters 1975). In these water bodies phytoplankton biomasses varied from 1.9 to as much as 12.4 mg/L. The number of species was high and species indicating eutrophication were abundant. Volume quotients were extremely high. By contrast quotients based on number of species were relatively low; only in two cases were they high enough to be con sidered indicative of abundant planktonic growth. Values for the odour index were for Lakes Ner koonjärvi and Onkivesi usually around 1.0 and for Lake Porovesi 0.7—0.8. The dominant plank ton species in Lake Nerkoonjärvi and Lake Onki vesi belonged to the genus Melosira, and, in the case of Lake Porovesi in 1963, also to the order Chrysomonadinae. The elevated phytoplankton biomass leveis in Lake Kallavesi can partly be explained by dis charge of municipal wastes. The leveis were, however, considerably lower than those in waters of the Iisalmi route because of higher water flow rates and more advantageous retention times (Mikkola 1975). Values of the odour mdcx were 14 o 10 20 L 30 1 40 1 50km 1 Fig. 4. Sampling stations of the Vuoksi river basin to the north of Lake Haukivesi. 15 in general below 0.10 and in those sampies with a higher index the dominant species was found to be Asterionella gracillima (Hantzsch) Heiberg. The dominant plankton species otherwise were diatoms, in some sampies also Cryptomonas algae. The proportion of blue-green algae was less than 10 % in the sampies investigated of Lake Kallavesi. On the basis of observations made in 1945 and 1946 Järnefelt (1956a) de scribed Lake Kallavesi as a mesohumic oligo trophic lake with blue-green algae as the domi nant plankton organisms. Plankton, with low number of species, was measured at biomass leveis of 0.1—0.3 mg/1 and the quotient values were Iow. The concentrations of nutrients, particularly phosphorus, in the waters of the Nilsiä route were remarkably lower than the corresponding concentrations in the Iisalmi route (National Board of Waters 1975). As a resuit of this the phytoplankton biomasses were also lower. En Lake Syvän the leveis were 0.2—0.65 mg/I, in Lake Vuotjärvi about 0.3 mg/l, in Lake Melavesi 0.5—0.6 mgIl and in Lake Juurusvesi 0.25— 0.5 mg/1. En Lakes Syvän and Vuotjårvi the number of species and diversity were low. The odour mdcx was in these sampies below 0.2. The dominant species usually belonged to the divisions Chryso phyta and Pyrrophyta (order Chrysomonadinae). These waters were also reported by Järnefelt (1956a), in his investigation of 1945, to be dark watered and poor in nutnients. The level of phytoplankton biomass was below 0.1 mg/1. The species composition of the phytoplankton of Lake Juurusvesi was similar to that of Lakes Syvän and Vuotjärvi in the present investigation and the odour mdcx was of the same order, 0.1—0.2. En 1945 the lake was classified as oligotrophic (Järnefelt 1956a). En the water of Lake Melavesi the dominant species belonged to the division Cbrysophyta. In 1963 Protococcales green algae and in 1965 blue-green algae were also fairly abundant. En Lake Rikkavesi on the route of Lake Juo järvi, as well as in Lake Juojärvi itself, the con centration of nutrients was low (National Board of Waters 1975). Observed phytoplankton bio mass leveis for the two water bodies were 0.1— 0.4 and 0.1—0.6 mg/1, respectively. The level of phvtoplankton in 1945 was about 0.1 mg/1 (Järnefelt 1956a). En Lake Suvasvesi on the route of Lake Kailavesi the values for biomass in 1963 and 1965 were 0.2—0.5 and 0.2—0.9 mg/l, respectively. Quotient values and the odour mdcx were low in Lake Suvasvesi. The dominant species were mainly algae of the orders Chrysomonadinae and Centrales. According to Järnefelt (1956a) the biomass level in 1945 was below 0.1 mg/l, the dominant plankton organisms being diatoms. Biomass leveis in Lake Sorsavesi were 0.2— 0.3 mgIl and the dominant species belonged to the same groups as in Lake Suvasvesi. En the waters of Lakes Koirusvesi and Unnuk ka the effects of water entering from the Iisalmi route combine with those of the effluents from the city of Kuopio to increase the concentration of nutrients. Phytoplankton leveis of 1.5—2.0 mg/1 were therefore recorded in sampies from these waters. The odour index was in Lake Koi rusvesi slightly over 1.0 and in Lake Unnukka 0.6— 0.7. Dominant phytopiankton organisms were Chrysomonadinae algae and diatoms. En 1946 biomass leveis in Lake Unnukka were 0.1— 0.2 mg/l (Järnefelt 1956a). The dominant or ganisms were then diatoms and the lake was classified as oligotrophic. The major western tributary of the Vuoksi nver basin, the Kallavesi route, was found to be considerably richer in plankton than the Pieli nen route. Particularly in the Iisalmi route the recorded biomass leveis were considerably higher than those found for the rest of the Vuoksi niver basin and the waters of the Iisalmi route were cleanly eutrophic. Soil fertility is probably the most important factor in eutro phication of these water bodies. By contrast the waters of the Nilsiä and Juojärvi routes may be considered as oligotrophic. High local leveis of biomass in Lake Kevätönjärvi on the Nilsiä route resulted from the discharge of sewage. Biomasses for the whole area varied between 0.13 and 13.4 mg/l, with mean value of 1.98 mg/l. The number of species was here higher than in the watercourses east of Lake Haukivesi. The range of this variable was 28—15 1, with a mean value of 80. Quotient values and odour index values were also higher than in the eastern area. 16 4.033 Lake Haukivesi and watercourses to the south of it The location of sampling stations in this area is shown in Fig. 5. Lake Haukivesi, situated to the south of the city of Varkaus, is polluted by municipal wastes and those from the pulp industry (Heinonen et al. 1975). This is not, however, very evident from the phytoplankton data collected in this study. Total biomass leveis in Lake Haukivesj were in 1963 0.1—0.8 mgfl and in 1965 0.1—0.6 mg/l. These levels must be considered rather low in view of the nutrient content of the lake water. Near the city of Savonlinna the Vuoksi river basin is low in nutrients (Laaksonen 1969) and, as a resuit of this, phytoplankton biomasses were also small and typical of oligotrophic waters. Total biomass leveis in the sound of Kyrönsalmi were 0.1—0.2 mg/l, as were also those in the Lakes Haapavesi and Pihlajavesi, to the north and south of the city respectively. Quotients and odour index values were low. The dominant plankton species were usually diatoms. A similar situation was observed in 1970 (Jumppanen 1976), when phytoplankton biomass leveis of 0.2—0.7 mg/1 were recorded in waters near the city of Savonlinna. The only high value (9.8 mg/l) was in that investigation found in the polluted water of the bay of Tuokkolanlahti to the north of the city of Savonlinna. Lake Puruvesi, draining into Lake Pihlajavesi from the southeast, is a clear, oligotrophic lake (Heinonen et al. 1975). In 1963 the leveis of phytoplankton recorded were 0.3—0.5 mg/l. The number of species was low, 22—29. In 1965 the biomass levels were 0.1—0.2 mg/l but the number of species had increased to 5 1—54. Quotients and odour mdcx values were low. The dominant species were algae of the division Chrysophyta. Lake Kuolimo, draining into Lake Saimaa through the rapids of Partakoski and Kärnä koski, is a typical oligotrophic lake (Seppovaara 1969). Phytoplankton biomass levels were 0.1—0.2 mg/l and the number of species 45—55. Quotients and odour mdcx values were extremely low. The dominant species were diatoms. In the investigation of Järnefelt (1956a) carried out in 1945 the level of phytoplankton was 0.16 mg/l and the number of species 50. The dominant species in this lake, classified then as oligotrophic, were lilcewise diatoms. The water route leading from the city of Mikkeli is loaded by municipal wastes (Heinonen 1972, Heinonen et al. 1975), and eutrophication is clearly indicated by the results of the present research. Biomass leveis iii Lake Ukonvesi and the sound of Juurisalmi were 3.0—4.0 mg/1. The number of species and, iii particular, the abun dance of species indicative of eutrophication were high. The dominating species belonged in most cases to the division Chrysophyta. Of the blue-green algae observed the most abundant were Hormogonales algae. Järnefelt (1956a), in his examination of the area of Mikkeli harbour in 1945, observed a diatom bioom resulting from adjacent human activity. The level of phyto plankton biomass was 9.92 mg/l, the number of species was 100 and quotient values were high. The effect of waste waters on phytoplankton growth decreases rapidly in Lake Louhivesi, in which the phytoplankton biomass was in 1965 only 0.24. mg/1. Quotient values were low and the dominant species were diatoms. Järnefelt (1956a) recorded biomass leveis of 0.10—0.12 mg/1 in his investigation of 1945—1946, when the dominating species were also diatoms. In Lake Yövesi the biomass levels in the present investiga tion were 0.1—0.6 mgIl, compared to 0.05 mg/I observed by Järnefelt (1956a). The area between the villages of Puumala and Taipalsaari contains the most unspoiled water of Lake Saimaa (Heino nen et al. 1975). Phytoplankton leveis were 0.1—0.2 mgfl and quotient values were low. Similar meas urements were made in the water of Lake Ilkon selkä, south of Kyläniemi. The effects of wood processing industries became more evident towards the south of Lake Sairnaa near the pulp factories situated around the towns of Lappeen ranta, Joutseno and Imatra. The consequences of these wastes are in some cases growth inhibiting and in others clearly stimulating (Järnefelt 1961, Lehmusluoto & Heinonen 1970, Heinonen 1972, Seppovaara 1977). In those parts of the south western region of Lake Saimaa, where the water is relatively free of wood processing wastes, biomass levels of 0.2—0.4 mg/l were recorded. Due to the small number of sampies, it was not possible in this study to investigate the 17 • .. 0 0 0 Fig. 5. 10 20 30 40 50km Sampling stations of the Vuoksi river basin in Lake Haukivesi and watercourses to the south of it. possibility that the low biomass leveis in Lake Haukiselkä were due to toxic wood processing wastes. Eutrophication was, however, observed in Lake Haukiselkä 1963. A similar situation has been observed in this area in several other studies (Järnefelt 1961, Tirronen 1963, Nyman 1970, Heinonen 1972). The low biomass values observed in 1965 could be the resuit of the significant change in the loading of the water course in 1964 (Heinonen 1966). Phytoplankton biomasses in the Vuoksi river basin in Lake Haukivesi and watercourses to 18 the south of it varied between 0.07 and 5.04 mg/l, with a mean value of 0.56 mg/1. The waters were mainly oligotrophic with the exception of sections of Lake Saimaa south of the city of Mik keli and the major part of southern Lake Saimaa. 4.04 The Kymijoki river basin 4.041 Watercourses north of the rapid of Haapa koski The sampling stations of this area are shown in Fig. 6. Typical of the waters along the route of Lake Saarijärvi is a high humus content (National Board of Waters 1977a). Biomass leveis in the lakes along this route were 0.2—0.5 mg/1. Quotient values and odour mdcx values were usually low, although in some lakes, e.g. Lake Karankajärvi, volume quotients were elevated despite relatively low biomass leveis. The dominating algae were usually diatoms. In Lakes Kalmarinjärvi, Pääjärvi and Kyyjärvi phytoplankton biomass leveis were over 1.0 mg/1. In the case of Lake Pääjärvi the elevated value resulted from a factory producing potato flour and from the waste waters of the municipality of the village of Kars tula (National Board of Waters 1977a). Lake Kalmarinjärvi was studied by Järnefelt (1956a) in 1946, when phytoplankton biomass was 0.18 mg/l and quotient values were low. Järnefelt described the lake as oligotrophic. Lakes Alvajärvi and Muurasjärvi on the Viita saari route are oligotrophic (National Board of Waters 1977a), with low values of phytoplankton biomass. The small Lakes Elämäjärvi and Saani järvi, draining into Lake Alvajärvi, are rather shallow and probably for this reason their biomass values were somewhat elevated. Lake Kolimajärvi is mainly oligotrophic, although loading caused by waste waters from the village of Pihtipudas (National Board of Waters 1977a) have caused some eutrophication in the northern quarter of the lake. The slight rise in biomass value in 1965 is probably a result of this loading. Lake Kivijärvi is mainly oligotrophic. Slight evidence of eutrophication can, however, be discerned in the northern area of the lake. Lake Keitele is an oligotrophic lake in which biomass levels have usually varied between 0.1 and 0.3 mg/1. Only the bay of Suolahti in the south is to some extent eutrophic, as evidenced by elevated biomass and quotient values. The odour mdcx value was also higher in this sample than in the others from Lake Keitele. A similar situation was observed by Jumppanen (1976) in 1964. Of the lakes in the Rautalampi route the most eutrophic are Lake Pieksänjärvi, which is loaded by wastes from the city of Pieksämäki, Lake Kontajärvi and Lake Lampaanjärvi. Phyto plankton levels in Lake Konnevesi varied from 0.2 to 0.6 mg/l, and in Lake Niinivesi and Lake Nilakka from 0.2 to 0.4 mg/l. Minor eutrophica tion was observed at the southern end of Lake Pielavesi, with biomass leveis of 0.5—0.8 mg/l compared to the values of 0.2—0.3 mg/l else where in the same lake. The Lakes Kuhnamo and Vatianjärvi, situated to the south of the town of Äänekoski, are polluted by industrial effluents (Granberg 1973). Total phytoplankton biomass levels of only 0.1— 0.4 mg/l have been recorded for these waters, although the nutrient concentrations would support considerably greater leveis. A notable feature of the plankton species composition is the unusual abundance of Euglenopbyta algae. Lake Lievestuoreenjärvi is badly polluted by wastes from the pulp industry (Granberg 1970a). This fact was reflected in very low leveis of plankton and extreme paucity of the number of species. Only three species were identified from the 1965 sample: Cryptomonas sp., Closterium acutum var. variabile (Lyngb.) Brb. and a small Fiageilata. The 1963 sample contained in addition considerable amounts of Synura uvella E. and Nitzscbia acicularis W. Smith. The effects of industrial wastes on water quality can stili be observed in the northern part of Lake Leppävesi (National Board of Waters 1977a). Some eutrophication was observed particularly in southern Lake Leppävesi (Gran berg & Lappalainen 1973). The number of plank ton species was high and biomass levels 0.5— 0.7 mg/l. In the watercourses to the north of Laite Päi jänne phytoplankton biomass varied between 0.01 and 3.98 mg/l, with a mean value of 0.44 mg/l. The average number of species was 66 and the dominating species were usually diatoms. 19 o io 111 20 1 30 1 40 1 50km 1 Fig. 6. Sampling stations of the Kymijoki river basin north of the rapid of Haapakoski. 20 4.042 Lake Päijänne and watercourses draining into it The location of sampling stations in Lake Päijän ne and the waters flowing into it can be seen in Fig. 7. According to Järnefelt (1956a and b) Lake Päijänne was an oligotrophic lake in the decade commencing in 1930. In the northern areas, around the sound of Kärkistensalmi, phyto plankton biomasses varied between 0.05 and 0.24 mg/l, while in the south around Asikkalan selkä the phytoplankton biomasses observed were 0.04—0.11 mg/1. Phytoplankton studies, begun by the Hydrobiological Research Institute of Jyväskylä in 1969, indicate that biomass leveis in the north of the lake have increased to over 1.0 mg/1, while those in the southhaveremained at a considerablylowerlevel, 0.1—0.3 mg/l (Gran berg 1969, 1970b and 1972, Tuunainen et al. 1971). The sampies used in the present research were from 1965. In the north of the lake phyto plankton leveis were 0.4—0.8 mg/1, increasing to 1.2—1.3 mg/1 towards central areas of the lake and then decreasing to 0.1—0.2 mg/1 in the south. The highest quotient values were encountered in the central area, although sorne quotient values of sampies from the northern waters exceeded the threshold values indicating eutrophication. The highest odour mdcx value was found in a sarnple from the north of the lake. Dominating species throughout the whole of Lake Päijänne were diatoms. Lake J.yväsjärvi, flowing into Lake Päijänne through the sound of Äijälänsalmi, has been heavily Ioaded by municipal and industrial effluents, as was evident from the results obtained. In 1963 the wastes inhibited production so that biomass levels remained below 0.1 mg/l, with very poor species diversity. The dominating species were Melosira diatoms and small Fiagellata algae. In 1965 the wastes discharged into this water were no longer so toxic, as was indicated by considerably elevated biomass leveis. Algae of the order Chrysomonadinae were the dominant component of a biomass approaching 20 mg/1. -Euglenophyta algae were also abundant. The num ber of species was considerably greater than in 1%3. It was not worth calculating the quotient values because of the lack of oligotrophic indicators, but odour mdcx values were elevated during the highly productive year 1965. Phytoplankton compositions giving strong indication of eutro phication were also found from Lake Jyväsjärvi in 1969 and 1970 (Granberg 1969 and 1972). The Lakes Palokkajärvi and Tuomiojärvi, entering Lake Päijänne near the city of Jyväs kylä, also had high leveis of phytoplankton biomass. As well as high biomass leveis, the con siderable number of species was also a feature of the sampies from these lakes. Quotients and odour mdcx values were high. Lake Vesijärvi flowing into Lake Päijänne from the south, is in part highly eutrophic (Seppänen 1968). In the section bordering on the city of Lahti phytoplankton leveis over 5.0 mg/l were observed, with Hormogonales blue-green algae as the dominant organisms. For this reason the odour mdcx had a high value. Eutrophication decreased towards the north so that near the outlet of Lake Vesijär vi the biomass level was below 0.5 mg/l, the dominant species being diatoms. The situation in this water body has apparently been similar at least since 1926, when Järnefelt (1928) described a notable colouring of the water of Lake Vesijärvi near to the city of Lahti, caused by the bluegreen algae Microcystis sp. Järnefelt considered the area of Lake Vesijärvi near the village of Vääksy to be oligotrophic. In this area phytoplankton biomasses varied between 0.03 and 18.5 mg/l, with a mean value of 1.32 mg/l. Lake Jyväsjärvi and the southern part of Lake Vesijärvi were the most eutrophic areas. 4.043 Watercourses south of the Kalkkinen canal The sampling stations of the Kymijoki river basin south of the Kalkkinen canal are shown in Fig. 8. The River Kymijoki leaving Lake Päijänne contains clean water with low nutrient con centrations. Thus the phytoplankton of Lakes Ruotsalainen and Konnivesi resembled that of southern Lake Päijänne in its composition, the dominating species being diatoms. Biomass levels and quotient values were small. The Mäntyharju route is entirely clean and 21 0 • Fig. 7. Sampling stations of 10 20 1 1 30 1 40 50km 1 the Kymijoki river basin in Lake Päijnne and watercourses draining into it. 22 3.1 3.2 6. 6 117 120 6 4 4 0 10 20 30 40 50km Fig. 8. Sampling stations of the Kymijoki river basin south of the Kalkkinen canal. / 23 oligotrophic (National Board of Waters 1977b). This fact was reflected in phytoplankton biomass levels, which were usually within the range 0.1— 0.3 mg/l. Quotients and odour mdcx values were low and the dominant species were diatoms. Lake Kivijärvi, the largest lake of the Valkeala route, is a clean, oligotrophic lake (National Board of Waters 1974). However, biomass leveis over 1.0 mg/l were found in Lake Ylä-Kivijärvi at the northern end of this lake, probably as a resuit of natural fertility of soils in this region. Slightly elevated biomass leveis were also encounted in Lake Lappalanjärvi (0.5—0.6 mg/1). The reason for this could be the discharge into this watercourse of effluents from the village of Valkeala. Phytoplankton biomasses in the Kymijoki river basin south of the Kalkkinen canal varied between 0.07 and 1.42 mg/l, with a mean value of 0.31 mgfl. Quotients were usually low and the dominating organisms diatoms. 4.05 River basins to the south of Salpaus selkä Phytoplankton samples were taken from the waters to the south of Salpausselkä at lake sites in Hounijoki, Koskenkylänjoki, Vantaanjoki, Siuntionjoki and Karjaanjoki river basins (Fig. 9). Lake Haapajärvi, in the Hounijoki river basin, is strongly eutrophic, as a resuit of the discharge of effluents into the lake from the city of Lap peenranta. The lake is considered to be totally polluted (Kettunen 1975). High biomass was caused mainly by Protococcales green algae and Centrales diatoms. The odour mdcx was high, although the quotients were surprisingly low. The Lakes Pyhäjärvi and Kirkkojärvi in the Koskenkylänjoki river basin were also eutrophic. In Lake Pyhäjärvi biomass levels were only slightly over 1.0 mg/l, but in Lake Kirkkojärvi near to 20 mg/l. The number of species was particularly high in Lake Kirkkojärvi. The quotients were not calculated because of the lack of oligotrophic indicators, but odour mdcx values were very high. The dominating species were Centrales diatoms and Hormogonales blue-green algae. Algae of the division Euglenopbyta were also fairly abundant. Lake Tuusulanjärvi, in the Vantaanjoki river basin, has been a highly eutrophic lake for a iong time (Järnefelt 1937 and 1956c, Anttila 1969). As well as the soil type iii this area, the discharge of effluents and the practise of mtensive agricukure near the shores of the lake have contributed to this condition of the water of Lake Tuusulanjärvi. In the present investiga tion phytoplankton biomass leveis of 4.0—6.0 mg/l were observed, which is in good agreement with the observations of other investigations (Anttila 1969). The dominant species were Hormogonales blue-green algae and Centrales diatoms. Values for the odour mdcx were high. Of the lakes in the Siuntionjoki river basin, Lake Palojärvi is eutrophic and Lake Enäjärvi extremely so (National Board of Waters 1977c). The biomass level in Lake Enäjärvi was 7.0 mg/l. The odour index was high and the dominating species were blue-green algae. In Lake Palojärvi the dominating species in a richly assorted biomass were algae of the division Chrysophyta. Lake Hormajärvi, in the Karjaanjoki river basin, is oligotrophic (Järnefelt 1963), with a phytoplankton biomass of around 0.15 mgIl in the present investigation. Simiiar biomass leveis were found m this lake by Järnefelt (1963) over the period 1949—1960. Lake Kirkkojärvi near the village of Vihti has undergone eutrophication owing to the discharge of sewage (National Board of Waters 1977c). Biomass leveis and the odour mdcx were high. The dominating species were Centrales diatoms. Some evidence of slight eutrophication was also observed in Lake Hiiden vesi (National Board of Waters 1977c). The bio mass leveis were 0.6—0.9 mgfl and the quotient values high. Lake Lohjanjärvi has been subjected to the influence of municipal and industrial effluents during the 1960-decade (Nyroos 1973, National Board of Waters 1977c). Phytoplankton bio masses were 0.8—2.9 mg/l and quotient values and odour mdcx values were high. The dominating species were Centrales diatoms. Phytoplankton data from Lake Lohjanjärvi is available smnce the 1890-decade (Levander 1900), and directly comparable data since the 1940-decade (Järne felt 1963), when the phytoplankton biomass was of the order of 0.4 mg/l. 24 Fig. 9. Sampling stations in the river basins to the south of Salpausselkä. High biomass leveis and quotient and odour index values indicative of eutrophication were typical of lakes near the coastal region. Biomasses varied between 0.14 and 19.9 mg/1, with a mean value of 4.39 mg/1. The dominating species were usually diatoms, although considerable amounts of blue-green algae were also observed. 4.06 River basins of southwest Finland Sampies from the southwestern areas were taken from Lake Kirkkojärvi in the Paimionjoki river basin and from Lakes Pyhäjärvi and Köyliönjärvi in the Eurajoki river basin (Fig. 10). Lake Kirkkojärvi in the Paimionjoki river basin is heavily polluted (National Board of Waters 1977d). Phytoplankton biomass was only 0.7 mgfl, but the extensive pollution of this lake was indicated by the fact that almost half the biomass was composed of Euglenophyta algae. Situated by the vilage of Säkylä, Lake Pyhä järvi is oligotrophic (National Board of Waters 1977d). Phytoplankton biomasses of 0.18— 0.29 mg/1 were observed in this investigation. With one exception, the quotient values were low. Järnefelt (1927) investigated the water quality of this lake in 1916 and expressed the opinion that the lake was in the process of eutrophication. Lake Köyliönjärvi is a eutrophic lake the condition of which has been further damaged by the discharge of effluents from the food industry (National Board of Waters 1977d). Phytoplankton was rich in species and its biomass approached 10 mg/1. The dominating species were Chroococcales blue-green algae and Centrales diatoms, while the presence of Euglenophyta algae gave an evidence of pollution. Phytoplankton biomasses in the river basins of southwest Finland were 0.18—9.21 mg/l, with a mean value of 2.05 mg/1. The dominating species in the rather richly assorted planktonic fiora were diatoms and blue-green algae. 4.07 The Kokemäenjoki river basin 4.071 Watercourses north of Lake Pyhäjärvi The location of sampling stations in the Koke 25 9 i1 0 10 lOI - 20 1 30 40 50km 1 Fig. 10. Sampling stations in the river basins of southwest Finland. mäenjoki river basin north of Lake Pyhäjärvi is shown in Fig. 11. Lake Keurusselkä, the central lake of the Keuruu chain, has recently undergone eutro phication in the northern section (Eloranta 1974). Although phytoplankton leveis were at their highest only 0.6 mg/I in the present in vestigation, the onset of eutrophication was mdi cated by high quotient values. The dominating species were Centrales diatoms. The southern and western regions of Lake Keurusselkä were stili largely oligotrophic, with biomass leveis of only around 0.2 mg/1. According to Järnefelt (1956a), biomasses in 1945—1946 were 0.06— 0.34 mg/1, while Eloranta (1972) reported values of about 0.9 mg/1 in 1970. Lakes situated in the routes of Ähtäri and Pihlajavesi were found to support biomass leveis of 0,1—0.4 mg/1, while in Lake Ähtärinjärvi itself the leveis were slightly higher, probably as a resuit of diffuse loading (National Board of Waters 1978a). The dominating species were usually diatoms. The routes of Ähtäri and Pihlajavesi unite at the oligotrophic Lake Tarjannevesi, which is considered to be in an almost unspoiled natural state (National Board of Waters 1978a). Phyto plankton leveis were between 0.2 and 0.5 mg/1. Values of volume quotients were high in 1965. The dominating phytoplankton were diatoms. 26 I I’ “, 0 10 1.1 Fig. 11. Sampling stations of 20 30 40 1 1 1 the Kokemäenjoki river basin north of Lake Pyhäjärvi. The Näsijärvi Ruovesi chain of lakes is loaded by effluents from the pulp and paper industry (National Board of Waters 1978a). This was vety evident in the level and the species composition of phytoplankton in Lakes Paloselkä and Han honvuolle. Species variety in these waters was vety - 50km poor, the dominating species being Chryptomonas sp. and Chroomonas sp.. The low biomass leveis observed clearly indicated inhibition of growth caused by the industrial effluents. This effect continued towards Lake Ruovesi. Phytoplankton was poor in species variety and low in biomass 27 throughout this chain of lakes as far as the south of Lake Näsijärvi. Järnefelt (1956a and b) reported Lake Näsijärvi to be an oligotrophic water body in 1945—1952. Phytoplankton biomasses in Lakes Nerkoon järvi and Kankarijärvi, two of the source lakes of the Ikaalinen chain, were found to be 0.24— 0.64 mgIl, the dominating fiora usually being diatoms. An exception was the sample in 1965 from the southern tip of Lake Ncrkoonjärvi, which contained a high proportion of Hormogo nales blue-green algae. The volume quotient and odour mdcx in this sample were elevated. Bio mass values in the south of Lake Kyrösjärvi indicated siight eutrophication. Järnefelt (1956a) also found some evidence of eutrophication in this lake in 1946. In the present investigation the most extensive eutrophication in the lakes of this chain was found in Lakes Kirkkojärvi and Mahnalanselkä, in which the biomasses were 0.54— 1.06 mg/1 and the volume quotients were high. The value for the odour mdcx was aiso elevated in Lake Mahnaianselkä in 1965. Phytopiankton biomasses in the Kokemäen joki river basin north of Lake Pyhäjärvi varied between 0.01 and 1.40 mg/l, with a mean value ofl.33 mg/l. Species number was usually low, the dominating species being in most cases diatoms. 4.072 Lake Pyhäjärvi and watercourses to the east of it Sampling stations in Lake Pyhäjärvi and water courses to the east of this lake are shown in Fig. 12. Phytopiankton biomass leveis in Lake Längel mävesi were mainly 0.2—0.4 mg/i, although eutrophication in the north of the lake raised the leveis to over 4.0 mg/l. Järnefelt (1956a) described this lake in 1945 as eutrophic. Lake Oriseikä is loaded by the municipal effluents of the town of Orivesi (National Board of Waters 1978a), as is evidenced by the increased values of biomass and quotients. Lake Vesijärvi, entering Lake Längelmävesi at its southern end, was found to be an oligotrophic water body with biomasses of 0.12—0.40 mg/l. The lakes situated in the Hauho route are in the main very clean lakes in an almost natural state (National Board of Waters 1978a). The most eutrophic are Lakes Pyhäjärvi and Omiajärvi, in which phytoplankton leveis of over 1.0 mg/i were observed. A bioom of Hormogonales blue-green aigae was observed in 1963, when biomass leveis increased to over 6.0 mg/l. Similar observations were later made by Ilmavirta et ai. (1974). The Lakes Iso-Roinevesi, Haukivesi, Ilmoilan selkä and Pintele are ali oiigotrophic. The phyto plankton leveis in ali these lakes were relatively iow. Some eutrophication, with increased biomass leveis and quotient values, was, however, observed in the area Hauhonseikä of Lake Haukivesi. This was caused by the sewage effluents from the viliage of Hauho. The dominating species in ail these lakes were Centrales diatoms. Lakes Pälkänevesi and Roine are oligotrophic (National Board of Waters 1978a). Phytopiank ton leveis were 0.1—0.2 mg/1. The dominating species in Lake Päikänevesi were Centrales diatoms. Eutrophication resuiting from the discharge of sewage effluents from the town of Pälkäne is discernibie in the northern part of Lake Mallas vesi (National Board of Waters 1978a), in which phytoplankton biomass leveis of 0.6—0.7 mg/1 were observed. The species composition of phyto plankton also differed from that in the neigh bouring waters, the dominance of Centrales diatoms being clearly weaker whiie the pro portion of Horinogonales blue-green algae was increased. This alteration in species composition resulted in increased values of the EV/OV quotient and of the odour mdcx. Lake Pääjärvi, at the source of the Vanajavesi chain, is an oligotrophic lake (Granberg 1970c, Ruuhijärvi 1974). Ilmavirta and Kotimaa (1974) estimated phytoplankton biomass in this lake for , cor 2 the growth season of 1971 to be 1—3 g/m responding to 0.25—0.75 mgJl in the photic layer. Similar leveis were also observed in the present mnvestigation. The dominating species were in 1963 Pyrrophyta algae and in 1965 Centrales diatoms. Lake Kernaalanjärvi is a eutrophic lake, in which water quality is influenced by effluent from the paper miii of Tervakoski Oy (Ryhä nen 1962). The biomass of 3.0—6.0 mgli was 28 I I’ “I 10 0 Iii 20 30 40 50km Fig. 12. Sampling stations of the Kokemäenjoki river basrn in Lake Pyhäjärvi and watercourses to the east of it. dominated by Centrales diatoms, and quotient values and odour index values were high. Lakes Rautajärvi and Kalvolanjärvi, draining into Lake Vanajavesi, are eutrophic. In Lake Kai volanjärvi a bloom of Hormogonales biue-green algae raised the phytoplankton level to 45 mg/i in 1963. The odour mdcx was also high. Lakes Katumajärvi and Lehijärvi in the Vana javesi chain, as weil as the centrai Lake Vanaja vesi itself, are eutrophic waters (National Board of Waters 1978a). Biomass leveis in Lake Vanaja vesi were usually 1.0—4.0 mg/i, but some values as high as 10 mg/1 were observed. The values of quotients and odour mdcx were in the latter 29 sampies high. The species composition was usually dominated by diatoms. Lake Lotilanjärvi is badly polluted by wastes from the puip and paper industry (National Board of Waters 1978a). Species composition was very restricted, but biomass values were high, in 1963 over 20 mg/1. The dominating species in this year were Scenedesmus spp., in particular S. quadricauda (Turb.) Brb. In 1965 the phyto plankton was composed of only six species, dominating being Nitzschia sp. and Ochromonas crenata Klebs. The water bodies Konhonvuolle, Korteselkä and Lake Pyhäjärvi are eutrophic (Jär nefelt 1956a). Phytoplankton leveis recorded in this study were 1.0—5.0 mg/l, and both quotients and odour index vaiues were high. The dominating species throughout ali these waters were Centrales diatoms. In his investigation of 1945 Järnefelt (1956a) found that a biomass of 2.0 mg/1 in Lake Pyhäjärvi was composed mainiy of diatoms. Phytopiankton biomasses in Lake Pyhäjärvi and waters to the east of it varied between 0.03 and 45.0 mg/1, the mean vaiue being 2.39 mg/l. In addition to diatoms, a considerable proportion of the biomass was in some waters composed of blue-green algae. 4.073 Watercourses below the River Nokianvirta Sampling stations of the Kokemäenjoki river basin below the River Nokianvirta are shown in Fig. 13. Lakes Kulovesi and Rautavesi are both eutro phic water bodies (Järnefelt 1956a, National Board of Waters 1978a). Phytoplankton leveis of 1.0—2.0 mgIl were observed in this study. It is possible that primary production is to some extent inhibited in these waters by the toxic effects of effluents (National Board of Waters 1978a). Quotient and odour index values were high. The dominating algae belonged to the division Chrysophyta and were in most cases Centrales diatoms. Lake Mouhijärvi is in the process of eutro phication (National Board of Waters 1978a), as is evidenced by a slight increase in biomass and, in particular, by high quotient vaiues. The dominating species in this lake were Centrales diatoms. Lake Sääksjärvi is aiso a eutrophic lake (Järne felt 1956a). Biomass leveis were of the order of 2.0—4.0 mg/1 and quotients and odour index values were high. The dominating species were diatoms. Phytoplankton biomasses in the Kokemäen joki river basin below the River Nokianvirta varied between 0.82 and 5.79 mg/l, the mean value being 2.49 mg/l. The dominating species were usually diatoms. 4.08 River basins of Ostrobothnia Sampies were taken in this area from lakes in the Karvianjoki, Lapuanjoki, Ähtävänjoki, Lesti joki, Kalajoki, Pyhäjoki and Siikajoki river basins (Fig. 14). Lake Isojärvi in the Karvianjoki river basin is a eutrophic lake (National Board of Waters 1978b). Phytoplankton biomass leveis were of the order of 2.0 mg/1 and quotient leveis were high. The dominating organisms were diatoms. Lakes Inhottujärvi and Karvianjärvi are oligo trophic. Biomass leveis observed were 0.2—0.3 mg/1, the dominating species being Centrales diatoms. In the 1965 sample from Lake Karvian järvi considerabie amounts of Hormogonales blue-green algae were also observed. Lake Karhijärvi is a highly eutrophic lake (National Board of Waters 1978b). Phytoplank ton ievels of over 10 mg/1 were recorded and the values of odour index were also very high. The major portion of the biomass was composed of Centrales diatoms, although the proportion of Hormogonales blue-green algae was also significant. Situated in the Lapuanjoki river basin, Lake Kuortaneenjärvi is a eutrophic lake (National Board of Waters 1978c). Phytoplankton levels of over 1.0 mg/1 were recorded, and quotient and odour mdcx values were high. The dominating species were Hormogonales blue-green algae. Lake Lappajärvi is in the process of eutro phication (Nauonal Board of Waters 1978c). Phytoplankton biomasses were 0.54—0.90 mg/1. Some quotient values were particularly high, and increased odour index values were also observed in some cases. The dominating organisms were 30 II o • 10 20 30 40 1 1 1 1 50km Fig. 13. Sampling stations of the Kokemäenjoki river basin below the River Nokianvirta. diatonis, and the leveis of blue-green algae were also higher than those usually observed in oligo trophic waters. Lake Lestijärvi in the Lestijoki river basin is an oligotrophic lake (National Board of Waters 1977e). The phytoplankton biomass, dominated by diatoms, was 0.2 mg/1. Quotient and odour mdcx values were low. Lake Reisjärvi in the Kalajoki river basin is a eutrophic lake (National Board of Waters 1978d). Phytoplankton biomass was over 1.0 mg/1 and the values of quotients and odour index were elevated. The major constituent of the biomass were Centrales diatoms. Lake Pyhäjärvi in the Pyhäjoki river basin is largely oligotrophic in nature (National Board of Waters 1978d). The level of phytoplankton was below 0.2 mg/1 and both quotient values and odour mdcx values were Iow. The dominating species were diatoms. The area Salmenselkä of this lake did show signs of some eutrophication: phytoplankton biomass exceeded 1.0 mg/1 and 31 0 20 Fig. 14. Sampling stations in the river basins of Ostrobothnia. 32 the proportion of blue-green algae was greater than in the rest of the lake. Lake Iso-Lamujärvi in the Siikajoki river basin is considered to be oligotrophic (National Board of Waters 1978d). Phytoplankton leveis were around 0.6 mg/1 and quotient values were Iow. The dominating species were diatoms. Phytoplankton biomasses in the river basins of Ostrobothnia were 0.15—14.5 mg/1, with a mean value of 1.84 mg/1. The dominating plank ton fiora were usually diatoms. Biomass leveis of blue-green algae were also high in some eutrophic lakes. 4.09 The Oulujoki, lijoki, Kuivajoki and Simojoki river basins Sampies were taken in this area from Lake Oulujärvi and the larger lakes of the chains draining into it, from the larger lakes along the lijoki river basin and from Lakes Oijärvi and Simojär vi in the Kuivajoki and Simojoki river basins (Fig. 15). The major part of Lake Oulujärvi is oligotro phic. However, the discharge of industrial and municipal wastes has caused some changes in the southern part of the Paltaselkä area and in the eastern section of the Ärjänselkä area (National Board of Waters 1977f). Phytoplankton bio masses varied between 0.26 and 0.66 mg/1, the highest values being found in the Paltaselkä area and the lowest in the Niskanselkä area. The dominating organisms were diatoms. Järnefelt (1956a) described Lake Oulujärvi as oligotrophic in his investigations of 1946 and 1951. Total phytoplankt.on biomass was then 0.13 mg/l, the species number 43 and quotient values were low. The lakes draining into Lake Oulujärvi are dystrophic waters in a natural state, with the exception of Lake Pirttijärvi, which is polluted by sewage and effluents from the dairy industry (National Board of Waters 1977f). Phytoplankton leveis were somewhat increased in Lake Pirtti järvi and the effect of the pollutants was also discernible in the following lake of the chain, Lake Nuasjärvi. In addition to the increased biomass leveis the volume quotient values were also elevated in the effected lakes. The lakes in the lijoki river basin are in an oligotrophic state (National Board of Waters 1977g). Taking into account the geographical location of this river and also the soil type, phytoplankton biomass leveis were rather high. In the case of some of the lakes the reason for this may be water regulation, which has increased the level of utilizable nutrients and hence also primary production. The highest biomass leveis were in Lake Tyräjärvi (over 1.0 mg/1), which also supported the richest variety of species. Lake Pudasjärvi is oligotrophic (National Board of Waters 1977g). Phytoplankton bio masses were 0.26—0.39 mg/1 and quotient and odour index values were low. Järnefelt (1956a) investigated this lake in 1946 and considered it then also to be oligotrophic. Phytoplankton leveis in this earlier research were below 0.01 mg/1 and the number of species was low. Lake Oijärvi in the Kuivajoki river basin is a eutrophic lake (National Board of Waters 7g). Phytoplankton biomass was in 1963 over 7 19 5.0 mgtl and was composed mainly of Centrales diatoms and Hormogonales blue-green algae. The odour index was high in both years. Lake Simojärvi in the Simojoki river basin supported a considerably higher level of phyto plankton biomass in 1965 than in 1963, and the species number was also higher in the second sampling. The dominating organisms in both years were Centrales diatoms. The phytoplankton biomasses in the waters of this area varied between 0.01 and 5.19 mg/1, the mean value being 0.56 mg!l. The dominating organisms were diatoms. 4.10 The Kemijoki and Tornionjoki river basins Both of these river basins contain only a few lakes. Sampies were taken from the most important of these lakes (Fig. 16). The Kemijoki river basin is of the oligotrophic type (Viitasaari & Seppänen 1967). Plankton biomasses in the lakes investigated varied between 0.20 and 0.74 mg/l. The most eutrophic lake was Lake Unari, in which the odour index values were also higher than in the other waters along the course of this river. Dominating species belonged to the division Chrysophyta and were 33 60 80 100km Fig. 15. Sampling stations in the Oulujoki, lijoki, Kuivajoki and Simojoki river basins. in most cases Centrales diatoms. The source waters of the Tornionjoki river basin are clean subarctic lakes, while in the lower reaches the lakes are coloured by humus and soluble iron salts (Karimo et al. 1970). Slight eutrophication observed in the lakes of this watercourse is probably a resuit of the rock- and soil type in this area (Maristo 1941). The highest biomass and quotient values were found in Lake Jerisjärvi. The phytoplankton biomasses in the lakes of this area varied between 0.20 and 1.49 mg/1, the mean value being 0.54 mg/1. The dominating species were diatoms. 34 O .4 ‘1 11 o Ii Fig. 16. Sampling stations in the Kemijoki and Tornionjoki river basins. 20 40 60 80 100 km 35 4.11 River basins of northern Lapland and Kuusamo Sampies were taken from Lakes Inarinjärvi and Muddusjärvi in the Paatsjoki river basin, from Lakes Kitkajärvi, Kirpistö, Kiitämö and Suininki in the Koutajoki river basin, and from Lakes Joukamojärvi, Muojärvi and Kuusamojärvi in the Kemjoki river basin (Fig. 17). Lake Inarinjärvi was found to be oligotrophic (Airaksinen & Heinonen 1976), with phyto plankton typical of this classification. The maximum level was below 0.2 mg/l and the value of odour mdcx was very low. The dominating species were diatoms. Järnefelt (1956b) in vestigated this lake at the beginning of the 1950decade and observed phytoplankton leveis of between 0.02 and 0.06 mg/l. Quotient values were also very low. In one of the two sampies from Lake Muddus järvi in 1963 the phytoplankton level was greater than 1.0 mg/i, resulting from an abundance of Centrales diatoms. Quotient values in this lake were low. The lakes in the Koutajoki and Kemjoki river basins are in the main clean and oligotrophic (Heinonen & Myllymaa 1974). Phytoplankton biornasses of 0.30—0.74 mg/l and 0.23—0.93 mg/l, respectively, were observed in the lakes of these river basins. The highest values were from Lake Kuusamojärvi, which is loaded by sewage effluents. The western end of the lake was somewhat eutrophic, which was reflected in elevated values of volume quotient and odour index. The dominating species were in general Centrales diatoms in ali these lakes, although the proportion of blue-green algae was also high in Lake Kuusamojärvi in 1963. Phytopiankton biomasses in the waters of northern Lapland and Kuusamo were 0.09— 1.10 mg/l with a mean value of 0.39 mgfl. The dominating species were diatoms. DISCUSSION 5. 5.1 Regional survey of phytoplankton biomasses A summary of the phytoplankton biomasses by regions is presented in Table 2. The results for 1963 and 1965 have been combined. The highest biomass levels were recorded in the relatively small lakes of the coastal regions (Areas 4, 5, 7). Of the inland watercourses the most eutrophic were the eastern sources of the Kokemäenjoki river basin (Area 6.2) and the lower reaches of the same river (Area 6.3). In the Vuoksi river basin the most eutrophic lakes were found in the Iisalmi-Kuopio route. A similar comparative classification of the watercourse was possible on the basis of physical and chemical analyses (Laaksonen 1970 and 1972). Eutrophica tion of lakes in coastal areas and in the IisalmiKuopio route is mainly due to soil fertility. In other eutrophic lakes waste waters are generally the cause of eutrophication. The dominating phytoplankton species in ali cases belonged to the division Chrysopbyta, and very often were diatoms. The proportion of algae of the divisions Cyanophyta and Chlorophyta were low, while the appearance of Euglenophyta algae was confined to highly eutrophic and usually badly polluted waters. 5.2 Total phytoplankton biomass leveis Phytoplankton biomasses varied in 1963 between 0.01 and 45.0 mg/l and in 1965 between 0.02 and 18.6 mg/l. The distribution of biomass Ievels has been expressed graphically (Figs. 18 and 19) using the display technique of Järnefelt (1956a) in which the sampies are arranged aiong the lower axis from left to right in accordance with increasing biomass value per sample. A division of the biomass results for the two years is presented in Table 3, along with some estimated compari sons with the investigation of Järnefelt (1956a). The forms of the curves for 1963 (Fig. 18) and 1965 (Fig. 19) are identical with that of the curve presented by Järnefelt (1956a), which was based in part on sampies taken as long ago as the end of the 1930-decade. Small differences iii relative proportions may resuit from the facts that the material of Järnefelt included many small oligotrophic lakes and that his investigation was not carried out on such a wide geographical basis as the present research. Järnefelt (1956a) held the lower threshold of 36 , 2) Li 0 20 40 60 80 100km Fig. 17. Sampling stations in the river basins of northern Lapland and Kuusamo. 37 Table 2. The summary of phytoplankton biomasses by regions. Region Phytoplankton biomass, mg/1 (fresh weight) Cyanophyta Chlorophyta Euglenophyta Chrysophyta Pyrrophyta Total Number Number of species of samples 1. 0.03 0.04 <0.01 0.38 0.04 0.49 54 12 2. 2.1 2.2 2.3 0.06 0.03 0.10 0.05 0.07 0.06 0.10 0.04 0.01 <0.01 0.01 <0.01 0.80 0.25 1.58 0.40 0.10 0.05 0.16 0.07 1.03 0.39 1.94 0.56 62 51 77 56 255 3. 3.1 3.2 3.3 0.05 0.03 0.10 0.04 0.04 0.04 0.06 0.03 0.01 <0.01 0.01 <0.01 0.44 0.30 0.95 0.20 0.10 0.07 0.21 0.04 0.63 0.44 1.32 0.31 63 66 60 62 228 138 55 35 4. 1.17 0.54 0.17 2.27 0.24 4.39 77 21 5. 0.59 0.34 0.05 1.02 0.06 2.05 87 11 6. 6.1 6.2 6.3 0.37 0.02 0.70 0.03 0.22 0.01 0.38 0.05 0.03 <0.01 0.04 0.01 0.84 0.23 1.14 2.15 0.11 0.07 0.13 0.25 1.56 0.33 2.39 2.49 56 39 67 72 179 73 94 12 7. 0.40 0.11 0.01 1.21 0.11 1.84 66 24 8. 0.06 0.06 0.01 0.39 0.05 0.56 54 52 9. 0.03 0.04 <0.01 0.40 0.07 0.54 66 22 10. 0.03 0.02 0.01 0.30 0.03 0.39 58 22 1—10 5 c 0.17 0.11 0.02 0.70 0.09 1.09 61 826 Table 3. The phytoplankton biomassvalues for 1963 and 1965, along with some estimates extrapolated from the August distribution in the sampies of Järnefelt (1956a). Phytoplankton biomass, mg/l (fresh weight) Percentage of sampies Year 1963 Year 1965 <0.20 19.6 30.5 <0.50 <0.80 < 1.00 1.00—2.00 >-2.00 >10.0 60.1 75.2 78.9 9.3 11.8 1.8 67.6 79.0 81.4 7.7 10.9 1.6 Järnefelt (1956a) - - - 85.0 - 10.0 - phytoplankton biomass in Finnish lakes described as eutrophic to be 8 l/ha (equivalent to a fresh weight of 0.8 mg/l). Only those lakes with a phytoplankton biomass not exceeding 1.5 l/ha (0.15 mg/l) were further investigated as examples of oligotrophic lakes. The latter threshold seems very low indeed and may result to some extent from differences between the research material 93 98 64 of his study and of the present investigation. In the literature, phytoplankton biomass values (converted to fresh weight) of 0.1—1.0 mg/l have been reported during the growth season for lakes described as oligotrophic (Rodhe 1958, Findenegg 1958, Moskalenko 1972, Velikoretskaya & Forsh 1972, Wi1ln 1972, Gliwicz 1975, Munawar & Munawar 1975, Janus & Duthie 1979). Mesotrophic lakes, or lakes undergoing eutrophication, have in turn usually supported phytoplankton biomass leveis of 0.6— 3.0 mg/l (Andronikova & Drabkova 1972, Lehn 1972, Goldman et al. 1973, Hecky 1975). The highest values have been reported for obviously eutrophic lakes. Biomass levels reported iii the literature for eutrophic lakes vary between 1.8 and 30.0 mg/1 (Pieczy6ska 1971, Edmondson 1972, Schindler et al. 1974, Spodniewska 1974 and 1978, Armitage & Simmons 1975, Fleming 1975, Holtan 1978). During blue-green aigal blooms values of several hundred mihigrams per litre have been recorded (Haxnmer 1969, Popova 38 12,0 mg/I 10,0 0 E .2— c c 00 0. 160 240 120 2CE) Number of sampies (cumulative) Fig. 18. Arrangement of the sarnples (left to righ,t) in order of increasing biomass content. 1963 results. 12,0 mg/L 0 m 0 8.0 E .2 D ‘0€ j 6.0 o. ‘ot 4.0 20 0 0 50 100 250 150 300 200 Number of sampLes (cumutotive) 350 400 Fig. 19. Arrangement of the sampies (left to right) in order of increasing biomass content. 1965 results. 450 500 39 et al. 1972, Topatschewsky & Sirenko 1973, Haijula & Langi 1974, Cronberg et al. 1975). On the basis of the detailed examination of the present results and also other available in formation concerning the lakes investigated, it is possible to classify Finnish lakes on a scale of eutrophication according to midsummer phyto plankton biomass leveis as follows: Phytoplankton biomass classification (mg/l, fresh weight) <0.2 0 0.21—0.50 0.51—1.00 1.01—2.50 2.51—10.0 >10.0 ultra-oligotrophic oligotrophic incipient eutrophy mesotrophic eutrophic hypereutrophic The great majority of the Finnish lakes in vestigated are obviously oligotrophic. Median biomass values were in 1963 about 0.4 mg/1 and in 1965 about 0.3 mg/l. Only 1.7 % of the sampies taken were hypereutrophic. Biomass leveis were in general lower in 1965 than in 1963. In an investigation based on single sampies this difference may be pure coincidence, but it may also be that the results were influenced by climate conditions. The month of July was in most areas cooler in 1965 than in 1963 (Tie- ja vesirakennushallitus 1965 and 1968). In the treatment of the results below, the regional division has been abandoned in favour of grouping according to biomass (Table 4). Groups 1 and II represent oligotrophy ac cording to the classification described above, group III incipient eutrophy, groups IV and V mesotrophy and groups VI, VII and VIII dif ferent degrees of .eutrophy. 5.3 Phytoplankton composition 5.31 Divisions and orders The amounts (mg/I) of different divisions and orders constituting phytoplankton biomass are presented in Table 5. for each of the eutro phication groups 1—Vili of Table 4. The dominating division in Finnish waters of ail stages of eutrophication was Chrysopbyta. Within this division the dominating organisms were Centrales diatoms, again in ali these eight groups. With increasing levels of biomass algae of the division Pyrrophyta were the second most abundant organisms in waters with a total biomass of up to 2.5 mg/l (Group V), after which the divisions Cyanophyta and Cbloropbyta were represented to a greater extent than Pyrrophyta algae. The amount of blue-green algae increased with increasing eutrophication, particularly the order Hormogonales. The biomass of green algae also increased with eutrophication. Of the different orders of green algae, Pro tococcales indicated most clearly eutrophication. Algae of the order Desmidiales were also found more abundantly in eutrophic than in oligotrophic waters. This order has generally been held to be an indicator of oligotrophy (Järnefelt 1956a, Järnefelt et al. 1963, Willn 1976), although Desmidiales have Table 4. Grouping of the results according to phytoplankton biomass. Group Phytoplankton biomass mg/I (fresh weight) C1ificaon 1 II III 0—0.20 0.21—0.50 0.51—1.00 oligotrophy IV 1.01—1.50 } mesotrophy } V VI VII VIII Total 1.51—2.50 2.51—5.00 5.01—10.0 >10.0 incipient eutrophy eutropiiy hypereutrophy Number of samples Percentage 212 322 129 25.7 39.0 15.6 40 35 25 14 4.9 4.2 3.0 1.7 826 100.0 5.9 40 Table 5. The composition of phytoplankton biomass (mg/l, fresh weight) by divisions and orders in various groups (Table 4). Phytoplankton biomass (mgII) iii group nision order Cyanophyta 1 51 II III IV V VI VII VIII 5.30 11.44 s <0.01 0.010 0.02 0.028 0.05 0.068 0.08 0.143 0.13 0.290 0.25 0.601 1.26 1.801 Chroococcales 51 s <0.01 0.009 0.02 0.023 0.02 0.039 0.03 0.038 0.03 0.055 0.05 0.073 0.57 1.133 Hormogonales 51 s <0.01 0.006 0.01 0.016 0.03 0.057 0.05 0.138 0.10 0.280 0.20 0.609 0.69 1.153 5.00 12.31 51 s 0.02 0.017 0.03 0.025 0.05 0.069 0.11 0.219 0.11 0.31 0.716 0.56 0.887 2.53 0.155 Volvocales 51 s <0.01 0.003 <0.01 0.011 <0.01 0.006 0.01 0.025 0.02 0.027 0.02 0.027 0.04 0.067 0.04 0.047 Tetrasporales 5c s <0.01 0.006 <0.01 0.010 0.01 0.036 0.04 0.169 0.02 0.060 0.03 0.098 0.10 0.251 0.09 0.164 Protococcales Sc 0.01 0.008 <0.01 0.012 0.02 0.022 0.03 0.050 0.07 0.123 0.07 0.132 0.36 0.792 2.21 s <0.01 0.001 0.01 0.016 0.02 0.049 0.03 0.149 0.01 0.022 0.08 0.351 0.02 0.043 <0.01 0.005 51 s <0.01 0.004 0.01 0.007 0.01 0.025 0.01 0.030 <0.01 0.010 0.12 0.659 0.05 0.094 0.19 0.369 ii s <0.01 0.001 <0.01 0.003 <0.01 0.034 <0.01 0.009 0.03 0.060 0.03 0.049 0.05 0.066 0.24 0.439 51 s 0.09 0.041 0.22 0.079 0.45 0.151 0.83 0.289 1.48 0.446 2.66 0.894 4.79 2.543 8.90 4.713 Chrysomonadinae 31 s 0.04 0.027 0.08 0.054 0.15 0.128 0.25 0.257 0.31 0.310 0.26 0.485 0.37 0.882 2.50 5.234 Heterokontae 31 s <0.01 0.003 <0.01 0.005 <0.01 0.004 <0.01 0.005 0.01 0.016 0.03 0.070 0.01 0.014 0.01 0.021 Centrales 31 s 0.04 0.029 0.10 0.066 0.22 0.146 0.45 0.302 0.80 0.534 1.83 1.057 3.90 2.816 6.04 4.876 Pennales 31 s 0.01 0.013 0.03 0.036 0.08 0.100 0.13 0.182 0.35 0.430 0.54 0.702 0.52 1.341 0.36 0.840 ii s 0.02 0.022 0.06 0.048 0.12 0.112 0.19 0.174 0.24 0.203 0.20 0.152 0.27 0.225 0.65 1.110 Chryptomonadinae 31 s 0.02 0.021 0.04 0.045 0.09 0.107 0.16 0.173 0.19 0.197 0.15 0.128 0.22 0.225 0.60 1.128 Perjdjneae 31 s <0.01 0.009 0.02 0.026 0.03 0.047 0.03 0.049 0.05 0.054 0.05 0.097 0.06 0.089 0.05 0.057 Total biomass 31 s n 0.142 0.046 212 0.323 0.081 322 0.679 0.127 129 1.21 0.133 49 1.98 0.271 40 0.549 6.93 1.361 25 17.5 8.769 14 Chlorophyta s Ulotrichales Desmidiajes Euglenophyta Chrysophyta Pyrrophyta ii 3.45 35 0.30 0.476 5.889 5.961 41 in some cases been reported as the dominating species in eutrophic waters (Järnefelt 1952b). Amounts of Euglenophyta also increased with increasing eutrophication. The increasing biomass of algae of the division CA’rysophyta with eutro phication was mainly due to the increasing leveis of Centfales and to a lesser extent Pennales diatoms. In addition to quantitative changes occurring with increasing total phytoplankton biomass concentration, the relative amounts of different divisions and orders also altered. The changes by divisions are displayed in Table 6. The most striking of the changes in relative composition was the considerable increase in the proportion of blue-green algae in waters with a total phytoplankton biomass exceeding 5.0 mg/l (Groups vi! and VIII). Another significant change was the decreasing proportion of Pyrro phyta with increasing total biomass. Changes in the amounts of the different divisions and orders with increasing eutrophica tion are displayed in Table 7. The correlations of each division and order with total biomass have Table 6. The pereentage composition of phytoplankton biomass by divisions in sainpies from the eutrophication groups 1—ylH (Table 4). Phytoplankton biomass percenrage composition in group . Division . . Cyanophyta Chlorophyta Euglenophyta Chrysophyta Pyrrophyta E Table 1 II III IV V VI VII VIII 5.2 11.5 0.2 65.0 18.1 6.2 9.0 0.2 66.8 17.8 7.3 7.3 1.5 66.2 17.7 6.6 9.0 0.4 68.4 15.6 6.3 5.5 1.5 74.7 12.0 7.3 9.0 0.9 77.0 5.8 18.2 8.1 0.7 69.1 3.9 30.1 14.3 L4 50.6 3.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 7. The correlation coefficients of the biomass values of the different divisions and orders with total biomass for eacli eutrophicacion group (Table 4) and for the wbole material. Division order Correlation coefficient with total biomass in group II 1 0.126* 0.110* 0.167* Cyanophyta Chroococcales Hormogonales 0.087 0.107 Chlorophyta Volvocales Tetrasporales Protococcales IJlotrichales Desmidiajes 0.273*** 0.052 0.026 0.125 0.027 0.124 III IV —0.020 —0.161 0.078 V —0.160 0.305* VI 0.142 0.082 0.032 VII 0.014 0.359 —0.231 0.067 0.140 0.108 0.107 0.089 0.029 0.055 0.045 0.019 0.088 0.207* 0.347* 0.410* 0.153 0.183 0.123 —0.029 0.297 —0.252 0.139 0.299* —0.014 0.101 0.146 0.117 0.177* —0.062 0.288 0.191 0.297 0.329* 0.336* —0.069 0.075 0.179 0.182 0.073 —0.117 0.150 0.243 —0.013 VIII 1—yli 0.494 0.059 Ø499* 0.518*** 0.617*** 44 m 6 o 0.155 0.172 0.240 0.301 —0.238 —0.181 0.667*** 0.548*** 0.367*** 0.634*** 0.206** — 0.443 Euglenophyta 0.042 0.137 0.176 0.215 0.584* Chrysophyta 0.805 0.630*** 0.466*** 0.303* 0.392* —0.021 0.408* 0.281 0.124 0.033 —0.009 —0.036 0.032 —0.047 0.034 —0.101 —0.072 0.074 0.366*** 0.429*** 0.121 0.306* 0.242 0.077 0.300*0.285***O.238** 0.016 0.058 0.209 0.378 —0.195 —0.229 0.391 0.146 —0.360 —0.006 —0.049 —0.377 0.208 0.922* 0.499** 0.404* 0.802*** 0.638*** 0.211** 0.270* 0.064 0.214*** 0.065 0.093 0.169** 0.108 0.082 —0.286 —0.313 0.238 0.059 —0.149 0.165 0.623*** 0.560*** 0.426*** Chrysomonadinae Heterokontae Centrales Pennales Pyrrophyta Cryptomonadinae Peridineae *** ** * —0.012 0.060 statistically highly significant (99.9 % prob.) statistically significant (99.0 % prob.) statistically almost significant (95 % prob.) 0.071 —0.090 —0.141 0.249 0.196 0.210 0.171 0.119 0.015 —0073 0.242 42 been calculated for each eutrophicauon group and for the whole material. Calculations were made after logarithmic transformation of the biomass values. In the groups 1 and II (biomass 0.01—0.50 mg/l) eutrophication was indicated most clearly by the orders within the division Cbrysophyta, with the exception of the division Heterokontae. In the succeeding groups the number of signi ficant correlation decreased, while in the hyper eutrophic group (Group VIII, biomass >10 mgfl) the increase in biomass was clearly a resuit of increasing leveis of blue-green algae, in particular, algae of the order Hormogonales. In the treatment of the whole material the differences within the groups were observed, and in general it can be stated that the amounts of ali the divisions and orders increased with in creasing total biomass. The strongest correlation with increasing total biomass was found for the division Chrysopbyta, while the correlations for the other djyjsjons were fair or considerable. 5.32 Numberofspecies The numbers of species in the sampies varied in 1963 between 5 and 128 and in 1965 between 3 and 160. In the course of the whole research a total of 680 taxons were identified. The distribu tion of samples according to the species number is presented in Table 8. The median values of the species number were 54 and 62 species in 1963 and 1965, respectively. The smallest numbers were recorded in waters highly polluted by industrial effluents, while the highest were observed in eutrophic lakes affected by domestic wastes. In general, the phytoplankton species number was low in the most oligotrophic group and in creased up to and including group VI (Table 9). In group VII the correlation between the species number and the biomass was fair. The mean value of the species number was, however, smaller in this group than in the preceding. In the samples with biomass values exceeding 10 mg/l Table 8. The numbers of phytoplankton species in 1963 and 1965. Number of samples Number of SPCS 1963 Percentage <20 21—30 7 16 60 2.1 4.9 11.9 24.1 18.3 81—90 91—100 51 28 20 13 15.6 8.5 6.1 4.0 101—110 6 111—120 >120 7 31—40 41—50 51—60 61—70 71—80 1965 Percentage 5 19 82 81 1.0 3.8 11.0 16.5 16.3 79 15.9 73 14.7 1.8 36 21 18 7.2 4.2 3.6 2 2.1 0.6 13 16 2.6 3.2 328 100.0 498 100.0 39 79 . 55 (Group VIII) the species number decreased with increasing biomass. This correlation was statisti cally almost significant. Differences between groups VI, VII and VIII were, however, not significant. Increasing species number with increasing total biomass has also been recorded by Eloranta (1978), who on the basis of his own rese,arjh material stated that “the number of species grows with increasing productivity, at least to the ”. On the basis of the 3 biomass value 2 g/m present investigation the increase continues at ). 3 least to a biomass level of 5.0 mg/l (5 gIm The species number of the dlvision Cyanophyta increased with increasing total biomass up to 10 mg/l (Group VII), after which a slight decrease was observed. The number of species of algae of the order Hormogonales increased also in the most eutrophic group (Group VIII). Similarly the species number of green algae clearly increased with eutrophication, due mainly to algae of the order Protococcales. As the number of Desmidiales species was also greater in eutrophic than in oligotrophic waters, this order cannot in its entirety be considered as an indicator of oligotrophy. The species number of Euglenophyta increased along with eutrophication, whereas the number of species of the division Chrysophyta, parti eularly of diatoms, were greatest in group VI 43 Table 9. The mean number of species and the biomass of phytoplankton, and the correlations between these variabies, in the different eutrophication groups (Table 4). Group 1 Number of species (n) ii 44.9 s 14.6 II III IV V VI VII VIII 1—Vili 57.7 17.7 66.9 19.0 74.7 21.5 85.0 27.9 94.4 26.7 94.0 20.4 92.5 61.4 23.8 33.5 Phytoplankton biomass, mg1 (B) Correlation niog B *** ** * 1.21 0.68 0.32 0.14 0.552* 0.1 53** 0. 74* 0.043 — 1.98 3.45 0.016 0.072 6.93 17.5 1.09 0.650**0.697 0.626*** statistically highly significant (99.9 % prob.) statistically significant (99.0 % prob.) statistically almost significant (95 % prob.) (biomass 2.51—5.0 mg/l). A similar maximum of the species number of the division Pyrropbyta and of its constituent orders was observed in group VL Diatoms, Protococcales green algae and Euglenophyta most obviously favoured eutrophic waters. In the classification of Järnefelt (1952b), based on proportionality within the total species number, Protococcales lakes (over 35 % of the species) are eutrophic. Protococcales-Cyanopbyta Diatomae lakes are eutrophic if some Eugieno phyta are also present, but oligotrophic or dys eutrophic in their absence. The numbers of species of the different divisions and orders are presented as the means for the eutrophication groups in Table 10. 5.33 Diversity The correlation of Margalef-diversity with biomass was insignificant or weakly significant in ali eutrophication groups. The strongest was in the most a negative one correlation had no diversity The Shannon eutrophic group. species the either with correlation significant correlations mutual The biomass. number or the of the two diversities were also insignificant. Diversity has in some previous investigations been considered as a convenient method of monitoring the water quality in larger eco systems (Haedrich 1975, Koivo 1978, Tinnberg 1979). The present research does not support — — this opinion. At best diversity can be regarded only as an additional parameter in the examina tion of results. Similar conclusions have previously been reached by Archibald (1972) and Murphy (1978). Values for diversity were calculated using the expressions due to Margalef (1958) and Shannon (Hutchinson 1967). The maximum diversity according to the equation of Margalef was for group VI (Table 11), in which biomass levels were 2.51—5.0 mg/l and the number of species was also highest. Calculated according to Shannon, the maximum diversity was found in group III (biornasso.51—1.00mgfl). In hypereutrophic waters the diversity decreased, reflecting the diminishing variety of the phyto plankton. The differencies between different groups were, however, statistically not significant. The Margalef diversity of a sample correlated very strongly with the species number (Table 12). A sirnilar correlation has previously been reported by Eloranta (1976). 5.4 Quotients 5.41 ElO and EV/OV quotients by Järnefelt The quotients most widely used in Finland have been the ElO and EVIOV quotients developed by Järnefelt (1952b and 1956a) and Järnefelt et al. (1963). The ElO quotient is calculated from the nurnbers of species favouring eutrophic and oligotrophic environments, and the EV/OV quotient from the total volumes of the sarne species. The distributions of quotient values have been collected into Table 13. Quotient values have been omitted for those sampies in which no oligotrophic indicator species were observed (61 sampies). The true distribution of 44 Table 10. The mean number of species of the divisions and orders lii the different eutrophication groups, The mean nuniber of species in group Divisjon order 1 II III IV V VI VII VIII s 5.5 2.63 6.5 2.66 7.5 2.93 8.6 4.22 9.9 4.01 10.2 3.38 13.3 4.83 11.2 5.81 7.2 3.50 s 3.4 1.93 4.3 2.08 4.5 2.25 4.9 2.53 5.0 2.78 5.9 2.36 7.3 3.73 5.6 3.27 4.3 2.32 ii s 2.1 1.28 2.2 1.49 3.0 1.90 3.7 2.33 4.9 2.17 4.3 1.77 6.0 2.05 5.6 3.34 2.9 1.88 s 15.3 7.62 s 1.0 0.62 1.2 0.76 1.5 0.85 2.0 1.12 2.5 1.15 2.3 1.37 2.2 1.44 2.1 0.59 1.6 0.85 3 s 2.0 0.87 2.1 0.94 2.4 1.03 2.2 0.94 2.4 0.96 2.6 0.97 2.2 0.93 2.2 0.96 2.2 0.92 s 8.5 4.65 11.1 5.82 13.1 6.41 14.8 6.93 s 0.9 0.72 1.5 0.80 1.5 0.83 1.5 0.96 1.5 0.80 2.2 1.16 1.3 0.52 1.3 0.52 1.5 0.65 5c s 2.9 2.51 4.4 4.07 5.0 4.23 6.2 5.24 6.0 4.10 7.3 5.14 5.0 3.37 8.0 5.27 4.7 3.90 Euglenophyta 5c s 1.2 0.67 1.0 1.15 2.3 1.80 3.6 2.33 5.9 4.74 6.7 4.19 8.5 5.15 8.6 3.01 2.6 2.62 Chrysophyta i s 19.3 6.53 25.5 6.92 29.1 7.54 30.6 9.12 31.6 10.3 33.6 9.87 s 8.3 3.51 11.2 4.03 12.5 4.10 11.3 5.19 10.7 5.08 11.1 4.60 8.7 5.40 6.5 5.39 10.3 4.38 s 1.0 0.39 1.3 0.62 1.5 0.80 1.4 0.98 1.6 1.12 1.7 1.11 1.4 0.79 1.4 0.74 1.3 0.60 s 5.8 2.46 7.2 2.46 7.7 2.66 9.0 2.64 9.9 3.74 10.6 3.88 8.8 3.04 7.8 4.15 7.3 2.96 5i s 4.2 2.30 5.8 2.77 7.4 284 8.9 3.46 9.4 2.96 10.2 3.12 9.1 3.42 8.7 3.69 6.3 3.25 s 3.6 1.53 4.4 1.77 4.5 1.83 5.2 2.37 5.2 1.98 5.3 2.43 5.0 2.22 4.4 2.03 4.3 1.87 Cryptomonadinae 5i s 1.0 0.36 1.1 0.39 1.0 0.38 1.2 0.36 1.1 0.43 1.1 0.36 1.2 0.43 1.1 0.38 1.1 0.37 5 s -2.6 1.34 3.3 1.63 3.5 1.70 4.0 2.19 4.1 1.98 4.2 2.46 3.8 2.14 3.3 2.02 3.2 1.68 5i s 44.9 57.7 17.74 322 66.9 18.97 129 74.7 21.51 49 85.0 27.93 40 94.4 26.70 35 94.0 20.36 25 92.5 33.47 14 61.4 23.84 826 Cyanophyta Chroococcales Hormogonales Chlorophyta Volvocales Tetrasporales Protococcales Ulothricales Desmidiales Chrysomonadinae Heterokontae Centrales Pennajes Pyrrophyta Peridineae Total 14.61 n 212 20.3 10.0 23.5 10.7 26.7 10.7 32.4 14.7 20.0 10.3 38.6 16.2 24.2 11.9 39.2 11.8 28.5 9.95 28.0 10.8 43.9 14.2 30.3 10.4 244 13.1 1— VIII 22.1 12.5 12.1 8.35 25.2 8.75 45 Table 11. Diversity values in the different eutrophication groups (Table 4). Group 1 Diversity: Margalef II III IV V VI VII VIII 1—VIlI s 4.49 1.395 5.40 1.604 5.95 1.620 6.41 1.809 6.99 2.259 7.56 2.139 7.15 1.570 6.81 2.643 5.56 1.857 s n 3.41 0.806 212 3.50 0.762 322 3.64 0.693 129 3.50 0.851 49 3.28 0.997 40 3.60 0.858 35 3.46 0.789 25 3.03 1.070 14 3.48 0.795 826 Shannon Table 12. Correlations of the diversity mdcx values arrived at using the equations of Margalef and Shannon with species number and biomass for each eutrophication group (Table 4. The mutual correlations of the two diversity values are also presented. Correlations (r) between Group Margalef and number of species Margalef and biomass (log) 1 II III IV V VI VII VIII I—VIH 0.988*** 0.992*** 0.990*** 0.991*** 0.993*** 0.993*** 0.982*** 0.991*** 0.974*** 0.500** 0.103 0.139 0.011 0.045 0.056 0.589** 0.728** 0.473*** *** ** * — — Shannon and number of species — Shannon and biomass (log) Shannon and Margalef 0.251*** 0.288*** 0.136 0.092 0.066 0.063 0.180 0.427* 0.015 0.044 0.067 0.118 0.170 0.283 0.048 0.026 0.268*** 0.140* 0.039 0.119* — 0.097 0.080 0.077 0.182 0.464* — 0.056 0.148*** statistically highly significant (99.9 % prob.) statistically significant (99.0 % prob.) statistically almost significant (95 % prob.) Table 13. The distribution of ElO and EV/OV quotient values. E:O 0—4.0 4.1—8.0 8.1—16.0 16.1—32.0 >32 Number of samples % of sampies 552 119 62 28 4 72.1 15.6 8.1 3.7 0.5 765 100.0 quotient values would therefore be somewhat more biased towards eutrophication. By far the majority of quotients indicated oligotrophy. Järnefelt et al. (1963) considered that for oligotrophy the maximum values of the E/O and EV/OV quotients were 8 and 35, EV:OV 0—16 16.1—35 35.1—70 70.1—150 >-150 Number of samples % of sampies 510 72 41 47 95 66.7 9.4 5.4 6.1 12.4 765 100.0 respectively. On the basis of the E/O quotients 12.3 % of the lakes in the present study were eutrophic, while according to the EV/OV quo tient values 23.9 % were eutrophic. Estimation directly from bioniass values (section 5.2) gave 8.9 % eutrophic lakes. On the basis of the qual 46 itative visual inspection Kaartotie (1962) arrived at the conclusion that 13.6 % of Finnish lakes and smaller water bodies were eutrophic in 195 1—195 3. With increasing eutrophication it was found that the ElO quotient followed more accurately the rise in biomass than did the EV/OV quotient (Table 14). The differences between various groups were, however, not statistically significant. Utilization of the volume quotients was difficult because of the considerable deviation within this parameter. Owing to a few high values the mean EV/OV value of the most oligotrophic group was rather near to the threshold value for eutrophication proposed by Järnefelt et al. (1963). This discrepancy can be examined using the correlation matrix presented in Table 15. Logarithmic transformations of both quotient and biomass values were used in these calculations. The strongest correlation was that between the two quotients. Correlations of the quotients with biomass were fair for the whole material (Groups 1—Viil combined), but those with bio mass and species number for the individual groups were insignificant. Use of these quotients was limited by the lack of oligotrophic indicator species (cf. Rawson 1956) and, particularly in the case of volume quotient, by the great deviation of the results. 5.42 The species quotients by Thunmark and Nygaard On the basis of the species distributions in plank ton net sampies from Swedish lakes, Thunmark (1945) developed a Protococcales/Desmidiales quotient of species proportionality. When the value of this quotient reaches 1.0, the lake is eutrophic, while values below 1.0 indicate oligotrophy. Nygaard (1949), investigating lakes in Denmark, introduced several quotients based on plankton net sampies. Three of these were Table 14. The mean values of ElO and EV/OV quotients in the different eutrophication groups (Table 4). ElO s EVIOV V 1 II III IV 2.2 2.16 2.8 2.76 4.3 3.53 8.8 9.61 Group i s 22.1 148.0 42.9 259.5 60.1 157.9 n 198 303 128 367 919.1 14.2 12.81 VI VII VIII 12.2 8.06 20.7 13.57 23.1 14.79 698 1 489 861 1 685 1 290 1 696 35 30 20 45 839 890.1 6 Table 15. The correlations of ElO- and EVIOV quotients with phytoplankton biomass and species number, and mutual correlation of the two quotieats in the different eutrophication groups (Table 4). Correlation (r) between G roup ElO (Iog) and biomass (log) II III IV V VI VII VIII 1—VIII 0.014 0.126* 0.185* —0.199 0.253 —0.109 0.057 0.231 0.609*** E/O (log) and species number 0.042 0.066 0.059 0.186 0.338* 0.161 0.178 0.045 0.432*** EV/OV (log) and biomass (Iog) —0.049 0.075 0.178* —0.245 0.128 0.020 0.227 —0.184 0.603*** EV/OV (log) and species number —0.040 —0.094 —0.110 0.057 —0.167 —0.012 0.420* EV/OV (Iog) and ElO (Iog) 0.653*** 0.613*** 0.537*** 0.737*** 0.163 0.183 0.165 0.273 0.209 0.344*** 0.748*** 47 applied to the resuit obtained in the present work: Cyanophyta/Desmidiales blue-green aigae species quotient quotient The threshold values for eutrophication were 0.8, 0.2 and 2.5 in the blue-green aigae-, diatom and compound quotients, respectiveiy. The mean values of ali the four species quo tients are presented in Table 16 for each eutro phication group. Ali the quotient values were extremely high and as such were indicative of eutrophication in ali of the eutrophication groups. With the excep tion of the Protococcales/Desmidiales quotient no ciear trend in the quotients was observable with increasing biomass. The quotients were examined further by caiculating the correlation coefficients between the species quotient and total biomass, and the E/V and EV/OV quotients by Järnefelt et al. (1963) for the whole research materiai. The iogarithmic transformations of biomass and both ElO and EV/OV quotients were used in these caiculations. E/O EV!OV O.202 0. 150 0.036 0.036 —0.253 —0.286 Cyanophyta/ Centrales/ Pennales Cyanophyta+Protococca les+Centrales+Eugleno phyta/Desmidiales species quotient compound quotient (index) 0. 198 Desmidiales Desmidiales 0.070 Centrales/Pennales species quotient diatom quotient Biomass Protococcales/ *** —0.174 Compound quotient 0.120** 0.093* 0.094* Ali the correlation coefficients were insigni ficant, indicating that the species quotients by Thunmark (1945) and Nygaard (1949) cannot he applied to Finnish waters. This conciusion has previously been reached by Järnefeit(1952b) and Niinioja (1975). The inappiicabiiity of the quotients of the Swedish and Danish studies resuits at ieast in part from the iack of a single complete aigai order favouring a certain fixed trophic level. Apart from the deviation arising from phyto plankton sampiing techniques and microscopy, the value of quotients is reduced by rapid changes m phytoplankton composition with time, by the varing relevance of different aigal species as indicators in different areas, by environmental conditions (Hoiland 1968, Brook 1965) and also by the smali number of species indicating oligo trophy (Rawson 1956). However, according to Table 16. The species quotients by Thunmark (1945) and Nygaard (1949) in the different eutrophication groups (Table 4). Species quotients in group 1 5 11 III IV V VI VII VIII s 3.5 2.89 3.5 2.99 3.7 3.01 3.9 3.49 5.1 4.94 5.3 5.89 7.1 4.80 4.6 2.26 Cyanophyta/ Desmjdjales s 2.1 1.74 2.1 2.06 2.2 1.95 2.1 2.38 2.4 2.18 2.2 1.66 3.3 2.51 1.4 1.00 Centrales/ Pennales s 1.5 0.98 1.5 0.96 1.2 0.54 1.2 0.75 1.1 0.47 1.1 0.66 1.0 0.35 0.9 0.26 Compound quotient s 5.3 4.25 5.5 4.99 5.9 5.15 5.9 6.15 7.6 8.38 6.8 6.87 8.7 6.90 4.0 2.40 49 40 35 25 14 Protococcales/ Desmidiajes n 212 322 129 48 several investigations (Järnefelt 1 952b, 1 956a, Rawson 1956) quotients are applicable to relatively limited geographical areas. 5.43 Odourindex The odour index (Section 3.2) is used as an additional parameter in estimating the suitability of a water body for water supply. When the relative amount of harmful algae exceeds the value 1.0, odour- and taste defects are possible. In the majority of sampies, the algae giving rise to odour- and taste defects were not observed in harmfui quantities (Tabie 17). The odour index was below 1.0 in 88.8 % of the sampies in 1963 and in 92.4 % in 1965. The values obtained are in agreement with the conclusions reached on the basis of the biomass and quotient values Table 17. The distribution of the odour mdcx values in 1963 and 1965. Odour mdcx Year 1963 Table 19. The correlations of the odour index with biomass and with the ElO and EV/OV quotients in the different eutrophication groups (Table 4). Group Year 1965 Number of sampies % Number of sampies % 125 76 53 18 12 7 20 17 38.1 23.2 16.2 5.5 3.7 2.1 6.1 5.1 208 135 56 32 20 9 20 18 41.8 27.1 11.2 6.5 4.0 1.8 4.0 3.6 328 100.0 498 100.0 <0.10 0.11—0.20 0.21—0.40 0.41—0.60 0.61—0.80 0.81—1.00 1.01—2.00 >.2.00 (Sections 5.2 and 5.41). The absolute amount of odour-inducing algae as weil as their proportion of the total biomass, and as a resuit also the odour index, ali increased with increasing eutrophication (Table 18). The differences of the mean odour mdcx vaiues between eutrophication groups were statisticaily highiy significant up to the group V (biomass 1.5 1—2.50 mg/i). In oligotrophic waters the odour mdcx was usualiy 0.2 or smaller, whiie in eutrophic iakes the value of this variabie was over 1.0. The correlation of odour mdcx with biomass and certain other indicators of eutrophication was tested (Tabie 19). The logarithmic trans formations of ali the values were used in these calcuiations. The correlation of odour index with biomass 1 II III IV V VI fl T ‘ VIII I—VIIJ Correlation (r) between Odour mdcx (iog) and biomass (log) Odour mdcx (Iog) and ElO (Iog) Odour mdcx (Iog) and EV/OV (Iog) 0.257*** 0.277* 0.196* 0.491*** 0.132 0.303*** 0.070 0.540*** 0.556*** 0.442*** 0.239 —0.074 0.084 —0.091 —0.212 0.866’ —0.029 0.140 0.379 0.308 0.881*** —0.087 0.136 —0.343 —0.144 0.634*** 0.606*** Table 18. The mean values of the indices and the amounts of algae inducing odour- and taste defects in the different eutrophication groups (Table 4). Odour/taste inducing algae, mg/1 s Proportion of odour/taste inducing % algae in total phytoplankton Odourindex s n 0.08 0.040 57.7 0.06 0.048 212 III IV 0.40 0.168 0.84 0.284 II 1 Group 0.19 0.083 58.2 0.15 0.145 322 59.0 0.31 0.442 129 69.2 0.55 0.354 49 VI V 1.45 0.495 72.9 1.02 0.762 40 2.65 0.878 76.8 1.17 0.700 35 VII VIII 5.59 1.92 15.3 9.54 80.7 3.99 4.17 25 87.3 16.3 32.9 14 49 was strong for the overail material (Groups 1—ylh) and also in the most eutrophic group (biomass > 10 mg/1). In the most oligotrophic sampies (Groups 1 and II) fair correlation was observed with biomass, but with increasing eutrophication (from group IV, biomass 1;01— 1.5 mg/1) the correlation became insignificant. Correlations of the odour iridex with the quotients of Järnefelt et al. (1963) were fair for the whole material (Groups 1—ylh), butmainly insignificant within individual eutrophication groups. The odour index as calculated in this work has been compared by Granberg (1979) with the odour threshold value employed in sensory testing of drinking-water. A good correlation was found. The occurrence frequencies of the 50 most commonly observed taxons are presented in Table 20. This table does not take into account the species densities in the sampies in which the species occurred. Of these taxons 7 belonged to the division Cyanophyta, 14 to Chlorophyta, 25 to Chryso pbyta and 4 to Pyrropbyta. The hist of the 50 most commonly observed taxons did not contain a single Euglenopbyta species. In this investigation it was not possible to compare the obtained results with the observa tions made earlier by Järnefelt (1956a). 5.52 Quantitative analysis 5.5 Occurrence of species 5.51 Qualitative analysis A total of 680 phytoplankton taxons were identified from water sampies during the course of this investigation. No species occured in ali 826 sampies and a large number of the species were observed in only a few sampies. More precisely, the frequencies of occurrence were distributed in the following manner: Number of species 2 8 35 87 155 277 357 Occurrence percentage (of ali 826 sampies) 90 75 50 25 10 5 1 The remaining 323 species were observed in less than 1 % of the sampies. The total biomass of the whole research material (826 sampies) was constituted as follows (it should be remembered that the total abundance of a taxon is not necessarily related to its frequency of occurrence (cf Table 20): Cumulative percentage Order of taxon of total biomass total in abundance sampies) (826 material 15.1 1 28.2 3 59.6 10 73.3 20 86.5 50 The 50 most abundant taxons and ‘their proportions of the total biomass are displayed in Table 21. Of these 50 taxons 11 belonged to the division Cyanophyta, 9 to Chlorophyta 26 to Chryso phyta and 4 to Pyrrophyta. 50 Table 20. The 50 most frequently observed phytoplankton taxons. Rank Name of Occurrence frequency (% of sampies) Fiagellata sp. (small) Cryptomonas sp. Sphaerocystis scbroetei’i Chod. Aphanocapsa delicatissima W. et G.S. West Rhjzosolenia langiseta Zach. 96 6 7 8 9 10 Scenedesmus bicelluiaris Chod. Tabellaria fenestrata var. asterionejioidea Grun. Melosira distans (E.) Kg. Cyclotella stelligera CI. et Grun. Mallomonas caudata Iwanoff 78 77 11 12 13 14 Mallomonas reginae Teiing Ankistrodesmus falcatus var. setiformis Nygaard Dinobryon bavaricum Imh. Peridineae (unknown species) Dinobiyon divergens Imh. 64 64 Asterionella gracillima (Hantzsch) Heib. Tabellaria flocculosa (Roth) Kg. Anabaena flos-aquae (Lyngb.) Breb. Pennales (srnall, unknown species) Gemeliicystis neglecta Teiling em Skuja 64 63 63 63 63 Mallomonas akrokomos Ruttner Crucigenia tetrapedia (Kirchn.) W. et G.S. West Melosira islandica 0. MUller Scenedesmus armatus Chod. Coelospbaerium Naegelianum Ung. 61 60 60 58 58 1 2 3 4 5 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Ankistrodesmus convolutus Corda Gloeocystisplanctonica (W. et G.S. West) Lemm. Asterionella formosa Hass. Peridinium inconspicuum Lemm. Ceratium birundinella (0. F. Miiller) Schrank 92 82 78 78 75 74 69 66 65 65 57 56 55 54 54 35 Gompbosphaeria Iacustris Chod. Melosira distans var. alpigena Grun. Aukistrodesmus falcatus var. mirabilis W. et G.S. West Ankistrodesmus falcatus (Corda) Ralfs. Mallomonas tonsurata Teiling 50 50 36 37 38 39 40 Merismopedia tenaissima Lemm. Melosira italica (E.) Kg. Crucigenia quadrata Morren Gomphosphaeria aponina Kg. Diceras chodatii Rev. 49 48 47 46 46 41 42 43 Apbanocapsa elachista W et G.S. West Cyclotella comta (E.) Kg. Gyromitus cordiformis Skuja. Salpingoeca frequentissima (Zach.) Lemm. Botryococcus Braunii Kuetz, 46 45 45 44 43 Dinobryon acuminatum Ruttn. Tabellaria fenestrata (Lyngb.) Kg. Fragilaria crotonensis (Edw.) Kitt. Tetraedron minimum (A. Braun) Hansgirg. Dictyosphaerium pulchellum Wood 41 41 39 38 38 31 32 33 34 44 45 46 47 48 49 50 53 52 50 51 Table 21. Quantitative representation of the 50 most abundant taxons. Rank 1 2 3 4 5 Narne of taxon Melosira isiandica 0. Miiller Aphanizomenon graciie Lemm. Ciyptomonas sp. (small) Melosira italica (E.) Kg. MeIosiraranulata (E.) Ralfs. Percentage of total phytoplankton biomass 15.124 6.658 6.436 6.226 5.691 5.041 6 7 8 9 10 Maliomonas caudata Iwanoff Fiageilata sp. (small) Rhizosoienia iongiseta Zach. Tabellaria fenestrata var. asterioneiloides Grun. SynurauveiiaE. 11 12 13 14 15 Asterioneila gracillima (Hantzsch) Heib. Melosira distans (E.) Kg. Melosira ambigua (Grun.) 0. MUller Aphanocapsa deiicatissima W. et. G.S. West Pragilaria crotonensis (Edw.) Kitt. 16 17 18 19 20 Scenedesmus quadricauda Chod. Aphanizomenonflos-aquae (L.) Ralfs. Melosiragranulata var. angustissima Muller Melosira italica var. tenuissima (Grun.) 0. Miiller Stephanodiscus Hantzschii Grun. 1.399 1.219 1.160 1.124 1.042 21 22 23 24 25 Cyciotella stelligera CI. et Grun. Anabaena spiroides Kleb. Aphanocapsa eiachista W. et G.S. West Anabaena flos-aquae (Lyngb.) Brb. Planctospbaeria geiatinosa G.M. Smith 0.994 0.640 0.627 0.591 0.522 26 27 28 29 30 Scenedesmus bijuga (Turp.) Lagerh. Gymnodinium fuscum (Ehrenb.) Stein Anabaena scheremetievi var. incurvata Elenk. Microcystisflos-aquae (Wittr.) Kirchn. Rhizosolenia eriensis H.L. Smith 0.5 17 0.488 0.471 0.464 0.439 31 32 33 34 35 Staurastrum vestitum Ralfs. Scenedesmus armatus Chod. Cyciotella Kutzingiana Thwaites Mailomonas reginae Teiling Diatoma eiongatum (Lyngb.) Ag. 0.431 0.428 0.422 0.414 0.409 36 37 38 39 40 Tabeilaria fenestrata (Lyngb.) Kg. Scenedesmus dimorphus (Turp.) Kitz. Peridinium inconspicuum Lemm. Mallomonas akrokomos Ruttner Anabaena pian ctonica Brunnth. 0.39 1 0.390 0.379 0.3 78 0.376 41 42 43 44 45 Anabaena cjrcjnalis Rbh. Cycioteiia Meneghiniana Kg. Peridineae (unknown species) Cycioteila comta (E.) Kg. Melosira variaas C.A. Agardh 0.368 0.366 0.360 0.3 55 0.353 46 47 48 49 50 Asterionella formosa Hass. Pediastrum Boryanum (Turp.) Meneghini Gemeliicystisnegiecta Teiing cm Skuja Lyngbya limnetica Lemm. Oedogonium sp. 0.348 0.3 32 0.3 16 0.302 0.284 4.269 3.812 3.306 3.001 1.691 1.662 ,1.646 1.413 1.399 52 5.53 Indicator species 5.5 31 Indicators used by Jarnefeit In occurrences of so-called indicator species favouring eutrophic or oligotrophic waters in the present work the main attention was paid to the eutrophic and oligotrophic indicators of Järnefelt et al. (1963). The occurrence frequency of each indicator species was calculated (as Name of species percentage of i:he sampies containing at least one of the species in question) for each eutrophica tion group 1—Viil. On the basis of the results obtained the following species, which commonly occurred in eutrophic (groups VI—VUI) lakes, but were either absent or comparatively rare in oligo trophic (groups I—II) lakes, can be considered as the best indicators of eutrophication: Occurrence frequency (%) in eutrophic lakes in oligotrophic lakes (biomass> 2.50 mg/l) (biomass 0.01—0.50 mg/1) Actinastrum Hantzschii Lagerheim Amphiprora paludosa W. Smith Chroococcus dispersus (Keissi.) Lemm. Closterium gracile Brb. Coelastrum cambricum Archer. Dichtyosphaerium ehrenbergianum Naeg. D. eiegans Bachman Dimorphococcus lunatus A. Br. Eugiena acus E. E. charkowiensis Swir. E. proxima Dang. Glenodinium gymnodinium Penard Kirchnerieila elongata G.M. Smith K. lunaris (Kirchn.) Moebius K. obesa (W. West) Schmidle Lagerheimia genevensis Chod. Lepocinclis texta (Duj.) Lemm. em. Conr. Melosira granulata (E.) Ralfs M. varians C.A. Agardh Micractinium pusilum Fresenius Microcystis aeruginosa Kg. M. flos-aquae (Wittr.) Kirchn. M. viridis (A. Br.) Lemm. Oscilatoria limnetica Lemm. Pandorina morum (MUller) Bory Pediastrum duplex Meyen P. graciliimum (W. et G.S. West) Thunmark P. Iimneticum Thunmark P. tetras (Ehrenb.) Ralfs. Peridinium bipes Stein Phacus longicauda (E.) Duj. P. curvicauda Swir. P. tortus (Lemm.) Skv. Scenedesmus abundans (Kirchn.) Chod. S. armatus v. bicaudatus (Guglielmetti-Printz) Chod. S. falcatus Chod. S. naegelii Breb. 0 4 19 28 0 16 4 3 3 38 31 51 57 15 18 32 26 42 16 31 38 28 39 81 8 1 0 0 7 5 1 1 4 4 0 8 4 4 0 2 1 6 3 8 0 0 9 2 0 3 0 1 2 0 0 47 61 15 34 15 59 20 76 36 39 62 21 25 45 14 29 27 18 14 53 Name of species Occurrence frequency (%) in eutrophic lakes in oligotrophic lakes (biomass> 2.50 mgfl) (biomass 0.01—0.50 mg/1) 0 6 2 5 1 3 7 7 1 4 2 8 S. opoliensis P. Richt. Sphaerozosma granulatum Roy et Biss. Staurastrum paradoxum v. parvum West Synedra berolinensis Lemm. Tetraedron caudatum (Corda) Hansgirg. T. Iimneticum Borge T. planctonicum G.M. Smith T. trigonum (Naeg.) Hansgirg. Tetrastrum staurogeniaforme (Schroeder) Lemm. Trachelomonas hispida (Perty) Stein em. Defi. T. varians Defi. T. volvocina E. 18 19 41 35 26 32 52 54 20 58 25 80 Of the eutrophic indicators of Järnefelt et al. (1963), the following were found in the present investigation to occur more commonly in oligo trophic than in eutrophic waters: Name of species Cosmarium punctulatum Brb. Nephrocytium limneticum (G.M. Smith) Skuja N. lunatum W. West Occurrence frequency (%) in eutrophic lakes in oligotrophic lakes 2.50 mg/l) (biomass> (biomass 0.01—0.50 mg/l) 4 7 2 10 1 13 Of the oligotrophic indicators of Järnefelt et al. (1963), the following were found also in this investigation to occur frequently in oligo trophic waters: Name of species Arthrodesmus incus (Brb.) Hass. Dinobryon cylindricum Imh. Mallomonas Allorgei (Dofi.) Conr. Occurrence frequency (%) in eutrophic lakes in oligotrophic lakes 2.50 mgIl) (biomass> (biomass 0.01—0.50 mg/I) 4 27 2 21 1 18 Most of the oligotrophic indicators were, however, also found quite frequently in eutrophic waters. 54 5.532 New indicator species Reliable indicators of oligotrophy were distinctly fewer in number. The following species were not observed at ali in eutrophic lakes (biomass> 2.50 mg/1): In this research the following algae were observed only in sampies in which the total phytoplankton biomass exceeded 1.0 mg/1: Occurrence frequency (%) in eutrophic lakes (biomass> 2.50 mg/1) Closteriopsis longissima Lemm. 19 Pediastrum biradiatum Meyen 16 Polyedriopsis spinulosa Schmidle 19 Scenedesmus ovalternus v. graewenitzii (Bernard) Chod. 21 Selenastrum gracile Reinsch 18 18 Strombomonas verrucosa (Daday) Defi. 25 Trachelomonas planctonica Swir. 42 Name of species These species may therefore be considered as eutrophic indicators. The following species were found to occur 2—4 times more frequently in eutrophic than in oligotrophic sampies, and may therefore also be considered as indicating eutrophication: Ankistrodesmus falcatus v. spirilliformis West Characiopsis longipes (Rab.) Borzi Chrysococcus minutus (Fritsch) Nyg. Closterium aciculare T. West C. macilentum Brb. C. pronum Brb. Diatoma elongatum (Lyngb.) Ag. Franceia ovalis (Franc) Lemm. Lyngbya limnetica Lemm. Nitzschia acicularis W. Sm. Pediastrum tetras v. tetraodon (Corda) Raben horst Peridinium penardiforme Lindem. Trachelomonas intermedia Dang. T. volvocinopsis Swir. Occurrence fre quency (%) in oligo trophic lakes (biomass) 0.01—0. 50 mg/1) Diatoma vuigare Bory Quadrigula lacustris (Chod.) G.M. Smith Stichogloea Doederleinii (Schmidle) WilIe 7 9 7 The following species may also be considered as indicators of oligotrophy, occurring consider ably more frequently in oligotrophic than in eutrophic waters: Cosmarium contractum Kirchn. Crucigenia rectangularis (A. Braun) Gay Dinobryon acuminatum Ruttn. D. sertidaria E. Euastrum bidentatum Näg. E. elegans (Brb.) Kiitz. Mallomonas akrokomos Ruttn. By excluding those species presented in the lists by Järnefelt et al. (1963) that in this in vestigation were found to he unsatisfactory indicators and by adding these new trophic indicators to the list, new ElO and EVIOV quotients could be calculated. However, the applicability of these new parameters to the monitoring of eutrophication should of course be tested by using a different collection of sampies. Proposais for new oligotrophic and eutrophic indicator species are presented in Appendix 3. 6. SUMMARY In this research phytoplankton sampies taken from Finnish inland waters in midsummer 1963 and 1965 were investigated. The material consisted of 826 sampies, which were examined 55 in the Water Pollution Control Bureau of the National Board of Agriculture (asfroni 1.7.1970 in the Water Research Office of the National Board of Waters). The aims of the investigation were to give an account of the quantity and composition of phytoplankton in midsummer in different water courses, to estimate the significance of the para meters based on phytoplankton composition, and to determine the value of different phyto plankton species as trophic indicators in Finnish waters. The most eutrophic waters were found te be small lakes situated in coastal regions. Of the waters of the inland lake district the most eutrophic were found to be the southern source waters of the Kokemäenjoki river basin and also the lower reaches of the same river basin. Of the lakes in the Vuoksi river basin, those in the Iisalmi-Kuopio chain were found to be most eutrophic. Total phytopiankton in the sampies varied in 1963 between 0.01 and 45.0 mg/l and in 1965 between 0.02 and 18.6 mg/l. On the basis of the regional examination and also other available information concerning the lakes examined, the lakes were divided into eutrophication groups on the basis of their midsummer phytoplankton as fellows: Phytoplankton biomass (mg/1, fresh weight) < 0.20 0.21—0.50 0.51 1.00 1.01—2.50 2.51—10.0 >10.0 — Classification uitra-eiigetrephic eligetrephic incipient eutrophy mesetrephic eutrephic hypereutrophic On the basis of this division 64.7% of the lakes investigated were found te be oligotrophic and a further 15.6 % were in a state of incipient eutrophy. Mesotrophic were 10.8 % of the lakes, while 8.9 % were clearly eutrophic. The dominating algal species in ali the eutro phication groups were Centrales diatoms of the division Chrysopbyta. The amounts of Hormo gonales biue-green algae increased considerably with the increasing degree of eutrophication. Of the green aigae, species within the order Proto coccales were found te increase with eutrephica tien. The amounts of Euglenophyta aigae were iow in oiigotrophic waters, and even a small increase in the amount of these organisms mdi cated eutrophication or pellution of the water. A total of 680 taxons were identified from the sampies. The number of different organisms in a single sampie varied from 3 te 10. The number of species per sample increased with eutrophication at ieast te a biemass level of 5.0 mg/i. In sampies with biomass leveis of over 10 mg/l the species number was, however, found te decrease with further inerease in biomass. Of the different available expressions ef diversity, the index of Margaief (1958) was found te correlate very strongly with the species number of a sainpie. The diversity according te Shannon (Hutchinson 1967) was not correlated with either species number or biomass. On the basis of results obtained in this work, values for diversity do not add the information available from water sampies. As weil as the ElO- and EV/OV quotients of Järnefelt et al. (1963), the species quotients of Thunmark (1945) and Nygaard (1949) were aiso examined for the research material. The two latter quetients were found te be totaily unsuitable for application te Finnish waters. Of the quetients due to Järnefelt et al. (1963) the deviatien ef the volume quotient was found te be high, which limited its applicability. The amount ef algae inducing odour and/or taste was described for each sample using a new variable, the odour index. The amounts of the algae in question were compared te critical threshold values ebtained from the literature (Seppevaara 1971). The sum of the partial amounts ef ali the relevant species was the edeur mdcx ef a sample. The value ef this variable increased neticeably with increasing eutrephica tien. In eligetrephic waters the edeur mdcx was usuaily weii belew 0.2, while in eutrephic sampies the value was ever 1.0. The odeur index was strengly cerreiated with the level ef biemass and weaker correiations were alse found with the quotients ef Järnefelt et ai. (1963). Mest ef the 680 taxens ebserved in the ceurce ef this investigatien occurred in enly a few sampies. Only 35 taxens were feund te occur in ever 50 % of the sampies, while the 50 mest 56 common taxons occurred for 86.5 % of the total biomass of the whole research material. The applicability of the indicator species proposed by Järnefelt et al. (1963) to the eutro phication grouping employed in this research was investigated. On the basis of the observations made, 21 new eutrophication indicators and 10 indicators of oligotrophy were proposed. 7. ACKNOWLEDGEMENTS Firstly 1 would like to express my thanks to the field workers of the National Board of Agriculture, most of whom remain unknown to me person ally, but who in the summers of 1963 and 1965 carried out the collection of sampies according to the programme drawn up by the late Sakari Kerminen M.Sc. Their careful sampling work created a sound basis for this research. My greatest debt of gratitude is to Ms. Ainikki Naulapää and Ms. Liisa Lepistö, whose accurate microscopy of the sampies was an enormous work carried out with great professional skil and attention to detail, and without which this work would not have been possible in its final extent. Valuable advice in the handling of the research results 1 have received from Prof. Reino Ryhä nen, Prof. Seppo Mustonen, Pertti ElorantaPh.D., Kari Kinnunen Ph.D., Reino Laaksonen Ph.D., Lea Kauppi Lic. Phil., Jorma Niemi Lic. Phil. and Toini Tikkanen Lic. Phil. to whom 1 express sincere thanks. 1 am especially indebted to Kaj Granberg Ph.D., my mentor in the detailed field of plankton research. Petteri Pulkkinen M.Sc. afforded me much versatile and patient advice in ADP-techniques, for which 1 am most grateful. Without further specification of individual names 1 would also like to thank the staff of the Water Research Office and the Organisation Office for much and varied assistance. Finally, 1 express may thanks to Michael Bailey B.Sc., who translated the text of this report into English. Helsinki, January 1980 To my family Pertti Heinonen LOPPUTIIVISTELMÄ Tässä tutkimuksessa on käsitelty vuosina 1963 ja 1965 keskikesällä Suomen sisävesistä otettuja kasviplanktonnäytteitä, joita oli yhteensä 826. Näytteet on tutkittu Maataloushallituksen ve siensuojelulaboratoriossa (1.7.1970 alkaen vesi hallituksen vesitutkimustoimistossa). Tutkimuksen tarkoituksena oli kuvata kasvi planktonin kvantiteettia ja koostumusta keskikesällä eri vesistöalueittain, arvioida kasviplank tonin koostumukseen perustuvien tunnuslukuj en merkitystä ja tarkastella eri kasviplanktonlajien indikaattoriarvoa vesistöjen tilan kuvaajana. Rehevimmiksi osoittautuivat rannikkoaluei den suhteellisen pienet järvet. Järviseudun ve sistöistä Kokemäenjoen vesistön eteläiset latva vesistöt ja saman vesistön alaosat olivat rehevim mät. Vuoksen vesistön alueella Iisalmen-Kuopion reitti osoittautui rehevimmäksi. Kasviplanktonin kokonaismäärät vaihtelivat vuonna 1963 välillä 0,01—45,0 mgIl, ja vuonna 1965 välillä 0,02—18,6 mg/l. Alueellisen tarkas telun ja tutkimista järvistä olevan muun tietou den perusteella suoritettiin järvien rehevyysluo kittelu niiden keskikesän kasviplanktonin mu kaan seuraavasti: Kasviplanktonin biomassa Luokittelu (tuorepaino) mg/l <0,20 ultraoligotrofinen 0,21—0,50 oligotrofinen alkava rehevöityminen 0,51—1,00 mesotrofinen 1,01—2,50 2,51—10,0 eutrofinen hypereutrofinen >10,0 Tutkimukseen kuuluneista järvistä oli oligotro fisia tämän luokittelun mukaan 64,7 %. Alkava eutrofioituminen havaittiin 15,6 % ssa järvistä. Mesotrofisia oli 10,8 % ja selvästi eutrofisia 8,9 % järvistä. Vallitsevina levinä olivat kaikissa rehevyys ryhmissä Chrysophyta-pääluokan Centrales-piile vät. Rehevyyden lisääntyessä Hormogonales-sini levien määrä kasvoi tuntuvasti. Viherlevistä Pro tococcales-lahkon levien määrä kasvoi rehe vyyden myötä. Euglenophyta-levien määrä oligo trofisissa vesissä oli alhainen. Pienikin määrän 57 kasvu merkitsi rehevyyttä tai vesien likaantumista. Näytteistä määritettiin yhteensä 680 taksonia. Yhden näytteen taksonimäärä vaihteli 3—160. Määrä kasvoi biomassan lisääntyessä ainakin ar voon 5,0 mgIl saakka. Yli 10 mg/l biomassanäyt teissä taksonimäärä kuitenkin jo laski biomassan lisääntyessä. Diversiteettiarvoista Margalef-diversiteetti (Mar galef 1958) korreloi erittäin merkitsevästi näytteen lajimäärän kanssa. Shannon-diversiteetti (Hutchinson 1967) ei korreloinut lainkaan lajimäärään eikä biomassan määrään. Diversiteetti arvot eivät tämän tutkimuksen mukaan lisää ve sistöä kuvaavaa informaatiota. Kvotienttien arvoista on tutkittu ElO- ja EV/OV-kvotienttien (Järnefelt et al. 1963) ohella eräitä Thunmarkin (1945) ja Nygaardin (1949) lajikvotientteja. Viimeksi mainitut eivät sovellu Suomessa käytettäviksi. Järnefeltin kvotienteista tilavuuskvotientin hajonta on suuri, mikä rajoit taa sen käyttöä. Hajua ja/tai makua aiheuttavien levien määrää näytteessä on pyritty kuvaamaan uudella para metrilla, hajuindeksillä. Kyseisten levien määriä on verrattu kirjallisuudessa (Seppovaara 1971) esitettyihin kriittisiin raja-arvoihin. Osamäänen summa näytteessä on näytteen hajuindeksi. Re hevöitymisen myötä hajuindeksi kasvoi selvästi. Oligotrofisissa vesissä hajuindeksi oli yleensä selvästi pienempi kuin 0,2 ja eutrofisissa suurem pi kuin 1,0. Hajuindeksillä oli vahva korrelaatio biomassan määrään ja kohtalainen korrelaatio Järnefeltin kvotientteihin. Suurin osa lajeista esiintyi vain harvoissa näyt teissä. Hyvin yleisiä lajeja, jotka esiintyivät yli 50 %:ssa näytteistä, oli vain 35 yhteensä 680 lajista. Vastaavasti 50 määrällisesti yleisintä lajia muodosti 86,5 % kokonaisbiomassasta. Tutkimuksessa tarkasteltiin Järnefeltin esittä mien indikaattorilajien soveltuvuutta tämän ai neiston rehevyysryhmittelyyn. Aineiston perus teella esitettiin myös 21 uutta eutrofian ja 10 uutta oligotrofian indikaattorilajia. REFERENCES Airaksinen, E. & Heinonen, P. 1976. Inarinjärven tutki mus vuonna 1974. Summary: Data on the Water Quality in Lake man in the Year 1974. National Board of Waters, Finland, Report 103. 59 p. Andronikova, I.N. & Drabkova, V.G. 1972. Specificity of annual limnological cycles in Lake Krasnoe versus climatic factors. Verh. Internat. Verejn. L.imnol. 18:522—527. Anttila, R. 1969. Tuusulanjärven nopea rehevöityminen. Summary: Tuusulanjärvi, an example of “rash eutro phication”. Limnologisymposion 1968:53—60. Archibald, R.E.M. 1972. Diversity in some South African diatom associations and itS relation to water quality: Wat. Res. 6:1229—1238. Armitage, B. & Simmons, G.M. 1975. Phytoplankton periodicity in a new reservoir, Lake Anna, Virginia. Verh. Internat. Verein. Limnol. 19:1814—1819. Brook, A.J. 1965. Planktonic algae as indicators of lake types, with special reference to the Desmidiaceae. Limnol. Oceanogr. 10:403—411. Cronberg, G., Gelin, C. & Larsson, K. 1975. Lake Trummen restoration project II. Bacteria, phyto plankton and phytoplankton productivity. Verh. Internat. Verein. Limnol. 19:1088—1096. Edmondson, W.T. 1972. The present condition of lake Washington. Verh. Internat. Verein. Limnol. 18: 284—291. Eloranta, P. 1972. On the phytoplankton of waters polluted by a sulphite cellulose faetory. Ann. Bot Fennici 9:20—28. Eloranta, P. 1974. Lake Keurusselkä, physical and chemical properties of water, phytoplankton, zoo plankton and fishes. Aqua Fennica 1973, 18—43. Eloranta, P. 1976. Species diversity in the phytoplank ton of some Finnish lakes. Ann. Bot. Fennici 13: 42—48. Eloranta, P. 1978. Effects of size of sample counted in phytoplankton analyses. Ann. Bot. Fennici 15: 169—176. Findenegg, 1. 1958. Trophiezustand und Produktion der Kärtner Seen. Verh. Internat. Verein. Limnol. 13: 170—180. Fleming, W.M. 1975. A model of the phosphorus cycle and phytoplankton growth in Skaha Lake, British Columbia, Canada. Verh. Internat. Verein. Linmol. 19:229—240. Fott, B. 1971. Aigenkunde. 2nd Ed. VEB Gustav Fischer Verlag, 581 p. Jena. Gliwicz, Z.M. 1975. Effect of zooplankton grazing on photosynthetic activity and composition of phyto plankton. Verh. Internat. Verein. Limnol. 19:1490— 1497. Goldman, C.R., Stuli, E.A. & dc Amezaga, E. 1973. Vertical patterns of primary productivity in Castle Lake, California. Verh. Internat. Verein. Limnol. 18:1760— 1767. Granberg, K. 1969. Jyväskylän kaupungin asuma- ja teollisuusjätevesien vaikutuksesta Jyväsjärveen ja Pohjois-Päijänteeseen sekä suositus jätevesien aiheut tamien haittojen vähentämiseksi. Jyväskylän Yliopis ton Hydrobiologian tutkimuskeskuksen tiedonanto 2. 104 p. 58 Granberg, K. 1970a. Lievestuoreenjärven nykytilasta. Vesitalous 5:10—12. Granberg, K. 1970b. Kasviplankton- ja perustuotanto tutkimus Päijänteellä v. 1969. Alustava tutkimus selostus. Jyväskylän Yliopiston Hydrobiologian tutkimuskeskuksen tiedonanto 5. 33 p. Granberg, K. 1970c. Seasonal fluctuations in numbers and biomass of the plankton of the Lake Paäjärvi, southern Finland. Ann. Zool. Fennici 7:1—24. Granberg, K. 1972. Kasviplankton- ja perustuotanto tutkimus Päijänteellä v. 1971. Jyväskylän Yliopis ton Hydrobiologin tutkimuskeskuksen tiedonanto 1.70p. 2 Granberg, K. 1973. The eutrophication and pollution of Lake Päijänne, Central Finland. Ann. Bot. Fennici 10:267—308. Granberg, K. 1979. Kasviplanktonin laskennasta. Pres entation held at Tvärminne Zoological station 9.10. 1979. 5 p. Granberg, K. & Lappalainen, K.M. 1973. Leppäveden limnologinen tutkimus. Jyväskylän Yliopiston Hyd robiologian tutkimuskeskuksen tiedonanto 32. 58 p. Haedrich, R.L. 1975. Diversity and overlap as measures of environmental quality. Wat. Res. 9:945—952. Hallegraeff, G.M. 1977. A comparison of different methods used for the quantitative evaluation of biomass of freshwater phytoplankton. Hydrobiologia 55(2):145165. Hammer, U.T. 1969. Blue-green algal blooms in Saskat chewan Lakes. Verh. Internat. Verein. Limnol. 17: 116— 125. Harjula, H. 1979. Analysis of errors in estimating phyto plankton primary productivity and chlorophyll a with special reference to Lake Päijänne. Ann. Bot. Fennici 16:307—337. Harjula, H. & Langi, A. 1974. Control of algae at Vantaa river basin. Aqua Fennica 1973:69—81. Hecky, R.E. 1975. The phytoplankton and primary productivity of Southern Indian Lake (Manitoba), a high latitude, riverine lake. Verh. lnternat. Verein. Limnol. 19:599—605. Heinonen, P. 1966. Selvitys vesistön veden laadusta. Alue 1: Kyläniemen eteläpuolinen Saimaa ja Vuoksi. Saimaan vesiensuojeluyhdistys ry:n tiedonantoja 1. 60 p. Heinonen, P. 1972. Jätevesien vaikutus järvien rehevöit täjänä. Summary: The Effect of Waste Water on Lake Recipient. National Board of Waters, Finland. Publications of the Water Research Institute 5, 87 p. Heinonen, P. & Myllymaa, U. 1974. Kuusamon vesistö tutkimus vuonna 1973. National Board of Waters, Finland. Report 60. 162 p. Heinonen, P., Kettunen, 1 & Kivinen, J. 1975. Saimaan tilan kehittymisestä vuosina 1962—1972. National Board ofWaters, Finland. Report 89. 75 p. van Heusden, G.P.H. 1972. Estimation of the Biomass of Plankton. Hydrobiologia 39(2) :165—208. Hobro, R. & Wiln, E. 1975. Phytoplankton countings a method and volume calculations from the Baltic — comparison. Vatten 31:317—326. Holland, R.E. 1968. Correlation of Melosira species with trophic conditions iii Lake Michigan. Limnol. Oceanogr. 13:555—557. Holtan, H. 1978. Eutrophication of Lake Mjøsa in relation to the pollutional load. Verh. Internat. Verein. Limnol. 20:734—742. Hutchinson, G.E. 1967. A treatise on Iimnoloy. II. Introduction to lake biology and the limnoplankton. John Wiley & Sons, Inc. 1115 p. New York. Ilmavirta, K. & Kotimaa, A.-L. 1974. Spatial and seasonal variations in phytoplanktonic primary production and biomass in the oligotrophic lake Pääjärvi, southern Finland. Ann. Bot. Fennici 11: 112— 120. Ilmavirta, V., Ilmavirta, K. & Kotimaa, A.-L. 1974. Phytoplanktonic primary production during the summer stagnation in the eutrophicated lakes Lovo järvi and Ormajärvi, southern Finland. Ann. Bot. Fennici 11: 121—132. Janus, L.L. & Duthie, H.C. 1979. Phytoplankton com position and periodicity in a northeastern Quebec Lake. Hydrobiologia 63(2):129—134. Jumppanen, K. 1976. Effects of waste waters on a lake ecosystem. Ann. Zool. Fennici 13:85—138. Järnefelt, H. 1925. Zur Limnologie einiger Gewässer Finnlands. Ann. Soc. Zool. J3ot. Fennicae, Vanamo 2(5):185—356. Järnefelt, II. 1927. Zur Limnologie einiger Gewässer Finnlands III. Pyhäjärvi. Ann. Soc. Zool. Bot. Fennicae, Vanamo 6(6):101—153. Järnefelt, H. 1928. Zur Limnologie einiger Gewässer Finnlands V. Vesijärvi. Ann. Soc. Zool. Fennicae, Vanamo 8(1):1—17. Järnefelt, H. 1929. Zur Limnologie einiger Gewässer Finnlands VII. Witträsk. Ann. Soc. Zool. Bot. Fennicae, Vanamo 8(10):181—192. Järnefelt, H. 1930. Zur Limnologie einiger Gewässer Finnlands VIII. Iso-Kiskonjärvi und Muurajärvi. Ann. Soc. Zool. Bot. Fennicae, Vanamo 10(2):143—226. Järnefelt, H. 1934. Zur Limnologie einiger Gewässer Finnlands Xl. Petsamo. Ann. Soc. Zool. Bot. Fen nicae, Vanamo 14(10):172—347. Järnefelt, H. 1936a. Zur Limnologie einiger Gewässer Finnlands XII. Ann. Zool. Soc. Zool. Bot. Fennicae, Vanamo 3(3):1—206. Järnefelt, H. 1936b. Zur Limnologie einiger Gewässer Finnlands XIII. Aun. Zool. Soc. ZooI. Bot. Fennicae, Vanamo 4(2):1—152. Järnefelt, H. 1937. Ein kleiner Beitrag zur Lixnnologie des Tuusulanjärvi (Tuusulasee). Acta Soc. pro Fauna et Flora Fenn. 74(5):1—17. Järnefelt, H. 1952a. Zur Limnologie einiger Gewässer Finnlands XV. Ann. Zool. Soc. Zool. Bot. Fennicae, Vanamo 14(7):1—84. Järnefelt, H. 1952b. Plankton als Indikator der Trophie gruppen der Seen. Ann. Acad. Scient. Fennicae A IV(18) :1—29. Järnefelt, H. 1956a. Zur Limnologie einiger Gewässer 59 Finnlands XVI. Mit besonderer Beriicksichtigung des Planktons. Ann. Zool. Soc. Zool. Bot. Fennicae, Vanamo 17(1):1—201. Järnefelt, H. 1956b. Zur Limnologie einiger Gewässer Finnlands XVII. Ann. Zool. Soc. Zool. Bot. Fennicae, Vanamo 18(2):1—61. Järnefelt, H. 1956c. Materialien zur Hydrobiologie des Sees Tuusulanjärvi. Acta Soc. pro Fauna et Flora Fenn. 71(5):1—38. Järnefelt, H. 1961. Die Einwirkung der Sulfitablaugen auf das Planktonbild. Verh. Internat. Verein. Limnol. 14:1057—1062. Järnefelt, II. 1963. Zur Limnologie einiger Gewässer Finnlands XIX. Ann. Zool. Soc. Zool. Bot. Fennicae, Vananio 24(7):1—118. Järnefelt, H., Naulapää, A. & Tikkanen, T. 1963. Plank tonopas. Suomen Kalastusyhdistyksen opaskirjasia 34:1—33. Kaartotie, T. 1962. Järvityyppiemme jakautumasta. Abstract: A Preliminary Note on the Regionality of Lininological Lake Types in Finland. Suomen Kalas tuslehti 1:1—4. Kaatra, K. & Harjula, H. 1976. Methodological Aspects of Phytoplankton Sampling and Counting. Aqua Fennjca 1975:69—90. Karinio, K., Leskelä, H., Mikkola, P. & Ryhänen, R. 1970. Vesien pilaantuminen ja sen ehkäiseminen. Maataloushallitus. Maa- ja vesiteknillisiä tutkimuk sia 18:1—278. Kettunen, 1. 1975. Kymen vesipiirin alueen pienvesis töjen laadun nykytilan selvitys. Summary: The Water Qaulity of Some Small Riverbasins in the Kymi District. National Board of Waters, Finland. Report 96:1—79. Koivo, L. 1978. Species diversity in net diatom plank ton of some lakes of prairie, deciduous forest and coniforous-deciduous forest regions of Central North America. Ann. Bot. Fennici 15:138— 146+Appendix. Kostiainen, R. 1965. Planktonlevät järven ravinnepitoi suuden ilmentäjänä. Zusammenfassung: Planktonal gen als Indikator des Nährstoffgehaltes der Seen. Limnologisymposion 1964:67—78. Kutkuhn,J.H. 1958. Notes on the Precision ofNumerical and Volumetric Plankton Estimates from Small sample Concentrates. Limnol. Oceanogr. 3:69—83. Laaksonen, R. 1969. Vesistöjen veden laadusta vesiensuojelun valvontaviranomaisen vuosina 1962—1968 tekemien eräiden tarkkailututkimusten valossa. 1 osa. Vesiensuojelutoimiston tiedonantoja 47. 512 p. Helsinki. Laaksonen, R. 1970. Vesistöjen veden laatu. Vesiensuo jelun valvontaviranomaisen vuonna 1962—1968 suo rittamaan tarkkailuun perustuva tutkimus. Summary: Water quality in the water systems. A study based on observations carried out by the water pollution control authority 1962—1968. Maataloushallitus. Maa-ja vesiteknilhisiä tutkimuksia 17:1—132. Laaksonen, R. 1972. Järvisyvänteet vesiviranomaisen 1965—1970 maaliskuussa tekemien havaintojen va lossa. Summary: Observations on Lake Deeps by the Water Authority in March 1965—1970. National Board of Waters, Finland. Publications of the Water Research Institute 4:1—80. Lehmusluoto, P.O. & Heinonen, P. 1970. Eräiden jäte vesien vaikutus Saimaan perustuotantoon. Vesi, 4, 1—8. Lehn, H. 1972. Zur Trophie im Bodensee. Verh. In ternat. Verein. Limnol. 18:467—474. Lepistö, L., Kokkonen, P. & Puumala, R. 1979. Kasvi planktonin määristä ja koostumuksesta Vuoksen, Kymijoen ja Kokemäenjoen vesistöalueilla kesällä 1971. National Board of Waters, Finland. Report 172 :1—250. Levander, K.M. 1900. Zur Kenntnis der Fauna und Flora fmnischer Binnenseen. Acta Soc. pro Fauna et Flora Fenn. XIX(2):1—55. Levander, K.M. & Wuorentaus, Y. 1915. Plankton sammansättningen i Kemi, Uleå och Kumo alf samt Kymmene och Saima system på grund af från juni 1913 till juni 1914 månatligen utfårda håfningar (Redogörelse afgifven af arbetsutskottet för under sökning af de finska insjöarnas vatten och plankton, III). Fennia 39(2):1—36. Levander, K.M. & Wuorentaus, Y. 1917. Plankton sammansättningen i finska insjöar och fioder på grund af håfningar utförda sommaren 1913 (Redogörelse afgifven af arbetsutskottet för undersökning af de finska insjöarnas vatten och plankton, IV). Fennia 40(6) :1—95. Margalef, R. 1958. Information theory in ecology. General Systems 3:36—7 1. Maristo, L. 1941. Die Seetypen Finnlands auf fioris tischer und vegetations-physiognomischer Grundlage. Ann. Bot. Soc., Vanamo 15(5):1—312. Mikkola, H. 1975. Iisalmen reitin hydrologiasta ja kuormituksesta. In “Iisalmen reitin ekologinen vesitutkimus”. National Board of Waters, Finland. Report 97:8—11. Moskalenko, B.K. 1972. Biological productive system of Lake Baikal. Verh. Internat. Verein. Limnol. 18:568— 573. Munawar, M. & Munawar, I.F. 1975. The abundance and significance of phytoflagellates and nanno plankton in the St. Lawrence Great Lakes. 1 Phyto fiagellates. Verh. Internat. Verein. Limnol. 19:705— 723. Murphy, P.M. 1978. The temporal variability of biotic indices. Environ. Pollut. 17:227—236. National Board of Waters, Finland. 1974. Mäntyharjun reitin vesien käytön kokonaissuunnitelma. National Board ofWaters, Finland. Report 64:1—157. National Board of Waters, Finland. 1975. Kallaveden reitin vesien käytön kokonaissuunnitelma. 1 osa. Suunnittelualue, vesivarat, niiden käyttö ja suojelu. Nationalf Board of Waters, Finland. Report 90:1— 327. National Board of Waters, Finland. 1976. Pohjois-Karja lan vesien käytön kokonaissuunnitelma. 1 osa. Suun- 60 nittelualue ja vesivarat. National Board of Waters, Finland. Report 102:1—99. National Board of Waters, Finland. 1977a. Kymijoen vesistön yläosan vesien käytön kokonaissuunniteima. Vesihallituksen asettaman työryhmän ehdotus. 1 osa. Suunnittelualue ja vesivarat. National Board of Waters, Finland. Report 122:1—130. National Board of Waters, Finland. 1977b. Mäntyharjun reitin vesien käytön kokonaissuunnitelma. Vesihalli tuksen asettaman työryhmän ehdotus. Sunimary: Integrared Water Resources Development Pian for the Mäntyharju Watercourse. Publications of The National Board ofWaters, Finland 20:1—103. National Board of Waters, Finland. 1977c. Läntisen Uu denmaan vesien käytön kokonaissuunnitelma. Vesi hallituksen asettaman työryhmän ehdotus. Summary: Integrated Water Resources Development Pian for the Westem Uusimaa Region. Publications of The National Board ofWaters, Finland 22:1—15 5. National Board of Waters, Finland. 1977d. LounaisSuomen vesien käytön kokonaissuunnitehna. Vesi hallituksen asettaman työryhmän ehdotus. 1 osa. Suunnittelualue ja vesivarat. National Board of Waters, Finland. Report 126:1—200. National Board of Waters, Finland. 1977e. Pohjanmaan keskiosan vesien käytön kokonaissuunnitelma. Vesi hallituksen asettaman työryhmän ehdotus. 1 osa. Yleiskuvaus suunnittelualueesta, vesivarat ja vesien nykyinen käyttö. National Board of Waters, Finland. Report 123:1—249. National Board of Waters, Finland. 1977f. Oulujoen vesistön vesien käytön kokonaissuunnitelma. Vesi hallituksen asettaman työryhmän ehdotus. 1 osa. Suunnittelualue ja vesivarat. National Board of Waters, Finland. Report 125:1—102. National Board of Waters, Finland. 1977g. Ii- ja Kiimin kijoen sekä Kuusamon vesistöjen vesien käytön ko konaissuunnitelma. Vesihallituksen asettanlan työ ryhmän ehdotus. National Board of Waters, Finland. Report 136:1—331. National Board of Waters, Finland. 1978a. Kokemäen joen ja Karvianjoen vesistöjen vesien käytön koko naissuunnitelma. Vesihallituksen asettaman työryh män ehdotus. 1 osa. Kokemäenjoen vesistö. Suunnit telualue. Vesivarat. National Board of Waters, Fin land. Report 142:1—187. National Board of Waters, Finland. 1978b. Kokemäen joen ja Karvianjoen vesistöjen vesien käytön koko naissuunnitelma. Vesihallituksen asettaman työryh män ehdotus. IV osa. Karvianjoen vesistö. National Board ofWarers, Finland. Report 142:1—291. National Board of Waters, Finland. 1978c. Pohjanmaan eteläosan vesien käytön kokonaissuunnitelma. Vesi hallituksen asettaman työryhmän ehdotus. 1 osa A. Koko suunnittelualue. B. Kyrönjoki. C. Lapuanjoki. Vesivarat, niiden käyttö, tavoitteet ja toimenpide suositukset. National Board of Waters, Finland. Report 140:1—259. National Board of Waters, Finland. 1978d. Pohjanmaan pohjoisosan vesien käytön kokonaissuunnitelma. Vesihallituksen asettaman työryhmän ehdotus. 1 osa. Yleiskuva suunnittelualueesta, vesivarat ja vesien nykyinen käyttö. National Board of Waters, Finland. Report 137:1—328. Naulapää, A. 1972. Eräiden Suomessa esiintyvien plank tereiden tilavuuksia. Summat>’: Mean volumes of some Plankton Organisms found in Finland. National Board ofWaters, Finland. Report 40:1—47. Niinioja, R. 1975. Kasviplanktonin ajalhisestavaihtelusta. Pro gradu-työ, Helsingin yliopiston limnologian lai tos. 121 p. Nygaard, G. 1949. Hydrobiological studies on some Danish ponds and lakes. II. The quotient hypothesis and some new or little known phytoplankton or ganisms. Danske Vidensk. Selsk. Biol. Skr. 7: 1—293. Nyman, T. 1970. Sellujätevesien vaikutuksista järviresi pientin kasviplanktonkoostumukseen ja -määrään. Pro gradu-työ, Helsingin yliopiston limnologian lai tos. 173 p. Nyroos, H. 1973. Lohjanjärven tilan kehittyminen ja siihen vaikuttaneet tekijät. Summary: The Develop ment of Lake Lohjanjärvi and the Factors Affecting it. National Board of Waters, Finland. Report 54:1—191. Pieczyiiska, E. 1971. Mass appearance of algae in the littoral of several Mazurian lakes. Mitt. Internat. Verein. Limnol. 19:59—69. Popova, T.G., Vershinin, N.V., Blagovidova, L.A., Setsko, R.l. & Chaikovskaia, T.S. 1972. Biological characteristics of the first reservoirs on the Ob and Venisey rivers. Verh. Internat. Verein. Limnol. 18: 872—876. Preston, F.W. 1948. The commonnes, and rarity, of species. Ecology 29, 254—283. Rawson, D.S. 1956. Aigal Indicators of Trophic Lake Types. Limnol. Oceanogr. 1:18—25. Rodhe, W. 1958. Primärproduktion und Seetypen. Verh. Internat. Verein. Limnol. 13:121—141. Ruuhijärvi, R. 1974. A general description of the oligotrophic lake Pääjärvi, southern Finland, and the ecological studies on it. Ann. Bot. Fennici 11:95— 104. Ryhänen, R. 1961. tiber die Einwirkung von Grubenab fallen auf einen dystrophen See. Ann. Zool. Soc. Zool. Bot. Fennicae, Vanamo 22(8):1—70. Ryhänen, R. 1962. Uber den Zustand der Gewässer im siidlichen Einzugsgebiet des Kokemäenjoki (Finland). III a. Ergebnisse der chemischen und physikalischen Winteruntersuchungen. Ann. Acad. Sci. Fenn. A, 3(64) :1—82. Sakamoto, M. 1966. Primary production by phyto plankton community in some Japanise lakes, and ks dependence on lake depth. Arch. Hydrobiol. 62:1—28 Schindler, D.W., Kalff, J., Welch, H.E., Brunskil, G.J., Kling, H. & Kritsch, N. 1974. Eutrophication in the High Arctic-Meretta Lake, Comwalhis Island (75°N Lat.). J. Fish. Res. Board Can. 31:647—662. 61 Seppovaara, 0. 1969. Nieriä (Salvelinus alpinus L.) ja sen kalataloudellinen merkitys Suomessa. Sunimary: Char (Salvelinus alpinus L.) and ks fishing industrial irnportance in Finland. Suomen Kalatalous 37:1—75. Seppovaara, 0. 1971. The Effect on Fish of the Mass Development of Brackish Water Plankton. Aqua Fennica 1971:118—129. Seppovaara, 0. 1977. Kalojen lisääntymisedellytykset metsäteollisuuden voimakkaasti likaaman itäisen Pieni-Saimaan alueella. Ympäristö ja Terveys 4—5: 429—436. Seppänen, H. 1969. Biometodiikka ja käytännön vesi talous. Zusammenfassung: Biologische Methoden und die Praxis des Wasserhaushaltes. Limnologi symposion 1968:124—132. Seppänen, P. 1968. Eutrofoituvien järviemme mangaani pitoisuuden merkityksestä vesihuollolle. Summary: On the significance of manganese in water supply in connection with the eutrophication of our lakes. Limnologisymposion 1967:49—63. Seuna, P. 1971. Suomen vesistöalueet. National Board ofWaters, Finland. Report 10:1—53. Spodniewska, 1. 1974. The structure and production of phytoplankton in Mikolajskie Lake. Ekol. p01. 22(1): 65—106. Spodniewska, 1. 1978. Phytoplankton as the indicator of lake eutrophication 1. Summer situation in 34 Masurjan lakes jn 1973. Ekol. p01. 26(1):53—70. Steemaun Nielsen, E. 1952. The use of radio-active carbon C) 14 for measuring organic production in ( the sea. J. Cons. int. Explor. Mer. 18:117—140. Striekland, J.D.H. & Parsons, T.R. 1965. A manual of sea-water analysis. Bulletin 125. Fish. Bd. Canada. 185 p. Surakka, 5. 1969. Yhteenveto Pohjois-Karjalassa vv. 1961—67 Suoritetuista vesistötutkimuksista. Maata loushallitus. Vesiensuojelutoimiston tiedonantoja 48: 1—39. Thunmark, S. 1945. Zur Soziologie des SUsswasser planktons. Eine methodologisch-ökologische Studie. Folia Limnol. Scand. 3:1—66. Tie- ja vesirakennushallitus. 1965. Hydrologinen vuosi kirja 18. Helsinki. 89 p.+ Appendices. Tie- ja vesirakennushallitus. 1968. Hydrologinen vuosi kirja 19. Helsinki. 97 p. +Appendices. Tinnberg, L. 1979. The use of diversity indices in aquatic monitoring programs. In: The Use of Ecological Variables in Environmental Monitoring. The National Swedish Environment Protection Board. Report PM 1151:134— 13 7. Tirronen, E. 1963. Sulfiittiselluloosateollisuuden jäteve sien vaikutuksista vastaanottavan vesistön plankton koostumukseen. Pro gradu-työ. Helsingin Yliopiston limnologian laitos. 165 p. Tolstoy, A. 1966. Kvantitativ bestämning av klorofyll-a i Mälaren, 1965. Limnologiskainstitutionen, Uppsala. Mälarundersökningen. Meddelande 4:1—46. Tolstoy, A. 1977. Methods of determining chlorophyll a in phytoplankton. SNV. PM 831/Naturvårdsverkets lininologiska undersökning 9 1:1—62. Tolstoy, A. 1979. Chlorophyll a in relation to phyto plankton volume in some Swedish lakes. Arch. Hydrobiol. 85(2):133—151. Topatschewsky, A.V. & Sirenko, L.A. 1973. 3kologophysiologische Aspekten der “Biyte” und Probiem des reinen Wassers. Verh. Intemat. Verein. Limnol. 18:13 38—1347. Tuunainen, P., Granberg, K. & Lappalainen, K.M. 1971. Lake Päijänne Research. Aqua Fennica 1971:131— 142. Utermöhl, H. 1931. Neue Wege in der quantitativen Erfassung des Planktons. Verh. Internat. Verein. Limnol. 5:567—596. Utermöhl, H. 1958. Zur Vervollkomnung der quantita tiven Phytoplanktonmethodik. Mitt. Internat. Verein. Limnol. 9:1—38. Velikoretskaya, J.J. & Forsh, L.F. 1972. Lakes of different landscapes of the Kola Peninsula. Verh. Internat. Verein. Limnol. 18:517—521. Viitasaari, M. & Seppänen, P. 1967. Kemijoen tutkimus 1964—1966. Oy Vesitekniikka Ah. 320 p. Viljamaa, H., Forskåhl, M., Huttunen, M. & Melvasalo, T. 1978. Chlorophyll iii phytoplankton iii the Helsinki sea area. Aqua Fennica 1978: 58—69. Willn, E. 1976. Phytoplankton in Lake Hjälmaren. Acta univ. upsaliensis 378:1—18. Willn, T. 1972. Biological aspets on the large lakes in South Sweden. Verh. Internat. Verein. Limnol. 18: 370— 378. 2. Name of lake 3. Sampling site Coordinates Kiteenjärvi Simpeleenjärvi Simpeleenjärvi Simpeleenjärvi Torsanjärvi 02.02 03.02 03.02 03.02 03.05 275 279 278 277 54 55 4—681220—45700 4—683320—48100 4—682890—47240 4—682310—46980 4—688840—50902 4—689740—52025 40 41 Pyttyselkä Heinävedenselkä Enonvesi Kuorinkajärvi Heposelkä Heposelkä 04.22 04.22 04.22 04.31 04.31 04.31 42 65 63 60 57 Kermajärvi 04.22 56 Kermajärvi 04.22 4—694220—46360 4—694340—46560 4—694615—46930 4—689248—44422 4—690140—43420 4 690535—43045 4 -692430—43730 4—692750—43170 2. The Vuoksi river basin 2.1 Watercourses east of Lake Haukivesi Tohmajärvi 02.01 1. Small river basins draining into Lake Ladoga. 1. River basin 30.7.1963 0—8 28.7.1965 0—7 30.7.1963 0—10 28.7.1965 0—6 28.7.1965 0—9 19.7.1965 0—12 28.7.1965 0—4 28.7.1965 0—14 26.7.1965 0—12 2.7.1963 0—8 26.7.1965 0—10 18.7.1963 0—5 20.7.1965 0—8 19.7.1963 0—6 21.7.1965 0—10 19.7.1963 0—7 21.7.1965 0—12 10.8.1963 0—7 20.7.1965 0—9 10.8.1963 0—10 31.7.1965 0—1 10.8.1963 0—2 3 1.7.1965 0—4 5. Depth m 6. Sampling Date 0.08 <0.01 - 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 0.02 0.01 0.07 0.01 0.01 0.03 0.09 0.03 0.08 0.02 0.32 0.01 0.14 <0.01 0.56 0.17 0.07 0.07 0.11 0.20 0.11 0.14 0.10 0.25 0.11 0.36 0.11 0.70 0.17 0.45 0.11 0.82 0.70 1.16 0.94 7. - <0.01 - <0.01 - - - - - - - - - - 0.02 0.01 0.04 0.02 - - - - <0.01 <0.01 <0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.03 0.03 0.01 0.16 0.02 0.01 0.01 - 0.05 0.05 <0.01 - 0.07 0.03 <0.01 0.13 0.01 0.04 <0.01 0.01 0.01 0.02 0.06 0.01 0.03 0.03 0.06 0.01 0.19 0.02 0.03 0.01 0.02 <0.01 0.04 0.02 0.06 0.24 0.13 <0.01 0.30 0.14 0.02 0.05 0.08 0.16 0.08 0.06 0.07 0.17 0.06 0.25 0.08 0.28 0.12 0.39 0.06 0.65 0.61 0.98 0.87 5.87 4.27 67 42 5.77 3.38 2.60 61 33 3.52 23 6.05 5.64 4.67 2.34 5.79 4.54 3.42 6.62 3.67 6.87 4.81 3.43 3.51 5.37 6.14 5.97 5.89 32 59 57 45 23 57 50 34 74 33 78 48 38 35 63 67 70 61 3.36 4.24 2.87 4.49 4.16 2.23 3.95 3.90 4.04 3.72 3.02 3.75 3.27 3.87 3.50 3.15 3.92 3.88 1.46 3.61 4.30 4.32 4.48 1.5 0.6 1.8 1.3 4.0 1.0 0.6 1.1 0.7 2.0 1.0 1.0 1.0 3.0 2.7 2.7 2.7 3.0 1.0 3.0 6.7 3.0 5.5 3.9 1.6 2.9 6.9 28.5 0.5 0.1 2.3 0.6 3.1 0.4 0.4 0.3 3.0 0.5 1.3 0.2 <0.1 0.4 8.8 19.6 18.1 28.2 0.22 0.05 0.21 0.05 <0.01 0.03 0.04 0.06 0.05 0.05 0.04 0.10 0.04 0.17 0.05 0.20 0.07 0.05 0.07 0.20 0.16 0.22 0.20 Diversity Quotients by Odour Number Järnefelt Cyano- Chloro- Eugieno- Chryso- Pyrro- of Mar- Shannon mdcx phyta phyta phyta phyta phyta species galef ElO EV/OV 8. 10. 11. 12. 17. 9. 13. 14. 15. 16. 18. Phytoplankton biomass, mg/I (fresh weight) Total o Orivirta Pyhäselkä Pyhäselkä Pyhäselkä Pyhäselkä Pyhäselkä Orjvesj Orivesi Rukavesi Joukiinen Viinijärvi Viinijärvi Viinijärvi Viinijärvi 04.31 04.32 04.32 04.32 04.32 04.32 04.32 04.32 04.34 04.34 04.35 04.35 04.35 04.35 49 Paasivesj Orivesi 04.31 Sampaanselkä 04.31 04.31 48 Savonselkä 04.31 39 38 37 36 20 17 47 46 30 29 28 27 26 64 50 45 44 Onkisalmi 43 Heposelkä 3. 04.31 2. 04.31 1. 4—695289—45930 4—696560—46255 4—695015—46985 4—696020—46520 4—696570—51150 4—697845 --51208 4—691223—47491 4—692075—47720 4—694095—48250 4—692900-48975 4—694370—48350 4—693600—48608 4—694130—48760 4—689460—45950 4—689371—49238 4—689287—47108 4--690300—47215 4—691993—46439 4--693100—46580 4—693684—46495 4. 6. 0—14 0—8 0—12 0—12 1 27.7.1963 0—4 26.7.1965 0—4 26.7.1965 0—9 27.7.1963 0—10 26.7.1965 0—6 26.7.1963 0—12 26.7.1965 0—6 29.7.1965 0—13 29.7.1965 29.7.1963 0—2 29.7.1965 1 29.7.1963 0—10 29.7.1965 1 31.7.1963 30.7.196 31.7.1963 30.7.1965 31.7.1963 0—10 30.7.1965 0—10 31.7.1963 0—14 30.7.1965 0—9 9.8.1963 0—2 19.7.1965 0—8 13.8.1963 0—8 31.7.1965 0—9 31.7.1965 0—12 13.9.1963 0—14 29.7.1965 0—12 28.7.1965 0—12 29.7.1963 0—10 28.7.1965 1 28.7.1965 0—7 5. 0.01 0.01 0.01 0.01 0.04 0.01 0.01 0.03 0.17 0.01 0.06 0.03 0.07 0.01 0.01 <0.01 0.05 0.01 0.01 8. 0.41 0.15 0.10 0.28 0.08 0.63 0.21 0.29 0.13 0.58 0.37 0.02 <0.01 <0.01 0.01 <0.01 0.03 0.01 0.02 0.01 0.11 0.05 0.30 0.02 0.20 <0.01 0.07 0.32 0.41 0.25 0.40 0.19 0.42 0.21 1.04 0.06 0.38 0.19 0.21 0.18 0.15 0.21 0.63 0.25 0.17 7. - - - - <0.01 - - - - <0.01 10. - <0.01 0.03 0.03 0.04 0.05 0.03 0.04 0.03 0.03 0.03 0.05 0,14 0.03 0.01 <0.01 - <0.01 - - 0.01 - - • <0.01 <0.01 - - - - 0.01 0.02 .0.01 0.01 0.03 <0.01 0.02 <0.01 0.06 <0.01 0.03 0.01 0.06 <0.01 0.01 0.05 0.03 0.01 0.01 0.01 0.02 0.04 0.02 0.02 9. 0.26 0.11 0.05 0.18 0.05 0.41 0.16 0.21 0.07 0.34 0.17 0.17 0.16 0.05 0.21 0.27 0.16 0.26 0.12 0.27 0.15 0.63 0.04 0.10 <0.01 0.01 0.03 <0.01 0.14 0.01 0.02 0.01 0.08 0.01 0.09 0.03 0.01 0.08 0.12 0.05 0.07 0.01 0.10 0.03 0.18 0.01 - 0.03 0.03 0.02 0.02 0.10 0.02 0.03 12. 0.27 0.12 <0.01 0.09 0.13 0.12 0.17 0.44 0.20 0.11 11. 73 68 48 47 39 69 70 50 44 85 80 42 54 52 53 33 37 58 56 62 43 68 46 68 69 50 42 54 49 68 60 48 13. 6.75 6.85 4.65 4.34 3.92 6.11 6.95 5.03 4.44 7.18 7.86 3.75 5.27 3.67 3.63 4.95 5.21 5.26 5.46 5.82 4.17 5.51 4.90 6.29 6.90 4.94 4.05 5.62 4.89 5.85 599 5.04 14. 3.57 4.44 3.03 4.11 3.50 2.39 4.27 4.44 3.28 4.17 3.21 4.17 3.25 3.93 3.32 3.65 4.43 4.10 4.07 2.24 4.01 4.05 2.15 4.13 4.56 3.20 4.50 4.09 4.26 3.89 3.90 2.51 15. 1.5 1.7 2.0 1.2 1.4 2.6 1.8 2.7 0.8 2.4 2.4 2.5 1.1 0.5 1.3 1.3 4.0 2.7 2.5 2.7 1.5 1.6 2.5 7.0 2.2 1.2 1.0 3.3 1.4 1.2 1.7 2.3 16. 1.0 8.1 7.9 0.2 17.7 0.9 18.1 7.9 0.4 8.8 16.9 3.0 2.4 0.5 0.1 10.1 12.8 50.5 1.2 22.3 0.8 8.5 3.5 2.6 9.6 7.9 3.9 7.8 11.9 0.8 16.4 18.5 17. 0.18 0.06 0.06 0.10 0.04 0.21 0.06 0.06 0.07 0.17 0.11 0.12 0.11 0.02 0.10 0.20 0.07 0.19 0.06 0.15 0.12 0.35 0.05 0.16 0.08 0.13 0.07 0.07 0.06 0.27 0.07 0.06 18. 0.15 0.01 0.11 0.01 0.10 0.01 0.01 0.01 0.01 0.46 0.95 0.01 0.01 0.01 0.01 0.03 0.02 0.01 0.01 0.03 0.02 0.02 0.01 <0.01 0.01 0.01 0.05 0.02 0.07 0.05 0.03 0.02 0.01 0.02 0.05 0.01 0.04 0.02 0.01 0.03 0.02 0.05 0.04 0.04 0.06 0.01 0.03 0.02 0.03 0.01 0.03 0.04 0.07 0.02 <0.01 0.01 0.01 0.06 0.02 0.03 0.02 0.05 0.30 0.10 0.21 0.13 0.19 0.19 0.10 0.23 1.08 0.79 1.39 0.49 0.29 0.44 0.33 0.37 0.38 0.19 0.40 0.27 0.34 0.31 0.15 0.52 0.18 0.38 0.31 0.29 0.44 0.25 0.46 29.7.1963 0—12 31.7.1965 0—18 12.8.1963 0—11 31.7.1965 0—8 22.7.1963 0—9 18.7.1963 0—2 19.7.1965 1 19.7.1965 0—7 18.7.1963 0—9 20.7.1965 0—8 20.7.1965 0—9 19.7.1963 0—12 20.7.1965 0—9 19.7.1963 0—12 20.7.1965 0—9 20.7.1963 0—4 21.7.1965 0—6 21.7.1965 0—8 24.7.1963 0—8 22.7.1965 0—5 24.7.1963 0—16 23.7.1965 0—7 24.7.1963 0—2 23.7.1965 0—5 19.7.1963 0—4 22.7.1965 0—6 20.7.1963 0—10 21.7.1965 1 4—688085—49615 4—686610—50000 4—685507—49343 4—704880—45820 4—704670—45770 4—704080—46090 4—704070—45500 4—702120—47890 4—702200—48250 4—701900—48460 4—701885—49490 4—700880—49400 4—699450—50100 4—698070—50950 4—703000—51000 4—702325—50120 51 52 53 280 2 3 4 5 7 8 12 13 14 15 16 9 11 Pyhäjärvi Pyhäjärvi Pyhäjärvi Pyhäjärvi Pielinen Pielinen Pielinen Pielinen Pielinen Pjelinen Pielinen Pielinen Pielinen Pielinen Rukavesi Pankajärvi Pielinen 04.39 04.39 04.39 04.39 04.41 04.41 04.41 04.41 04.41 04.41 04.41 04.41 04.41 04.41 04.41 04.42 04.42 9. 8. 7. 12.8.1963 0—6 30.7.1965 1 6. 30.7.1965 0—8 5. 4—691286—49965 4. 4—688083—49482 3. SuuriOnkainojärvi 31 2. 04.37 1. - <0.01 <0.01 - <0.01 - - - 2.5 3.7 4.12 3.93 6.18 5.62 66 60 0.03 0.05 0.16 0.33 3.2 22.7 0.5 40.0 1.7 1.8 2.43 3.65 4.06 6.50 42 70 0.07 0.04 0.18 0.30 0 0.3 0 1.5 3.49 3.40 3.52 4.58 39 48 0.13 0.03 0.23 0.17 0.13 0.05 25.2 0.6 1.0 1.0 4.13 2.82 3.61 3.69 41 37 0.13 0.03 0.38 0.13 29.5 6.6 2.3 2.0 4.03 2.56 4.04 5.33 45 51 0.03 0.01 0.20 0.11 <0.01 <0.01 0.14 0.12 0.05 16.3 3.7 4.48 4.77 50 0.09 0.18 <0.01 0.08 0.15 0.07 0.24 0.13 0.11 0.17 0.11 3.3 5.1 8.0 2.0 4.08 3.54 4.51 6.38 49 67 0.10 0.04 0.28 0.17 - - 0.12 0.09 12.3 21.6 1.7 4.0 4.12 2.69 4.16 3.70 0.04 0.01 0.30 0.15 - <0.01 47 38 0.07 0.09 0.24 0.21 - - 0.44 0.12 0.22 0.12 0.12 0.20 0.99 0.17 0.06 0.06 0.04 0.03 0.04 0.03 0.07 0.10 18. 22.0 20.2 2.25 2.75 3.68 3.90 56.2 1.5 20.4 316 0.5 0.2 0.5 0.1 0.9 12.5 0.6 19.4 26.9 17. 26.1 2.5 6.0 2.7 4.17 5.42 57 41 41 0.06 0.31 <0.01 2.0 1.8 <0.01 2.5 4.40 2.67 3.42 4.96 38 52 0.20 0.09 0.24 0.16 - 4.60 5.92 64 0.10 0.28 <0.01 1.7 1.7 3.77 6.06 43 65 0.20 0.09 0.84 0.22 - 2.5 3.94 4.75 2.84 5.02 51 0.07 0.14 - 1.7 10 4.04 2.83 4.05 3.65 44 35 0.02 0.01 0.11 0.05 - 1.7 3.0 4.00 4.26 4.45 5.81 44 56 <0.01 0.01 1.3 1.7 0.07 0.06 - - <0.01 3.8 16. 4.74 3.10 15. 4.11 6.16 4.63 4.66 62 - <0.01 47 45 14. 0.01 13. 0.02 0.02 12. 0.11 Ii. 0.06 0.07 10. 0.01 <0.01 0.03 0.06 0.02 1.76 0.06 0.01 0.02 0.07 0.02 0.03 <0.01 0.02 0.03 0.01 0.08 0.03 0.01 0.02 0.01 0.01 0.21 0.06 0.28 1.59 0.26 3.67 1.18 0.14 0.24 0.36 0.26 26.7.1963 0 -12 27.7.1965 0—6 23.7.1965 22.7.1963 0—4 30.7.1965 0—5 23.7.1963 0—1 30.7.1965 0—2 23.7.1963 0—12 31.7.1965 0—19 23.7.1963 0—10 30.7.1965 0—11 4—696610—48140 4—696582—52100 4--695289—55897 4—695388—54640 4—698300—53235 4—698445—54420 35 19 22 23 18 21 Höytiäinen Jäsysjärvi Nuorajärvi llomantsinjärvi Koitere Koitere 04.82 04.91 04.92 04.92 04.94 04.94 <0.01 <0.01 <0.01 0.02 0.03 0.02 0.03 0.01 0.04 0.03 0.04 0.70 1.57 1.54 1.29 18.7.1963 0—10 15.7.1965 0—14 18.7.1963 0—12 15.7.1965 0—14 3—693540—52280 3—691974—54678 3--692380—54820 203 139 140 Kuvansi Unnukka Unnukka 04.27 04.27 04.26 0.06 1.30 22.7.1965 0—7 3—693770—52880 202 Sorsavesi 0.01 0.04 0.24 0.30 04.26 0.04 0.05 0.27 8.7.1965 0—6 20.7.1963 0—6 8.7.1965 0—5 3—692810—53230 201 Sorsavesi 04.26 - 1.38 1.14 0.58 1.40 0.12 0.08 0.10 0.11 6.14 8.77 73 111 3.10 4.11 3.43 3.61 6.09 7.77 68 99 3.54 3.20 4.02 3.11 3.92 3.97 3.55 <0.01 3.49 6.83 6.36 6.64 8.17 4.69 3.13 4.69 5.89 0.14 1.04 <0.01 0.06 4.13 2.87 2.97 5.75 4.14 3.38 33.3 149 4.2 6.5 3.97 3.76 7.72 7.57 75 36 77 0.15 71 - - 0.02 69 87 0.02 0.01 0.02 0.03 48 0.01 34 47 0.20 0.18 0.12 0.14 0.06 0.05 - 31 56 0.03 0.02 0.09 0.18 0.28 0.18 100 86 0.07 <0.01 1.76 1.07 0.01 0.04 <0.01 <0.01 0.01 0.03 0.02 0.01 0.17 0.19 19.7.1963 1 8.7.1965 0—4 3—692647—53510 200 04.26 Sorsavesi 0.02 0.03 3—687946—55766 Kolkonjärvi 04.24 79 0.12 <0.01 <0.01 - <0.01 - <0.01 0.01 26.7 3.7 2.0 1.7 9.2 30.7 125 24.8 7.0 2.8 5.0 5.0 0.6 1.1 0.3 1.2 1.6 1.9 0.6 0.6 0.8 1.3 1.3 1.3 0.4 0.66 0.70 0.24 0.60 0.17 0.05 0.08 0.10 0.05 0.07 0.09 0.21 0.10 5.4 35.0 1.5 1.7 1.0 0.06 0.07 2.3 1.5 0.5 2.0 0.81 0.30 0.91 0.11 0.11 3.20 2.78 5.32 5.17 64 53 0.06 0.03 1.44 0.20 - - 6.80 8.5 2.4 4.03 69 0.03 0.21 0.04 0.02 5.7 4.7 2.7 1.5 3.82 2.49 3.16 2.89 <0.01 - 41 23 0.01 0.01 0.16 0.05 <0.01 0.03 0.03 0.4 13.7 2.7 4.0 1.82 3.95 4.15 2.88 41 28 0.19 0.01 0.05 0.06 - - 0.03 0.02 0.16 0.58 0.48 0.17 18. 1.0 8.8 215 141 24.0 16.0 17. 0.7 2.5 4.17 2.46 0.06 0.05 2.52 2.16 . - 25 21 9.0 3.0 0.03 <0.01 2.0 3.2 3.19 3.23 4.01 3.70 16. 15. 4.68 4.58 4.46 6.54 14. 54 58 51 65 13. 0.09 0.05 12.7.1965 0—8 2.2 Watercourses north of Lake Haukivesi 0.01 0.01 0.02 0.28 0.08 25.7.1963 0—10 27.7.1965 0—6 4—696890—48630 34 Höytiäinen 04.82 1 <0.01 <0.01 <0.01 <0.01 0.10 0.05 25.7.1963 0—12 27.7.1965 0—4 4—695970—48807 33 Höytiäinen 04.82 - 0.48 1.99 <0.01 <0.01 0.02 0.11 0.20 0.08 0.79 2.25 18.7.1963 0—2 20.7.1965 0—10 4—703120—48700 6 Viekinjärvi 04.47 0.33 0.07 0.51 0.12 - <0.01 12. 11. 0.01 0.11 10. 0.03 0.01 9. 8. 7. 0.89 0.30 6. 18.7.1963 0—9 19.7.1965 0—2 5. 4—705300—45545 4. 1 3. Pielinen 2. 04.47 1. 144 145 146 147 148 149 156 157 Kallavesi Kallavesi Kallavesj Kallavesi Kallavesi Kallavesi Kallavesi Kallavesi Kallavesj Kallavesi Suvasvesi Suvasvesi Suvasvesi Suvasvesi Jännevirta Kallavesi Ruokovesi Ruokovesi Ruokovirta 04.27 04.27 04.27 04.27 04.27 04.27 04.27 04.27 04.27 04.27 04.27 04.27 04.27 04.27 04.27 04.28 04.28 04.28 04.28 142 Koirusvesi 155 154 176 173 172 171 170 153 152 151 150 143 Koirusvesi 3. 04.27 2. 04.27 1. 3—700036—51699 3—699583--51660 3—699239—51885 3—698693—52280 3—698560—54229 3—696130—55700 3—695178—56147 3—694180—56120 3—693190—56180 3—698523—52664 3—697632—52770 3—698506—53322 3—697462—53930 3—697038—54030 3—696950—54434 3—696500—54030 3—696310—55145 3—695768—53904 3—695530—53880 3—694554—53658 3—693098—54251 4. 6. 1 1 20.7.1963 17.7.1965 1 1 15.7.1965 0—13 15.7.1965 0—10 20.7.1963 0—7 17.7.1965 0—12 18.7.1963 15.7.1965 0—8 18.7.1963 0—8 15.7.1965 0—8 18.7.1963 0—2 10.7.1965 0—6 18.7.1963 0—9 10.7.1965 0—6 17.7.1965 0—12 17.7.1965 0—12 17.7.1965 0—10 20.7.1963 0—11 17.7.1965 0—10 17.7.1965 0—12 17.7.1965 0—16 20.7.1963 0—8 17.7.1965 0—10 20.7.1963 0—5 17.7.1965 1 20.7.1963 0—10 17.7.1965 1 20.7.1963 0—12 15.7.1965 0—10 15.7.1965 15.7.1965 0—5 5. 8.42 3.15 1.67 1.07 0.66 0.70 0.31 0.74 0.20 0.92 0.16 0.20 0.52 0.63 1.02 0.75 0.81 1.00 1.61 2.00 1.26 0.77 2.05 0.52 1.38 0.27 3.55 0.32 2.87 1.85 2.25 7. 0.16 0.14 0.05 0.10 <0.01 0.01 0.01 0.03 <0.01 0.28 <0.01 0.01 0.03 0.02 0.02 0.02, 0.02 0.02 0.07 0.03 0.04 0.01 0.04 0.03 0.34 0.01 0.07 0.03 0.05 0.02 0.05 8. 0.08 0.03 0.02 0.03 0.01 0.01 <0.01 0.03 <0.01 0.03 <0.01 0.02 0.04 0.06 0.02 0.02 0.02 0.01 0.03 0.03 0.02 0.03 0.02 0.01 0.02 0.01 0.05 0.02 0.03 0.02 0.03 9. 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 • <0.01 <0.01 - <0.01 • <0.01 <0.01 <0.01 - - - - - • <0.01 - - - <0.01 - <0.01 - <0.01 <0.01 10 7.78 2.71 1.16 0.46 0.47 0.30 0.23 0.65 0.16 0.56 0.09 0.15 0.38 0.45 0.39 0.41 0.33 0.38 1.24 1.74 0.96 0.31 1,82 0.26 0.94 0.14 3.14 0.17 2.64 1.68 2.01 11. 0.39 0.26 0.45 0.49 0.18 0.38 0.07 0.03 0.04 0.04 0.06 0.02 0.08 0.10 0.59 0.31 0.44 0.58 0.27 0.20 0.24 0.42 0.16 0.22 0.07 0.11 0.29 0.12 0.15 0.13 0.16 12. 118 108 100 99 46 74 43 81 41 98 33 62 83 99 88 79 69 48 91 90 88 46 89 37 83 30 101 35 93 91 109 13. 9.12 8.92 8.87 8.58 4.10 6.72 3.91 6.65 3.95 8.08 3.18 5.72 7.46 8.57 7.62 6.90 6.14 4.14 7.62 7.32 7.47 4.04 7.17 3.28 6.88 2.79 7.45 3.36 7.03 7.10 8.26 14. 3.92 3.68 3.74 3.53 3.13 3.21 2.51 1.82 2.40 3.74 3.62 3.25 3.22 4.02 3.94 3,33 4.19 3.60 2.95 3.96 3.27 3.26 2.95 2.24 2.29 2.05 3.11 1.96 3.47 2.74 2.05 15. 12.0 8.0 3.6 5.2 8.0 3.4 6.0 1.3 0.5 2.2 0 1.3 2.4 2.1 3.6 5.0 5.0 6.0 8.5 4.5 8.0 11.0 6.5 4.0 4.7 3.4 - 4.0 4.2 3.0 4.8 16. 206 102 82.5 96.5 141 8.8 108 2.0 0.4 47.0 0 2.6 2.8 18.2 166 27.4 61.5 5.1 407 473 299 71.1 261 0.8 302 104 - 1.4 102 117 13.0 17. 1.66 0.70 0.33 0.44 0.41 0.25 0.14 0.12 0.05 0.19 0.05 0.04 0.24 0.17 0.35 0.28 0.30 0.58 0.54 0.66 0.57 0.57 0.82 0.43 0.72 0.17 2.09 0.19 1.69 1.15 1.29 18. 0’ 0’ 3—702615—51865 3—703030—51463 3--703650—51540 3—704653—51075 3—704894—50958 3—705516—49710 3—705910—48450 3—705614—50848 3—707985—47330 3—698288—55881 161 162 163 164 165 166 167 169 168 175 177 Onkjvesi Onkivesi Nerkoonjärvi Porovesj Porovesj Haapajarvi Kiurujärvi lijärvi Nä1ntöjärvi Melavesi Juurusvesi Siilinjärvi 04.51 04.51 04.51 04.52 04.52 04.52 04.52 04.53 04.56 04.61 04.61 04.61 04.61 6. 1 1 7.77 6.47 1.93 3.18 2.08 1.85 2.44 18.7.1963 0—10 6.7.1965 0—12 6.7.1965 0—5 6.7.1965 0—7 6.7.1965 0—7 1.80 3—701537—56126 186 Syvän 19.7.1963 0—8 13.7.1965 0—9 0.22 0.40 0.27 04.63 0.32 13.7.1965 0—6 3—701490—56825 14.7.1965 0—10 3—700720—56760 184 3—699930 56715 183 Vuotjärvi 04.62 185 0.34 14.7.1965 0—12 3—698940—56114 Muuruvesi 04.61 Vuotjärvi 0.77 0.50 2.7.1963 0—7 14.7.1965 0—10 181 Ala-Siikajärvi 0.47 13.7.1965 0—6 3—699700—55215 180 Ala-Pieksanjärvi 04.62 0.02 2.68 3.26 2.7.1963 0—6 16.7.1965 0—6 3—699580—53500 178 04.62 0.28 0.13 0.25 0.53 2.7.1963 0—10 16.7.1965 0—13 3—698780—54455 0.01 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.05 0.23 0.15 0.01 0.02 0.14 0.03 0.01 0.01 0.01 0.01 0.01 0.04 0.05 0.10 0.57 0.64 2.7.1963 0—7 15.7.1965 0—6 6.7.1965 <0.01 <0.01 - <0.01 - <0.01 <0.01 - <0.01 <0.01 <0.01 - . . 0.12 0.29 0.14 0.20 0.23 0.52 0.33 0.36 2.10 2.59 0.15 0.33 0.29 0.42 0.56 0.02 0.01 <0.01 0.02 0.07 0.43 1.51 0.02 1.67 0.02 0.18 0.10 1.58 2.72 <0.01 <0.01 0.02 0.04 3.39 5.15 12.3 7.28 6.07 3.72 5.39 7.00 9.09 12.9 3.54 2.20 11. <0.01 <0.01 0.01 0.01 0.01 0.01 0.01 <0.01 0.02 0.01 <0.01 <0.01 10. 0.04 0.06 0.04 0.03 0.13 0.12 0.06 0.19 0.03 0.09 0.03 0.04 9. 0.10 0.04 0.10 0.03 0.06 0.04 0.34 0.10 0.11 0.03 0.06 0.19 0.16 0.03 0.03 8. 1.29 1 3.70 5.50 18.7.1963 1 6.7.1965 0—5 16.7.1965 0—10 12.5 4.05 5.7.1965 0—12 5.64 7.33 9.51 13.4 3.78 2.64 7. 18.7.1963 0—9 5.7.1965 0—11 18.7.1963 0—8 5.7.1965 0—11 20.7.1963 17.7.1965 20.7.1963 0—9 16.7.1965 0—9 5. 2.42 3—701580-—51645 160 Onkjvesj 04.51 3—701300—51042 159 Vianta 3—700530—51450 4. 04.28 158 3. Maaninkajarvi 2. 04.28 1. 0.07 0.08 0.10 0.09 0.09 0.23 0.13 0.04 45 64 43 57 62 63 64 86 116 125 43 77 0.09 0.14 0.06 0.39 58 84 0.09 0.08 77 132 0.13 147 135 3.41 3.97 3.00 3.92 5.20 7.13 4.14 6.78 4.34 5.83 3.32 3.38 3.81 4.05 5.27 3.81 5.70 4.08 4.47 3.21 4.69 5.38 5.76 7.75 3.59 4.82 3.84 9.40 10.09 4.97 6.21 0.57 2.7 0.2 3.1 4.5 10.1 2.3 0.4 1.7 1.6 15.4 19.3 34.4 2.5 1.4 3.7 3.2 0.09 0.11 0.09 0.16 0.14 0.34 0.24 0.21 534 70.4 0.2 1.06 1.06 3.1 36.8 3.0 1.4 8.0 8.8 0.12 0.21 0.3 0.4 0.22 0.16 0.83 0.63 8.0 318 0.68 58.7 1.2 1.4 11.2 6.7 8.6 12.5 3.98 0.68 0.60 12.0 138 8.7 4840 4.24 10.92 11.85 11.29 3.35 3.50 6.02 8.29 71 101 0.60 0.15 0.11 0.28 0.32 0.69 0.81 6.7 2270 6.0 2730 0.77 1.63 1.05 1.61 747 385 473 1.29 1.11 1.80 2.12 0.83 0.53 18. 381 5.3 3.42 7.2 9.0 320 18.0 3790 12.3 1050 7.6 461 12.7 6.7 3.19 3.50 17. 5.2 180 14.0 1780 16. 3.21 4.27 3.26 3.11 3.41 3.68 2.92 4.03 3.18 15. 6.26 7.23 9.33 11.16 7.68 9.00 7.45 8.46 7.99 10.02 6.54 8.78 14. 76 91 123 0.13 0.23 0.23 139 97 114 94 108 103 132 79 105 13. 0.10 0.11 0.16 0.15 0.08 0.18 0.19 0.18 0.37 12. 190 188 174 194 195 196 198 Kiltuanjärvi Laakajärvi Kevätönjärvi Ala-Keyritty Riistavesi Juojärvi Juojärvi Juojärvi Juojärvi Rikkavesi Rikkavesi Kaavinjärvi Saarijärvi 04.64 04.64 04.65 04.67 04.69 04.71 04.71 04.71 04.71 04.72 04.72 04.73 04.74 4—698280—43190 4--698590—57490 4—697860—43460 4—696762—43636 4—696560—42010 4--695936—42967 4—694960—43100 4—694780—44120 3—697800—55810 3—704330—56350 3—699892—53084 3—707715—55142 3—707640—54330 3—704610—54360 3—702860—55030 4. 3—683341—53793 137 Luonteri 04.11 3—682142—52450 93 04.11 3—681082—53384 3—682090—55340 Louhivesi Vövesj 04.11 89 91 3—681800—51799 Yövesj 92 Lietvesi 04.11 04.11 6. 14.7.1965 0—6 20.7.1963 0—6 14.7.1965 0—8 14.7.1965 0—6 20.7.1963 0—6 14.7.1965 0—8 14.7.1965 0—9 20.7.1963 0—9 14.7.1965 0—14 20.7.1963 0—9 15.7.1965 0—10 20.7.1963 0—7 15.7.1965 0—12 20.7.1963 0—9 15.7.1965 0—6 13.7.1965 0—10 20.7.1963 0—3 16.7.1965 0—3 19.7.1963 0—3 7.7.1965 0—5 7.7.1965 0—10 7.7.1965 0—10 19.7.1963 0—8 13.7.1965 0—10 5. 9.7.1963 0—4 27.7.1965 0—10 27.7.1965 0—10 27.7.1965 0—10 8.7.1965 0—12 2.3 Laite Haukivesi and watercourses to the south of it 197 199 193 192 179 191 189 Sälevänjärvi 04.64 187 3. Syvän 2. 04.63 1. 0.15 0.24 0.13 0.14 0.20 0.49 0.28 0.21 0.38 0.12 0.19 0.27 0.59 0.33 0.48 0.20 0.13 0.22 0.37 0.74 0.63 13.2 10.3 0.29 0.13 0.20 0.67 0.49 0.65 7. 0.01 0.06 0.03 <0.01 0.03 0.01 0.07 0.02 0.01 0.01 0.01 0.02 0.01 0.04 0.01 <0.01 0.01 0.01 0.07 0.03 <0.01 2.98 0.86 <0.01 <0.01 <0.01 0.01 <0.01 0.01 8. 0.01 0.05 0.01 0.02 0.01 0.08 <0.01 0.02 0.03 0.01 0.02 0.02 <0.01 0.01 <0.01 0.02 <0.01 0.02 0.04 0.21 0.02 1.29 4.29 0.03 0.03 0.01 0.02 0.02 0.03 9. • - <0.01 - - - - - <0.01 - - - - - <0.01 - <0.01 - <0.01 - <0.01 0.31 0.12 - - <0.01 0.01 <0.01 <0.01 10. 0.12 0.10 0.06 0.11 0.15 0.22 0.11 0.17 0.24 0.08 0.16 0.18 0.55 0.21 0.43 0.17 0.09 0.17 0.21 0.42 0.50 8.30 4.61 0.25 0.09 0.18 0.53 0.25 0.25 11. 0.01 0.04 0.03 0.01 0.01 0.18 0.10 0.01 0.09 0.03 0.01 0.05 0.03 0.06 0.03 0.01 0.03 0.02 0.04 0.08 0.11 0.26 0.39 0.01 0.01 0.01 0.10 0.21 0.35 12. 24 64 47 49 44 59 30 60 65 30 62 69 35 57 47 62 43 69 95 83 53 90 133 44 45 40 59 41 72 13. 2.42 6.08 4.86 4.95 4.32 5.28 2.88 5.50 5.79 3.01 5.75 6.46 2.98 5.12 4.11 5.72 4.23 6.51 8.77 7.35 4.78 6.17 9.64 4.10 4.35 3.82 5.22 3.67 6.60 14. 3.37 3.75 3.75 3.19 3.93 2.92 3.22 3.03 3.03 3.51 3.59 3.34 2.86 1.08 3.33 2.21 3.20 2.90 1.36 5.11 3.70 4.22 3.47 2.63 3.48 2.42 3.76 2.93 3.32 15. - 12.8 14.3 0 2.3 4.0 6.9 17. 1.0 3.2 1.6 0.8 1.7 0.8 0.3 0.6 0.6 0 0.8 0.6 0 0.6 0.3 1.1 0 1.3 2.3 2.7 0.8 2.4 13.5 9.3 0.2 2.3 1.8 0.2 2.5 0.1 0 2.5 0.6 0 0.8 0 0.3 0 0.8 5.6 5.5 21.4 21.5 2150 - 0.5 1.0 0 1.0 2.0 2.7 16. 0.07 0.10 0.04 0.04 0.11 0.15 0.20 0.08 0.18 0.05 0.06 0.07 0.09 0.08 0.12 0.04 0.06 0.05 0.18 0.27 0.12 2.78 2.85 0.15 0.20 0.03 0.08 0.21 0.22 18. 9. 0.01 0.01 0.01 0.04 0.03 0.01 0.03 0.06 0.06 0.01 <0.01 8. 0.02 0.03 0.01 0.03 0.03 <0.01 <0.01 0.09 <0.01 0.01 0.01 0.21 0.22 0.18 0.35 0.57 0.21 0.33 15.7.1963 0—11 15.7.1963 0—11 19.7.1965 0—15 9.7.1963 0—7 9.8.1965 0—14 9.7.1963 0—7 9.8.1965 0—14 0.02 0.01 <0.01 0.05 0.26 0.08 0.16 9.7.1965 0—10 9.7.1965 0—8 12.7.1965 0—8 4—684940—43475 4—685123—42390 3—682350—56380 86 87 88 Pihlajavesi Pihlajavesi Pihlajavesi 04.12 04.12 04.12 3.92 4.16 41 42 - - - 4.74 4.98 45 50 0.01 0.01 <0.01 0.11 0.06 0.10 0.03 0.06 0.7 1.7 1.7 2.0 3.87 0.17 2.43 2.59 0.16 - 0.15 0.06 3.6 - 1.0 4.0 1.3 0.61 1.7 0.02 0.18 12.7.1965 0—12 4—685625—44085 85 Pihlajavesi 04.12 0.9 3.17 2.15 5.57 0.12 0.02 0.11 0.02 0.03 0.16 9.7.1965 0—10 4—683590—45640 71 Pihlajavesi 04.12 59 4.19 5.03 0.11 0.05 5.64 58 0.01 0.14 0.01 0.12 0.01 <0.01 0.01 0.01 0.04 <0.01 0.18 15.7.1965 0—16 4—684740—46225 70 Pihlajavesi 04.12 45 50 35.6 0.5 4.0 0.3 3.63 3.02 0.14 0.02 0.13 0.08 <0.01 <0.01 0.02 0.01 0.01 0.02 0.29 0.13 15.7.1963 0—6 21.7.1965 0—10 3—679858—43620 262 Saimaa 04.11 0.13 0.06 0.06 0.17 0.15 0.97 0.14 0.04 0.5 0.7 1.7 1.0 4.71 3.64 50 37 2.88 3.56 0.08 0.01 - - 1.8 0.6 4.98 52 3.39 0.17 0.11 0.01 0.01 0.03 0.01 0.29 0.14 15.7.1963 0—9 19.7.1965 0—13 3—680165—55465 261 Saimaa 04.11 - 3.54 3.99 17.0 1430 105 3.3 0.05 3—680490—54535 260 Saimaa 04.11 - - 4.04 - 0.2 5.3 2.5 0.13 <0.01 0.01 0.19 10.7.1963 0—10 4—678887—42806 259 Saimaa 04.11 0.01 - 1.5 3.57 3.56 4.12 4.36 44 42 0.03 0.01 0.15 0.19 6.64 3.19 3—677850—57125 258 Sikosalonselkä 04.11 • - 0.08 0.09 29.7 1.4 4.5 ‘2.5 3.77 3.39 5.38 3.19 56 32 0.06 0.06 0.14 0.09 72 32 0.49 0.25 13.7.1963 0—11 23.7.1965 0—6 3—677380--56172 257 Sunisenselkä 04.11 - - 0.15 0.16 31.7 1.9 4.0 2.2 3.45 3.36 5.36 4.27 58 44 0.05 0.12 0.48 0.19 0.13 0.09 4.09 12.7.1963 0—7 3—679350—43528 256 Vatavalkama 04.11 - <0.01 0.10 0.12 5.0 61.8 1.3 2.5 3.99 4.49 5.84 3.30 61 33 0.08 0.04 0.16 0.15 0.32 0.13 0.02 <0.01 0.02 0.02 0.25 0.26 9.7.1963 0—8 9.8.1965 0—9 4—678600—42236 255 Saimaa 04.11 - - 1.12 0.13 30.0 6410 3.9 7.5 4.62 2.52 6.58 5.54 82 57 0.50 0.08 4.38 0.16 7.65 0.24 0.07 0.26 0.17 13.7.1963 0—11 21.7.1965 0—4 3—679032—56816 254 Saimaa 04.11 <0.01 <0.01 0.10 0.16 4.1 7.6 3.3 2.8 4.33 3.31 5.52 6.59 57 67 0.07 0.06 0.12 0.25 95 0.04 0.07 0.04 <0.01 0.55 0.33 12.7.1963 0—8 22.7.1965 0—6 3—678350-57364 253 Saimaa 04.11 - - 0.18 0.18 1.4 13.4 2.3 4.2 3.84 3.77 5.45 8.29 59 88 0.06 0.03 0.11 0.08 3.60 3.44 0.21 0.48 0.10 6.1 18.7 3.1 1.3 2.0 1.7 4.14 18. 5.11 17. 4.89 3.88 0.03 0.05 0.14 0.12 16. 15. 14. 51 39 0.06 0.12 13. 53 12. 11. 0.46 0.04 0.02 0.01 <0.01 0.26 0.20 19.7.1963 0—7 28.7.1965 0—7 3—678073-56147 252 Saimaa 04.11 - <0.01 - - - 10. 3.31 0.01 0.01 0.01 0.02 5.04 0.30 12.7.1963 0—6 22.7.1965 0—4 3—678190—55420 251 Rjuttasejka 04.11 04.11 Petranselkl 04.11 3—679500—56360 6. 7. 5. 250 4. Ilkonselkä 3. 3—680429—56672 2. 249 1. Haukivesi Haukivesi Haukivesi Haukivesi 04.21 04.21 Haukivesi 04.21 04.21 Haukivesi 04.21 04.21 Pieni Haukivesi Haapavesi 04.21 Haukivesi 04.21 04.21 Haukivesi Iminalanjärvi 04.19 04.21 Puruvesi 04.18 Haukivesi Puruvesj 04.18 04.21 Puruvesj 04.18 Haukivesi Ukonvesi 04.15 Haukjvesi Ukonvesi 04.15 04.21 Kuolimo 04.14 04.21 Kuolimo 2. 04.14 1. 101 100 99 98 97 96 82 81 80 78 77 76 74 273 69 68 67 95 94 243 242 3. 3—689035—55860 3—689575—56820 3—689418—54692 3—690142—57316 3—690270—55835 3—690806—54856 4—686680—43770 4—687305—43368 4—687770—42625 4—688460—42328 3—688945—57131 3—688955—57350 4—689758—42520 4—679137—44274 4—686475—47500 4—685642—46648 4—685082—46724 3—683280—51550 3—682600—51550 3—679112—53230 3—679645—52695 4. 6. 10.8.1965 0—16 30.7.1965 0—12 10.8.1965 0—12 26.7.1965 0—6 17.7.1963 0—4 29.7.1965 0—12 11.7.1963 0—4 29.7.1965 0—10 12.7.1965 0—12 28.7.1965 0—10 5.8.1965 0—18 4.8.1965 0—12 5.8.1965 0—12 5.8.1965 0—12 28.7.1965 0—12 11.7.1963 0—6 20.7.1965 0—11 19.7.1965 0—10 19.7.1965 0—10 15.7.1965 0—6 10.7.1963 0—4 27.7.1965 0—10 16.7.1963 0—1 27.7.1965 0—2 8.7.1963 0—4 4.8.1965 0—8 8.7.1963 0—6 4.8.1965 0—10 5. 0.36 0.16 0.47 0.18 0.77 0.45 0.79 0.23 0.26 0.34 0.16 0.27 0.38 0.33 0.17 0.44 0.32 0.19 0.07 0.14 3.04 0.42 4.34 3.20 0.20 0.16 0.14 0.12 7. 0.01 <0.01 0.11 0.01 0.01 0.01 0.08 <0.01 <0.01 0.05 <0.01 0.01 0.01 <0.01 0.01 0.04 0.03 <0.01 0.01 0.02 1.53 0.02 0.32 0.03 0.01 <0.01 0.01 0.01 8. 0.02 0.03 0.05 0.02 0.40 0.05 0.01 0.02 0.12 0.02 0.02 0.02 0.03 0.04 0.02 0.08 0.04 0.12 0.02 0.03 0.20 0.05 0.19 0.13 0.01 0.01 <0.01 0.01 9. <0.01 <0.01 <0.01 • <0.01 - <0.01 - - <0.01 - - <0.01 <0.01 - - - - - - <0.01 <0.01 0.01 - - - <0.01 - 10. 0.27 0.13 0.29 0.14 0.19 0.32 0.58 0.19 0.12 0.21 0.10 0.19 0.27 0.24 0.13 0.25 0.24 0.06 0.04 0.09 1.03 0.28 3.74 2.99 0.12 0.08 0.08 0.09 11. 0.06 - 0.02 0.01 0.17 0.07 0.12 0.02 0.02 0.06 0.03 0.05 0.07 0.05 0.02 0.08 0.02 0.01 0.01 - 0.28 0.07 0.10 0.04 0.06 0.06 0.04 0.02 12. 71 69 107 65 32 67 27 48 55 62 57 72 80 74 59 69 53 52 48 46 55 77 58 108 41 52 44 53 13. 6.66 6.70 10.07 6.55 2.91 6.38 2.36 4.85 5.32 5.79 5.44 6.67 7.41 6.98 5.70 6.11 4.92 5.28 5.01 4.75 4.41 7.15 4.17 8.79 4.12 5.41 4.46 5.32 14. 4.33 5.24 4.12 4.63 3.96 3.22 3.35 3.15 3.21 1.70 3.35 4.04 4.54 1.32 3.29 4.28 3.57 2.79 1.94 2.57 2.26 3.38 3.66 1.68 4.06 3.35 4.15 3.90 15. 2.5 2.1 4.7 1.0 2.5 3.8 3.0 9.0 2.3 1.5 3.5 2.0 2.2 2.0 1.3 1.5 1.7 1.3 0.8 0.8 20.0 - 7.2 - 1.5 0.3 0.7 1.3 16. 0.5 2.2 8.9 0.2 10.7 4.8 20.2 202 0.5 8.8 7.8 1.4 1.8 3.6 1.0 1.1 0.3 0.1 0.8 0.5 12.6 - 115 - 4.5 0.2 2.2 0.1 17. 0.13 0.12 0.28 0.06 0.38 0.18 0.52 0.17 0.14 0.12 0.05 0.11 0.14 0.15 0.08 0.22 0.18 0.03 0.05 0.05 3.24 0.18 0.69 1.83 0.06 0.03 0.05 0.04 18. -4 0 2. 3. 4. 3—692575-44700 Lievestuoreenjärvi 353 309 311 312 314 356 357 Saravesi Vatianjärvi Peurunkajärvi Kuhnamo Kuusvesi Kynsivesi Kynsivesi Uuraanjärvi Liesvesi 14.31 14.32 14.33 14.33 14.33 14.35 14.35 14.35 14.35 14.36 14.37 0.30 0.15 17.7.1963 0—8 7.7.1965 0—8 20.7.1963 0—9 19.7.1965 0—10 0.38 0.28 Keitele 14.41 3--695860—44638 0.62 2.18 20.7.1963 0—8 5.7.1965 0—8 Keitele 14.41 318 0.23 0.18 9.7.1963 0—7 19.7.1965 0—11 3—695016—43750 316 Keitele 14.41 3—694372—43900 0.64 0.36 18.7.1963 0—8 7.7.1965 0—10 3—692570—47762 359 Armisvesi 14.37 317 0.40 0.49 18.7.1963 0—9 7.7.1965 0—10 3—692010—47010 358 0.02 0.46 0.01 0.03 0.01 0.04 0.01 0.01 0.10 0.03 0.28 0.07 0.04 0.01 0.03 0.05 0.01 0.06 0.01 <0.01 0.01 0.07 0.01 0.03 0.02 0.02 0.03 0.01 0.07 0.01 0.04 <0.01 <0.01 0.05 0.01 0.03 0.01 <0.01 0.19 7.7.1965 0—8 Kuuhankavesi 0.02 0.28 20.7.1965 0—9 0.01 <0.01 0.01 0.01 0.30 0.15 17.7.1963 0—8 7.7.1965 0—10 0.10 0.01 0.01 0.02 <0.01 0.01 <0.01 - - 0.02 0.01 0.02 0.06 0.01 0.01 0.01 <0.01 0.02 <0.01 0.37 0.11 0.31 0.17 0.25 0.11 0.22 0.01 0.08 0.51 0.67 0.12 0.13 - 0.01 0.09 9. <0.01 8. 0.29 0.26 17.7.1963 0—10 20.7.1965 0—12 10.7.1963 0—10 6.7.1965 0—14 5.7.1965 0—6 8.7.1963 0—8 5.7.1965 0—11 8.7.1963 0—8 5.7.1965 0—13 9.7.1963 0—7 6.7.1965 0—7 8.7.1963 0—6 9.7.1965 0—6 9.7.1963 0—6 6.7.1965 0—6 0.44 0.63 7. 3—694020—46330 3—693130—45556 3—693120—45984 3—692070—46150 3—692555—45170 3—694307—43508 3—692726—44088 3—693010—44336 3—689239—44695 6. 3.7.1963 0—6 7.7.1965 0—9 5. 360 355 352 3—691186—45645 307 Leppävesi 14.31 3—690750—45038 306 Leppävesi 14.31 3—690760—44469 305 Leppävesi 14.31 3. The Kymijoki river basin 3.1 Watercourses north of the rapid of Haapakoski 1. - - - <0.01 - - <0.01 - - - - - - - - - - - - 0.04 - 0.01 <0.01 <0.01 - - - <0.01 - - - <0.01 <0.01 10. 0.14 0.16 0.21 0.79 0.22 0.05 0.10 0.86 0.02 0.02 0.16 0.02 0.40 0.32 0.10 0.12 0.09 0.03 0.26 0.40 0.05 0.14 3.61 5.93 4.73 5.51 50 62 4.60 4.89 5.82 6.61 6.88 6.30 5.06 7.17 4.94 4.64 4.34 4.46 4.69 6.52 6.25 7.27 5.09 4.47 7.08 5.43 7.23 1.11 0.24 7.15 8.75 3.27 3.98 5.90 5.76 14. 41 76 48 51 68 71 75 69 52 78 54 45 0.07 0.03 0.03 47 41 51 70 65 71 56 46 75 54 78 0.06 0.02 0.07 0.04 0.05 0.01 0.04 0.03 0.03 0.01 0.07 9 3 77 99 0.04 0.13 0.01 0.08 33 40 65 62 13. 0.03 0.06 0.09 0.33 12. 0.17 0.21 0.11 0.21 0.04 0.20 0.18 0.16 0.07 0.23 0.09 0.16 0.08 0.12 <0.01 <0.01 0.43 0.47 0.08 0.07 0.33 0.22 11. 3.9 2.0 4.03 3.77 3.50 2.78 4.77 3.39 3.64 3.75 4.18 4.67 5.0 1.5 11.5 - 0.6 0.2 102 - 6.6 0.8 3.0 2.3 0.09 0.14 0.57 1.44 0.15 0.61 0.16 0.17 0.3 <0.1 0.8 0.4 0.07 0.11 0.16 0.23 1.3 0.1 0.11 0.02 0.09 0.03 0.21 0.09 0.13 0.05 0.19 0.03 0.15 0.07 0.21 0.01 0.03 0.24 0.39 0.07 0.04 0.20 0.30 18. 1.4 0.3 3.0 3.3 1.0 0.5 4.15 3.09 1.0 1.9 0.3 1.5 2.0 1.0 0.8 1.0 1.6 1.1 1.0 0.7 23.9 6.1 147 6.5 6.0 5.0 4.7 3.2 6.3 1.4 - 8.1 4.0 3.8 - 1.0 162 0.8 17.9 7.0 2.0 2.7 6.0 4.4 10.6 10.9 17. 3.3 3.3 16. 3.84 3.69 1.13 3.51 4.12 3.93 3.29 3.88 4.67 4.74 2.85 4.15 4.17 1.18 0.48 3.44 4.32 3.78 3.67 1.73 3.94 15. 2—699688—55829 2—700880—55752 366 323 325 326 328 329 330 Keitele Keitele Muurasjarvi Vuosjärvi Kivijärvi Kivijärvi 14.42 14.43 14.43 14.44 14.44 14.44 334 335 Kannonselkä Kolimajärvi Kolimajärvi 14.45 14.46 14.47 14.47 339 340 337 338 Alvajärvi Muurasjärvi Saanijärvi Elämäjärvi Suminasjärvi 14.48 14.48 14.49 14.49 14.6 1 343 336 Kolimajärvi Alvajärvi 14.47 14.48 333 327 331 Kivijärvi Kivijärvi 14.44 322 2—694975—57117 3—704175—43622 2—703637—42995 2—704490—56737 2—703466—57150 3—702882—42609 3—702744—43181 3—702014—43713 3—701645—44548 2—697926—56298 2—702441—55603 3—698734—56180 3—698883—42537 3—699850—42512 3—699760—43830 3—696472—46616 3—699952—44453 3--699160—44696 Keitele 14.42 321 Keitele 14.42 3—698329—45036 320 Keitele 14.42 3—697080—45070 4. 319 3. Keitele 2. 14.41 1. 6. 11.7.1963 0—7 12.7.1965 0—9 14.7.1965 0—2 14.7.1965 0—2 18.7.1963 0—11 13.7.1965 0—11 18.7.1963 0—6 13.7.1965 0—4 14.7.1965 0—16 15.7.1965 0—10 17.7.1963 0—11 15.7.1965 0—13 18.7.1963 0—7 12.7.1965 0—9 12.7.1965 0—8 12.7.1963 0—6 13.7.1965 0—9 12.7.1965 0—4 18.7.1963 0—11 12.7.1965 0—15 19.7.1963 0—9 12.7.1965 0—7 19.7.1963 0—5 16.7.1965 0—4 19.7.1963 0—9 16.7.1965 0—10 17.7.1963 0—8 16.7.1965 0—17 20.7.1965 0—14 17.7.1963 0—8 16.7.1965 0—16 17.7.1965 0—17 16.7.1963 0—8 17.7.1965 0—19 19.7.1965 0—14 5. 0.41 0.41 0.53 0.99 0.37 0.34 0.41 0.26 0.49 0.71 0.41 0.33 0.38 0.40 0.50 1.28 0.60 0.25 0.11 0.26 0.37 0.23 0.21 0.32 0.50 0.50 0.11 0.22 0.18 0.23 0.20 0.19 0.20 0.10 0.31 7. 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.01 <0.01 0.02 0.01 0.01 0.01 0.01 <0.01 0.02 0.01 0.01 <0.01 <0.01 0.01 <0.01 0.02 <0.01 <0.01 <0.01 0.02 <0.01 <0.01 0.01 0.01 0.01 0.01 8. 0.01 0.01 0.04 0.06 0.01 0.05 0.01 0.02 0.01 0.10 <0.01 0.08 0.01 0.02 0.01 0.02 0.16 0.02 <0.01 0.04 <0.01 0.01 0.01 0.05 0.02 0.05 <0.01 0.04 0.03 <0.01 0.01 0.02 <0.01 0.01 0.05 9. <0.01 <0.01 <0.01 <0.01 - <0.01 - <0.01 <0.01 <0.01 - - - - <0.01 <0.01 - - - <0.01 - <0.01 - <0.01 <0.01 <0.01 - - - - <0.01 - - - 10. 0.17 0.16 0.44 0.91 0.33 0.29 0.29 0.18 0.41 0.53 0.11 0.22 0.28 0.35 0.39 1.08 0.12 0.11 0.07 0.17 0.25 0.12 0.13 0.21 0.33 0.36 0.08 0.12 0.10 0.13 0.15 0.14 0.16 0.08 0.20 11. 0.22 0.22 0.05 <0.01 - 0.02 0.08 0.05 0.04 0.08 0.29 0.02 0.08 0.03 0.09 0.17 0.31 0.10 0.02 0.05 0.11 0.10 0.06 0.06 0.13 0.09 0.02 0.06 0.03 0.09 0.02 0.03 0.03 0.01 0.05 12. 42 45 75 96 45 59 74 76 78 77 34 63 58 79 57 64 55 60 28 49 46 49 47 86 69 86 40 51 61 42 59 72 37 57 78 13. 3.96 4.40 7.32 8.08 4.19 5.47 7.00 7.34 7.32 6.91 3.35 5.99 5.20 7.38 5.19 5.42 5.19 5.83 3.04 4.70 4.24 4.89 4.50 8.27 6.36 8.04 4.21 4.94 5.36 4.07 5.74 6.85 3.63 5.79 7.09 14. 2.74 3.12 2.76 4.38 4.53 3.44 3.64 4.01 3.42 3.87 4.09 3.24 3.27 3.38 4.67 3.98 3.26 3.48 3.28 3.55 3.28 3.95 4.52 3.52 3.27 4.30 3.95 3.74 4.04 4.06 4.03 4.10 4.24 3.77 3.46 15. 32.9 - - 19.3 108 0.6 2.8 7.3 2.0 8.2 12.7 <0.1 0.5 <0.1 1.0 4.9 60.8 12.4 1.6 <0.1 1.8 <0.1 0.2 0.3 2.0 2.2 0.6 0.1 0.5 <0.1 0.3 0.6 0.3 0.4 0.1 0.1 17. 3.3 .9.0 4.2 2.3 1.4 4.0 2.2 1.6 2.7 1.0 0.9 1.0 0.9 1.0 3.0 4.5 1.4 0.5 2.5 0.4 0.6 0.5 3.5 2.0 1.3 0.5 0.6 1.5 1.0 1.3 1.0 1.5 0.6 0.9 16. 0.21 0.13 0.10 0.56 0.13 0.15 0.12 0.12 0.28 0.32 0.04 0.09 0.08 0.10 0.19 0.83 0.21 0.10 0.06 0.14 0.13 0.07 0.09 0.15 0.18 0.18 0.04 0.07 0.11 0.09 0.09 0.11 0.07 0.06 0.15 18. 2—699560—52882 2—694020—57440 2—695658—54213 2—695849—57400 350 351 342 348 344 Pääjärvi Kyyjärvi Lannevesi Karankajärvi Pyhäjärvi Pyhäjärvi 14.64 14.65 14.66 14.68 14.68 14.71 Konnevesi Konnevesi lisvesi 14.71 14.71 14.72 Konnevesi 14.71 3—696652—47292 3—696670—49180 212 3—695710—47548 3—694372—48120 365 364 363 362 Konnevesi 14.71 3—694908—47004 3—694540—47378 361 Konnevesi 14.71 3—696180—47460 210 Konnevesi 14.71 3—694630—48620 Konnevesi 3—694850—48300 Hankavesi 14.71 14.71 209 3—695220—49320 207 Koskelovesi 208 2—696352—57600 345 2—697555—53541 2—696501—54346 2—696364—55055 14.63 367 349 Kalmarinjärvi Päiljärvi 2—695820—56063 4. 14.62 346 3. 14.63 Saarijilrvi 2. 14.61 1. 6. 18.7.1963 0—8 20.7.1965 0—12 18.7.1963 0—10 20.7.1965 0—14 20.7.1965 0—4 19.7.1963 0—8 8.7.1965 0—8 8.7.1965 0—8 19.7.1963 0—8 8.7.1965 0—8 10.7.1963 0—6 20.7.1965 0—11 10.7.1963 0—10 20.7.1965 0—10 20.7.1965 0—10 10.7.1963 0—4 7.7.1965 0—3 7.7.1965 0—8 10.7.1963 0—8 7.7.1965 0—10 11.7.1963 0—7 8.7.1965 0—6 6.7.1965 0—8 12.7.1963 0—7 9.7.1965 0—7 12.7.1963 0—11 9.7.1965 0—8 9.7.1965 0—4 8.7.1965 0—8 11.7.1963 0—5 7.7.1965 0—6 5. 0.34 0.30 0.33 0.20 0.33 0.43 0.30 0.29 0.22 0.30 0.31 0.66 0.33 0.20 0.53 0.25 0.25 0.26 0.19 0.20 0.45 0.42 0.49 0.84 1.41 1.13 3.98 1.40 1.24 0.23 0.48 7. 0.01 0.03 0.02 0.01 0.03 <0.01 0.01 <0.01 <0.01 <0.01 0.02 0.03 0.01 0.02 0.06 0.02 0.02 0.02 0.01 0.01 <0.01 0.13 0.06 0.02 0.09 0.02 0.02 0.05 0.01 0.01 0.01 8. 0.01 0.09 0.02 0.01 0.11 0.01 0.01 <0.01 0.01 0.01 0.05 0.05 0.01 0.02 0.07 0.01 0.06 0.04 0.01 0.01 0.01 0.01 0.02 0.03 0.06 0.03 0.03 0.03 0.05 0.01 0.01 9. - - - - - - - - <0.01 - - <0.01 - - <0.01 - - - - - <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 - 10. 0.15 0.16 0.25 0.13 0.17 0.29 0.24 0.25 0.14 0.26 0.23 0.56 0.24 0.14 0.20 0.17 0.17 0.19 0.16 0.14 0.21 0.23 0.33 0.62 1.21 0.87 3.89 1.08 0.84 0.15 046 11. 0.17 0.03 0.04 0.04 0.02 0.13 0.04 0.03 0.08 0.03 0.02 0.01 0.06 0.02 0.20 - 0.04 0.01 0.02 0.04 0.23 0.06 0.08 0.17 0.03 0.20 0.05 0.24 0.34 - 0.05 12. 50 84 64 65 78 54 62 58 44 55 83 63 52 78 104 70 77 70 54 46 41 37 53 71 65 66 61 66 76 51 45 13. 4.71 7.56 5.64 6.20 7.28 4.84 5.66 5.41 4.12 5.00 7.30 5.26 4.84 7.17 9.00 6.61 6.95 6.86 5.46 4.60 3.82 3.40 4.66 6.23 5.61 5.89 5.04 5.80 6.55 5.11 4.19 14. 2.99 3.06 4.58 3.09 3.32 3.21 2.43 2.97 3.53 2.40 3.70 3.56 3.0 1.0 0.6 0.8 0.6 1.0 0.7 0.5 0.3 0.4 0.9 1.5 1.7 0.4 1.0 2.41 1.8 1.6 0.3 0.3 0.6 4.0 9.0 3.5 4.5 5.7 4.2 5.0 4.0 6.0 3.7 3.3 16. 4.18 3.49 3.85 3.91 4.06 3.06 4.10 3.65 3.50 4.05 4.14 3.85 4.23 3.21 3.50 3.22 4.36 4.21 15. 1.5 0.8 <0.1 0.5 0.4 0.1 0.4 <0.1 0.2 <0.1 0.4 1.3 0.3 2.4 0.5 0.9 0.2 0.5 0.4 0.1 106 310 12.6 6.4 96.6 205 718 234 28.0 50.6 12.4 17. 0.07 0.08 0.19 0.08 0.10 0.07 0.10 0.08 0.05 0.07 0.11 0.31 0.10 0.05 0.19 0.08 0.05 0.06 0.08 0.07 0.30 0.17 0.19 0.40 0.46 0.33 0.52 0.59 0.81 0.22 0.15 18. <0.01 <0.01 0.03 0.02 0.02 0.02 0.05 0.05 0.07 0.02 0.01 0.02 0.25 0.17 3.59 3.87 6.55 7.46 0.03 0.11 0.33 0.44 16.7.1963 0—4 20.7.1965 0—4 4.39 3.41 6.79 7.94 77 89 0.03 0.02 0.45 0.29 16.7.1963 0—8 20.7.1965 0—10 10.95 131 0.04 0.02 0.98 21.7.1965 0—10 <0.01 <0.01 <0.01 <0.01 0.02 0.01 <0.01 0.06 0.05 0.05 0.03 0.01 0.03 0.11 0.07 0.08 0.02 0.10 0.04 0.04 0.02 0.05 0.02 0.04 0.05 0.03 0.04 0.22 1.21 0.82 0.48 0.23 0.19 0.29 1.21 1.07 0.55 0.49 12.7.1963 0—10 19.7.1965 0—10 19.7.1965 0—16 19.7.1965 0—10 19.7.1965 0—12 12.7.1963 0—9 19.7.1965 0—10 19.7.1965 0—10 12.7.1963 0—3 19.7.1965 0—12 20.7.1965 0—2 3—698360—48782 3—698680—48320 3—700416—47854 3—700450—47210 223 224 225 226 232 Ravanki Nilakka Nilakka Nilakka Nilakka 14.72 14.73 14.73 14.73 14.73 3—702430—47510 3—702780—47300 3—703000—49680 3—704090—46270 227 228 229 231 230 211 Pielavesj Pielavesi Lanipaanjärvi Koivujärvi Kiesimä 14.74 14.74 14.74 14.74 14.75 14.76 3—696350—47620 3—700460—46620 3—701220—48340 233 Koutajärvi Pielavesi 14.73 12.7.1963 0—8 19.7.1965 0—8 0.03 0.05 0.38 0.39 12.7.1963 0—3 19.7.1965 0—8 3—698200—48910 222 Rasvanki 14.72 3—700940—48270 0.23 0.18 12.7.1963 0—4 19.7.1965 0—10 3—697220—50460 218 Kuttajärvi 14.72 0.03 0.04 0.04 0.03 0.02 0.03 0.10 0.02 0.03 79 94 0.10 0.01 0.06 0.02 0.01 0.01 0.14 0.12 0.10 0.13 0.24 0.28 0.15 1.04 <0.01 <0.01 <0.01 <0.01 - - - 0.41 0.91 0.42 1.00 0.10 0.21 0.17 0.61 0.35 79 95 0.01 0.01 0.24 0.28 <0.01 <0.01 - 63 75 0.02 0.02 0.36 0.23 <0.01 <0.01 0.39 0.21 0.13 41.8 10.0 0.1 2.1 4.6 2.2 0.6 4.24 4.37 7.09 8.61 7.89 9.55 6.07 44 78 102 91 107 71 0.03 0.03 0.05 0.03 0.01 0.01 3.30 3.82 4.38 5.9 1.5 0.8 0.5 1.6 2.3 1.7 3.81 2.58 3.54 5.98 67 0.01 0.43 0.14 0.08 0.07 0.32 0.17 10.7 2.1 2.8 1.5 3.79 4.14 8.50 7.46 99 85 0.13 0.05 0.09 0.26 1.4 0.3 1.6 7.37 1.2 0.14 0.13 3.83 7.38 8.37 0.06 0.06 0.07 0.07 4.23 3.72 2.81 3.1 14.6 9.6 3.0 2.7 1.2 2.6 3.0 1.0 0.2 2.0 1.8 3.37 4.36 0.16 0.10 0.2 0.2 1.4 1.4 1.6 0.7 0.54 17.3 3.8 0.19 0.11 0.27 0.08 0.2 2.1 1.1 1.3 2.5 1.8 2.85 2.47 2.60 5.67 6.81 5.55 7.01 7.13 5.77 0.10 0.11 7.45 60 73 73 86 0.03 0.01 0.82 <0.01 - <0.01 - - 2.95 3.52 83 66 0.13 0.02 0.40 0.17 0.04 0.03 0.59 0.24 18.7.1963 0—7 21.7.1965 0—10 3—697140—50018 217 Virmasvesi 14.7 2 0.01 0.04 1.2 0.1 3.25 3.36 4.72 5.55 49 64 0.03 0.02 0.15 0.23 0.02 0.04 0.20 0.33 18.7.1963 0—11 20.7.1965 0—12 3—697400—48180 216 Niinivesj 14.72 - - 3.0 0.4 1.5 0.6 2.77 2.46 4.69 5.69 50 65 0.09 0.02 0.01 0.03 0.10 0.10 0.06 0.07 0.3 0.2 1.0 0.8 3.48 2.30 5.11 5.99 0.24 0.25 <0.01 0.03 0.35 0.33 18.7.1963 0—7 20.7.1965 0—12 3—696338—48898 214 Niinivesi 56 69 0.12 0.01 0.26 0.27 - 18. 0.6 0.4 17. 15. 16. 14. <0.01 13. <0.01 0.04 0.03 0.03 0.41 0.34 18.7.1963 0—11 20.7.1965 0—13 12. 11. 10. 9. 8. 6. 7. 5. 14.7 2 3—695980—49140 4. 213 3. Niinivesi 2. 14.72 1. -4 219 220 221 204 205 103 Tallusjärvi Hirvijärvi Ahvenisenjärvi Suontee Suontee Pieksänjärvi 14.77 14.77 14.77 14.78 14.78 14.79 3—691266—50733 3—694266—50875 3—693170—51580 3—698260—49370 3—698340—49500 3—698160—50220 3—697100—47960 4. 125 126 128 129 451 452 468 469 711 712 713 714 Päijänne Päijänne Päijänne Päijänne Päijänne Päijänne Päijänne Päijänne Päijänne Päijänne Päijänne Päijänne Päijänne Päijänne Paijä.nne Päijänne 14.22 14.22 14.22 14.22 14.22 14.22 14.22 14.22 14.22 14.22 14.22 14.22 14.22 14.22 14.22 14.22 132 716 715 131 127 470 Päijänne Päijänne 14.21 14.21 3—679880—42284 3—684015—42096 2—681826—57416 2—682362—57605 2—685083—56931 3—685302—42246 3—686704—42354 3—680366—42144 3—680956—42008 2—684332—57611 2—682290—56784 3—679950—42105 3—681720—41920 3--682664—42426 3—682900—41996 3—683820—42355 3—682015—43024 3—679256—42168 6. 21.7.1965 0—9 18.7.1963 0—10 21.7.1965 0—10 21.7.1965 0—10 20.7.1965 0—4 20.7.1965 0—3 20.7.1965 0—6 20.7.1963 0—6 20.7.1965 0—8 5. 1 1.7.1965 0—10 2.7.1965 0—10 2.7.1965 0—10 1.7.1965 0—10 2.7.1965 0—10 2.7.1965 0—10 5.7.1965 0—10 5.7.1965 0—11 2.7.1965 0—10 2.7.1965 0—10 20.7.1965 0—8 20.7.1965 0—8 20.7.1965 0—12 20.7.1965 0—8 20.7.1965 0—12 20.7.1965 0—10 5.7.1965 20.7.1965 0—8 3.2 Lake Päijänne and watercourses draining into it 215 3. Sonkavesi 2. 14.76 1. 0.52 0.41 0.16 0.52 1.33 1.18 0.19 0.11 0.35 0.23 0.23 0.34 0.36 0.37 0.39 0.73 0.16 0.14 0.97 0.11 0.34 0.24 0.36 0.40 0.76 0.45 0.37 7. 0.01 0.02 0.02 0.01 0.04 <0.01 0.01 0.02 <0.01 0.01 0.05 0.02 <0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.05 0.02 0.04 0.06 0.04 0.14 0.02 8. 0.02 0.02 0.01 0.01 0.04 0.02 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.04 0.03 0.24 0.02 0.02 0.14 0.01 0.03 0.03 0.09 0.12 0.10 0.03 0.05 9. - - - - - - <0.01 - - <0.01 - <0.01 - - - <0.01 - - <0.01 <0.01 <0.01 <0.01 - <0.01 <0.01 -<0.01 <0.01 10. 0.36 0.32 0.13 0.33 1.14 1.02 0.15 0.08 0.21 0.17 0.14 0.28 0.31 0.29 0.34 0.44 0.11 0.10 0.64 0.09 0.21 0.18 0.21 0.22 0.53 0.25 0.28 11. 0.13 0.05 0.01 0.18 0.12 0.13 0.02 0.01 0.12 0.05 0.01 0.01 0.01 0.02 <0.01 0.04 0.01 <0.01 0.18 0.05 - 0.01 0.01 <0.01 0.09 0.03 0.02 12. 69 60 41 53 52 40 63 41 56 46 49 60 58 62 54 86 64 45 101 33 71 71 116 117 114 84 95 13. 6.14 5.25 3.88 4.73 4.19 3.31 6.18 4.21 5.20 4.29 4.57 5.68 5.56 6.05 5.13 8.20 6.10 4.59 8.56 3.35 6.27 6.52 10.33 10.09 9.46 7.46 8.50 14. 4.28 3.97 3.72 2.91 2.14 1.55 3.95 2.65 3.42 3.71 4.39 4.24 4.34 3.85 5.06 4.55 4.01 3.71 3.73 3.71 2.51 1.79 4.39 3.17 4.41 2.46 4.00 15. 3.3 2.0 1.5 3.5 3.3 - 6.5 1.3 2.0 1.4 1.4 4.0 3.0 3.0 3.0 6.0 2.0 2.0 3.8 0.3 1.0 0.9 3.5 2.4 3.2 1.7 1.7 16. 53.6 3.1 2.3 355 26.2 - 5.6 10.0 78.5 23.5 3.0 43.4 64.1 14.6 2.5 100 5.3 9.7 3.3 0.1 1.5 0.3 2.4 2.6 1.9 0.8 4.7 17. 0.25 0.15 0.11 0.26 0.55 0.85 0.08 0.04 0.20 0.11 0.13 0.15 0.33 0.32 0.19 0.16 0.10 0.08 0.31 0.03 0.08 0.07 0.13 0.20 0.23 0.21 0.08 18. 21.7J965 0—8 3—677158—42406 2—682225—55390 2—684636—55027 2—684526—55461 3—689216—42485 3—690802—43503 3—690638—43450 475 450 453 454 298 301 302 303 347 291 Vesijärvi Lummenejärvi Isojärvi Isojärvi Muurarjärvi Palokkajärvi Tuomiojärvi Alvajärvi Mahlunjärvi lso-Rautavesi Petäjävesi 14.24 14.25 14.26 14.26 14.28 14.29 14.29 14.29 14.29 14.52 14.53 14.81 0.05 4.26 0.03 0.01 0.46 5.19 0.33 0.12 0.20 5.7.1965 0—10 5.7.1965 0—10 18.7.1963 0—8 20.7.1965 0—10 21.7.1965 0—8 - 3.7.1963 0—4 21.7.1965 0 7 3—691303—43378 2—695333—55654 36.0 2440 15.0 133 3.61 4.83 9.84 10.82 6.68 3.29 5.61 68 37 54 65 0.01 0.07 0.01 0.07 0.03 0.25 0.32 0.08 0.03 0.01 0.02 0.07 0.02 0.01 0.01 <0.01 0.06 0.02 0.29 0.41 0.11 0.39 0.17 21.7.1965 0—10 17.7.1963 0—5 21.7.1965 0—12 16.7.1963 0—4 10.7.1965 0—6 3--683990—45185 3—683065—45012 3—684938—45150 122 123 293 Jääsjärvi Jääsjärvi Angesselkä 14.82 14.82 14.83 - - - - - - 0.18 0.11 4.26 50 0.08 0.56 0.14 0.15 0.93 17.7.1963 0—0.5 3—681545—43904 124 Nuoramoinen 55 5.63 5.24 4.39 4.22 <0.01 <0.01 0.01 0.02 0.01 0.01 1.01 0.52 15.7.1963 0—3 12.7J965 0—5 2—690337—56237 292 5.91 6.77 67 74 0.10 0.14 0.89 0.35 <0.01 0.18 0.54 6.7.1963 0—5 15.7.1965 0—4 3.83 3.15 3.40 5.80 2—688497—55492 2.65 5.37 34 62 0.02 0.08 0.15 0.42 61 0.09 0.68 0.01 0.04 <0.01 0.01 - <0.01 0.04 <0.01 0.82 7.7.1965 0—9 5.5 0 17.3 0 6.0 1.8 0.8 4.40 3.49 0.15 0.12 0.10 0.17 0.04 12.5 4.0 0.2 <0.1 0.46 2.3 1.7 4.7 2.5 0.10 0.24 0.25 1.66 0.41 0.65 1.81 1.02 0.07 0.12 0.05 0.06 0.32 0.32 1.4 2.5 2.2 493 415 112 0.1 <0.1 4.5 0.9 0.11 0.04 8.80 0.41 0.23 0.21 0.01 3.40 0 3.54 0.10 18. 2.0 0.7 4.0 5.0 2.18 4.57 4.09 4.64 4.93 9.00 117 0.17 3.81 <0.01 0.06 0.04 4.09 21.7.1965 0—7 115 134 0.18 0.60 0.75 2.51 0.01 0.02 0.12 0.80 0.02 0.07 1.08 3.98 8.2 12.0 11.5 2.74 4.04 7.39 10.75 90 133 1.48 1.22 0.01 0.04 0.06 0.16 0.07 0.05 0.24 0.72 1.85 2.20 0.6 0.4 4.41 5.52 48 60 3.96 3.80 0.04 0.04 3.7.1963 0—4 21.7.1965 0—7 - - 1.5 0.14 0.28 0.01 0.02 0.05 0.02 0.24 0.35 1.0 3.45 3.71 35 0.03 15.7.1963 0—6 16.7.1965 0—6 - 0.06 <0.01 0.02 0.11 3.98 4.06 41 0.04 0.14 <0.01 6.06 - <0.1 0.6 0.7 0.8 - 42.4 276 3.08 3.90 4.36 2.38 6.0 15.0 2.09 76.6 - - - 5.69 79 <0.01 - 0.01 0.01 0.15 11.0 2.14 - - - - 1.3 1.8 - 17. 16. 6.20 3.87 67 63 2.74 31 4.18 43 49 0.02 <0.01 0.35 0.04 <0.01 0.01 0.25 0.03 0.02 0.22 0.08 0.01 0.38 2.7.1965 0—10 0.53 3—678256—41932 - 2.76 0.04 0.03 3—688524—43595 710 474 0.12 Vesijärvi 0.23 Päijänne 14.24 0.34 0.31 <0.01 0.76 2.7.1965 0—10 0.04 14.23 3—689789—43726 709 0.48 2.44 0.06 Päijänne - 3.46 12 68 1.09 5.23 0.08 15.3 0.06 0.52 2.80 1.67 4.70 13 61 - 4.32 8.09 89 15. 0.03 <0.01 0.34 0.02 13.6 0.23 0.01 0.03 0.02 - - 0.09 18.5 14.23 3—690400—43688 300 0.01 0.25 3.7.1963 0—4 21.7.1965 0—7 Jyväsjärvi 0.06 0.01 14. 13. 12. <0.01 0.04 11. 0.03 17.4 10. 0.33 9. 8. 3.7.1963 0—4 21.7.1965 0—4 14.23 3—690327—43782 299 7. 19.7.1965 0—4 Äijälänsahni 3—687163—45172 297 Rutajlrvi 6. 14.23 5. 1423 4. 3. 2. 1. Suonne Suonne Suonne 14.84 14.85 14.85 295 113 296 294 3. 3—683686—47084 3—684880—47383 3--685628—46122 3—684504—46240 4. 133 471 241 237 117 118 Ruotsalainen Ruotsalainen Salajärvi Rapojärvi Lappalanjärvi Ylä-Kivijärvi Ylä-Kivijärvi Ala-Kivijärvi Lahnavesi Peruvesi Juolasvesi Vuohijärvi Puulavesi 14.14 14.14 14.16 14.18 14.18 14.19 14.19 14.19 14.91 14.91 14.91 14.91 14.92 106 236 120 239 238 240 476 135 Konnivesi 14.13 234 Kirkkojärvi 14.12 3—687508—48266 3—687650—48397 3—680818—48428 3—681687—47704 3—681944—48282 3—676212—52625 3---676035—53640 3—677204—54083 3—676020—48620 3—676040—49332 3—676844—44340 3—679300—44412 3—679285—44415 3—678250—45415 3—675862—46275 3.3 Watercourses south of the Kalkkinen canal Suonne 2. 14.84 1. 6. 0—6 0—5 0—5 0—8 22.7.1965 0—10 3.7.1963 0—9 16.7.1965 0—10 17.7.1963 0—3.7 23.7.1965 0—10 23.7.1965 0—6 23.7.1965 0—6 5.7.1963 0—4 6.8.1965 0—8 4.7.1963 3.8.1965 4.7.1963 3.8.1965 6.7.1963 0—7 2.8.1965 0—14 5.7.1963 0—5 2.8.1965 0—10 7.7.1965 0—10 14.7.1965 0—9 14.7.1965 0—12 14.7.1965 0—16 2.7.1963 0—15 17.7.1965 0—16 16.7.1963 0—4 20.7.1965 0—6 22.7.1965 0—8 20.7.1965 0—4 16.7.1963 0—5 20.7.1965 0—5 5. 0.24 0.28 0.12 0.07 0.14 0.19 0.53 0.35 0.12 1.42 1.20 0.54 0.14 0.62 0.45 0.23 0.17 0.69 0.15 0.17 0.12 0.17 0.19 0.17 0.18 0.84 0.33 0.34 0.22 7. 0.01 0.01 <0.01 0.01 <0.01 0.01 0.01 0.20 0.01 0.06 0.09 0.27 0.02 0.03 0.01 0.03 0.04 0.05 0.03 0.03 <0.01 0.01 <0.01 0.01 <0.01 <0.01 0.01 0.03 <0.01 8. 0.03 0.01 0.01 <0.01 0.01 0.03 0.02 0.07 0.03 0.08 0.04 0.11 0.03 0.07 0.03 0.01 0.01 0.05 0.02 0.04 0.02 0.01 0.02 <0.01 0.01 0.01 0.05 0.01 0.01 9. - - - - - <0.01 - - - - - 0.01 <0.01 <0.01 <0.01 - - <0.01 - - - - <0.01 - - - <0.01 - - 10. 0.18 0.23 0.10 0.06 0.10 0.12 0.43 0.06 0.08 1.00 1.03 0.13 0.08 0.28 0.39 0.13 0.11 0.54 0.10 0.09 0.10 0.10 0.14 0.10 0.11 0.80 0.22 0.21 0.12 11. 0.02 0.03 0.01 <0.01 0.02 0.03 0.08 0.01 <0.01 0.28 0.04 0.04 0.01 0.25 0.02 0.06 0.01 0.05 <0.01 0.02 0.01 0.04 0.02 0.06 0.06 0.03 0.06 0.09 0.09 12. 74 46 44 24 43 66 66 52 60 118 88 65 61 86 86 52 57 104 51 48 43 60 63 48 39 36 91 54 50 13. 7.14 4.45 4.56 2.36 4.42 6.55 6.21 4.46 5.84 10.19 7.85 5.53 5.99 7.82 8.02 4.72 5.86 9.42 4.96 4.83 4.42 6.02 6.07 4.64 3.79 3.70 8.36 4.79 4.92 14. 3.64 3.59 3.49 4.50 2.40 3.87 4.68 3.87 2.22 2.68 5.15 4.42 2.81 4.53 4.32 4.28 3.46 2.21 4.15 4.17 3.79 1.72 4.63 3.07 3.77 1.79 2.04 3.40 3.30 15. 2.0 0.2 0.8 2.0 2.0 1.5 1.8 1.0 1.0 4.1 3.4 1.3 1.1 2.6 3.6 0.8 2.2 2.9 1.0 2.0 4.0 6.0 4.0 0 0.3 1.0 1.4 0.8 0.8 16. 1.4 <0.1 0.3 3.1 0.4 4.9 3.3 0.7 0.4 39.5 18.0 0.4 1.0 5.0 2.2 0.3 0.2 0.9 0.4 0.8 92.8 5.4 5.2 0 0.1 21.8 1.4 0.3 0.2 17. 0.10 0.05 0.02 0.04 0.05 0.07 0.08 0.33 0.05 0.70 0.28 0.28 0.09 0.29 0.11 0.12 0.09 0.67 0.11 0.09 0.08 0.09 0.13 0.06 0.01 0.01 0.12 0.10 0.04 18. 3—672891—43804 2—670330—55818 2—669296—52089 2—668574—52069 2—668230—50129 2—668180—49845 2—668638—50009 478 513 529 530 522 523 525 Pyhäjärvi Kirkkojärvi Tuusulanjärvi Enäjärvi Palojärvi Lohjanjärvi Lohjanjärvi Hormajärvi 16.00 16.00 21.08 22.00 22.00 23.02 23.02 23.02 3—675930—56984 3—673442—44614 284 477 Haapajärvi 06.00 4. River basins to the south of Salpausseikä 4.11 6.07 7.12 7.50 1.16 2.41 0.96 2.93 0.81 1.81 0.14 0.15 18.7.1963 0—6 3.7.1965 0—8 1.7.1963 0—4 19.7.1965 0—4 0—4 0—6 0—8 0—4 2.7.1963 0—8 19.7.1965 0—11 2.7.1963 0—6 19.7.1965 0—8 1.7.1963 10.7.1965 2.7.1963 19.7.1965 19.9 17.1 1.12 1.33 17.7.1963 0—8 20.7.1965 0—8 15.7.1963 0—2 2.7.1965 0—2 6.54 18.8.1965 0—3 0.01 <0.01 0.03 0.02 0.08 0.11 0.03 0.04 <0.01 - <0.01 0.03 0.04 0.02 0.60 1.50 0.01 0.02 0.15 0.23 42 52 82 70 4.07 4.82 7.66 5.98 3.15 4.46 4.15 4.12 7.38 10.71 6.65 8.97 86 130 74 108 0.13 0.22 0.44 0.39 0.56 1.68 0.48 2.27 0.03 0.05 <0.01 0.14 0.09 0.22 0.02 0.10 0.36 0.24 0.02 0.03 3.10 3.82 5.65 7.24 73 103 0.01 0.14 0.49 1.48 0.04 0.11 0.24 1.63 6.35 4.14 3.82 3.44 4.23 4.69 3.42 3.69 5.85 6.35 70 89 0.08 0.43 0.53 3.48 0.08 0.15 3.14 1.27 0.27 0.74 2.96 2.32 5.81 7.99 83 109 0.12 0.18 14.4 9.23 1.62 0.50 1.15 1.77 2.60 5.44 0.01 3.62 4.76 1.76 2.96 4.18 33 50 4.57 64 0.80 0.33 . 0.04 0.23 0.03 2.01 3.99 0.01 0.10 0.43 3.5 3.0 9.7 7.7 12.5 19.5 - - 41.0 - - - - - - - 9.3 20.9 13.3 85.2 253 81.6 130 - - 130 - - . - - • - 11.8 0.05 0.04 0.44 1.47 0.65 2.41 1.06 0.69 7.97 4.65 2.92 2.98 5.62 8.50 0.74 0.22 4.73 0.08 1.5 1.7 4.41 7.05 73 0.17 0.09 0.86 0.06 <0.01 0.03 0.05 0.04 0.02 0.1 0.2 0.3 0.5 4.29 2.43 4.27 4.09 50 39 0.01 0.01 0.01 0.26 14.7.1965 0—8 3—681330—49000 119 Pyhävesi 14.97 . - 0.04 0.04 0.07 0.02 0.07 1.61 59 0.18 <0.01 0.30 0.07 3.7.1963 0—5 15.7.1965 0—8 3—678250—46940 235 Karijärvi 14.94 - 0.18 0.02 5.3 2.0 5.61 0.02 <0.01 0.22 16.7.1965 0—14 3—687410—50735 105 Kyyvesi 14.93 0.11 8.6 4.4 2.55 9.45 98 0.03 0.31 <0.01 0.03 0.01 0.38 16.7.1965 0—6 3—688025—50820 104 Kyyvesi 14.93 0.09 0.10 <0.01 0.03 2.8 0.01 0.18 23.7.1965 0—6 3—683505—48948 116 Ryökäsvesi 14.92 0.07 5.3 11.1 2.2 4.42 71 4.22 6.43 6.97 66 0.04 0.04 0.14 <0.01 0.02 0.21 23.7.1965 0—8 3—683590—48190 115 Vahvajärvi 14.92 0.08 1.1 3.24 5.40 0.01 0.01 0.30 0—6 23.7.1965 3—684160—48445 114 Liekunen 14.92 0.09 5.1 0.5 0.6 2.58 4.63 0.03 0.22 <0.01 54 0.08 49 0.04 0.18 <0.01 0.04 <0.01 0.24 22.7.1965 0—12 3—684825—49070 111 Puulavesi 14.92 0.02 0.02 0.14 22.7.1965 0—8 3—685460—47780 110 Puulavesi 0.03 2.8 1.2 <0.1 1.6 3.83 58 0.02 4.35 0.04 0.5 6.08 18. 17. 6.21 58 0.01 - 0.05 14.92 0.6 4.36 4.21 41 0.01 0.09 16. 15. 14. 13. 12. 11. 0.09 0.05 - 10. <0.01 0.02 <0.01 0.12 22.7.1965 0—8 14.92 3—686002—46956 Puulavesj 14.92 109 9. 8. Puulavesi 7. 0.02 6. <0.01 5. 0.12 4. 22.7.1965 0—12 3. 3—686567—47978 2. 108 1. Kirkkojärvi Hiidenvesi 23.03 532 520 519 3. 2—669458—50952 2—669989—51674 2—669750—50934 4. 535 536 Pyhäjärvi Pyhäjärvi Pyhäjärvi Köyliönjärvi Köyliönjärvi 34.03 34.03 34.03 34.05 34.05 1—677817—57330 1—678175—57168 1—677770—56360 1—675800—57400 1—677090—57290 1—676908—56534 2—672436—47188 Näsijärvi Näsijärvi Näsijärvi Näsijärvi Näsijärvi Näsijärvi 35.31 35.31 35.31 35.31 35.31 35.31 405 404 403 402 401 400 2—685402—48902 2-684909—46884 2—684037—48500 2—683440—48624 2—682922—48722 2—682518—48713 6. The Kokemäenjoki river basin 6.1 Watercourses north of Lake Pyhäjärvi 538 537 534 533 Pyhäjärvi 34.03 518 Kirkkojärvi 27.03 5. Rivei basins of southwest Finland fjjdenvesj 23.03 2. 23.03 1. 6. 1 5.7.1963 0—8 15.7.1965 0—14 5.7.1963 0—8 15.7.1965 0—14 4.7.1963 0—10 15.7.1965 0—14 4.7.1963 0—8 15.7.1965 0—12 4.7.1963 0---12 15.7.1965 0—14 15.7.1965 0—12 11.7.1963 0—6 21.7.1965 0—2 11.7.1963 0—6 10.7.1963 0—1.5 10.7.1963 0—5 19.7.1965 0—2 10.7.1963 0—2 19.7.1965 0—2 10.7.1963 1 19.7.1965 0—2 9.7.1963 0—1 1.7.1963 1.7.1963 0—2 19.7.1965 0—1.5 19.7.1965 0—8 5. 0.21 0.14 0.17 0.17 0.18 0.24 0.28 0.17 0.24 0.12 0.29 9.21 3.26 7.83 0.22 0.22 0.26 0.21 0.18 0.19 0.28 0.70 0.64 6.81 2.28 0.90 7. <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.59 0.72 3.58 0.07 0.13 0.13 0.03 0.09 0.05 0.10 0.03 0.03 0.04 0.05 0.05 8. 0.01 0.01 <0.01 0.01 0.01 <0.01 <0.01 0.01 <0.01 0.01 0.05 0.80 0.61 1.98 0.05 0.02 0.04 0.03 0.05 0.09 0.07 0.03 0.02 0.39 0.26 0.03 9. - - - - - - - - <0.01 - - 0.03 0.09 0.02 <0.01 0.01 0.01 <0.01 <0.01 <0.01 - 0.30 <0.01 0.24 0.22 0.01 10. 0.13 0.04 0.09 0.04 0.05 0.07 0.13 0.07 0.12 0.07 0.09 6.65 1.69 2.17 0.09 0.05 0.07 0.10 0.03 0.04 0.11 0.20 0.25 5.93 1.52 0.30 11. 0.06 0.09 0.07 0.12 0.11 0.16 0.15 0.09 0.11 0.04 0.15 0.13 0.15 0.09 0.01 0.01 0.02 0.05 0.01 0.01 0.01 0.12 0.35 0.21 0.23 0.50 12. 31 26 37 28 32 25 26 29 27 28 33 124 160 128 72 62 96 59 77 56 79 45 54 87 76 75 13. 2.96 2.71 3.65 2.84 3.17 2.54 2.53 2.93 2.58 2.70 2.76 9.17 12.49 9.07 6.98 5.80 8.78 5.75 7.25 5.66 7.34 4.18 5.01 6.52 6.35 6.70 14. 2.16 3.34 1.70 3.17 2.86 2.73 2.44 2.56 1.11 2.16 3.52 3.98 4.47 2.97 2.86 4.09 2.56 3.75 2.40 3.45 3.52 3.73 5.10 4.37 2.59 3.93 15. 412 12.7 12.4 29.1 87.5 7.8 6.2 24.3 - 293 - 601 11.1 17. - - 3.0 0 2.0 - 1.0 - 1.0 - 1.9 0 109 - 2.5 - 2.7 3.0 7.8 6.0 2030 - 26.5 1970 19.7 174 26.0 4.7 2.0 4.7 10.0 4.0 1.8 3.5 - 17.0 - 19.0 12.5 16. 0.25 0.05 0.16 0.07 0.07 0.09 0.11 0.08 0.10 0.07 0.32 2.08 0.80 3.89 0.05 0.05 0.11 0.03 0.05 0.04 0.27 0.09 0.42 6.45 2.74 4.93 18. <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 <0.01 0.01 <0.01 <0.01 0.01 <0.01 0.01 <0.01 0.01 0.02 0.01 0.03 0.02 0.02 0.03 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.02 <0.01 <0.01 0.05 0.01 <0.01 0.06 <0.01 0.20 0.01 0.16 0.36 0.19 0.38 0.10 0.05 0.08 0.34 0.02 0.01 0.05 0.25 0.15 0.28 0.26 0.18 0.50 0.39 0.11 0.16 0.42 0.33 0.46 0.67 0.78 0.24 0.78 1.06 0.91 0.54 5.7.1963 0—7 14.7.1965 0--12 14.7.1965 0—10 14.7.1965 0—10 14.7.1965 0—10 5.7.1963 0—8 14.7.1965 0—18 5.7.1963 0—4 16.7.1965 0—3 5.7.1963 0—7 16.7.1965 0—10 6.7.1963 0—4 16.7.1965 0—1 8.7.1963 0—7 16.7.1965 0—12 8.7.1963 0—8 16.7.1965 0—10 16.7.1965 0—12 8.7.1963 0—7 16.7.1965 0—8 8.7.1963 0—8 17.7.1965 0—12 17.7.1965 0—8 8.7.1963 0—2 4.7.1963 0—4 14.7.1965 0—4 17.7.1963 0—10 23.7.1965 0—16 1.7.1963 0—10 23.7.1965 0—12 2—686546—49675 2—687064—50226 2—687346—50718 2—687773—50555 2—688184—50530 2—687963—51159 2—688126—51610 2—688428—50381 2—688114—50413 2—689265—50208 2—689065—49392 2—689262—48835 2—690910—48658 2—691638—48276 2—694975—50520 2—691785—51530 2—682714—46161 2—683414—45878 408 409 410 411 412 420 421 413 414 415 416 417 418 419 692 285 383 384 Palovesi Jäminginselkä Ruovesi Ruovesj Mustaselkä Hanhonvuolle Paloselkä Syvinginsalmi Tarjannevesi Tarjannevesi Visuvesi Vaskivesi Toisvesi Toisvesi Ähtärinjärvi Pihlajavesi Mahnalanselkä Kirkkojärvi 35.32 35.32 35.33 35.33 35.33 35.33 35.33 35.41 35.41 35.41 35.41 35.41 35.42 32.42 35.43 35.48 35.51 35.52 - - - - <0.01 <0.01 0.02 <0.01 0.01 <0.01 - 0.01 9. 8. <0.01 7. 0.29 6. 15.7.1965 0—12 5. 2—686076—49184 4. 406 3. Näsijärvi 2. 35.31 1. 18. 0.19 0.12 0.42 17. 4.0 3640 2.0 0.08 0.38 0.07 0.74 0 767 <0.1 240 707 2.5 5.0 0 5.0 0.3 4.0 6.0 2.71 2.38 0.10 1.84 3.11 4.06 2.77 3.64 3.11 3.86 3.47 0.98 0.45 0.58 0.89 4.46 3.23 3.59 3.24 3.96 3.51 11 4 5 8 46 32 38 31 40 36 0.31 0.02 0.01 0.05 0.09 0.06 0.03 0.03 0.02 0.07 0.11 0.03 0.09 <0.01 <0.01 0.14 0.08 0.23 0.22 0.15 0.43 0.27 0.07 0.07 0.28 0.14 - 14.1 0.7 1.4 2.7 1.0 0.7 4.0 134 8.5 2210 2.82 4.02 2.38 2.35 3.55 4.19 3.64 3.53 3.29 5.99 3.63 4.56 5.14 4.07 5.72 3.81 34 69 40 49 56 45 67 40 0.13 0.09 0.01 0.01 0.04 0.16 0.04 0.11 0.32 0.50 0.74 0.20 0.65 0.88 0.64 0.41 <0.01 <0.01 0.01 - - - <0.01 - 6.3 10.0 - 55.7 438 • 0.16 0.14 0.15 1.13 0.16 0.11 0.36 0.41 0.17 0.23 - 1.6 - 1.0 3.18 4.24 4.12 3.85 44 39 0.04 0.07 0.11 0.18 <0.01 - - 9.5 0.7 0.31 0.07 0.06 <0.01 0.02 0.07 0.01 0.02 0.04 0.03 0.60 2.0 2.5 3.53 4.03 - - 3.67 12.6 69.1 - 4.30 3.34 - - - - - - 5.6 15.4 0.4 - - - 37 <0.01 <0.01 2.0 3.0 2.61 3.24 3.09 2.82 28 26 0.02 0.04 0.02 0.03 3.27 3.25 0.03 3.0 0.97 3.22 30 0.07 30 0.07 0.31 - - 0.09 2.35 1.74 17 0.14 0.04 - 2.43 3.51 3.19 2.74 0.1 2.03 2.50 0.08 0.12 0.07 0.24 32 27 0.07 0.22 25 16. 15. 14. 13. 12. 11. 42 33 - - - - - - - - - - * - - - - - - - 10. 389 390 392 393 394 423 424 286 287 425 Kyrösjärvi Kyrösjärvi Parkanojärvi Kankarijärvi Nerkoonjärvi Nerkoonjärvi Kuivasjärvi Aurejärvi Kuorevesi Kuorevesi Keurusselkä Keurusselkä Keurusselkä 35.52 35.52 35.53 35.53 35.53 35.53 35.56 35.57 35.61 35.61 35.62 35.62 35.62 426 427 428 Keurusselkä Kaijanselkä Ukonselkä 35.62 35.62 35.62 396 391 388 387 Kyrösjärvi 35.52 386 3. Kyrösjärvi 2. 35.52 1. 2—689218—52444 2—689141—52869 2—688822—53516 2—688183—53462 2—689412—53538 2—689760—53500 2—687280—53693 2—687814—53267 2—688180—46705 2—689442—44837 2—689179—45768 2—689500—46070 2—689836—45363 2—687446—44902 2—685674—44894 2—684942—44892 2—685415—45282 2—684743—45862 4. 6. 22.7.1965 0—12 22.7.1965 0—10 22.7.1965 0—10 9.7.1963 0—4 22.7.1965 0—6 5.7.1963 0—8 14.7.1965 0—4 4.7.1963 0—8 14.7.1965 0—13 3.7.1963 0—8 28.7.1965 0—9 3.7.1963 0—6 28.7.1965 0—10 3.7.1963 0—10 28.7.1965 0—8 3.7.1963 0—8 27.7.1965 0—10 28.7.1965 0—10 3.7.1963 0—8 28.7.1965 0—10 3.7.1963 0—6 28.7.1965 0—10 27.7.1963 0—8 28.7.1965 0—10 2.7.1963 0—8 23.7.1965 0—10 23.7.1965 0—9 2.7.1963 0—10 23.7.1965 0—10 27.7.1963 0—10 23.7.1965 0—10 5. 0.19 0.18 0.18 0.18 0.21 0.58 0.58 0.51 0.62 0.21 0.18 0.35 0.19 0.39 0.24 1.40 0.42 0.64 0.27 0.24 0.39 0.40 0.58 0.28 0.21 0.31 0.63 0.18 0.24 0.51 0.16 7. 0.01 <0.01 0.03 0.01 <0.01 0.04 0.04 0.04 0.02 0.01 0.01 0.01 <0.01 0.08 0.02 0.03 0.01 0.23 0.01 0.01 0.03 0.01 0.01 <0.01 0.02 0.01 0.01 0.02 0.01 0.16 <0.01 8. <0.01 0.01 0.01 0.02 <0.01 0.02 0.03 0.01 0.06 0.01 <0.01 0.03 0.01 0.02 0.01 0.03 <0.01 <0.01 0.01 <0.01 0.05 0.09 0.05 0.05 0.01 0.01 <0.01 0.01 0.01 0.01 <0.01 9. - - <0.01 - <0.01 - <0.01 <0.01 <0.01 <0.01 - <0.01 <0.01 - - - - - - - 0.01 <0.01 <0.01 <0.01 - - <0.01 - <0.01 - <0.01 10. 0.12 0.10 0.14 0.16 0.14 0.44 0.48 0.29 0.47 0.17 0.14 0.27 0.14 0.29 0.17 1.34 0.38 0.38 0.23 0.15 0.29 0.27 0.38 0.19 0.15 0.20 0.53 0.13 0.14 0.30 0.12 11. 0.05 0.06 0.01 <0.01 0.05 0.08 0.03 0.17 0.07 0.02 0.03 0.04 0.05 0.01 0.04 0.03 - 0.02 0.03 0.07 0.01 0.03 0.13 0.03 0.03 0.09 0.10 0.03 0.08 0.04 0.04 12. 49 62 42 49 44 62 73 52 78 49 54 56 45 26 22 23 31 40 41 27 80 48 60 36 45 41 34 47 33 55 27 13. 4.85 6.25 4.26 4.93 4.51 5.60 6.70 4.76 6.88 4.76 5.32 5.42 4.64 2.49 2.28 2.06 2.93 3.77 4.05 2.74 7.59 4.55 5.53 3.59 4.48 4.07 3.16 4.81 3.27 5.14 2.76 14. 4.03 3.69 3.48 3.49 3.93 3.70 3.58 2.36 3.36 3.61 3.36 2.03 4.23 2.85 2.90 3.71 2.08 3.36 3.43 3.71 3.45 4.35 3.70 3.82 3.69 3.93 3.43 3.33 3.80 3.45 4.06 15. - 1.8 601 - 13.2 9.8 26.5 16.0 29.4 3.2 63.1 - 30.9 13.4 56.7 45.3 17. 1.3 2.4 2.7 1.7 1.2 2.7 2.2 5.0 5.0 0.8 3.3 6.0 3.5 52.0 33.9 127 24.0 1.7 7.4 327 2.4 53.1 1.5 11.6 14.1 7.2 2.0 0.8 1.0 1520 - 0.7 1.0 - 1.3 4.0 1.7 3.2 3.3 5.0 3.3 - 7.0 3.5 3.0 6.0 16. 0.55 0.06 0.11 0.06 0.08 0.17 0.19 0.21 0.36 0.07 0.08 0.29 0.07 0.10 0.26 0.28 0.13 0.59 0.10 0.11 0.13 0.10 0.15 0.14 0.04 0.25 0.17 0.04 0.09 0.31 0.11 18. 00 2. 3. 4. 5. 377 378 379 490 491 Pyhäjilrvi Pyhäjärvi Pyhäjärvi Korteselkä Konhonvuolle Lotilanjärvi Vanajavesi Vanajavesi Vanajavesi Vanajavesi Vanajavesi Vanajavesi Vanajavesi Lehijärvi Katumajärvi Kalvolanjärvi 35.21 35.21 35.21 35.22 35.22 35.22 35.22 35.22 35.22 35.23 35.23 35.23 35.23 35.23 35.23 35.26 493 496 495 492 489 488 487 486 483 382 381 376 Pyhjkrvi 35.21 2—677620—50437 2—676482—52778 2—677042—51679 2—677808—51772 2—676346—52651 2—677302—52172 2—678630—51364 2—678903—49195 2—678614—50280 2—679120—49904 2—679614—50042 2—-678897—49203 2—679467—48877 2—680163—48177 2—680610—47428 2—681488—47495 2—682000—48550 6. 9.7.1965 0—3 4.7.1963 0—4 4.7.1963 0—6 15.7.1965 0—7 5.7.1963 0—6 9.7.1965 0—8 4.7.1963 0—2 9.7.1965 1 4.7.1963 0—4 15.7.1965 0—10 9.7.1963 0—8 15.7.1965 0—10 9.7.1963 0—1 8.7.1965 0—1 9.7.1963 0—8 15.7.1965 0—10 8.7.1963 0—6 15.7.1965 0—7 8.7.1963 0—4 8.7.1965 0—6 17.7.1963 0—8 7.7.1965 0—7 17.7.1963 0—6 7.7.1965 0—7 17.7.1963 0—12 7.7.1965 0—6 7.7.1965 0—10 17.7.1963 0—9 7.7.1965 0—10 20.7.1963 0—8 6.7.1965 0—12 6.2 Lake Pyhäjärvi and watercourses to the east of it 1. 45.0 18.6 7.40 0.23 1.67 2.64 1.23 3.95 11.5 0.70 0.48 1.10 2.81 8.37 1.16 9.49 2.00 2.00 22.7 2.16 4.04 3.64 2.17 2.23 1.92 0.27 2.14 1.23 0.29 5.43 2.23 7. 41.3 14.1 0.09 0.01 0.20 0.01 0.05 0.06 0.04 0.15 0.05 0.11 0.06 0.30 0.07 0.05 0.02 0.01 - - 0.05 0.07 0.01 0.07 0.02 0.01 0.02 0.02 <0.01 0.21 <0.01 8. 0.72 0.35 0.45 0.06 0.57 0.03 0.52 0.84 0.37 0.07 0.06 0.05 0.13 1.29 0.04 0.12 0.15 0.67 22.6 0.02 0.10 0.09 0.10 0.08 0.04 0.01 0.05 0.07 0.01 0.18 0.02 9. 0.08 0.32 <0.01 <0.01 <0.01 0.01 0.05 0.21 0.08 <0.01 <0.01 <0.01 0.08 0.07 0.02 0.07 0.07 0.27 - - 0.11 <0.01 0.09 0.01 - 0.01 <0.01 - <0.01 <0.01 - 10. 3.64 2.85 6.79 0.09 0.78 2.50 0.51 2.38 10.9 0.42 0.15 0.61 2.25 6.49 0.76 8.80 1.60 0.73 0.02 2.14 3.31 3.41 1.70 2.04 1.55 0.24 1.96 0.96 0.27 4.25 1.71 11. 0.12 0.11 0.06 0.08 0.11 0.09 0.10 0.46 0.11 0.06 0.22 0.32 0.29 0.22 0.28 0.44 0.15 0.32 - - 0.48 0.06 0.27 0.03 0.29 0.01 0.11 0.19 0.01 0.79 0.49 12. 79 64 71 35 91 59 87 121 103 73 65 79 117 108 95 123 112 79 6 15 104 76 92 68 89 36 92 99 39 69 44 13. 5.58 4.18 4.95 3.16 7.37 4.40 7.06 9.63 7.60 6.32 6.13 6.87 9.47 8.13 8.13 9.44 8.59 6.31 0.93 0.38 8.11 6.11 7.43 5.56 7.45 3.30 7.64 8.61 3.66 5.39 3.48 14. 4.25 1.70 1.31 0.63 3.14 4.04 3.35 3.67 3.02 3.51 3.83 3.76 2.57 4.61 2.16 4.58 4.48 1.72 4.37 0.85 3.51 4.89 1.90 4.87 3.41 3.20 2.58 2.29 4.48 3.61 2.94 15. 660 - 92.2 - 232 17. - • 21.0 - - 53.2 625 36.9 571 218 809 - 12.5 - - - - 11.0 1420 3.5 0.7 - 32.0 41.0 659 26.5 8010 14.0 12.5 18.0 1980 30.0 5370 20.0 8.6 51.3 9.7 13.0 3980 - 42.0 - 9.0 11.0 7.7 12.4 31.0 4260 - 18.5 1700 18.0 - 13.5 - 13.5 16. 125 37.7 0.27 0.05 0.68 0.39 1.88 0.69 2.25 0.41 0.22 0.47 1.02 1.68 1.23 1.92 0.47 0.32 24.6 <0.01 1.70 0.77 1.14 0.60 0.62 0.14 0.76 1.18 0.16 5.15 1.18 18. 441 442 Längelmävesi Längelmävesi Längelmävesi Längelmävesi lso-Löyräneenjärvi466 35.72 35.72 3 5.72 35.72 443 440 439 438 485 484 436 3 5.72 Roine 35.71 435 Längelmävesi Roine 35.71 434 35.72 Pälkänevesi 35.71 433 Längehnävesi Pälkänevesi 35.71 430 432 35.72 Pälkänevesi Mallasvesi Mallasvesi 35.71 35.71 429 Mallasvesj Mallasvesi 35.71 515 35.71 Rutajärvi 35.28 494 3. 35.71 Kalvolanjärvi 2. 35.26 1. 2—683107—54501 2—684189—5345 1 2—683839—52892 2—683354—52142 2—682572—5 1832 2—682100—51194 2—681547—50935 2—679516—50187 2—679700—50450 2—681193—50702 2—680617—50561 2—680500—51702 2—680676—51982 2—680685—52625 2—680076—51180 2—679812—50805 2—677327—47161 2—677174—50900 4. 6. 20.7.1965 0—9 12.7.1965 0—8 10.7.1963 0—8 12.7.1965 0—12 10.7.1963 0—8 12.7.1965 0—10 10.7.1963 0—8 9.7.1965 0—12 10.7.1963 0—6 9.7.1965 0—10 8.7.1963 0—8 8.7.1965 0—12 8.7.1963 0—1 8.7.1965 0—1 8.7.1965 0—5 12.7.1963 0—9 9.7.1965 0—12 12.7.1963 0—11 9.7.1965 0—12 19.7.1965 0—12 11.7.1963 0—8 19.7.1965 0—12 11.7.1963 0—8 19.7.1965 0—12 8.7.1965 0—14 12.7.1963 0—10 8.7.1965 0—14 17.7.1963 0—-8 12.7.1965 0—12 5.7.1963 0—6 9.7.1965 0—8 5. 0.07 0.32 0.29 0.17 4.21 0.49 0.14 0.45 0.35 0.16 0.17 0.09 0.24 0.67 0.71 0.12 0.07 0.13 0.05 0.06 0.10 0.09 0.29 0.24 0.03 0.26 0.13 1.84 1.80 1.61 10.6 7. 0.04 <0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.03 0.01 0.03 <0.01 0.04 0.07 0.32 0.01 <0.01 0.01 <0.01 <0.01 0.02 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 0.09 0.12 0.69 0.77 8. 0.01 0.03 0.02 0.01 3.94 0.04 0.01 0.02 0.03 0.01 0.04 0.01 0.04 0.02 0.01 0.02 <0.01 0.02 <0.01 0.01 0.02 0.01 0.03 0.01 <0.01 0.04 <0.01 0.03 0.05 0.08 1.31 9. - <0.01 - - <0.01 - - - - <0.01 <0.01 - <0.01 <0.01 <0.01 - <0.01 <0.01 - - - - - - - <0.01 - <0.01 0.01 0.02 0.05 10. <0.01 0.26 0.25 0.13 0.21 0.38 0.09 0.31 0.28 0.13 0.09 0.05 0.13 0.57 0.38 0.08 0.04 0.10 0.03 0.02 0.05 0.02 0.24 0.18 0.02 0.10 0.13 1.12 1.51 0.72 8.45 11. 0.01 0.03 0.01 0.03 0.04 0.06 0.01 0.10 0.02 0.01 0.01 0.03 0.02 0.02 0.01 0.02 0.03 <0.01 0.01 0.03 0.01 0.05 <0.01 0.05 0.01 0.11 <0.01 0.60 0.11 0.10 0.04 12. 34 73 61 56 67 80 61 65 67 66 57 45 101 82 73 54 43 57 45 40 53 35 62 28 28 52 37 76 81 118 125 13. 3.10 6.95 5.71 5.69 5.80 7.49 6.27 6.18 6.68 7.15 5.70 4.76 9.91 7.51 7.11 5.36 4.78 5.66 5.17 4.40 5.55 3.93 6.23 2.92 3.72 5.07 4.20 6.62 6.95 9.89 10.20 14. 4.42 3.98 4.54 3.27 3.97 2.33 4.27 4.30 3.39 4.83 3.19 4.15 4.45 5.28 2.36 3.60 2.41 3.20 2.76 2.92 2.97 3.79 3.88 4.30 3.42 3.94 3.52 3.33 3.81 2.18 3.93 15. 17. 0.7 4.0 2.5 7.0 3.0 11.5 3.0 4.0 3.2 6.5 9.0 5.5 9.7 4.4 4.7 11.0 2.7 7.5 2.3 - 1.7 2.5 - 4.0 - 1.0 4.5 12.5 31.0 1.2 31.0 1.3 37.6 4.4 287 52.7 5.2 36.4 117 5.4 11.4 7.8 9.6 213 74.2 16.7 12.9 15.4 - 0.5 480 - 1.2 - 0.6 2.1 58.6 43.2 22.5 2300 22.5 1780 16. 0.01 0.58 0.13 0.06 0.11 0.39 0.07 0.79 0.39 0.15 0.08 0.04 0.13 0.36 0.20 0.05 0.03 0.05 0.03 0.03 0.03 0.04 0.10 0.16 0.02 0.13 0.16 0.55 0.83 1.45 2.09 18. 2—679629—51787 2—679538—51954 2—679242—54700 2—680880—55333 2—675030—53469 2—677260—56107 445 455 464 465 467 431 500 502 503 504 446 447 448 509 511 506 507 498 512 Vesijärvi Oriselkä Kuoksenjärvi Pitkävesi Hahmajärvi Pintele Ilmoilanselkä Hauhonselkä Hauhonselkä Iso-Roinevesi Kukkiajärvi Kukkiajärvi Vehkajärvi Kuohijärvi Vesijako Pyhäjärvi Ormajärvi Kernaalanjärvi Pääjärvi 3 5.73 35.74 35.76 35.76 35.76 35.77 35.77 35.77 35.77 35.77 35.78 35.78 35.78 35.78 35.78 35.79 35.79 35.81 35.83 6. 21.7.1965 0—9 2—683203—55320 8.7.1965 0—10 2---677793—55264 2—678481—53950 0.66 0.17 3.31 6.39 5.7.1963 0—4 15.7.1965 0—5 12.7.1963 0—6 7.7.1965 0—9 5.89 0.18 0.01 0.02 0.03 0.14 4.12 0.01 0.02 2.04 12.7.1963 0—6 8.7.1965 0—8 0.01 0.01 0.04 0.02 14.7.1965 0—9 0.02 0.01 0.02 0.15 0.01 0.01 0.26 0.20 0.88 0.02 0.08 0.02 0.02 0.02 0.03 0.01 0.02 0.02 0.02 0.03 <0.01 0.02 0.01 0.02 0.04 0.01 <0.01 - 0.07 0.20 <0.01 - - <0.01 - - - - - - - - • <0.01 <0.01 - <0.01 - - - <0.01 - <0.01 <0.01 <0.01 0.08 0.03 0.03 <0.01 - 10. 0.02 0.01 9. 0.01 0.01 <0.01 0.01 0.02 0.10 0.01 0.05 - 0.01 0.02 0.02 <0.01 0.02 0.01 0.01 0.28 0.19 0.60 0.23 0.34 0.66 0.13 0.29 2.48 0.69 0.19 0.06 0.24 0.19 0.08 0.24 0.07 1.01 0.02 0.02 0.01 0.01 0.12 0.16 0.25 0.40 8. 7. 0.32 0.16 11.7.1963 0—6 13.7.1965 0—10 11.7.1963 0—7 20.7.1965 0—7 18.7.1963 0—10 20.7.1965 0—12 19.7.1965 0—10 2—680230—54082 2—681916—54629 11.7.1963 0—8 19.7.1965 0—10 2—678864—52786 2—680270—53616 14.7.1965 0—10 2—678497—52676 8.7.1965 0—1 9.7.1963 0—1 8.7.1965 0—1 18.7.1963 0—6 14.7.1965 0—7 2--678843—52628 21.7.1965 2—683111—54502 0—10 21.7.1965 0—8 12.7.1965 0—9 12.7.1963 0—6 13.7.1965 0—8 12.7.1963 0—8 13.7.1965 0—14 5. 2—684034—55062 2—683949—52131 2—682948—51282 2—682105—50524 444 Vesijärvi 35.73 4. 3. 2. 1. 0.19 0.13 2.83 5.64 0.37 0.14 1.85 0.24 0.13 0.14 0.16 0.24 0.05 0.28 0.57 0.10 0.21 1.81 0.54 0.14 0.06 0.16 0.15 0.03 0.11 0.04 0.46 0.14 0.34 0.07 0.03 11. 0.45 0.02 0.12 0.21 0.52 0.02 44 45 108 116 65 34 63 58 51 0.05 <0.01 0.10 48 59 65 47 85 86 52 63 61 73 85 17 79 54 31 65 47 53 95 58 48 34 13. 0.09 0.01 0.31 0.02 0.03 0.05 0.02 0.05 0.63 0.02 0.01 0.01 - 0.02 0.01 0.07 0.02 0.50 - - 0.01 0.10 12. 4.09 4.48 8.58 9.08 4.97 3.15 5.41 5.35 4.88 4.59 5.89 6.12 4.62 8.19 7.45 5.60 5.98 5.19 6.69 8.30 1.77 7.58 5.41 2.67 6.12 5.42 4.85 9.20 5.42 4.81 3.44 14. 4.42 2.66 2.34 3.77 2.87 2.51 3.33 4.60 3.24 4.29 3.96 4.86 4.19 4.47 3.46 3.89 3.87 5.02 4.69 4.17 4.21 2.86 2.62 3.83 3.7 60.1 38.7 28.9 0.1 0.5 0.2 607 - 13.8 0.7 6.2 17. 2.5 1.3 22.5 55.0 - - 7.5 0.4 0.8 1.0 0.7 1.0 0.3 2.3 1.9 0.8 2.4 3.0 0.3 188 634 - - 2.6 5.3 0.3 4.9 0.8 1.3 1.6 7.9 1.1 1.6 0.5 18.0 6720 4.2 9.0 2.7 4.0 4.0 6.0 0.3 1.2 0.4 3.88 16.0 3.60 - 8.3 5.0 5.0 16. 3.83 2.80 5.14 4.23 3.61 15. 0.22 0.04 1.26 2.22 13.3 0.17 1.94 0.29 0.06 0.13 0.06 0.22 0.04 0.12 0.33 0.05 0.16 0.66 0.38 0.07 0.02 0.05 0.19 0.02 0.07 0.02 0.27 0.08 0.12 0.11 0.08 18. Lopenjärvi 2. 499 3. 2—673123—52354 4. 517 Pyhäjärvi 35.93 463 461 462 Karvianjärvi Karhijärvi Karhijärvi Kuortaneenjärvi Evijärvi Evijärvi Lappajärvi Lappajärvi 36.04 36.09 36.09 44.04 47.02 47.02 47.03 47.03 686 685 672 671 695 459 Inhottujärvi 36.02 457 Isojärvi 36.01 6. 3.7.1963 0—3 1—681045—57500 2—700530—48780 2—699575--48210 2—703500—47280 2—703169—47305 2—696795—47305 2—683204—42240 1—683110—57611 2—690200—42112 1—683531—54020 1—685036—54245 1 11.7.1963 0—5 11.7.1963 0—1 11.7.1963 2.5 11.7.1963 0—1 11.7.1963 26.7.1965 0—4 16.7.1963 0—6 26.7.1965 0—7 3.7.1963 0—6 27.7.1965 0—7 16.7.1963 0—4 16.7.1963 0—5.5 27.7.1965 0—8 12.7.1965 0--3.5 3.7.1963 0—3 1—681184—57123 2—674184—48715 3.7.1963 0—4 21.7.1965 0—2 26.7.1965 0—12 5.7.1965 0—16 11.7.1963 0—8 5.7.1965 0—12 21.7.1965 0—10 11.7.1963 0—10 21.7.1965 0—10 12.7.1965 0—2 5. 2—681210—57422 2—682260—43574 2—681778—46151 2—681479—45723 2—681226—45052 2—680504—44491 7. River basins of Ostrobotbnia 545 540 Sääksjärvi Sääksjärvi 35.15 539 Sääksjärvi 35.15 35.15 372 458 Kulovesi Mouhijärvi 35.15 371 35.13 35.13 370 Kulovesi Kulovesi 35.13 369 Rautavesi 35.13 6.3 Watercourses below the River Nokianvirta 35.87 1. 0.54 0.90 1.11 1.55 2.72 7.29 14.5 3.46 0.15 0.35 0.37 2.05 2.20 3.49 2.85 4.34 2.87 1.78 0.82 1.12 5.79 1.09 1.13 1.84 2.80 0.24 7. 0.07 0.11 0.90 1.24 0.13 2.22 2.46 1.24 0.12 0.09 0.06 0.05 0.02 0.12 0.78 0.04 <0.01 <0.01 0.02 0.02 0.02 0.16 <0.01 0.01 0.23 0.55 <0.01 0.14 <0.01 0.20 2.46 4.57 10.6 1.95 0.09 0.13 0.33 1.62 2.16 3.18 2.76 4.16 2.72 1.61 0.70 0.64 4.67 0.77 0.76 1.43 2.59 0.09 0.11 0.15 0.01 0.05 0.12 0.36 0.62 0.23 0.01 0.04 0.01 0.12 0.02 0.05 0.03 0.10 0.07 0.04 0.11 0.45 0.91 0.30 0.35 0.36 0.19 0.03 67 74 90 67 71 95 110 78 56 38 56 84 41 113 64 92 79 76 63 75 90 57 56 58 46 84 11.12.13. <0.01 0.01 <0.01 0.01 0.03 0.01 - 0.02 0.01 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 - - <0.01 10. 0.11 0.01 0.13 0.05 0.05 0.05 0.07 <0.01 0.02 0.13 0.02 0.02 0.03 0.01 0.09 9. 0.19 0.02 0.10 0.02 0.03 0.03 0.06 0.01 <0.01 0.08 <0.01 0.01 0.01 <0.01 0.02 8. 6.06 6.56 8.29 5.82 5.95 7.28 7.94 6.36 5.41 3.87 5.58 7.09 3.74 9.10 5.05 7.17 6.33 6.18 6.17 6.34 6.84 5.03 4.85 4.84 3.58 7.85 14. 193 395 410 73.7 141 441 8.7 18.0 15.0 3.06 4.50 7.0 4.43 23.0 3.18 - 41.0 135 336 97.9 17.4 - - 48.7 12.0 - 2.7 40.5 235 2.0 2.7 8.5 14.5 27.7 13.0 4310 10.5 4.7 5.4 4.5 241 5.0 1030 9.0 1270 13.0 3.67 2.55 2.58 4.06 3.16 4.19 3.56 2.91 4.29 4.03 2.50 1.89 4.98 2.63 2.53 3.00 13.5 14.0 17.0 1390 2.69 1.97 1.87 2.8 17. 3.3 232 5.5 2060 2.5 16. 4.27 2.63 3.87 15. 0.22 0.29 0.29 1.59 0.55 3.27 6.71 2.12 0.06 0.12 0.07 1.17 0.20 1.20 1.19 1.58 0.95 0.86 0.12 0.58 17.8 0.91 0.90 4.11 2.18 0.06 18. 690 691 678 683 566 565 Lappajärvi Lappajärvi Lestijärvi Reisjäxvi Pyhäjärvi Pyhäjärvi Ainalinjärvi lso-Laniujärvi 47.03 51.04 53.05 54.04 54.05 54.07 57.06 3—710280—46280 2—712440—56770 3—704915—44921 3—706645—45035 2—705660—54850 2—704710—54360 2—701350—48445 2—700375--48320 2—701170—48746 4. 587 585 589 592 Oulujärvi Oulujärvi Oulujarvi Oulujärvi Iijärvi Kiantojärvi Alanteenjärvi Nuasjärvi Pirttijärvi Kaitainjärvi 59.32 59.32 59.33 59.33 59.41 59.51 59.61 59.81 59.82 59.82 598 597 590 594 596 586 584 Oulujärvi 59.31 583 Oulujarvi 59.31 3—711966—57070 3—711650—56740 3—712420—54288 4—719540—45118 4—721509—45876 3—715490—55596 3—713880—53226 3—713592—52882 3—713438—51483 3—713262—49912 3—714736—49971 3—715966—49288 6. 8.7.1963 0—4 6.7.1965 0—4.5 8.7.1963 0—1 6.7.1965 0—1 11.7.1963 0—17 11.7.1963 0—8 11.7.1963 0—10 11.7.1963 0—4.5 11.7.1963 0—2 11.7.1963 0—5 11.7.1963 0—5 5. 26.7.1963 0—2 1.8.1963 0—6 7.7.1965 0—11 22.7.1963 0—5 2.7.1965 0—9 22.7.1963 0—2 5.7.1965 1 17.7.1963 0—5 5.7.1965 0—10 5.7.1965 0—10 5.7.1965 0—8 16.7.1963 0—8 9.7.1965 0—8 14.7.1965 0—10 14.7.1965 0—11 16.7.1965 0—6 20.7.1965 0—11 8. The Oulujoki, lijoki, Kuivajoki and Simojoki river basins 668 682 687 Lappajärvi 3. 47.03 2. 47.03 1. 0.60 0.79 0.53 0.45 0.59 0.12 1.47 0.19 0.61 0.26 0.66 0.39 0.32 0.33 0.32 0.26 0.51 0.58 0.59 0.55 0.54 0.18 1.02 1.31 0.20 0.67 0.72 0.73 7. 0.05 0.04 <0.01 0.04 0.03 0.02 0.02 <0.01 0.01 0.02 0.01 <0.01 0.01 <0.01 <0.01 0.01 0.01 0.04 <0.01 0.16 0.03 0.01 0.19 0.08 0.01 0.08 0.04 0.09 8. 0.03 0.03 0.02 0.02 <0.01 0.01 0.04 <0.01 0.01 0.02 0.04 0.01 0.01 0.01 0.02 0.01 0.01 - - - - <0.01 <0.01 <0.01 - - <0.01 - <0.01 <0.01 - <0.01 - - - <0.01 - - <0.01 0.01 - <0.01 - 10. 0.05 0.19 <0.01 0.08 0.10 <0.01 0.30 0.03 0.02 0.13 0.06 0.14 9. 0.43 0.54 0.45 0.36 0.46 0.07 1.11 0.15 0.56 0.18 0.56 0.24 0.20 0.27 0.26 0.24 0.48 0.46 0.34 0.31 0.39 0.12 0.53 0.97 0.11 0.31 0.57 0.42 11. 0.08 0.18 0.06 0.03 0.10 0.03 0.29 0.04 0.03 0.05 0.06 0.14 0.09 0.05 0.04 0.01 0.02 0.04 0.05 0.01 0.01 0.05 <0.01 0.21 0.07 0.13 0.05 0.08 12. 55 32 73 31 61 67 57 57 58 40 47 S 44 43 47 52 57 55 71 58 59 41 69 83 45 57 57 64 13. 4.91 4.96 5.36 3.65 4.45 3.07 6.04 3.14 4.89 6.36 5.09 4.03 4.67 4.03 4.41 5.02 5.33 4.81 6.24 4.93 5.02 4.07 6.33 7.21 4.43 5.05 5.01 5.59 14. 3.85 3.31 3.44 3.67 3.20 3.96 2.96 2.57 3.39 3.53 3.81 3.70 3.40 3.92 3.29 4.02 3.55 4.84 3.47 4.09 2.97 4.69 2.81 3.44 4.47 3.45 4.26 4.03 15. 1.5 3.0 1.5 3.0 2.0 0.5 6.0 0.3 1.0 7.0 2.5 8.0 4.0 1.3 2.5 7.0 7.0 3.3 5.5 - 3.0 1.3 12.0 7.3 2.5 5.0 12.0 3.7 16. 8.6 8.0 14.0 64.0 31.4 5.3 0.7 0.3 0.4 0.4 183 1.7 19.1 112 20.2 51.5 31.5 11.3 10.2 - 2.6 0.6 11.1 116 6.8 16.0 118 5.4 17. 0.13 0.44 0.18 0.06 0.35 0.02 0.43 0.04 1.18 2.00 0.71 0.09 0.11 0.12 0.14 0.11 0.20 0.16 0.35 0.05 0.05 0.05 0.18 0.57 0.05 0.26 0.26 0.37 18. 00 0.10 0.07 0.10 0.02 0.69 0.45 0.04 0.10 0.04 0.15 1.3 1.6 9.9 56.6 7.1 0.2 14.0 5.8 3.4 19.3 5.0 101 5.1 6.7 1.6 4.4 0.7 105 4.1 4.2 3.2 <0.1 0.1 29.6 1.8 10.5 9.1 0.5 0.8 1.7 7.0 2.0 0.5 4.0 5.5 3.0 6.0 2.8 5.0 2.2 1.5 2.8 2.3 2.7 5.0 3.8 1.0 4.5 0.7 1.0 1.0 1.5 4.2 4.1 3.98 3.12 3.63 3.64 3.13 3.49 3.30 3.92 4.34 4.44 3.28 3.66 2.98 3.87 3.84 4.41 2.68 3.87 4.29 1.85 2.94 3.57 2.97 4.24 3.43 3.84 3.74 3.33 5.47 7.20 42 39 41 41 34 58 77 0.05 0.01 0.01 <0.01 0.02 0.01 0.02 0.03 0.03 0.47 0.28 0.11 0.08 0.17 0.18 0.18 0.22 0.18 3.64 5.92 40 67 39 72 59 113 <0.01 0.01 0.01 <0.01 0.25 0.06 0.34 0.26 0.24 0.20 <0.01 <0.01 <0.01 <0.01 0.06 <0.01 0.02 0.07 0.04 1.17 0.07 0.15 0.01 0.06 0.28 0.01 0.38 0.41 0.58 1.38 5.19 0.76 10.7.1963 0—3 7.7.1965 0—3 10.7.1963 0—5 2.7.1965 0—5 9.7.1963 0—2 2.7.1965 0—2 4—731770—44740 3—724630—54330 3—728200—44940 571 569 564 Kurkijärvi Puhosjärvi Oijärvi 61.66 61.74 63.02 1 1 - - <0.01 - <0.01 - - - - - - 3.29 0.41 3.05 6.17 32 70 0.01 0.03 0.27 0.38 <0.01 <0.01 0.04 0.07 0.02 0.35 0.48 10.7.1963 0—6 7.7.1965 0—7 3—729900—56670 570 Kostonjärvi 61.62 1.8.1963 6.7.1965 1.53 0.13 6.43 9.74 75 115 0.05 0.02 0.88 1.02 0.11 0.07 0.15 0.11 1.19 1.22 11.7.1963 0—6 9.7.1965 0—6 4—726398—43992 572 Tyräjärvi 61.38 4.34 3.90 45 34 0.03 0.02 0.16 0.03 0.01 0.02 0.05 0.01 0.24 0.07 11.7.1963 0—8 9.7.1965 0—6 4—730320—47130 575 lijärvi 61.34 5.15 8.23 58 89 0.02 0.04 0.37 0.17 <0.01 <0.01 0.02 0.15 0.04 0.01 0.45 0.37 11.7.1963 0—6 9.7.1965 0—5.5 4—728640—46160 574 Kerojärvi 61.32 3.64 8.48 38 91 0.07 0.05 0.27 0.26 <0.01 <0.01 0.01 0.02 0.02 0.01 0.38 0.34 11.7.1963 0—9 9.7.1965 0—8 4—728044—46064 573 Irnijärvi 61.32 0.01 0.01 0.12 0.16 <0.01 <0.01 <0.01 0.04 0.01 <0.01 0.15 0.21 10.7.1963 0—1.7 6.7.1965 0—2.5 3—724680—51060 568 Jongunjärvi 61.21 <0.01 0.07 0.02 0.07 0.03 0.39 0.26 10.7.1963 0—1 6.7.1965 0—1.5 3—725433—49627 567 Pudasjärvi 61.13 0.01 0.01 0.02 -<0.01 0.22 0.21 59.93 29.7.1963 0—4 6.7.1965 0—10 4—715100—49269 606 Änättijärvi 59.92 0.02 0.01 0.01 <0.01 0.11 0.19 605 Änättijärvi 4—714408—49184 4—712607—47630 604 Lentua 59.91 - * 38 76 4.44 9.89 3.44 6.18 3.71 7.10 3.74 3.94 4.33 4.40 0.01 0.01 0.01 <0.01 47 44 0.06 0.02 0.31 0.13 1 29.7.1963 0—15 6.7.1965 0—10 6.7.1965 0.60 4—711380—47980 603 Lammasjärvi 59.91 - <0.01 2.19 3.60 0.06 0.10 16.0 16.3 1.7 1.5 3.98 3.66 4.10 4.83 43 52 0.10 0.05 0.23 0.43 -<0.01 0.01 2.10 0.69 0.53 0.07 0.10 0.09 0.06 0.16 0.08 0.19 0.06 0.12 0.05 0.04 0.33 0.31 0.66 0.13 0.43 2.2 6.2 0.5 2.0 3.22 2.34 4.32 5.36 47 55 0.12 0.01 18. 0.27 0.21 0.01 <0.01 601 Ontojarvi 59.91 <0.01 17. 16. 15. 14. 13. 12. 11. 0.35 0.49 599 Kiimasjärvi 59.82 - 10. 1.8.1963 0—6 7.7.1965 0—12 9. 8. 7. 4—711270—46312 6. 0.01 0.01 5. 0.01 0.02 4. 0.41 0.25 3. 1.8.1963 0—4 7.7.1965 0—8 2. 4—711212—43614 1. Simojärvi Simojärvi 64.05 64.05 619 618 617 3. 3—733495—49956 3—732570—50930 2—733260—50990 4. 623 624 Yli-Suolijärvi Ala-Suolijärvi Karhujärvi Unari Unari Pallasjärvi Jerisjärvi 65.39 65.39 65.39 65.59 65.59 65.65 67.47 612 613 Iso-Vietonen Raanujärvi 67.96 67.96 611 634 Jerisjärvi Miekojärvi 67.47 67.93 633 635 629 628 622 653 Kemijärvi 65.31 626 Kemijärvi 65.31 2—739830—53200 2—739090—52750 2—738640—51750 2—753560—50700 2—753860—50160 2—754940—50750 3—745540—44120 3—745460—44500 3—737868—56200 3—736236—54200 3—735144—54870 3—739280—52600 3-738485—51575 9. The Kemijoki and Tornionjoki river basins Simojärvi 2. 64.05 1. 12.7.1963 0.5 22.7.1965 0—2 12.7.1963 0—2 22.7.1965 0—4 12.7.1963 0—2 22.7.1965 0—4 20.7.1965 0—6 11.7.1963 0—2 20.7.1965 0—2 11.7.1963 0—2 20.7.1965 0—2 23.7.1965 0—2 11.7.1963 0—6 23.7.1965 0—6 28.7.1965 0—8 9.7.1963 0—1 29.7.1965 0—8 9.7.1963 0—2 30.7.1965 0—8 5.7.1963 0—10 26.7.1965 0—2 26.7.1965 0—4.5 14.7.1965 0—1 <0.01 0.05 0.02 0.01 0.01 0.03 0.05 0.01 0.02 0.02 0.01 0.02 0.01 0.01 0.01 8. 0.37 0.86 0.55 0.68 0.22 0.74 1.49 0.95 0.74 0.06 0.01 0.03 0.02 0.01 0.13 0.01 0.16 0.02 0.30 <0.01 0.60 <0.01 0.50 0.74 0.54 0.20 0.21 0.39 0.54 0.36 0.35 0.22 0.25 0.80 0.11 1.39 8.7.1963 0—4 0.17 7. 8.7.1963 0—2 6. 14.7.1965 0—6 5. 0.02 0.08 0.01 0.02 0.01 0.04 0.17 0.08 0.06 0.02 <0.01 0.09 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.30 0.01 0.34 0.01 9. <0.01 - <0.01 - <0.01 . <0.01 <0.01 0.01 - <0.01 <0.01 <0.01 - - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 - - - 10. 0.26 0.68 0.47 0.59 0.19 0.52 1.17 0.59 0.51 0.24 0.49 0.26 0.66 0.24 0.17 0.15 0.23 0.45 0.27 0.28 0.15 0.19 0.45 0.06 0.12 1.02 11. 0.03 0.09 0.05 0.05 <0.01 0.04 0.14 0.12 0.13 0.04 0.10 0.15 0.02 0.27 0.01 0.04 0.11 0.03 0.06 0.03 0.02 0.03 0.03 0.04 0.03 0.02 12. 63 74 50 70 51 82 81 71 87 27 34 77 47 56 62 50 74 61 70 71 101 86 74 38 40 66 13. 5.93 6.52 4.65 6.27 5.03 7.24 7.04 6.17 7.75 2.53 3.09 7.02 4.19 5.08 6.01 4.80 6.75 5.11 6.58 6.77 9.20 8.08 6.57 4.04 4.04 5.63 14. 4.08 4.03 4.42 3.62 3.42 3.58 4.22 4.12 3.72 3.64 2.80 2.79 4.32 3.73 4.26 4.20 3.58 3.20 1.92 4.04 4.47 4.13 3.73 3.72 4.13 4.08 15. 3.5 2.0 4.0 2.5 4.0 1.8 9.5 6.3 6.3 3.0 0.7 1.8 6.0 4.5 0.5 2.7 1.1 5.7 4.0 3.8 5.4 3.7 2.2 0.8 1.0 1.6 16. 7.1 3.2 24.4 6.5 7.9 0.9 169 287 46.9 3.9 1.0 1.8 12.6 21.0 0.1 7.1 0.4 0.7 4.8 107 2.9 2.2 5.8 0.8 1.7 9.2 17. 0.17 0.21 0.22 0.60 0.10 0.42 0.23 0.15 0.13 0.04 0.07 0.19 0.28 0.21 0.09 0.05 0.15 0.16 0.13 0.10 0.09 0.08 0.14 0.02 0.07 0.21 18. 2. 3. 4. 5. 578 Kuusamojärvi 74.01 580 Kiitämö 73.04 577 579 Kirpistö 73.04 Muojärvi 646 Kitkajärvi 73.02 74.01 637 Muddusjärvi 71.24 576 636 Muddusjärvi 71.24 74.01 642 Inarinjärvi 71.11 581 641 Inarinjarvi 71.11 Suininki 640 Enarinjärvi 71.11 Joukamojärvi 639 Inarinjärvi 71.11 73.04 638 Inarinjärvi 71.11 4—731118—47288 4—731440—48860 4—730720—49290 4—733040—48100 4--732260—48800 4—732020—48220 3—733390—56454 3—765700—49300 3—765300—49550 3—766250—54170 3—767460—55330 3—766800—53800 3—764700—52730 3—763524—52410 6. 11.7.1963 0—6.5 7.7.1965 0—7.5 11.7.1963 0—8 8.7.1965 0—8 12.7.1963 0—4.5 8.7.1965 0—4 8.7.1965 0—7 12.7.1963 0—4.5 8.7.1965 0—4 12.7.1963 0—6.5 8.7.1965 0—6 12.7.1963 0—4 16.7.1965 0—6 6.9.1963 0—6 7.7.1965 0—4 12.7.1963 0—6 7.7.1965 0—6 5.7.1965 0—6 5.7.1965 0—4 5.7.1965 0—4 5.7.1965 0—6 5.7.1965 0—10 10. River basins of northern Lapland and Kuusamo 1. 0.93 0.59 0.23 0.34 0.63 0.24 0.74 0.39 0.60 0.41 0.30 0.27 0.55 0.25 0.09 1.10 0.17 0.11 0.14 0.15 0.18 0.09 7. 0.27 0.01 0.01 0.01 0.12 0.01 0.01 0.08 0.01 0.03 0.01 0.01 0.01 <0.01 <0.01 0.01 0.01 0.01 0.03 0.02 0.01 <0.01 8. 0.03 0.05 0.0l 0.05 0.03 0.05 0.04 0.01 0.10 0.03 0.03 0.01 0.02 <0.01 0.01 0.01 0.01 <0.01 0.01 <0.01 <0.01 <0.01 9. <0.01 . <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 - - . <0.01 - <0.01 <0.01 <0.01 <0.01 10. 0.60 0.51 0.19 0.26 0.45 0.15 0.66 0.27 0.48 0.33 0.23 0.19 0.51 0.22 0.06 1.04 0.12 0.07 0.09 0.10 0.11 0.06 11. 0.03 0.02 0.02 0.02 0.03 0.04 0.02 0.02 0.02 0.02 0.03 0.06 0.02 0.03 0.02 0.04 0.04 0.03 0.02 0.01 0.05 0.01 12. 71 88 38 79 55 94 86 50 89 52 69 52 77 24 38 44 49 41 40 40 49 46 13. 6.02 7.69 3.69 7.14 4.72 8.81 7.45 4.50 7.78 4.73 6.49 5.01 6.74 2.22 3.65 3.77 4.49 4.04 3.97 3.84 4.64 4.55 14. 3.13 3.21 3.71 3.37 3.70 3.51 3.18 3.69 2.89 2.87 3.81 2.94 3.93 3.57 1.73 3.22 2.20 3.49 2.38 3.00 3.12 3.33 15. 3.4 4.6 3.5 3.6 3.2 6.3 2.7 1.2 1.6 3.2 2.7 2.7 1.8 0.3 0.4 0.7 0.3 0.6 0.8 0.4 0.5 2.0 16. 25.8 3.2 12.2 1.5 1.9 2.6 2.2 0.8 1.4 13.0 0.8 2.2 3.8 0.1 0.4 0.2 0.2 1.5 1.3 0.8 0.4 1.1 17. 0.30 0.13 0.07 0.07 0.13 0.06 0.17 0.05 0.08 0.50 0.09 0.07 0.14 0.10 0.04 0.14 0.09 0.03 0.03 0.02 0.05 0.06 18. 00 90 Appendix 2. Odiferous planktonic algae and their critical limits (Seppovaara 1971). Plankton groups and species Cyanophyta Anabaena Aphanizomenon Comphosphaeria Microcystis Oscillatoria Chlorophyta Ankistrodesmus Chlamydomonas Closterium Eudorina Pandorina Scenedesmus Critical Iimits individuals/ lOOmi (530 000) (660 O00) (3.500 O00) (5.300 000) coloniesl lOOmi (20 000) 53 ooo2 20 000 17 000 2 17 ooo 260 ooo2 (300 000) 400 000 360 000 20 000 (20 000) Euglenophyta Eugiena 80 000 Chrysophyta Dinobryon Mallomonas Synura Asterionella Cyclotella Melosira Synedra Tabellaria 300 000 45 000 20 ooo2 300 000 220 000 250 000 300 000 75 000 Pyrrophyta Ceratium Cryptomonas 20 000 120 000 8 000 1 0002 150 000 (1 ooo) 1 These values presented by Seppovaara were not used 2 New values (due to different method of calculation that were used) used in this investigation 91 Appendix 3. Indicator species. A. Phytoplankton species indicating eutrophy Actinastrum Hantzschii Lagerheim Amphiprora paludosa W. Smith Ankistrodesmus falcatus v. spirilliforinis West Characiopsis longipes (Rab.) Borzi Chroococcus dispersus (Keissi.) Lemm. Chrysococcus minutus (Fritsch) Nyg. Closteriopsis longissima Lemm. Closterium aciculare T. West C. gracile Brb. C. macilentum Brb. C. pronum Brb. Coelastrum cambricum Archer. Diatoma elongatum (Lyngb.) Ag. Dichtyosphaerium ehrenbergianum Naeg. D. elegans Bachman Dimorphococcus lunatus A.Br. Eugiena acus E. E. cbarkowiensis Swir. E. proxima Dang. Franceia avaus (Franc) Lemm. Glenodinizsm gymnodinium Penard Kirchneriella elongata G.M. Smith K. lunaris (Kirchn.) Moebius K. obesa (W.West) Schmidle Lagerheimia genevensis Chod. Lepocinclis texta (Duj.) Lemm. cm. Conr. Lyngbya limnetica Lemm. Melosira granulata (E.) Ralfs. M. varians C.A. Agardh Micractinium pusillum Fresenius Microcystis aeruginosa Kg. M. flos-aquae (Wittr.) Kirchn. M. viridis (A.Br.) Lemm. Nitzschia acicularis W. Sm. Oscilatoria limnetica Lemm. Pandorima morum (MUller) Bory. Pediastrum biradiatum Meyen P. duplex Meyen P. gracillium (W. et G.S. West) Thunmark P. limneticum Thunmark P. tetras (Ehrenb.) Ralfs. P. tetras v. tetraodon (Corda) Rabenhorst Peridinium bipes Stein P. penardiforme Lindem. P. curvicauda Swir. Phacus longicauda (E.) Duj. P. tortus (Lemm.) Skv. Polyedriopsis spinulosa Schmidle Scenedesmus abundans (Kirchn.) Chod S. armatus v. bicaudatus (Guglielmetti-Printz) Chod S. falcatus Chod. S. naegelii Breb. S. opoliensis P. Richt S. ovalternus v. graewenitzii (Bernard) Chod. Selenastrum gracile Reinsch Sphaerozosma granulatum Roy et Biss. Staurastrum paradoxum v. parvum West Strombomonas verrucosa (Daday) Defi. Synedra berolinensis Lemm. Tetraedron caudatum (Corda) Hansgirg. T. limneticum Borge T. planctonicum G.M. Smith T. trigonum (Naeg.) Hansgirg. Tetrastrum staurogeniaforme (Schroeder) Lemm. Trachelomonas hispida (Perty) Stein cm. Defi. T. intermedia Dang. T. planctonica Swir. T. varians Defi. T. volvocina E. T. volvocinopsis Swir. B. Phytoplankton species indicating oligotrophy Arthrodesmus incus (Brb.) Hass. Cosmarium contractum Kirchn. Crucigenia rectangularis (A. Braun) Gay Diatoma vuigare Bory Dinobiyon acuminatum Ruttn. D. sylindricum Imh. D. sertularia E. Euastrum bidentatum Näg. E. elegans (Breb.) Kiitz Mallomonas akrokomos Ruttn. M. Allorgei (Dofi.) Conr. Nephrocytium limneticum (G.M. Smith) Skuja N. lunatum W. West Quadrigula lacustris (Chod.) G.M. Smith Stichogloea Doederleinii (Schmidle ) Wille
© Copyright 2025 Paperzz