quantity and composition of phytoplankton in finnish inland

VESIENTUTKIMUSLAITOKSEN JULKAISUJA
PUBLICATIONS OF THE WATER RESEARCH INSTITUTE
PERTTI HEINONEN
QUANTITY AND COMPOSITION OF PHYTOPLANKTON
IN FINNISH INLAND WATERS
TivisteImä
Suomen sisävesien kasviplanktonin määristä ja koostumuksesta
VESIHALLITUS—NATIONAL BOARD OF WATERS, FINLAND
Helsinki 1980
Tekijä on vastuussa julkaisun sisällöstä, eikä siihen voida
vedota vesihallituksen virallisena kannanottona.
The author is responsible for the contents of the publication.
It may not be referred to as the official view or policy
of the National Board of Waters.
ISBN 951-46-4612-6
ISSN 0355-0982
HeIsink 1980. Valtion painatuskeskus
3
CONTENTS
1.
Introduction
5
2.
Aims of the research
6
3.
3.1
3.2
Materiais and methods
Sampling
Microscopical examination of sampies and the treatment of the results
7
7
7
4.
4.01
4.02
4.03
4.031
4.032
4.033
4.04
4.041
4.042
4.043
4.05
4.06
4.07
4.071
4.072
4.073
4.08
4.09
4.10
4.11
Results
Regional division
Small river basins draining into Lake Ladoga
The Vuoksi river basin
Watercourses east of Lake Haukivesi
Watercourses north of Lake Haukivesi
Lake Haukivesi and watercourses to the south of it
The Kymijoki river basin
Watercourses north of the rapid of Haapakoski
Lake Päijänne and watercourses draining into it
Watercourses south of the Kalkkinen canal
River basins to the south of Salpausselkä
River basins of southwest Finland
The Kokemäenjoki river basin
Watercourses north of Lake Pyhäjärvi
Lake Pyhäjärvi and watercourses to the east of it
Watercourses below the River Nokianvirta
River basins of Ostrobothnia
The Oulujoki, lijoki, Kuivajoki and Simojoki river basins
The Kemijoki and Tornionjoki river basins
River basins of northern Lapland and Kuusamo
8
8
8
9
9
13
16
18
18
20
20
23
24
24
24
27
29
29
32
32
35
5.
5.1
5.2
5.3
5.31
5.32
5.33
5.4
5.41
5.42
5.43
5.5
5.51
5.52
5.53
5.531
5.532
Discussion
Regional survey of phytoplankton biomasses
Total phytoplankton biomass leveis
Phytoplankton composition
Divisions and orders
Number of species
Diversity
Quotients
ElO and EVIOV quotients by Järnefelt
The species quotients by Thunmark and Nygaard
Odourindex
Occurrence of species
Qualitative analysis
Quantitative analysis
Indicator species
Indicators used by Järnefelt
New indicator species
35
35
35
39
39
42
43
43
43
46
48
49
49
49
52
52
54
4
6.
Summary
54
7.
Acknowledgements
56
Lopputiivistelmä
56
References
57
Appendices
62
5
QUANTITY AND COMPOSITION OF PHYTOPLANK
TON IN FINNISH INLAND WATERS
Pertti Heinonen
Heinonen, P. 1980. Quantity and composition of phytoplankton in Finnish
inland waters. Publications of the Water Research lnstitute, National Board
ofWaters, Finland, No. 37.
A regional survey of the quantity and composition of phytoplankton in
Finnish inland waters was carried out on the basis of 826 sampies taken iii
the midsummer of 1963 and 1965. On the basis of this investigation and
of other data collected for lakes studied, a scale of eutrophication was drawn
up according to midsummer phytoplankton leveis. Lakes, in which the phyto
plankton biomass (fresh weight) was below 0.2 mg/l, were classified as ultra
oligotrophic, while leveis of 0.21—0.50 mg/l were designated oligotrophic.
Quantities of biomass between 0.51 and 1.00 mgJl indicated incipient
eutrophy, 1.01—2.5 mg/1 mesotrophy, 2.51—10.0 mg/l eutrophy and over
10.0 mg/l hypereutrophy. The dominating species were Centrales diatoms.
With increasing eutrophication the amounts of Hormogonales blue-green
algae and of PntococcaJes green aigae increased most markedly. A tota] of
680 taxons were identified from the samples. Species number increased with
increasing biomass at least to biomass values of 5 mg/1. The usability of
different quotients was examined and a new variable, the odour mdcx, was
developed. The odour mdcx was very significantly correlated with biomass.
On the basis of the research material 21 new indicator species of eutrophica
tion and 10 of oligotrophy were proposed.
mdcx words; Eutrophication, phytoplankton, water quality, quotiencs,
diversity, indicator species, odour mdcx.
1. INTRODUCTION
Evaluation of water quality in watercourses is
carried out almost entirely on the basis of
information concerning the biotope gained from
physical and chemical analyses. This information
naturally inciudes various changes brought about
by the action of biological processes. Direct
measurements of the intensity of such processes
or of the quantity and quality of the different
factors describing biocoenosis are only rarely
used in routine investigations of water quality.
One of the main problems of watercourse
investigations is the detection of the often very
slow changes taking place in water quality. The
natural ageing of water is in many areas consider
ably accelerated by human activity in the form
of e.g. regulation of lakes, reduction in water
leveis, construction activity in the vicinity of
watercourses and, in particular, the discharge
of effluents. The effects of these activities are
often observed later as increased nutrient con
centrations, leading eventually to corresponding
increases in primary production. Eutrophication
6
is without doubt at present one of the most
difficult processes to control in large watercourse
systerns.
Several different methods can be employed
for the monitoring of eutrophication. If the
growth-limiting nutrient (e.g. phosphorus) for a
given watercourse is known with certainty, it is
possible to estimate resultant leveis of phyto
plankton biomass solely on the basis of assays of
this nutrient (Sakamoto 1966). The advantages
of this method are ease of performance and
precision of analysis, while the major restriction
arises from variations in the significance of
different factors for primary production between
different watercourses and different times.
Measurements of the intensity of primary
production by the 14
C-method (Steemann
Nielsen 1952) have also been used to estimate
eutrophication. This method has the same
advantage as the preceding: complex biological
processes are estimated on the basis of simple
physical and chemical procedures. A weakness
is that the obtained resuit is difficult to utilize
e.g. in the estimation of water usability. The
C-method also contains several uncertainties
14
of operation and gives only proportional results.
One of the oldest biological water research
methods is the examination of the biomass and
composition of phytoplankton by microscopy.
The first investigations carried out in Finland
were mainly qua[itative analyses of sampies
collected from the photic water layer using
nets of different mesh size (Levander 1900,
Levander & Wuorentaus 1915 and 1917, Järnefelt
1925), although the need for a quantitative
method had for long been appreciated (Järnefelt
1929 and 1930). Only since the development of
techniques for analysing sedimented water
sampies without further treatment, and of
the Utermöhl technique, has quantitative exam
ination of phytoplankton been possible (Uter
möhl 1931 and 1958, Järnefelt 1934, 1936a
and b). The inclusion of algal species volumes to
indicator systems (Järnefelt 1952a) has consider
ably improved possibilities for realistic com
parison between different lakes.
In addition to counting by direct microscopy,
estimations of total phytoplankton have been
carried out by chemical means on the basis of
the concentration of photoenergetic pigments
(Strickland & Parsons 1965, Tolstoy 1966, 1977
and 1979). This is a rapid method, but has the
drawback that the result obtained is dependent
on the species composition and growth phase
of the plankton (Viljamaa et al. 1978).
Investigation of phytoplankton by direct
microscopy yields information concerning specles
composition in addition to total counts. This
information has for Iong been used in studies
comparing different lakes. Different parameters
and indicator species and groups have been used
as a means of following changes in, rather than
merely classifying, water quality. The quotient
systems of Thunmark (1945) and Nygaard(1949)
are based on comparison of species frequencies
of phytoplankton groups, whereas that of Järne
felt (1952b and 1956a) and Järnefelt et al.
(1963) is based on the relationships between the
species numbers and volumes of phytoplankton
species considered to be useful as indicators. The
applicability of quotients is generally considered
to be restricted to rather precisely defined
geographical areas (Rawson 1956).
The estimation of phytoplankton biomass by
microscopy is associated with several uncertainty
factors arising from e.g. sampling, counting and
species identification (Preston 1948, Kutkuhn
1958, van Heusden 1972, Hobro & Wi1ln 1975,
Kaatra & Harjula 1976, Hallegraeff 1977).
However, this is the only method yielding
qualitative information concerning the species
composition of phytoplankton in addition to
quantitative estimates of total biomass. Such
qualitative information is often of considerable
significance in the monitoring of water quality in
watercourses (Järnefelt 195 2b, Findenegg 1958,
Kostiainen 1965, Seppänen 1969).
2.
AIMS OF THE RESEARCH
The first extensive water sampling programme
by the water protection authorities, with the
aim of examining the water quality of water
courses on a regional basis using a biological
method, took place in summer 1963, when
a total of 328 phytoplankton sampies were
collected from different areas. This investiga
tion, covering the whole country, was repeated
in the summer of 1965, when sampies were
7
taken from 498 sampling stations. The micro
scopic examination of ali 826 sampies was
completed by the end of 1970.
The aim of the present research was to use the
data obtained from the above examinations
to determine the quantity and composition of
phytoplankton in midsummer in different
iakes,
to estimate the significance of parameters
based on phytoplankton composition and
to make a survey of the value of different
phytoplankton species as indicators of the
state of Finnish watercourses.
The resuits under examination constitute a
basis for comparison with a later survey of
phytoplankton bioniass carried out by the
National Board of Waters in the summers of
1971 and 1977 from samplingstations distributed
throughout the country. For this reason a part
of the primary material has been inciuded in this
investigation, in contrast to normal procedure
(Appendix 1).
—
—
—
MATERIALS AND METHODS
3.
3.1 Sampling
Phytopiankton sampies were taken by the
research units of 13 Agricultural Engineers’
Districts according to a programme drawn up by
the Water Pollution Control Bureau of the
National Board of Agricuiture. Sampies were
taken from each sampling station only once,
during the growing season. Thus the sampling
yielded only an impression of the situation in
midsummer, but this period is of course the
most important from the point of view of water
resource utiiization. However, detaiied estima
tions concerning the eutrophication process in
iakes should not he done on the basis of this one
phytoplankton sample only, because of various
uncertain factors involved in taking and analysing
sampies (Harjula 1979).
The location and numbering of the sampling
stations can be seen in the maps accompanying
the examination of resuits on a regionai basis
(Figs. 2—17). The precise coordinates of the
sampling stations and the dates of sampling are
contained in the primary material (Appendix 1).
Sampies were taken mainly as profile sampies
from the epilimnion, the depth of which was
first determined on the basis of temperature
measurements. In the case of stations situated by
shaliow, weilmixed water sampies were taken
from a depth of one metre with a Ruttner-type
water sampier. Sampling depths are given with
the results from individual observation sites
(Appendix 1).
The sampies were transferred to glass botties
of volume slightly over 100 ml. Preservation of
sampies was carried out immediately by addition
of 5 mi 35 % (wlv) formaidehyde per 100 ml of
sample (Naulapää 1972, Lepistö et al. 1979).
The botties were then closed so that a reserve of
air remained for shaking. The sampies were
stored at room temperature in the dark until
microscopy.
3.2 Microscopical examination of sampies
and the treatment of the results
The estimation of phytoplankton biomass was
carried out in the Water Pollution Control
Bureau of the National Board of Agriculture
(as from 1.7.1970 in the Water Research Office
of the National Board of Waters) by the Uter
möhi technique (Utermöhi 1931 and 1958).
Different volumes of sampies were used for
the sedimentation. A sampie of 2 ml was suf
ficient in the case of water sampies with a high
biomass content, but the whole sample of 100 ml
was used for some waters with very low plankton
counts. The sample size most often used was
50 mi. The method used in microscopy has been
described in detail eisewhere (Lepistö et al. 1979).
The resuit of microscopy was a list of the
phytoplankton species observed in each sample,
in which the number of each species occurring
per 100 ml was presented in taxonomic order.
Further treatment of the results was carried out
on the basis of these counts. The numerical data
of species frequency is not presented in this
research, but the information has been deposited
in the bioregister of the Nationai Board of Waters
and can be obtained from the Water Research
Office of the National Board of Waters.
The number of each phytopiankton species
8
obtained in microscopy was multiplied by the
cell volume appropriate to each species (Naula
pää 1972) to calculate the biomass. The density
of phytoplankton was assumed to be 1.00,
although the true value for most of the phyto
plankton species is slightly greater (Hutchinson
1967, Fott 1971). The dimension of biomass
used was mg/l and the results were expressed
to an accuracy of three significant numbers.
In addition to the total biomass of each
sample, the major constituent groups of phyto
plankton are presented in the same dimensions
(mg/i) in the results collected into Appendix 1,
in the following order: Cyanophyta, Chloro
phyta, Euglenophyta, Chrysopbyta and Pyrro
phyta. Furthermore the numbers of different
species of phytoplankton observed in each
sampie are recorded, as well as the ElO and
EV/OV-quotients caiculated according to J ärne
feit (1952b) and Järnefelt et al. (1963):
E
number of species indicating eutrophy
number of species indicating oiigotrophy
(1)
EV
Oy
total volume of species indicating eutrophy (2)
total volume of species indicating oiigotrophy
0
=
N
=
k N
E
i=1 M
(5)
number of odour inducing algae i in the
sample
M= threshold ccli density for odour inducing
algae i
The threshold values for odour were obtained
from the literature (Seppovaara 1971), and those
used in this research are presented in Appendix 2.
In addition to that presented in Appendix 1,
a great amount of other information relating to
plankton composition was utilized in the interpre
tation of the resuits. This information has been
deposited in the bioregister of the National
Board of Waters.
RESULTS
4.
4.01 Regional division
The regional division used for the presentation
of the results is aimost identical with that used
by Laaksonen (1970 and 1972) (Fig. 1). The
grouping of watercourse networks and the num
bers of sampies taken are presented in Table 1.
-
Diversity (d) was calculated in two ways using
the foilowing equations:
(Margalef 1958)
d
=
S
N
=
number of species
number of individuals
d
=
s
—E p
2
1
1
og
lnN
=
1=1
(3)
(Shannon diversity)
(Hutchinson 1967) (4)
Ni
pi =-;= number of specimens of the i’th species
5 = total number of specimens
N
For each sampie the presence of aigae giving
rise to odour and/or taste was used to calculate
a new variable, the odour index (0), as follows
4.02 Small river basins draining into Lake
Latioga
Sampies were taken from Lake Tohmajärvi and
Lake Kiteenjärvi in the Tohmajoki river basin
and from the Lakes Simpeleenjärvi and Torsan
järvi in the Hiitolanjoki river basin (Fig. 2).
In Lake Tohmajärvi phytoplankton biomass
was about 1.0 mgll. The values of the EVIOV
quotient were rather high, but the odour mdcx
was low. The dominating phytopiankton group
was Centrales. The condition of this lake has
been reported to have deteriorated since the
sampling was carried out, due to the effects of
sewage discharge and water level regulation
(National Board of Waters 1976). The phyto
plankton biomass in Lake Kiteenjärvi was below
1.0 mg/1, and the dominating species were
Centrales diatoms. In the 1963 sample the
proportion of blue-green algae exceeded 10 %.
The odour mdcx was low. At present this lake
9
is classified as polluted by waste water effluents
(National Board of Waters 1976).
Lake Simpeleenjärvi, the central lake of the
Hiitolanjoki river basin, is a clean, oligotrophic
lake (Kettunen 1975). The amount of phyto
plankton observed was very small in most sampies
and the quotient values and odour mdcx were
Iow. The dominating species were mostly Chryso
phyta algae, and in some sampies Peridineae algae
were also fairly abundant. According to Järnefelt
(1956a) the total amount of phytoplankton in
1933 was 0.07 mg/1 and both of the quotient
values were very small. In 1946 the biomass
was 0.25 mg/1 and the volume quotient high,
indicating eutrophication. Järnefelt considered
this lake to be of the Peridineae type and oli
gotrophic.
4.03 The Vuoksi river basin
4.031 Watercourses east of Lake Haukivesi
The sampling stations in this sub-area are shown
in Fig. 3.
Of the waters in this area only Lake Ilomant
sinjärvi has previously been described as eutrophic
(Surakka 1969). This condition is a result of
human activity (National Board of Waters 1976).
Biomass values were in this area usually fairly
low, the highest biomass for 1963 being recorded
in Lake Ilomantsinjärvi. In 1965 the total biomass
was lower, but stiil gave a clear indication of
eutrophication. The sampies from both years
showed relatively high numbers of species and
also high diversity values. The biomass of species
indicating eutrophication (Järnefelt 1952b) was
high, and the volume quotients were also of
a magnitude corresponding to considerable
eutrophication. The odour index was rather high
in 1963. The dominating species were in 1963
Ulotrichales green algae and in 1965 Centrales
diatoms.
In Lake Nuorajärvi, draining into the sarne
Koitajoki river basin as Lake Ilomantsinjärvi,
a rather high level of biomass was recorded in
1963. The volume quotient and odour mdcx
were also quite high. The dominating species
were Pennales diatoms. In 1965 the corresponding
sample was typical of an unpolluted water body.
Fig. 1. Regional division.
This lake has since been classified as polyhumic
(National Board ofWaters 1976).
Lake Viekinjärvi, situated in the Viekinjoki
river basin draining into Lake Pielinen, is on the
basis of this research in the process of eutro
phication. This can be seen both in high phyto
plankton biomass values and, particularly in the
values of volume quotients. Values of the odour
mdcx were not, however, very high in either
year. The dominating species were in 1963
Centrales diatoms and Chroococcales blue-green
10
algae, and in 1965 Pennales diatoms.
Of the large lakes in the eastern section of the
Vuoksi river basin, Lake Pielinen showed some
signs of increased biomass leveis resulting from
sewage discharge, particularly near the town of
Nurmes and to a certain extent, the town of
Lieksa. The highest leveis were, however, only
slightly over 1 mg/1, whereas in the unpoiluted
part of Lake Pielinen phytoplankton biomass
was of the order of 0.2—0.3 mg/1. Lake Pielinen
is a Chrysophyta type lake. According to Järnefelt
(1952a) lakes of this type are oiigotrophic but
show some effects of humus content. In his own
research Järnefelt (1 956a) classified the lake as
oligotrophic in 1946, when phytoplankton
biomass was 0.01 mg/1 and the number of species
very limited.
Eutrophicating effects of effluents from the
city of Joensuu can be detected in the northern
part of Lake Pyhäselkä. Typical biomass leveis in
this lake during this research were of the order of
0.2 mg/1, the dominating species belonging to
the division Chrysophyta. In Autumn 1945
Järnefelt (1956a) recorded a level of biomass of
0.05 mg/1, the dominating plankton being
diatoms and biue-green algae. On this basis the
lake was classified as slightly eutrophic.
Lake Höytiäinen is one of the most oligo
trophic waters of this area, classified by Järnefelt
(1956a) as oligotrophic and oligohumic. Phyto
plankton leveis in the present research were
around 0.1 mg/i, with Iow number of species and
quotient values. The odour index was below 0.10
in ali sampies. The dominant phytoplankton
species were Cbrysomonadinae algae.
Water quality in Lake Koitere has apparently
Table 1. The regional division and the numbers of sampies in 1963 and 1965.
The number of river basin
(bySeunal97l)
Area
1.
Small river basins draining into Lake Ladoga
The Vuoksi river basin
2.
2.1 Watercourses east of Lake Haukivesi
2.2 Watercourses north of Lake Haukivesi
2.3 Lake Haukivesi and watercourses to the south of it
2 and 3
Number of sampies
total
1963
1965
6
6
12
4
4.22, 4.3, 4.4, 4.8, 4.9
4.24—4.28, 4.5, 4.6, 4.7
4.1 and 4.21
96
39
35
22
159
54
63
42
255
93
98
64
3.
3.1
3.2
3.3
The Kymijoki river basin
Watercoursesnorth of the rapidofHaapakoski
Lake Päijänne and watercourses draining into it
Watercourses south of the Kalkkinen canal
14
14.3, 14.4, 14.6, 14.7
14.2, 14.5, 14.8
14.1, 14.9
76
54
13
9
152
84
42
26
228
138
55
35
4.
River basins to the south of Salpausselkä
6, 16, 21, 22, 23
10
11
21
5.
River basins of southwest Finland
27, 34
7
4
11
6.
6.1
6.2
6.3
The Kokemäenjoki river basin
Watercourses north of Lake Pyhäjärvi
Lake Pyhäjärvi and watercourses to the east of it
Watercourses below the River Nokianvirta
35
35.3, 354, 35.5, 35.6
35.2, 35.7, 35.8
35.1, 35.9
75
31
39
5
104
42
55
7
179
73
94
12
7.
River basins of Ostrobothnia
36, 44, 47, 51, 53, 54, 57
18
6
24
8.
The Oulujoki, lijoki, Kuivajoki and
Simojoki river basins
59, 61, 63, 64
23
29
52
9.
The Kemijoki and Tornionjoki river basins
65, 67
9
13
22
10.
River basins of northern Lapland and Kuusamo
71, 73, 74
8
14
22
328
498
826
Totais
11
i’
0
Fig. 2. Sampling
stations in
10
20
30
40
50km
the smaJl river basins draining into Lake Ladoga.
deteriorated as a resuit of regulation. This is
evidenced by reduced oxygen leveis and increased
salt concentratjons (National Board of Waters
1976). Biomass leveis of around 0.2 mg/I mdi
cated a rather oligotrophic water, the major
planktonic component being Chrysopbyta algae.
Lake Viinijärvi, situated near the town of
Outokumpu, is divided into two different parts.
The eastern section, Venepohjanselkä, is poor
in nutrients compared to the richer western
12
10
0
111
20
30
1
1
40
50km
Fig. 3. Sampling stations of the Vuoksi river basin to the east of Lake Haukivesi.
13
section Kulkevaisenselkä (National Board of
Waters 1976). In the present research no great
differences were observed between these two
sections, although biomass leveis in the western
area were slightly higher. The dominant species
were Cbrysomonadinae and Centrales algae.
Lake Pyhäjärvi, near Uukuniemi, draining
from the southeast into Lake Orivesi proper, is
an oligotrophic lake (National Board of Waters
1976). Phytoplankton leveis were around 0.1—
0.2 mg/i and both quotient and odour index
values were low.
Heposelkä, the northern part of Lake Orivesi,
has undergone a slight change, largely due to
waste waters from the nearby mining industry (Ry
hänen 1961, National Board of Waters 1976). In
1963 the values of phytoplankton biomass and
odour mdcx were slightly increased. Dominating
species were Centrales diatoms and blue-green
algae. In 1965 biomass leveis were lower and the
odour mdcx was below 0.10. The main species
were Chrysomonadinae algae. Järnefelt (1956a)
classified the lake in 1946 as oligotrophic on
the basis of an autumn sample, although he
conjectured that a summer sample might well
have indicated slight eutrophication.
Biomass leveis in the other sections of Lake
Orivesi were of the order of 0.2—0.3 mg/1. An
exception was the sound of Kivisalmi between
Lake Jänisselkä and Lake Orivesi proper, in
which the phytoplankton amounts were slightly
elevated (0.37—0.58 mg/1), probably because of
the proximity of the shores. The major species
throughout the whole area of Lake Orivesi
belonged to the division Chrysophyta.
In summary, the waters of the Vuoksi river
basin lying to the east of Lake Haukivesi can on
the basis of biomass measurements be described
as oligotrophic. Biomasses varied between 0.05
and 2.15 mg/l, with a mean value of 0.37 mg/1.
The number of species was on average 54 (min.
20, max. 105). Quotient and odour index values
were usually Iow.
4.032 Watercourses north of Lake Haukivesi
The sampling stations in this sub-area are shown
in Fig. 4.
The highest phytoplankton biomass values
analysed in this research were recorded in Lake
Maaninkajärvi (Vianta) in the Iisalmi route and
in Lake Kevätönjärvi in the Nilsiä route. In these
waters, in which biomass leveis of over 10 mg/1
were observed, eutrophication was aiso indicated
by an abundance of indicator species and high
quotient values, particularly in the case of the
volume quotient. The number of species and
odour mdcx also had high values in the sampies
taken from these lakes. In Lake Maaninkajärvi
the dominant species were algae of the genus
Melosira. Lake Kevätönjärvi has recently been
classified as being of very bad quality because
of eutrophication resulting from the discharge
of sewage (National Board of Waters 1975).
The major phytoplanktonic components in this
lake were in 1963 diatoms and blue-green algae,
while in addition Protococcales green algae were
also abundant in 1965.
Järnefelt (1956a) reported eutrophication in
Lake Kevätönjärvi in 1946 and 1947, the maxi
mum recorded biomass in his investigation being
3.69 mg/l. The dominant phytoplankton were in
1946 diatoms and in 1947 blue-green algae.
The effects of sewage discharge are also
discernible in the Lakes Porovesi, Nerkoonjärvi
and Onkivesi near the town of Iisalmi. Lake Onki
vesi is also affected by sewage from the village of
Lapinlahti (National Board of Waters 1975). In
these water bodies phytoplankton biomasses
varied from 1.9 to as much as 12.4 mg/L. The
number of species was high and species indicating
eutrophication were abundant. Volume quotients
were extremely high. By contrast quotients based
on number of species were relatively low; only
in two cases were they high enough to be con
sidered indicative of abundant planktonic growth.
Values for the odour index were for Lakes Ner
koonjärvi and Onkivesi usually around 1.0 and
for Lake Porovesi 0.7—0.8. The dominant plank
ton species in Lake Nerkoonjärvi and Lake Onki
vesi belonged to the genus Melosira, and, in the
case of Lake Porovesi in 1963, also to the order
Chrysomonadinae.
The elevated phytoplankton biomass leveis in
Lake Kallavesi can partly be explained by dis
charge of municipal wastes. The leveis were,
however, considerably lower than those in waters
of the Iisalmi route because of higher water flow
rates and more advantageous retention times
(Mikkola 1975). Values of the odour mdcx were
14
o
10
20
L
30
1
40
1
50km
1
Fig. 4. Sampling stations of the Vuoksi river basin to the north of Lake Haukivesi.
15
in general below 0.10 and in those sampies with
a higher index the dominant species was found to
be Asterionella gracillima (Hantzsch) Heiberg.
The dominant plankton species otherwise were
diatoms, in some sampies also Cryptomonas
algae. The proportion of blue-green algae was
less than 10 % in the sampies investigated of
Lake Kallavesi. On the basis of observations
made in 1945 and 1946 Järnefelt (1956a) de
scribed Lake Kallavesi as a mesohumic oligo
trophic lake with blue-green algae as the domi
nant plankton organisms. Plankton, with low
number of species, was measured at biomass
leveis of 0.1—0.3 mg/1 and the quotient values
were Iow.
The concentrations of nutrients, particularly
phosphorus, in the waters of the Nilsiä route
were remarkably lower than the corresponding
concentrations in the Iisalmi route (National
Board of Waters 1975). As a resuit of this the
phytoplankton biomasses were also lower. En
Lake Syvän the leveis were 0.2—0.65 mg/I, in
Lake Vuotjärvi about 0.3 mg/l, in Lake Melavesi
0.5—0.6 mgIl and in Lake Juurusvesi 0.25—
0.5 mg/1.
En Lakes Syvän and Vuotjårvi the number of
species and diversity were low. The odour mdcx
was in these sampies below 0.2. The dominant
species usually belonged to the divisions Chryso
phyta and Pyrrophyta (order Chrysomonadinae).
These waters were also reported by Järnefelt
(1956a), in his investigation of 1945, to be dark
watered and poor in nutnients. The level of
phytoplankton biomass was below 0.1 mg/1.
The species composition of the phytoplankton of
Lake Juurusvesi was similar to that of Lakes Syvän
and Vuotjärvi in the present investigation and the
odour mdcx was of the same order, 0.1—0.2.
En 1945 the lake was classified as oligotrophic
(Järnefelt 1956a).
En the water of Lake Melavesi the dominant
species belonged to the division Cbrysophyta.
In 1963 Protococcales green algae and in 1965
blue-green algae were also fairly abundant.
En Lake Rikkavesi on the route of Lake Juo
järvi, as well as in Lake Juojärvi itself, the con
centration of nutrients was low (National Board
of Waters 1975). Observed phytoplankton bio
mass leveis for the two water bodies were 0.1—
0.4 and 0.1—0.6 mg/1, respectively. The level of
phvtoplankton in 1945 was about 0.1 mg/1
(Järnefelt 1956a).
En Lake Suvasvesi on the route of Lake Kailavesi the values for biomass in 1963 and 1965
were 0.2—0.5 and 0.2—0.9 mg/l, respectively.
Quotient values and the odour mdcx were low
in Lake Suvasvesi. The dominant species were
mainly algae of the orders Chrysomonadinae
and Centrales. According to Järnefelt (1956a)
the biomass level in 1945 was below 0.1 mg/l,
the dominant plankton organisms being diatoms.
Biomass leveis in Lake Sorsavesi were 0.2—
0.3 mgIl and the dominant species belonged to
the same groups as in Lake Suvasvesi.
En the waters of Lakes Koirusvesi and Unnuk
ka the effects of water entering from the Iisalmi
route combine with those of the effluents from
the city of Kuopio to increase the concentration
of nutrients. Phytoplankton leveis of 1.5—2.0
mg/1 were therefore recorded in sampies from
these waters. The odour index was in Lake Koi
rusvesi slightly over 1.0 and in Lake Unnukka
0.6— 0.7. Dominant phytopiankton organisms
were Chrysomonadinae algae and diatoms. En
1946 biomass leveis in Lake Unnukka were 0.1—
0.2 mg/l (Järnefelt 1956a). The dominant or
ganisms were then diatoms and the lake was
classified as oligotrophic.
The major western tributary of the Vuoksi
nver basin, the Kallavesi route, was found to be
considerably richer in plankton than the Pieli
nen route. Particularly in the Iisalmi route the
recorded biomass leveis were considerably
higher than those found for the rest of the
Vuoksi niver basin and the waters of the Iisalmi
route were cleanly eutrophic. Soil fertility is
probably the most important factor in eutro
phication of these water bodies.
By contrast the waters of the Nilsiä and Juojärvi routes may be considered as oligotrophic.
High local leveis of biomass in Lake Kevätönjärvi
on the Nilsiä route resulted from the discharge
of sewage.
Biomasses for the whole area varied between
0.13 and 13.4 mg/l, with mean value of 1.98
mg/l. The number of species was here higher than
in the watercourses east of Lake Haukivesi. The
range of this variable was 28—15 1, with a mean
value of 80. Quotient values and odour index
values were also higher than in the eastern area.
16
4.033 Lake Haukivesi and watercourses to the
south of it
The location of sampling stations in this area is
shown in Fig. 5.
Lake Haukivesi, situated to the south of the
city of Varkaus, is polluted by municipal wastes
and those from the pulp industry (Heinonen et al.
1975). This is not, however, very evident from
the phytoplankton data collected in this study.
Total biomass leveis in Lake Haukivesj were in
1963 0.1—0.8 mgfl and in 1965 0.1—0.6 mg/l.
These levels must be considered rather low in
view of the nutrient content of the lake water.
Near the city of Savonlinna the Vuoksi river
basin is low in nutrients (Laaksonen 1969) and,
as a resuit of this, phytoplankton biomasses were
also small and typical of oligotrophic waters.
Total biomass leveis in the sound of Kyrönsalmi
were 0.1—0.2 mg/l, as were also those in the
Lakes Haapavesi and Pihlajavesi, to the north
and south of the city respectively. Quotients
and odour index values were low. The dominant
plankton species were usually diatoms. A similar
situation was observed in 1970 (Jumppanen
1976), when phytoplankton biomass leveis of
0.2—0.7 mg/1 were recorded in waters near the
city of Savonlinna. The only high value (9.8 mg/l)
was in that investigation found in the polluted
water of the bay of Tuokkolanlahti to the north
of the city of Savonlinna.
Lake Puruvesi, draining into Lake Pihlajavesi
from the southeast, is a clear, oligotrophic lake
(Heinonen et al. 1975). In 1963 the leveis of
phytoplankton recorded were 0.3—0.5 mg/l.
The number of species was low, 22—29. In 1965
the biomass levels were 0.1—0.2 mg/l but the
number of species had increased to 5 1—54.
Quotients and odour mdcx values were low.
The dominant species were algae of the division
Chrysophyta.
Lake Kuolimo, draining into Lake Saimaa
through the rapids of Partakoski and Kärnä
koski, is a typical oligotrophic lake (Seppovaara 1969). Phytoplankton biomass levels
were 0.1—0.2 mg/l and the number of species
45—55. Quotients and odour mdcx values were
extremely low. The dominant species were
diatoms. In the investigation of Järnefelt (1956a)
carried out in 1945 the level of phytoplankton
was 0.16 mg/l and the number of species 50.
The dominant species in this lake, classified then
as oligotrophic, were lilcewise diatoms.
The water route leading from the city of
Mikkeli is loaded by municipal wastes (Heinonen
1972, Heinonen et al. 1975), and eutrophication
is clearly indicated by the results of the present
research. Biomass leveis iii Lake Ukonvesi and
the sound of Juurisalmi were 3.0—4.0 mg/1. The
number of species and, iii particular, the abun
dance of species indicative of eutrophication
were high. The dominating species belonged in
most cases to the division Chrysophyta. Of the
blue-green algae observed the most abundant
were Hormogonales algae. Järnefelt (1956a), in
his examination of the area of Mikkeli harbour
in 1945, observed a diatom bioom resulting from
adjacent human activity. The level of phyto
plankton biomass was 9.92 mg/l, the number of
species was 100 and quotient values were high.
The effect of waste waters on phytoplankton
growth decreases rapidly in Lake Louhivesi, in
which the phytoplankton biomass was in 1965
only 0.24. mg/1. Quotient values were low and the
dominant species were diatoms. Järnefelt (1956a)
recorded biomass leveis of 0.10—0.12 mg/1 in
his investigation of 1945—1946, when the
dominating species were also diatoms. In Lake
Yövesi the biomass levels in the present investiga
tion were 0.1—0.6 mgIl, compared to 0.05 mg/I
observed by Järnefelt (1956a). The area between
the villages of Puumala and Taipalsaari contains
the most unspoiled water of Lake Saimaa (Heino
nen et al. 1975). Phytoplankton leveis were 0.1—0.2
mgfl and quotient values were low. Similar meas
urements were made in the water of Lake Ilkon
selkä, south of Kyläniemi. The effects of wood
processing industries became more evident
towards the south of Lake Sairnaa near the pulp
factories situated around the towns of Lappeen
ranta, Joutseno and Imatra. The consequences of
these wastes are in some cases growth inhibiting
and in others clearly stimulating (Järnefelt 1961,
Lehmusluoto & Heinonen 1970, Heinonen 1972,
Seppovaara 1977). In those parts of the south
western region of Lake Saimaa, where the water
is relatively free of wood processing wastes,
biomass levels of 0.2—0.4 mg/l were recorded.
Due to the small number of sampies, it was
not possible in this study to investigate the
17
•
..
0
0
0
Fig. 5.
10
20
30
40
50km
Sampling stations of the Vuoksi river basin in Lake Haukivesi and watercourses to the south of it.
possibility that the low biomass leveis in Lake
Haukiselkä were due to toxic wood processing
wastes. Eutrophication was, however, observed
in Lake Haukiselkä 1963. A similar situation
has been observed in this area in several other
studies (Järnefelt 1961, Tirronen 1963, Nyman
1970, Heinonen 1972). The low biomass values
observed in 1965 could be the resuit of the
significant change in the loading of the water
course in 1964 (Heinonen 1966).
Phytoplankton biomasses in the Vuoksi
river basin in Lake Haukivesi and watercourses to
18
the south of it varied between 0.07 and 5.04
mg/l, with a mean value of 0.56 mg/1. The waters
were mainly oligotrophic with the exception of
sections of Lake Saimaa south of the city of Mik
keli and the major part of southern Lake Saimaa.
4.04 The Kymijoki river basin
4.041 Watercourses north of the rapid of Haapa
koski
The sampling stations of this area are shown
in Fig. 6.
Typical of the waters along the route of Lake
Saarijärvi is a high humus content (National Board
of Waters 1977a). Biomass leveis in the lakes
along this route were 0.2—0.5 mg/1. Quotient
values and odour mdcx values were usually low,
although in some lakes, e.g. Lake Karankajärvi,
volume quotients were elevated despite relatively
low biomass leveis. The dominating algae were
usually diatoms. In Lakes Kalmarinjärvi, Pääjärvi
and Kyyjärvi phytoplankton biomass leveis
were over 1.0 mg/1. In the case of Lake Pääjärvi the elevated value resulted from a factory
producing potato flour and from the waste
waters of the municipality of the village of Kars
tula (National Board of Waters 1977a). Lake
Kalmarinjärvi was studied by Järnefelt (1956a)
in 1946, when phytoplankton biomass was 0.18
mg/l and quotient values were low. Järnefelt
described the lake as oligotrophic.
Lakes Alvajärvi and Muurasjärvi on the Viita
saari route are oligotrophic (National Board of
Waters 1977a), with low values of phytoplankton
biomass. The small Lakes Elämäjärvi and Saani
järvi, draining into Lake Alvajärvi, are rather
shallow and probably for this reason their
biomass values were somewhat elevated. Lake
Kolimajärvi is mainly oligotrophic, although
loading caused by waste waters from the village
of Pihtipudas (National Board of Waters 1977a)
have caused some eutrophication in the northern
quarter of the lake. The slight rise in biomass
value in 1965 is probably a result of this loading.
Lake Kivijärvi is mainly oligotrophic. Slight
evidence of eutrophication can, however, be
discerned in the northern area of the lake.
Lake Keitele is an oligotrophic lake in which
biomass levels have usually varied between 0.1
and 0.3 mg/1. Only the bay of Suolahti in the
south is to some extent eutrophic, as evidenced
by elevated biomass and quotient values. The
odour mdcx value was also higher in this sample
than in the others from Lake Keitele. A similar
situation was observed by Jumppanen (1976)
in 1964.
Of the lakes in the Rautalampi route the most
eutrophic are Lake Pieksänjärvi, which is loaded
by wastes from the city of Pieksämäki, Lake
Kontajärvi and Lake Lampaanjärvi. Phyto
plankton levels in Lake Konnevesi varied from
0.2 to 0.6 mg/l, and in Lake Niinivesi and Lake
Nilakka from 0.2 to 0.4 mg/l. Minor eutrophica
tion was observed at the southern end of Lake
Pielavesi, with biomass leveis of 0.5—0.8 mg/l
compared to the values of 0.2—0.3 mg/l else
where in the same lake.
The Lakes Kuhnamo and Vatianjärvi, situated
to the south of the town of Äänekoski, are
polluted by industrial effluents (Granberg 1973).
Total phytoplankton biomass levels of only 0.1—
0.4 mg/l have been recorded for these waters,
although the nutrient concentrations would
support considerably greater leveis. A notable
feature of the plankton species composition is
the unusual abundance of Euglenopbyta algae.
Lake Lievestuoreenjärvi is badly polluted
by wastes from the pulp industry (Granberg
1970a). This fact was reflected in very low leveis
of plankton and extreme paucity of the number of
species. Only three species were identified from
the 1965 sample: Cryptomonas sp., Closterium
acutum var. variabile (Lyngb.) Brb. and a small
Fiageilata. The 1963 sample contained in addition
considerable amounts of Synura uvella E. and
Nitzscbia acicularis W. Smith.
The effects of industrial wastes on water
quality can stili be observed in the northern part
of Lake Leppävesi (National Board of Waters
1977a). Some eutrophication was observed
particularly in southern Lake Leppävesi (Gran
berg & Lappalainen 1973). The number of plank
ton species was high and biomass levels 0.5—
0.7 mg/l.
In the watercourses to the north of Laite Päi
jänne phytoplankton biomass varied between
0.01 and 3.98 mg/l, with a mean value of 0.44
mg/l. The average number of species was 66 and
the dominating species were usually diatoms.
19
o
io
111
20
1
30
1
40
1
50km
1
Fig. 6. Sampling stations of the Kymijoki river basin north of the rapid of Haapakoski.
20
4.042 Lake Päijänne and watercourses draining
into it
The location of sampling stations in Lake Päijän
ne and the waters flowing into it can be seen in
Fig. 7.
According to Järnefelt (1956a and b) Lake
Päijänne was an oligotrophic lake in the decade
commencing in 1930. In the northern areas,
around the sound of Kärkistensalmi, phyto
plankton biomasses varied between 0.05 and
0.24 mg/l, while in the south around Asikkalan
selkä the phytoplankton biomasses observed
were 0.04—0.11 mg/1. Phytoplankton studies,
begun by the Hydrobiological Research Institute
of Jyväskylä in 1969, indicate that biomass leveis
in the north of the lake have increased to over
1.0 mg/1, while those in the southhaveremained
at a considerablylowerlevel, 0.1—0.3 mg/l (Gran
berg 1969, 1970b and 1972, Tuunainen et al.
1971). The sampies used in the present research
were from 1965. In the north of the lake phyto
plankton leveis were 0.4—0.8 mg/1, increasing to
1.2—1.3 mg/1 towards central areas of the lake
and then decreasing to 0.1—0.2 mg/1 in the south.
The highest quotient values were encountered in
the central area, although sorne quotient values
of sampies from the northern waters exceeded
the threshold values indicating eutrophication.
The highest odour mdcx value was found in a
sarnple from the north of the lake. Dominating
species throughout the whole of Lake Päijänne
were diatoms.
Lake J.yväsjärvi, flowing into Lake Päijänne
through the sound of Äijälänsalmi, has been
heavily Ioaded by municipal and industrial
effluents, as was evident from the results obtained.
In 1963 the wastes inhibited production so that
biomass levels remained below 0.1 mg/l, with
very poor species diversity. The dominating
species were Melosira diatoms and small Fiagellata
algae. In 1965 the wastes discharged into this
water were no longer so toxic, as was indicated
by considerably elevated biomass leveis. Algae
of the order Chrysomonadinae were the dominant
component of a biomass approaching 20 mg/1.
-Euglenophyta algae were also abundant. The num
ber of species was considerably greater than in 1%3.
It was not worth calculating the quotient values
because of the lack of oligotrophic indicators,
but odour mdcx values were elevated during the
highly productive year 1965. Phytoplankton
compositions giving strong indication of eutro
phication were also found from Lake Jyväsjärvi
in 1969 and 1970 (Granberg 1969 and 1972).
The Lakes Palokkajärvi and Tuomiojärvi,
entering Lake Päijänne near the city of Jyväs
kylä, also had high leveis of phytoplankton
biomass. As well as high biomass leveis, the con
siderable number of species was also a feature of
the sampies from these lakes. Quotients and
odour mdcx values were high.
Lake Vesijärvi flowing into Lake Päijänne
from the south, is in part highly eutrophic
(Seppänen 1968). In the section bordering on
the city of Lahti phytoplankton leveis over
5.0 mg/l were observed, with Hormogonales
blue-green algae as the dominant organisms.
For this reason the odour mdcx had a high
value. Eutrophication decreased towards the
north so that near the outlet of Lake Vesijär
vi the biomass level was below 0.5 mg/l, the
dominant species being diatoms. The situation
in this water body has apparently been similar
at least since 1926, when Järnefelt (1928)
described a notable colouring of the water of
Lake Vesijärvi near to the city of Lahti, caused
by the bluegreen algae Microcystis sp. Järnefelt
considered the area of Lake Vesijärvi near the
village of Vääksy to be oligotrophic.
In this area phytoplankton biomasses varied
between 0.03 and 18.5 mg/l, with a mean value
of 1.32 mg/l. Lake Jyväsjärvi and the southern
part of Lake Vesijärvi were the most eutrophic
areas.
4.043 Watercourses south of the Kalkkinen canal
The sampling stations of the Kymijoki river basin
south of the Kalkkinen canal are shown in Fig. 8.
The River Kymijoki leaving Lake Päijänne
contains clean water with low nutrient con
centrations. Thus the phytoplankton of Lakes
Ruotsalainen and Konnivesi resembled that of
southern Lake Päijänne in its composition, the
dominating species being diatoms. Biomass
levels and quotient values were small.
The Mäntyharju route is entirely clean and
21
0
•
Fig. 7. Sampling
stations of
10
20
1
1
30
1
40
50km
1
the Kymijoki river basin in Lake Päijnne and watercourses draining into it.
22
3.1
3.2
6.
6
117
120
6
4
4
0
10
20
30
40
50km
Fig. 8. Sampling stations of the Kymijoki river basin south of the Kalkkinen canal.
/
23
oligotrophic (National Board of Waters 1977b).
This fact was reflected in phytoplankton biomass
levels, which were usually within the range 0.1—
0.3 mg/l. Quotients and odour mdcx values were
low and the dominant species were diatoms.
Lake Kivijärvi, the largest lake of the Valkeala
route, is a clean, oligotrophic lake (National
Board of Waters 1974). However, biomass leveis
over 1.0 mg/l were found in Lake Ylä-Kivijärvi
at the northern end of this lake, probably as a
resuit of natural fertility of soils in this region.
Slightly elevated biomass leveis were also
encounted in Lake Lappalanjärvi (0.5—0.6 mg/1).
The reason for this could be the discharge into
this watercourse of effluents from the village of
Valkeala.
Phytoplankton biomasses in the Kymijoki
river basin south of the Kalkkinen canal varied
between 0.07 and 1.42 mg/l, with a mean value
of 0.31 mgfl. Quotients were usually low and the
dominating organisms diatoms.
4.05 River basins to the south of Salpaus
selkä
Phytoplankton samples were taken from the
waters to the south of Salpausselkä at lake sites
in Hounijoki, Koskenkylänjoki, Vantaanjoki,
Siuntionjoki and Karjaanjoki river basins (Fig. 9).
Lake Haapajärvi, in the Hounijoki river basin,
is strongly eutrophic, as a resuit of the discharge
of effluents into the lake from the city of Lap
peenranta. The lake is considered to be totally
polluted (Kettunen 1975). High biomass was
caused mainly by Protococcales green algae and
Centrales diatoms. The odour mdcx was high,
although the quotients were surprisingly low.
The Lakes Pyhäjärvi and Kirkkojärvi in the
Koskenkylänjoki river basin were also eutrophic.
In Lake Pyhäjärvi biomass levels were only
slightly over 1.0 mg/l, but in Lake Kirkkojärvi near
to 20 mg/l. The number of species was particularly
high in Lake Kirkkojärvi. The quotients were not
calculated because of the lack of oligotrophic
indicators, but odour mdcx values were very
high. The dominating species were Centrales
diatoms and Hormogonales blue-green algae.
Algae of the division Euglenopbyta were also
fairly abundant.
Lake Tuusulanjärvi, in the Vantaanjoki river
basin, has been a highly eutrophic lake for a
iong time (Järnefelt 1937 and 1956c, Anttila
1969). As well as the soil type iii this area,
the discharge of effluents and the practise of
mtensive agricukure near the shores of the lake
have contributed to this condition of the water
of Lake Tuusulanjärvi. In the present investiga
tion phytoplankton biomass leveis of 4.0—6.0
mg/l were observed, which is in good agreement
with the observations of other investigations
(Anttila 1969). The dominant species were
Hormogonales blue-green algae and Centrales
diatoms. Values for the odour mdcx were high.
Of the lakes in the Siuntionjoki river basin,
Lake Palojärvi is eutrophic and Lake Enäjärvi
extremely so (National Board of Waters 1977c).
The biomass level in Lake Enäjärvi was 7.0 mg/l.
The odour index was high and the dominating
species were blue-green algae. In Lake Palojärvi
the dominating species in a richly assorted
biomass were algae of the division Chrysophyta.
Lake Hormajärvi, in the Karjaanjoki river
basin, is oligotrophic (Järnefelt 1963), with a
phytoplankton biomass of around 0.15 mgIl in
the present investigation. Simiiar biomass leveis
were found m this lake by Järnefelt (1963) over
the period 1949—1960. Lake Kirkkojärvi near
the village of Vihti has undergone eutrophication
owing to the discharge of sewage (National Board
of Waters 1977c). Biomass leveis and the odour
mdcx were high. The dominating species were
Centrales diatoms. Some evidence of slight
eutrophication was also observed in Lake Hiiden
vesi (National Board of Waters 1977c). The bio
mass leveis were 0.6—0.9 mgfl and the quotient
values high.
Lake Lohjanjärvi has been subjected to the
influence of municipal and industrial effluents
during the 1960-decade (Nyroos 1973, National
Board of Waters 1977c). Phytoplankton bio
masses were 0.8—2.9 mg/l and quotient values
and odour mdcx values were high. The dominating
species were Centrales diatoms. Phytoplankton
data from Lake Lohjanjärvi is available smnce the
1890-decade (Levander 1900), and directly
comparable data since the 1940-decade (Järne
felt 1963), when the phytoplankton biomass
was of the order of 0.4 mg/l.
24
Fig. 9. Sampling stations in the river basins to the south of Salpausselkä.
High biomass leveis and quotient and odour
index values indicative of eutrophication were
typical of lakes near the coastal region. Biomasses
varied between 0.14 and 19.9 mg/1, with a
mean value of 4.39 mg/1. The dominating species
were usually diatoms, although considerable
amounts of blue-green algae were also observed.
4.06 River basins of southwest Finland
Sampies from the southwestern areas were taken
from Lake Kirkkojärvi in the Paimionjoki river
basin and from Lakes Pyhäjärvi and Köyliönjärvi
in the Eurajoki river basin (Fig. 10).
Lake Kirkkojärvi in the Paimionjoki river
basin is heavily polluted (National Board of
Waters 1977d). Phytoplankton biomass was only
0.7 mgfl, but the extensive pollution of this lake
was indicated by the fact that almost half the
biomass was composed of Euglenophyta algae.
Situated by the vilage of Säkylä, Lake Pyhä
järvi is oligotrophic (National Board of Waters
1977d). Phytoplankton biomasses of 0.18—
0.29 mg/1 were observed in this investigation.
With one exception, the quotient values were
low. Järnefelt (1927) investigated the water
quality of this lake in 1916 and expressed the
opinion that the lake was in the process of
eutrophication.
Lake Köyliönjärvi is a eutrophic lake the
condition of which has been further damaged
by the discharge of effluents from the food
industry (National Board of Waters 1977d).
Phytoplankton was rich in species and its biomass
approached 10 mg/1. The dominating species were
Chroococcales blue-green algae and Centrales
diatoms, while the presence of Euglenophyta
algae gave an evidence of pollution.
Phytoplankton biomasses in the river basins of
southwest Finland were 0.18—9.21 mg/l, with
a mean value of 2.05 mg/1. The dominating
species in the rather richly assorted planktonic
fiora were diatoms and blue-green algae.
4.07 The Kokemäenjoki river basin
4.071 Watercourses north of Lake Pyhäjärvi
The location of sampling stations in the Koke
25
9
i1
0
10
lOI
-
20
1
30
40
50km
1
Fig. 10. Sampling stations in the river basins of southwest Finland.
mäenjoki river basin north of Lake Pyhäjärvi
is shown in Fig. 11.
Lake Keurusselkä, the central lake of the
Keuruu chain, has recently undergone eutro
phication in the northern section (Eloranta
1974). Although phytoplankton leveis were
at their highest only 0.6 mg/I in the present in
vestigation, the onset of eutrophication was mdi
cated by high quotient values. The dominating
species were Centrales diatoms. The southern
and western regions of Lake Keurusselkä were
stili largely oligotrophic, with biomass leveis of
only around 0.2 mg/1. According to Järnefelt
(1956a), biomasses in 1945—1946 were 0.06—
0.34 mg/1, while Eloranta (1972) reported values
of about 0.9 mg/1 in 1970.
Lakes situated in the routes of Ähtäri and
Pihlajavesi were found to support biomass leveis
of 0,1—0.4 mg/1, while in Lake Ähtärinjärvi itself
the leveis were slightly higher, probably as a
resuit of diffuse loading (National Board of
Waters 1978a). The dominating species were
usually diatoms.
The routes of Ähtäri and Pihlajavesi unite
at the oligotrophic Lake Tarjannevesi, which is
considered to be in an almost unspoiled natural
state (National Board of Waters 1978a). Phyto
plankton leveis were between 0.2 and 0.5 mg/1.
Values of volume quotients were high in 1965.
The dominating phytoplankton were diatoms.
26
I I’
“,
0
10
1.1
Fig. 11. Sampling
stations of
20
30
40
1
1
1
the Kokemäenjoki river basin north of Lake Pyhäjärvi.
The Näsijärvi Ruovesi chain of lakes is loaded
by effluents from the pulp and paper industry
(National Board of Waters 1978a). This was vety
evident in the level and the species composition
of phytoplankton in Lakes Paloselkä and Han
honvuolle. Species variety in these waters was vety
-
50km
poor, the dominating species being Chryptomonas
sp. and Chroomonas sp.. The low biomass leveis
observed clearly indicated inhibition of growth
caused by the industrial effluents. This effect
continued towards Lake Ruovesi. Phytoplankton
was poor in species variety and low in biomass
27
throughout this chain of lakes as far as the south
of Lake Näsijärvi. Järnefelt (1956a and b)
reported Lake Näsijärvi to be an oligotrophic
water body in 1945—1952.
Phytoplankton biomasses in Lakes Nerkoon
järvi and Kankarijärvi, two of the source lakes
of the Ikaalinen chain, were found to be 0.24—
0.64 mgIl, the dominating fiora usually being
diatoms. An exception was the sample in 1965
from the southern tip of Lake Ncrkoonjärvi,
which contained a high proportion of Hormogo
nales blue-green algae. The volume quotient and
odour mdcx in this sample were elevated. Bio
mass values in the south of Lake Kyrösjärvi
indicated siight eutrophication. Järnefelt (1956a)
also found some evidence of eutrophication in
this lake in 1946. In the present investigation
the most extensive eutrophication in the lakes of
this chain was found in Lakes Kirkkojärvi and
Mahnalanselkä, in which the biomasses were 0.54—
1.06 mg/1 and the volume quotients were high.
The value for the odour mdcx was aiso elevated
in Lake Mahnaianselkä in 1965.
Phytopiankton biomasses in the Kokemäen
joki river basin north of Lake Pyhäjärvi varied
between 0.01 and 1.40 mg/l, with a mean value
ofl.33 mg/l. Species number was usually low, the
dominating species being in most cases diatoms.
4.072 Lake Pyhäjärvi and watercourses to the
east of it
Sampling stations in Lake Pyhäjärvi and water
courses to the east of this lake are shown in
Fig. 12.
Phytopiankton biomass leveis in Lake Längel
mävesi were mainly 0.2—0.4 mg/i, although
eutrophication in the north of the lake raised
the leveis to over 4.0 mg/l. Järnefelt (1956a)
described this lake in 1945 as eutrophic. Lake
Oriseikä is loaded by the municipal effluents of
the town of Orivesi (National Board of Waters
1978a), as is evidenced by the increased values of
biomass and quotients. Lake Vesijärvi, entering
Lake Längelmävesi at its southern end, was
found to be an oligotrophic water body with
biomasses of 0.12—0.40 mg/l.
The lakes situated in the Hauho route are in
the main very clean lakes in an almost natural
state (National Board of Waters 1978a). The
most eutrophic are Lakes Pyhäjärvi and Omiajärvi, in which phytoplankton leveis of over 1.0
mg/i were observed. A bioom of Hormogonales
blue-green aigae was observed in 1963, when
biomass leveis increased to over 6.0 mg/l. Similar
observations were later made by Ilmavirta et ai.
(1974).
The Lakes Iso-Roinevesi, Haukivesi, Ilmoilan
selkä and Pintele are ali oiigotrophic. The phyto
plankton leveis in ali these lakes were relatively
iow. Some eutrophication, with increased biomass
leveis and quotient values, was, however, observed
in the area Hauhonseikä of Lake Haukivesi. This
was caused by the sewage effluents from the
viliage of Hauho. The dominating species in ail
these lakes were Centrales diatoms.
Lakes Pälkänevesi and Roine are oligotrophic
(National Board of Waters 1978a). Phytopiank
ton leveis were 0.1—0.2 mg/1. The dominating
species in Lake Päikänevesi were Centrales
diatoms.
Eutrophication resuiting from the discharge of
sewage effluents from the town of Pälkäne is
discernibie in the northern part of Lake Mallas
vesi (National Board of Waters 1978a), in which
phytoplankton biomass leveis of 0.6—0.7 mg/1
were observed. The species composition of phyto
plankton also differed from that in the neigh
bouring waters, the dominance of Centrales
diatoms being clearly weaker whiie the pro
portion of Horinogonales blue-green algae was
increased. This alteration in species composition
resulted in increased values of the EV/OV
quotient and of the odour mdcx.
Lake Pääjärvi, at the source of the Vanajavesi
chain, is an oligotrophic lake (Granberg 1970c,
Ruuhijärvi 1974). Ilmavirta and Kotimaa (1974)
estimated phytoplankton biomass in this lake for
, cor
2
the growth season of 1971 to be 1—3 g/m
responding to 0.25—0.75 mgJl in the photic
layer. Similar leveis were also observed in the
present mnvestigation. The dominating species
were in 1963 Pyrrophyta algae and in 1965
Centrales diatoms.
Lake Kernaalanjärvi is a eutrophic lake, in
which water quality is influenced by effluent
from the paper miii of Tervakoski Oy (Ryhä
nen 1962). The biomass of 3.0—6.0 mgli was
28
I I’
“I
10
0
Iii
20
30
40
50km
Fig. 12. Sampling stations of the Kokemäenjoki river basrn in Lake Pyhäjärvi and watercourses to the east of it.
dominated by Centrales diatoms, and quotient
values and odour index values were high.
Lakes Rautajärvi and Kalvolanjärvi, draining
into Lake Vanajavesi, are eutrophic. In Lake Kai
volanjärvi a bloom of Hormogonales biue-green
algae raised the phytoplankton level to 45 mg/i
in 1963. The odour mdcx was also high.
Lakes Katumajärvi and Lehijärvi in the Vana
javesi chain, as weil as the centrai Lake Vanaja
vesi itself, are eutrophic waters (National Board
of Waters 1978a). Biomass leveis in Lake Vanaja
vesi were usually 1.0—4.0 mg/i, but some values
as high as 10 mg/1 were observed. The values of
quotients and odour mdcx were in the latter
29
sampies high. The species composition was
usually dominated by diatoms.
Lake Lotilanjärvi is badly polluted by wastes
from the puip and paper industry (National
Board of Waters 1978a). Species composition
was very restricted, but biomass values were high,
in 1963 over 20 mg/1. The dominating species in
this year were Scenedesmus spp., in particular
S. quadricauda (Turb.) Brb. In 1965 the phyto
plankton was composed of only six species,
dominating being Nitzschia sp. and Ochromonas
crenata Klebs. The water bodies Konhonvuolle,
Korteselkä and Lake Pyhäjärvi are eutrophic (Jär
nefelt 1956a). Phytoplankton leveis recorded in
this study were 1.0—5.0 mg/l, and both quotients
and odour index vaiues were high. The dominating
species throughout ali these waters were Centrales
diatoms. In his investigation of 1945 Järnefelt
(1956a) found that a biomass of 2.0 mg/1 in Lake
Pyhäjärvi was composed mainiy of diatoms.
Phytopiankton biomasses in Lake Pyhäjärvi
and waters to the east of it varied between 0.03
and 45.0 mg/1, the mean vaiue being 2.39 mg/l.
In addition to diatoms, a considerable proportion
of the biomass was in some waters composed of
blue-green algae.
4.073 Watercourses below the River Nokianvirta
Sampling stations of the Kokemäenjoki river
basin below the River Nokianvirta are shown in
Fig. 13.
Lakes Kulovesi and Rautavesi are both eutro
phic water bodies (Järnefelt 1956a, National
Board of Waters 1978a). Phytoplankton leveis of
1.0—2.0 mgIl were observed in this study. It is
possible that primary production is to some
extent inhibited in these waters by the toxic
effects of effluents (National Board of Waters
1978a). Quotient and odour index values were
high. The dominating algae belonged to the
division Chrysophyta and were in most cases
Centrales diatoms.
Lake Mouhijärvi is in the process of eutro
phication (National Board of Waters 1978a), as
is evidenced by a slight increase in biomass
and, in particular, by high quotient vaiues. The
dominating species in this lake were Centrales
diatoms.
Lake Sääksjärvi is aiso a eutrophic lake (Järne
felt 1956a). Biomass leveis were of the order of
2.0—4.0 mg/1 and quotients and odour index
values were high. The dominating species were
diatoms.
Phytoplankton biomasses in the Kokemäen
joki river basin below the River Nokianvirta
varied between 0.82 and 5.79 mg/l, the mean
value being 2.49 mg/l. The dominating species
were usually diatoms.
4.08
River basins of Ostrobothnia
Sampies were taken in this area from lakes in
the Karvianjoki, Lapuanjoki, Ähtävänjoki, Lesti
joki, Kalajoki, Pyhäjoki and Siikajoki river basins
(Fig. 14).
Lake Isojärvi in the Karvianjoki river basin is
a eutrophic lake (National Board of Waters
1978b). Phytoplankton biomass leveis were of
the order of 2.0 mg/1 and quotient leveis were
high. The dominating organisms were diatoms.
Lakes Inhottujärvi and Karvianjärvi are oligo
trophic. Biomass leveis observed were 0.2—0.3
mg/1, the dominating species being Centrales
diatoms. In the 1965 sample from Lake Karvian
järvi considerabie amounts of Hormogonales
blue-green algae were also observed.
Lake Karhijärvi is a highly eutrophic lake
(National Board of Waters 1978b). Phytoplank
ton ievels of over 10 mg/1 were recorded and the
values of odour index were also very high. The
major portion of the biomass was composed
of Centrales diatoms, although the proportion
of Hormogonales blue-green algae was also
significant.
Situated in the Lapuanjoki river basin, Lake
Kuortaneenjärvi is a eutrophic lake (National
Board of Waters 1978c). Phytoplankton levels
of over 1.0 mg/1 were recorded, and quotient and
odour mdcx values were high. The dominating
species were Hormogonales blue-green algae.
Lake Lappajärvi is in the process of eutro
phication (Nauonal Board of Waters 1978c).
Phytoplankton biomasses were 0.54—0.90 mg/1.
Some quotient values were particularly high, and
increased odour index values were also observed
in some cases. The dominating organisms were
30
II
o
•
10
20
30
40
1
1
1
1
50km
Fig. 13. Sampling stations of the Kokemäenjoki river basin below the River Nokianvirta.
diatonis, and the leveis of blue-green algae were
also higher than those usually observed in oligo
trophic waters.
Lake Lestijärvi in the Lestijoki river basin is
an oligotrophic lake (National Board of Waters
1977e). The phytoplankton biomass, dominated
by diatoms, was 0.2 mg/1. Quotient and odour
mdcx values were low.
Lake Reisjärvi in the Kalajoki river basin is
a eutrophic lake (National Board of Waters
1978d). Phytoplankton biomass was over 1.0
mg/1 and the values of quotients and odour index
were elevated. The major constituent of the
biomass were Centrales diatoms.
Lake Pyhäjärvi in the Pyhäjoki river basin is
largely oligotrophic in nature (National Board
of Waters 1978d). The level of phytoplankton
was below 0.2 mg/1 and both quotient values
and odour mdcx values were Iow. The dominating
species were diatoms. The area Salmenselkä of
this lake did show signs of some eutrophication:
phytoplankton biomass exceeded 1.0 mg/1 and
31
0
20
Fig. 14. Sampling stations in the river basins of Ostrobothnia.
32
the proportion of blue-green algae was greater
than in the rest of the lake.
Lake Iso-Lamujärvi in the Siikajoki river basin
is considered to be oligotrophic (National Board
of Waters 1978d). Phytoplankton leveis were
around 0.6 mg/1 and quotient values were Iow.
The dominating species were diatoms.
Phytoplankton biomasses in the river basins
of Ostrobothnia were 0.15—14.5 mg/1, with a
mean value of 1.84 mg/1. The dominating plank
ton fiora were usually diatoms. Biomass leveis of
blue-green algae were also high in some eutrophic
lakes.
4.09 The Oulujoki, lijoki, Kuivajoki and
Simojoki river basins
Sampies were taken in this area from Lake Oulujärvi and the larger lakes of the chains draining
into it, from the larger lakes along the lijoki
river basin and from Lakes Oijärvi and Simojär
vi in the Kuivajoki and Simojoki river basins
(Fig. 15).
The major part of Lake Oulujärvi is oligotro
phic. However, the discharge of industrial and
municipal wastes has caused some changes in the
southern part of the Paltaselkä area and in the
eastern section of the Ärjänselkä area (National
Board of Waters 1977f). Phytoplankton bio
masses varied between 0.26 and 0.66 mg/1, the
highest values being found in the Paltaselkä area
and the lowest in the Niskanselkä area. The
dominating organisms were diatoms. Järnefelt
(1956a) described Lake Oulujärvi as oligotrophic
in his investigations of 1946 and 1951. Total
phytoplankt.on biomass was then 0.13 mg/l, the
species number 43 and quotient values were low.
The lakes draining into Lake Oulujärvi are
dystrophic waters in a natural state, with the
exception of Lake Pirttijärvi, which is polluted
by sewage and effluents from the dairy industry
(National Board of Waters 1977f). Phytoplankton
leveis were somewhat increased in Lake Pirtti
järvi and the effect of the pollutants was also
discernible in the following lake of the chain,
Lake Nuasjärvi. In addition to the increased
biomass leveis the volume quotient values were
also elevated in the effected lakes.
The lakes in the lijoki river basin are in an
oligotrophic state (National Board of Waters
1977g). Taking into account the geographical
location of this river and also the soil type,
phytoplankton biomass leveis were rather high.
In the case of some of the lakes the reason for
this may be water regulation, which has increased
the level of utilizable nutrients and hence also
primary production. The highest biomass leveis
were in Lake Tyräjärvi (over 1.0 mg/1), which
also supported the richest variety of species.
Lake Pudasjärvi is oligotrophic (National
Board of Waters 1977g). Phytoplankton bio
masses were 0.26—0.39 mg/1 and quotient and
odour index values were low. Järnefelt (1956a)
investigated this lake in 1946 and considered it
then also to be oligotrophic. Phytoplankton
leveis in this earlier research were below 0.01
mg/1 and the number of species was low.
Lake Oijärvi in the Kuivajoki river basin is
a eutrophic lake (National Board of Waters
7g). Phytoplankton biomass was in 1963 over
7
19
5.0 mgtl and was composed mainly of Centrales
diatoms and Hormogonales blue-green algae.
The odour index was high in both years.
Lake Simojärvi in the Simojoki river basin
supported a considerably higher level of phyto
plankton biomass in 1965 than in 1963, and the
species number was also higher in the second
sampling. The dominating organisms in both
years were Centrales diatoms.
The phytoplankton biomasses in the waters
of this area varied between 0.01 and 5.19 mg/1,
the mean value being 0.56 mg!l. The dominating
organisms were diatoms.
4.10 The Kemijoki and Tornionjoki river
basins
Both of these river basins contain only a few lakes.
Sampies were taken from the most important of
these lakes (Fig. 16).
The Kemijoki river basin is of the oligotrophic
type (Viitasaari & Seppänen 1967). Plankton
biomasses in the lakes investigated varied between
0.20 and 0.74 mg/l. The most eutrophic lake was
Lake Unari, in which the odour index values
were also higher than in the other waters along
the course of this river. Dominating species
belonged to the division Chrysophyta and were
33
60
80
100km
Fig. 15. Sampling stations in the Oulujoki, lijoki, Kuivajoki and Simojoki river basins.
in most cases Centrales diatoms.
The source waters of the Tornionjoki river
basin are clean subarctic lakes, while in the lower
reaches the lakes are coloured by humus and
soluble iron salts (Karimo et al. 1970). Slight
eutrophication observed in the lakes of this
watercourse is probably a resuit of the rock-
and soil type in this area (Maristo 1941). The
highest biomass and quotient values were found
in Lake Jerisjärvi.
The phytoplankton biomasses in the lakes of
this area varied between 0.20 and 1.49 mg/1, the
mean value being 0.54 mg/1. The dominating
species were diatoms.
34
O
.4
‘1
11
o
Ii
Fig. 16. Sampling stations in the Kemijoki and Tornionjoki river basins.
20
40
60
80
100 km
35
4.11 River basins of northern Lapland
and Kuusamo
Sampies were taken from Lakes Inarinjärvi and
Muddusjärvi in the Paatsjoki river basin, from
Lakes Kitkajärvi, Kirpistö, Kiitämö and Suininki
in the Koutajoki river basin, and from Lakes
Joukamojärvi, Muojärvi and Kuusamojärvi in
the Kemjoki river basin (Fig. 17).
Lake Inarinjärvi was found to be oligotrophic
(Airaksinen & Heinonen 1976), with phyto
plankton typical of this classification. The
maximum level was below 0.2 mg/l and the value
of odour mdcx was very low. The dominating
species were diatoms. Järnefelt (1956b) in
vestigated this lake at the beginning of the 1950decade and observed phytoplankton leveis of
between 0.02 and 0.06 mg/l. Quotient values
were also very low.
In one of the two sampies from Lake Muddus
järvi in 1963 the phytoplankton level was greater
than 1.0 mg/i, resulting from an abundance of
Centrales diatoms. Quotient values in this lake
were low.
The lakes in the Koutajoki and Kemjoki
river basins are in the main clean and oligotrophic
(Heinonen & Myllymaa 1974). Phytoplankton
biornasses of 0.30—0.74 mg/l and 0.23—0.93
mg/l, respectively, were observed in the lakes of
these river basins. The highest values were from
Lake Kuusamojärvi, which is loaded by sewage
effluents. The western end of the lake was
somewhat eutrophic, which was reflected in
elevated values of volume quotient and odour
index. The dominating species were in general
Centrales diatoms in ali these lakes, although the
proportion of blue-green algae was also high in
Lake Kuusamojärvi in 1963.
Phytopiankton biomasses in the waters of
northern Lapland and Kuusamo were 0.09—
1.10 mg/l with a mean value of 0.39 mgfl. The
dominating species were diatoms.
DISCUSSION
5.
5.1 Regional survey of phytoplankton
biomasses
A summary of the phytoplankton biomasses by
regions is presented in Table 2. The results for
1963 and 1965 have been combined.
The highest biomass levels were recorded in
the relatively small lakes of the coastal regions
(Areas 4, 5, 7). Of the inland watercourses the
most eutrophic were the eastern sources of the
Kokemäenjoki river basin (Area 6.2) and the
lower reaches of the same river (Area 6.3). In
the Vuoksi river basin the most eutrophic lakes
were found in the Iisalmi-Kuopio route. A similar
comparative classification of the watercourse was
possible on the basis of physical and chemical
analyses (Laaksonen 1970 and 1972). Eutrophica
tion of lakes in coastal areas and in the IisalmiKuopio route is mainly due to soil fertility. In
other eutrophic lakes waste waters are generally
the cause of eutrophication.
The dominating phytoplankton species in ali
cases belonged to the division Chrysopbyta, and
very often were diatoms. The proportion of algae
of the divisions Cyanophyta and Chlorophyta
were low, while the appearance of Euglenophyta
algae was confined to highly eutrophic and
usually badly polluted waters.
5.2 Total phytoplankton biomass leveis
Phytoplankton biomasses varied in 1963 between
0.01 and 45.0 mg/l and in 1965 between 0.02
and 18.6 mg/l. The distribution of biomass Ievels
has been expressed graphically (Figs. 18 and 19)
using the display technique of Järnefelt (1956a)
in which the sampies are arranged aiong the
lower axis from left to right in accordance with
increasing biomass value per sample. A division of
the biomass results for the two years is presented
in Table 3, along with some estimated compari
sons with the investigation of Järnefelt (1956a).
The forms of the curves for 1963 (Fig. 18) and
1965 (Fig. 19) are identical with that of the
curve presented by Järnefelt (1956a), which was
based in part on sampies taken as long ago as the
end of the 1930-decade. Small differences iii
relative proportions may resuit from the facts
that the material of Järnefelt included many
small oligotrophic lakes and that his investigation
was not carried out on such a wide geographical
basis as the present research.
Järnefelt (1956a) held the lower threshold of
36
,
2)
Li
0
20
40
60
80
100km
Fig. 17. Sampling stations in the river basins of northern Lapland and Kuusamo.
37
Table 2. The summary of phytoplankton biomasses by regions.
Region
Phytoplankton biomass, mg/1 (fresh weight)
Cyanophyta Chlorophyta Euglenophyta Chrysophyta Pyrrophyta
Total
Number Number
of species of samples
1.
0.03
0.04
<0.01
0.38
0.04
0.49
54
12
2.
2.1
2.2
2.3
0.06
0.03
0.10
0.05
0.07
0.06
0.10
0.04
0.01
<0.01
0.01
<0.01
0.80
0.25
1.58
0.40
0.10
0.05
0.16
0.07
1.03
0.39
1.94
0.56
62
51
77
56
255
3.
3.1
3.2
3.3
0.05
0.03
0.10
0.04
0.04
0.04
0.06
0.03
0.01
<0.01
0.01
<0.01
0.44
0.30
0.95
0.20
0.10
0.07
0.21
0.04
0.63
0.44
1.32
0.31
63
66
60
62
228
138
55
35
4.
1.17
0.54
0.17
2.27
0.24
4.39
77
21
5.
0.59
0.34
0.05
1.02
0.06
2.05
87
11
6.
6.1
6.2
6.3
0.37
0.02
0.70
0.03
0.22
0.01
0.38
0.05
0.03
<0.01
0.04
0.01
0.84
0.23
1.14
2.15
0.11
0.07
0.13
0.25
1.56
0.33
2.39
2.49
56
39
67
72
179
73
94
12
7.
0.40
0.11
0.01
1.21
0.11
1.84
66
24
8.
0.06
0.06
0.01
0.39
0.05
0.56
54
52
9.
0.03
0.04
<0.01
0.40
0.07
0.54
66
22
10.
0.03
0.02
0.01
0.30
0.03
0.39
58
22
1—10 5
c
0.17
0.11
0.02
0.70
0.09
1.09
61
826
Table 3. The phytoplankton biomassvalues for 1963 and
1965, along with some estimates extrapolated from the
August distribution in the sampies of Järnefelt (1956a).
Phytoplankton
biomass, mg/l
(fresh weight)
Percentage of sampies
Year 1963
Year 1965
<0.20
19.6
30.5
<0.50
<0.80
< 1.00
1.00—2.00
>-2.00
>10.0
60.1
75.2
78.9
9.3
11.8
1.8
67.6
79.0
81.4
7.7
10.9
1.6
Järnefelt
(1956a)
-
-
-
85.0
-
10.0
-
phytoplankton biomass in Finnish lakes described
as eutrophic to be 8 l/ha (equivalent to a fresh
weight of 0.8 mg/l). Only those lakes with a
phytoplankton biomass not exceeding 1.5 l/ha
(0.15 mg/l) were further investigated as examples
of oligotrophic lakes. The latter threshold seems
very low indeed and may result to some extent
from differences between the research material
93
98
64
of his study and of the present investigation.
In the literature, phytoplankton biomass
values (converted to fresh weight) of 0.1—1.0
mg/l have been reported during the growth
season for lakes described as oligotrophic (Rodhe
1958, Findenegg 1958, Moskalenko 1972,
Velikoretskaya & Forsh 1972, Wi1ln 1972,
Gliwicz 1975, Munawar & Munawar 1975, Janus
& Duthie 1979). Mesotrophic lakes, or lakes
undergoing eutrophication, have in turn usually
supported phytoplankton biomass leveis of 0.6—
3.0 mg/l (Andronikova & Drabkova 1972, Lehn
1972, Goldman et al. 1973, Hecky 1975). The
highest values have been reported for obviously
eutrophic lakes. Biomass levels reported iii the
literature for eutrophic lakes vary between 1.8
and 30.0 mg/1 (Pieczy6ska 1971, Edmondson
1972, Schindler et al. 1974, Spodniewska 1974
and 1978, Armitage & Simmons 1975, Fleming
1975, Holtan 1978). During blue-green aigal
blooms values of several hundred mihigrams per
litre have been recorded (Haxnmer 1969, Popova
38
12,0
mg/I
10,0
0
E
.2—
c c
00
0.
160
240
120
2CE)
Number of sampies (cumulative)
Fig. 18. Arrangement of the sarnples (left to righ,t) in order of increasing biomass content. 1963 results.
12,0
mg/L
0
m
0
8.0
E
.2 D
‘0€
j 6.0
o. ‘ot
4.0
20
0
0
50
100
250
150
300
200
Number of sampLes (cumutotive)
350
400
Fig. 19. Arrangement of the sampies (left to right) in order of increasing biomass content. 1965 results.
450
500
39
et al. 1972, Topatschewsky & Sirenko 1973,
Haijula & Langi 1974, Cronberg et al. 1975).
On the basis of the detailed examination of
the present results and also other available in
formation concerning the lakes investigated, it
is possible to classify Finnish lakes on a scale of
eutrophication according to midsummer phyto
plankton biomass leveis as follows:
Phytoplankton biomass classification
(mg/l, fresh weight)
<0.2 0
0.21—0.50
0.51—1.00
1.01—2.50
2.51—10.0
>10.0
ultra-oligotrophic
oligotrophic
incipient eutrophy
mesotrophic
eutrophic
hypereutrophic
The great majority of the Finnish lakes in
vestigated are obviously oligotrophic. Median
biomass values were in 1963 about 0.4 mg/1 and
in 1965 about 0.3 mg/l. Only 1.7 % of the
sampies taken were hypereutrophic. Biomass
leveis were in general lower in 1965 than in
1963. In an investigation based on single sampies
this difference may be pure coincidence, but it
may also be that the results were influenced by
climate conditions. The month of July was in
most areas cooler in 1965 than in 1963 (Tie- ja
vesirakennushallitus 1965 and 1968).
In the treatment of the results below, the
regional division has been abandoned in favour
of grouping according to biomass (Table 4).
Groups 1 and II represent oligotrophy ac
cording to the classification described above,
group III incipient eutrophy, groups IV and V
mesotrophy and groups VI, VII and VIII dif
ferent degrees of .eutrophy.
5.3 Phytoplankton composition
5.31 Divisions and orders
The amounts (mg/I) of different divisions and
orders constituting phytoplankton biomass are
presented in Table 5. for each of the eutro
phication groups 1—Vili of Table 4.
The dominating division in Finnish waters
of ail stages of eutrophication was Chrysopbyta.
Within this division the dominating organisms
were Centrales diatoms, again in ali these eight
groups. With increasing levels of biomass algae
of the division Pyrrophyta were the second most
abundant organisms in waters with a total
biomass of up to 2.5 mg/l (Group V), after which
the divisions Cyanophyta and Cbloropbyta were
represented to a greater extent than Pyrrophyta
algae.
The amount of blue-green algae increased with
increasing eutrophication, particularly the order
Hormogonales. The biomass of green algae also
increased with eutrophication. Of the different
orders of green algae, Pro tococcales indicated
most clearly eutrophication. Algae of the order
Desmidiales were also found more abundantly
in eutrophic than in oligotrophic waters. This
order has generally been held to be an indicator
of oligotrophy (Järnefelt 1956a, Järnefelt et al.
1963, Willn 1976), although Desmidiales have
Table 4. Grouping of the results according to phytoplankton biomass.
Group
Phytoplankton biomass
mg/I (fresh weight)
C1ificaon
1
II
III
0—0.20
0.21—0.50
0.51—1.00
oligotrophy
IV
1.01—1.50
} mesotrophy
}
V
VI
VII
VIII
Total
1.51—2.50
2.51—5.00
5.01—10.0
>10.0
incipient eutrophy
eutropiiy
hypereutrophy
Number
of samples
Percentage
212
322
129
25.7
39.0
15.6
40
35
25
14
4.9
4.2
3.0
1.7
826
100.0
5.9
40
Table 5. The composition of phytoplankton biomass (mg/l, fresh weight) by divisions and orders in various groups
(Table 4).
Phytoplankton biomass (mgII) iii group
nision
order
Cyanophyta
1
51
II
III
IV
V
VI
VII
VIII
5.30
11.44
s
<0.01
0.010
0.02
0.028
0.05
0.068
0.08
0.143
0.13
0.290
0.25
0.601
1.26
1.801
Chroococcales
51
s
<0.01
0.009
0.02
0.023
0.02
0.039
0.03
0.038
0.03
0.055
0.05
0.073
0.57
1.133
Hormogonales
51
s
<0.01
0.006
0.01
0.016
0.03
0.057
0.05
0.138
0.10
0.280
0.20
0.609
0.69
1.153
5.00
12.31
51
s
0.02
0.017
0.03
0.025
0.05
0.069
0.11
0.219
0.11
0.31
0.716
0.56
0.887
2.53
0.155
Volvocales
51
s
<0.01
0.003
<0.01
0.011
<0.01
0.006
0.01
0.025
0.02
0.027
0.02
0.027
0.04
0.067
0.04
0.047
Tetrasporales
5c
s
<0.01
0.006
<0.01
0.010
0.01
0.036
0.04
0.169
0.02
0.060
0.03
0.098
0.10
0.251
0.09
0.164
Protococcales
Sc
0.01
0.008
<0.01
0.012
0.02
0.022
0.03
0.050
0.07
0.123
0.07
0.132
0.36
0.792
2.21
s
<0.01
0.001
0.01
0.016
0.02
0.049
0.03
0.149
0.01
0.022
0.08
0.351
0.02
0.043
<0.01
0.005
51
s
<0.01
0.004
0.01
0.007
0.01
0.025
0.01
0.030
<0.01
0.010
0.12
0.659
0.05
0.094
0.19
0.369
ii
s
<0.01
0.001
<0.01
0.003
<0.01
0.034
<0.01
0.009
0.03
0.060
0.03
0.049
0.05
0.066
0.24
0.439
51
s
0.09
0.041
0.22
0.079
0.45
0.151
0.83
0.289
1.48
0.446
2.66
0.894
4.79
2.543
8.90
4.713
Chrysomonadinae
31
s
0.04
0.027
0.08
0.054
0.15
0.128
0.25
0.257
0.31
0.310
0.26
0.485
0.37
0.882
2.50
5.234
Heterokontae
31
s
<0.01
0.003
<0.01
0.005
<0.01
0.004
<0.01
0.005
0.01
0.016
0.03
0.070
0.01
0.014
0.01
0.021
Centrales
31
s
0.04
0.029
0.10
0.066
0.22
0.146
0.45
0.302
0.80
0.534
1.83
1.057
3.90
2.816
6.04
4.876
Pennales
31
s
0.01
0.013
0.03
0.036
0.08
0.100
0.13
0.182
0.35
0.430
0.54
0.702
0.52
1.341
0.36
0.840
ii
s
0.02
0.022
0.06
0.048
0.12
0.112
0.19
0.174
0.24
0.203
0.20
0.152
0.27
0.225
0.65
1.110
Chryptomonadinae
31
s
0.02
0.021
0.04
0.045
0.09
0.107
0.16
0.173
0.19
0.197
0.15
0.128
0.22
0.225
0.60
1.128
Perjdjneae
31
s
<0.01
0.009
0.02
0.026
0.03
0.047
0.03
0.049
0.05
0.054
0.05
0.097
0.06
0.089
0.05
0.057
Total biomass
31
s
n
0.142
0.046
212
0.323
0.081
322
0.679
0.127
129
1.21
0.133
49
1.98
0.271
40
0.549
6.93
1.361
25
17.5
8.769
14
Chlorophyta
s
Ulotrichales
Desmidiajes
Euglenophyta
Chrysophyta
Pyrrophyta
ii
3.45
35
0.30
0.476
5.889
5.961
41
in some cases been reported as the dominating
species in eutrophic waters (Järnefelt 1952b).
Amounts of Euglenophyta also increased with
increasing eutrophication. The increasing biomass
of algae of the division CA’rysophyta with eutro
phication was mainly due to the increasing leveis
of Centfales and to a lesser extent Pennales
diatoms.
In addition to quantitative changes occurring
with increasing total phytoplankton biomass
concentration, the relative amounts of different
divisions and orders also altered. The changes
by divisions are displayed in Table 6.
The most striking of the changes in relative
composition was the considerable increase in
the proportion of blue-green algae in waters with
a total phytoplankton biomass exceeding 5.0
mg/l (Groups vi! and VIII). Another significant
change was the decreasing proportion of Pyrro
phyta with increasing total biomass.
Changes in the amounts of the different
divisions and orders with increasing eutrophica
tion are displayed in Table 7. The correlations of
each division and order with total biomass have
Table 6. The pereentage composition of phytoplankton biomass by divisions in sainpies from the eutrophication
groups 1—ylH (Table 4).
Phytoplankton biomass percenrage composition in group
.
Division
.
.
Cyanophyta
Chlorophyta
Euglenophyta
Chrysophyta
Pyrrophyta
E
Table
1
II
III
IV
V
VI
VII
VIII
5.2
11.5
0.2
65.0
18.1
6.2
9.0
0.2
66.8
17.8
7.3
7.3
1.5
66.2
17.7
6.6
9.0
0.4
68.4
15.6
6.3
5.5
1.5
74.7
12.0
7.3
9.0
0.9
77.0
5.8
18.2
8.1
0.7
69.1
3.9
30.1
14.3
L4
50.6
3.6
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
7. The correlation coefficients of the biomass values of the different divisions and orders with total biomass
for
eacli eutrophicacion group (Table 4) and for the wbole material.
Division
order
Correlation coefficient with total biomass in group
II
1
0.126*
0.110*
0.167*
Cyanophyta
Chroococcales
Hormogonales
0.087
0.107
Chlorophyta
Volvocales
Tetrasporales
Protococcales
IJlotrichales
Desmidiajes
0.273***
0.052
0.026
0.125
0.027
0.124
III
IV
—0.020
—0.161
0.078
V
—0.160
0.305*
VI
0.142
0.082
0.032
VII
0.014
0.359
—0.231
0.067
0.140
0.108
0.107
0.089
0.029
0.055
0.045
0.019
0.088
0.207*
0.347*
0.410*
0.153
0.183
0.123 —0.029
0.297 —0.252
0.139
0.299* —0.014
0.101
0.146
0.117
0.177* —0.062
0.288
0.191
0.297
0.329*
0.336* —0.069
0.075
0.179
0.182
0.073 —0.117
0.150
0.243
—0.013
VIII
1—yli
0.494
0.059
Ø499*
0.518***
0.617***
44
m
6
o
0.155
0.172
0.240
0.301
—0.238
—0.181
0.667***
0.548***
0.367***
0.634***
0.206**
—
0.443
Euglenophyta
0.042
0.137
0.176
0.215
0.584*
Chrysophyta
0.805 0.630*** 0.466*** 0.303* 0.392* —0.021
0.408* 0.281 0.124
0.033 —0.009 —0.036
0.032 —0.047
0.034 —0.101 —0.072
0.074
0.366*** 0.429*** 0.121
0.306*
0.242
0.077
0.300*0.285***O.238** 0.016
0.058
0.209
0.378
—0.195
—0.229
0.391
0.146
—0.360
—0.006
—0.049
—0.377
0.208
0.922*
0.499**
0.404*
0.802***
0.638***
0.211** 0.270* 0.064
0.214*** 0.065
0.093
0.169** 0.108
0.082
—0.286
—0.313
0.238
0.059
—0.149
0.165
0.623***
0.560***
0.426***
Chrysomonadinae
Heterokontae
Centrales
Pennales
Pyrrophyta
Cryptomonadinae
Peridineae
***
**
*
—0.012
0.060
statistically highly significant (99.9 % prob.)
statistically significant (99.0 % prob.)
statistically almost significant (95 % prob.)
0.071
—0.090
—0.141
0.249
0.196
0.210
0.171
0.119
0.015
—0073
0.242
42
been calculated for each eutrophicauon group
and for the whole material. Calculations were
made after logarithmic transformation of the
biomass values.
In the groups 1 and II (biomass 0.01—0.50
mg/l) eutrophication was indicated most clearly
by the orders within the division Cbrysophyta,
with the exception of the division Heterokontae.
In the succeeding groups the number of signi
ficant correlation decreased, while in the hyper
eutrophic group (Group VIII, biomass >10 mgfl)
the increase in biomass was clearly a resuit of
increasing leveis of blue-green algae, in particular,
algae of the order Hormogonales.
In the treatment of the whole material the
differences within the groups were observed, and
in general it can be stated that the amounts of
ali the divisions and orders increased with in
creasing total biomass. The strongest correlation
with increasing total biomass was found for the
division Chrysopbyta, while the correlations for
the other djyjsjons were fair or considerable.
5.32 Numberofspecies
The numbers of species in the sampies varied in
1963 between 5 and 128 and in 1965 between 3
and 160. In the course of the whole research a
total of 680 taxons were identified. The distribu
tion of samples according to the species number
is presented in Table 8.
The median values of the species number were
54 and 62 species in 1963 and 1965, respectively.
The smallest numbers were recorded in waters
highly polluted by industrial effluents, while the
highest were observed in eutrophic lakes affected
by domestic wastes.
In general, the phytoplankton species number
was low in the most oligotrophic group and in
creased up to and including group VI (Table 9).
In group VII the correlation between the species
number and the biomass was fair. The mean
value of the species number was, however,
smaller in this group than in the preceding. In the
samples with biomass values exceeding 10 mg/l
Table 8. The numbers of phytoplankton species in 1963
and 1965.
Number of samples
Number
of SPCS
1963
Percentage
<20
21—30
7
16
60
2.1
4.9
11.9
24.1
18.3
81—90
91—100
51
28
20
13
15.6
8.5
6.1
4.0
101—110
6
111—120
>120
7
31—40
41—50
51—60
61—70
71—80
1965
Percentage
5
19
82
81
1.0
3.8
11.0
16.5
16.3
79
15.9
73
14.7
1.8
36
21
18
7.2
4.2
3.6
2
2.1
0.6
13
16
2.6
3.2
328
100.0
498
100.0
39
79
.
55
(Group VIII) the species number decreased with
increasing biomass. This correlation was statisti
cally almost significant. Differences between
groups VI, VII and VIII were, however, not
significant.
Increasing species number with increasing
total biomass has also been recorded by Eloranta
(1978), who on the basis of his own rese,arjh
material stated that “the number of species
grows with increasing productivity, at least to the
”. On the basis of the
3
biomass value 2 g/m
present investigation the increase continues at
).
3
least to a biomass level of 5.0 mg/l (5 gIm
The species number of the dlvision Cyanophyta
increased with increasing total biomass up to
10 mg/l (Group VII), after which a slight decrease
was observed. The number of species of algae of
the order Hormogonales increased also in the
most eutrophic group (Group VIII). Similarly the
species number of green algae clearly increased
with eutrophication, due mainly to algae of
the order Protococcales. As the number of
Desmidiales species was also greater in eutrophic
than in oligotrophic waters, this order cannot in
its entirety be considered as an indicator of
oligotrophy.
The species number of Euglenophyta increased
along with eutrophication, whereas the number
of species of the division Chrysophyta, parti
eularly of diatoms, were greatest in group VI
43
Table 9. The mean number of species and the biomass of phytoplankton, and the correlations between these variabies,
in the different eutrophication groups (Table 4).
Group
1
Number of species (n) ii 44.9
s 14.6
II
III
IV
V
VI
VII
VIII
1—Vili
57.7
17.7
66.9
19.0
74.7
21.5
85.0
27.9
94.4
26.7
94.0
20.4
92.5
61.4
23.8
33.5
Phytoplankton biomass,
mg1 (B)
Correlation niog B
***
**
*
1.21
0.68
0.32
0.14
0.552* 0.1 53** 0. 74* 0.043
—
1.98
3.45
0.016
0.072
6.93
17.5
1.09
0.650**0.697 0.626***
statistically highly significant (99.9 % prob.)
statistically significant (99.0 % prob.)
statistically almost significant (95 % prob.)
(biomass 2.51—5.0 mg/l). A similar maximum of
the species number of the division Pyrropbyta and
of its constituent orders was observed in group VL
Diatoms, Protococcales green algae and
Euglenophyta most obviously favoured eutrophic
waters. In the classification of Järnefelt (1952b),
based on proportionality within the total species
number, Protococcales lakes (over 35 % of the
species) are eutrophic. Protococcales-Cyanopbyta
Diatomae lakes are eutrophic if some Eugieno
phyta are also present, but oligotrophic or dys
eutrophic in their absence.
The numbers of species of the different
divisions and orders are presented as the means
for the eutrophication groups in Table 10.
5.33 Diversity
The correlation of Margalef-diversity with
biomass was insignificant or weakly significant
in ali eutrophication groups. The strongest
was in the most
a negative one
correlation
had no
diversity
The
Shannon
eutrophic group.
species
the
either
with
correlation
significant
correlations
mutual
The
biomass.
number or the
of the two diversities were also insignificant.
Diversity has in some previous investigations
been considered as a convenient method of
monitoring the water quality in larger eco
systems (Haedrich 1975, Koivo 1978, Tinnberg
1979). The present research does not support
—
—
this opinion. At best diversity can be regarded
only as an additional parameter in the examina
tion of results. Similar conclusions have previously
been reached by Archibald (1972) and Murphy
(1978).
Values for diversity were calculated using the
expressions due to Margalef (1958) and Shannon
(Hutchinson 1967).
The maximum diversity according to the
equation of Margalef was for group VI (Table 11),
in which biomass levels were 2.51—5.0 mg/l and
the number of species was also highest. Calculated
according to Shannon, the maximum diversity
was found in group III (biornasso.51—1.00mgfl).
In hypereutrophic waters the diversity decreased,
reflecting the diminishing variety of the phyto
plankton. The differencies between different
groups were, however, statistically not significant.
The Margalef diversity of a sample correlated
very strongly with the species number (Table 12).
A sirnilar correlation has previously been reported
by Eloranta (1976).
5.4
Quotients
5.41 ElO and EV/OV quotients by Järnefelt
The quotients most widely used in Finland have
been the ElO and EVIOV quotients developed
by Järnefelt (1952b and 1956a) and Järnefelt et al.
(1963). The ElO quotient is calculated from the
nurnbers of species favouring eutrophic and
oligotrophic environments, and the EV/OV
quotient from the total volumes of the sarne
species. The distributions of quotient values
have been collected into Table 13. Quotient
values have been omitted for those sampies in
which no oligotrophic indicator species were
observed (61 sampies). The true distribution of
44
Table 10. The mean number of species of the divisions and orders lii the different eutrophication groups,
The mean nuniber of species in group
Divisjon
order
1
II
III
IV
V
VI
VII
VIII
s
5.5
2.63
6.5
2.66
7.5
2.93
8.6
4.22
9.9
4.01
10.2
3.38
13.3
4.83
11.2
5.81
7.2
3.50
s
3.4
1.93
4.3
2.08
4.5
2.25
4.9
2.53
5.0
2.78
5.9
2.36
7.3
3.73
5.6
3.27
4.3
2.32
ii
s
2.1
1.28
2.2
1.49
3.0
1.90
3.7
2.33
4.9
2.17
4.3
1.77
6.0
2.05
5.6
3.34
2.9
1.88
s
15.3
7.62
s
1.0
0.62
1.2
0.76
1.5
0.85
2.0
1.12
2.5
1.15
2.3
1.37
2.2
1.44
2.1
0.59
1.6
0.85
3
s
2.0
0.87
2.1
0.94
2.4
1.03
2.2
0.94
2.4
0.96
2.6
0.97
2.2
0.93
2.2
0.96
2.2
0.92
s
8.5
4.65
11.1
5.82
13.1
6.41
14.8
6.93
s
0.9
0.72
1.5
0.80
1.5
0.83
1.5
0.96
1.5
0.80
2.2
1.16
1.3
0.52
1.3
0.52
1.5
0.65
5c
s
2.9
2.51
4.4
4.07
5.0
4.23
6.2
5.24
6.0
4.10
7.3
5.14
5.0
3.37
8.0
5.27
4.7
3.90
Euglenophyta
5c
s
1.2
0.67
1.0
1.15
2.3
1.80
3.6
2.33
5.9
4.74
6.7
4.19
8.5
5.15
8.6
3.01
2.6
2.62
Chrysophyta
i
s
19.3
6.53
25.5
6.92
29.1
7.54
30.6
9.12
31.6
10.3
33.6
9.87
s
8.3
3.51
11.2
4.03
12.5
4.10
11.3
5.19
10.7
5.08
11.1
4.60
8.7
5.40
6.5
5.39
10.3
4.38
s
1.0
0.39
1.3
0.62
1.5
0.80
1.4
0.98
1.6
1.12
1.7
1.11
1.4
0.79
1.4
0.74
1.3
0.60
s
5.8
2.46
7.2
2.46
7.7
2.66
9.0
2.64
9.9
3.74
10.6
3.88
8.8
3.04
7.8
4.15
7.3
2.96
5i
s
4.2
2.30
5.8
2.77
7.4
284
8.9
3.46
9.4
2.96
10.2
3.12
9.1
3.42
8.7
3.69
6.3
3.25
s
3.6
1.53
4.4
1.77
4.5
1.83
5.2
2.37
5.2
1.98
5.3
2.43
5.0
2.22
4.4
2.03
4.3
1.87
Cryptomonadinae 5i
s
1.0
0.36
1.1
0.39
1.0
0.38
1.2
0.36
1.1
0.43
1.1
0.36
1.2
0.43
1.1
0.38
1.1
0.37
5
s
-2.6
1.34
3.3
1.63
3.5
1.70
4.0
2.19
4.1
1.98
4.2
2.46
3.8
2.14
3.3
2.02
3.2
1.68
5i
s
44.9
57.7
17.74
322
66.9
18.97
129
74.7
21.51
49
85.0
27.93
40
94.4
26.70
35
94.0
20.36
25
92.5
33.47
14
61.4
23.84
826
Cyanophyta
Chroococcales
Hormogonales
Chlorophyta
Volvocales
Tetrasporales
Protococcales
Ulothricales
Desmidiales
Chrysomonadinae
Heterokontae
Centrales
Pennajes
Pyrrophyta
Peridineae
Total
14.61
n 212
20.3
10.0
23.5
10.7
26.7
10.7
32.4
14.7
20.0
10.3
38.6
16.2
24.2
11.9
39.2
11.8
28.5
9.95
28.0
10.8
43.9
14.2
30.3
10.4
244
13.1
1— VIII
22.1
12.5
12.1
8.35
25.2
8.75
45
Table 11. Diversity values in the different eutrophication groups (Table 4).
Group
1
Diversity:
Margalef
II
III
IV
V
VI
VII
VIII
1—VIlI
s
4.49
1.395
5.40
1.604
5.95
1.620
6.41
1.809
6.99
2.259
7.56
2.139
7.15
1.570
6.81
2.643
5.56
1.857
s
n
3.41
0.806
212
3.50
0.762
322
3.64
0.693
129
3.50
0.851
49
3.28
0.997
40
3.60
0.858
35
3.46
0.789
25
3.03
1.070
14
3.48
0.795
826
Shannon
Table 12. Correlations of the diversity mdcx values arrived at using the equations of Margalef and Shannon with
species number and biomass for each eutrophication group (Table 4. The mutual correlations of the two diversity
values are also presented.
Correlations (r) between
Group
Margalef and
number of species
Margalef and
biomass (log)
1
II
III
IV
V
VI
VII
VIII
I—VIH
0.988***
0.992***
0.990***
0.991***
0.993***
0.993***
0.982***
0.991***
0.974***
0.500**
0.103
0.139
0.011
0.045
0.056
0.589**
0.728**
0.473***
***
**
*
—
—
Shannon and
number of species
—
Shannon and
biomass (log)
Shannon and
Margalef
0.251***
0.288***
0.136
0.092
0.066
0.063
0.180
0.427*
0.015
0.044
0.067
0.118
0.170
0.283
0.048
0.026
0.268***
0.140*
0.039
0.119*
—
0.097
0.080
0.077
0.182
0.464*
—
0.056
0.148***
statistically highly significant (99.9 % prob.)
statistically significant (99.0 % prob.)
statistically almost significant (95 % prob.)
Table 13. The distribution of ElO and EV/OV quotient values.
E:O
0—4.0
4.1—8.0
8.1—16.0
16.1—32.0
>32
Number of
samples
% of
sampies
552
119
62
28
4
72.1
15.6
8.1
3.7
0.5
765
100.0
quotient values would therefore be somewhat
more biased towards eutrophication.
By far the majority of quotients indicated
oligotrophy. Järnefelt et al. (1963) considered
that for oligotrophy the maximum values of
the E/O and EV/OV quotients were 8 and 35,
EV:OV
0—16
16.1—35
35.1—70
70.1—150
>-150
Number of
samples
% of
sampies
510
72
41
47
95
66.7
9.4
5.4
6.1
12.4
765
100.0
respectively. On the basis of the E/O quotients
12.3 % of the lakes in the present study were
eutrophic, while according to the EV/OV quo
tient values 23.9 % were eutrophic. Estimation
directly from bioniass values (section 5.2) gave
8.9 % eutrophic lakes. On the basis of the qual
46
itative visual inspection Kaartotie (1962) arrived
at the conclusion that 13.6 % of Finnish lakes
and smaller water bodies were eutrophic in
195 1—195 3.
With increasing eutrophication it was found
that the ElO quotient followed more accurately
the rise in biomass than did the EV/OV quotient
(Table 14). The differences between various
groups were, however, not statistically significant.
Utilization of the volume quotients was
difficult because of the considerable deviation
within this parameter. Owing to a few high values
the mean EV/OV value of the most oligotrophic
group was rather near to the threshold value for
eutrophication proposed by Järnefelt et al.
(1963). This discrepancy can be examined using
the correlation matrix presented in Table 15.
Logarithmic transformations of both quotient
and biomass values were used in these calculations.
The strongest correlation was that between
the two quotients. Correlations of the quotients
with biomass were fair for the whole material
(Groups 1—Viil combined), but those with bio
mass and species number for the individual
groups were insignificant.
Use of these quotients was limited by the lack
of oligotrophic indicator species (cf. Rawson
1956) and, particularly in the case of volume
quotient, by the great deviation of the results.
5.42 The species quotients by Thunmark and
Nygaard
On the basis of the species distributions in plank
ton net sampies from Swedish lakes, Thunmark
(1945) developed a Protococcales/Desmidiales
quotient of species proportionality. When the
value of this quotient reaches 1.0, the lake is
eutrophic, while values below 1.0 indicate
oligotrophy. Nygaard (1949), investigating lakes
in Denmark, introduced several quotients based
on plankton net sampies. Three of these were
Table 14. The mean values of ElO and EV/OV quotients in the different eutrophication groups (Table 4).
ElO
s
EVIOV
V
1
II
III
IV
2.2
2.16
2.8
2.76
4.3
3.53
8.8
9.61
Group
i
s
22.1
148.0
42.9
259.5
60.1
157.9
n
198
303
128
367
919.1
14.2
12.81
VI
VII
VIII
12.2
8.06
20.7
13.57
23.1
14.79
698
1 489
861
1 685
1 290
1 696
35
30
20
45
839
890.1
6
Table 15. The correlations of ElO- and EVIOV quotients with phytoplankton biomass and species number, and mutual
correlation of the two quotieats in the different eutrophication groups (Table 4).
Correlation (r) between
G roup
ElO (Iog) and
biomass (log)
II
III
IV
V
VI
VII
VIII
1—VIII
0.014
0.126*
0.185*
—0.199
0.253
—0.109
0.057
0.231
0.609***
E/O (log) and
species number
0.042
0.066
0.059
0.186
0.338*
0.161
0.178
0.045
0.432***
EV/OV (log) and
biomass (Iog)
—0.049
0.075
0.178*
—0.245
0.128
0.020
0.227
—0.184
0.603***
EV/OV (log) and
species number
—0.040
—0.094
—0.110
0.057
—0.167
—0.012
0.420*
EV/OV (Iog) and
ElO (Iog)
0.653***
0.613***
0.537***
0.737***
0.163
0.183
0.165
0.273
0.209
0.344***
0.748***
47
applied to the resuit obtained in the present
work:
Cyanophyta/Desmidiales
blue-green aigae
species quotient
quotient
The threshold values for eutrophication were
0.8, 0.2 and 2.5 in the blue-green aigae-, diatom
and compound quotients, respectiveiy.
The mean values of ali the four species quo
tients are presented in Table 16 for each eutro
phication group.
Ali the quotient values were extremely high
and as such were indicative of eutrophication in
ali of the eutrophication groups. With the excep
tion of the Protococcales/Desmidiales quotient no
ciear trend in the quotients was observable with
increasing biomass. The quotients were examined
further by caiculating the correlation coefficients
between the species quotient and total biomass,
and the E/V and EV/OV quotients by Järnefelt
et al. (1963) for the whole research materiai.
The iogarithmic transformations of biomass and
both ElO and EV/OV quotients were used in
these caiculations.
E/O
EV!OV
O.202
0. 150
0.036
0.036
—0.253
—0.286
Cyanophyta/
Centrales/
Pennales
Cyanophyta+Protococca
les+Centrales+Eugleno
phyta/Desmidiales species
quotient
compound quotient
(index)
0. 198
Desmidiales
Desmidiales 0.070
Centrales/Pennales
species quotient
diatom quotient
Biomass
Protococcales/
***
—0.174
Compound
quotient
0.120**
0.093*
0.094*
Ali the correlation coefficients were insigni
ficant, indicating that the species quotients by
Thunmark (1945) and Nygaard (1949) cannot he
applied to Finnish waters. This conciusion has
previously been reached by Järnefeit(1952b) and
Niinioja (1975). The inappiicabiiity of the
quotients of the Swedish and Danish studies
resuits at ieast in part from the iack of a single
complete aigai order favouring a certain fixed
trophic level.
Apart from the deviation arising from phyto
plankton sampiing techniques and microscopy,
the value of quotients is reduced by rapid changes
m phytoplankton composition with time, by the
varing relevance of different aigal species as
indicators in different areas, by environmental
conditions (Hoiland 1968, Brook 1965) and also
by the smali number of species indicating oligo
trophy (Rawson 1956). However, according to
Table 16. The species quotients by Thunmark (1945) and Nygaard (1949) in the different eutrophication groups
(Table 4).
Species quotients in group
1
5
11
III
IV
V
VI
VII
VIII
s
3.5
2.89
3.5
2.99
3.7
3.01
3.9
3.49
5.1
4.94
5.3
5.89
7.1
4.80
4.6
2.26
Cyanophyta/
Desmjdjales
s
2.1
1.74
2.1
2.06
2.2
1.95
2.1
2.38
2.4
2.18
2.2
1.66
3.3
2.51
1.4
1.00
Centrales/
Pennales
s
1.5
0.98
1.5
0.96
1.2
0.54
1.2
0.75
1.1
0.47
1.1
0.66
1.0
0.35
0.9
0.26
Compound
quotient
s
5.3
4.25
5.5
4.99
5.9
5.15
5.9
6.15
7.6
8.38
6.8
6.87
8.7
6.90
4.0
2.40
49
40
35
25
14
Protococcales/
Desmidiajes
n
212
322
129
48
several investigations (Järnefelt 1 952b, 1 956a,
Rawson 1956) quotients are applicable to
relatively limited geographical areas.
5.43 Odourindex
The odour index (Section 3.2) is used as an
additional parameter in estimating the suitability
of a water body for water supply. When the
relative amount of harmful algae exceeds the
value 1.0, odour- and taste defects are possible.
In the majority of sampies, the algae giving
rise to odour- and taste defects were not observed
in harmfui quantities (Tabie 17). The odour
index was below 1.0 in 88.8 % of the sampies in
1963 and in 92.4 % in 1965. The values obtained
are in agreement with the conclusions reached
on the basis of the biomass and quotient values
Table 17. The distribution of the odour mdcx values
in 1963 and 1965.
Odour
mdcx
Year 1963
Table 19. The correlations of the odour index with
biomass and with the ElO and EV/OV quotients in the
different eutrophication groups (Table 4).
Group
Year 1965
Number
of sampies
%
Number
of sampies
%
125
76
53
18
12
7
20
17
38.1
23.2
16.2
5.5
3.7
2.1
6.1
5.1
208
135
56
32
20
9
20
18
41.8
27.1
11.2
6.5
4.0
1.8
4.0
3.6
328
100.0
498
100.0
<0.10
0.11—0.20
0.21—0.40
0.41—0.60
0.61—0.80
0.81—1.00
1.01—2.00
>.2.00
(Sections 5.2 and 5.41).
The absolute amount of odour-inducing algae
as weil as their proportion of the total biomass,
and as a resuit also the odour index, ali increased
with increasing eutrophication (Table 18). The
differences of the mean odour mdcx vaiues
between eutrophication groups were statisticaily
highiy significant up to the group V (biomass
1.5 1—2.50 mg/i). In oligotrophic waters the
odour mdcx was usualiy 0.2 or smaller, whiie in
eutrophic iakes the value of this variabie was
over 1.0.
The correlation of odour mdcx with biomass
and certain other indicators of eutrophication
was tested (Tabie 19). The logarithmic trans
formations of ali the values were used in these
calcuiations.
The correlation of odour index with biomass
1
II
III
IV
V
VI
fl
T
‘
VIII
I—VIIJ
Correlation (r) between
Odour mdcx
(iog) and
biomass (log)
Odour mdcx
(Iog) and
ElO (Iog)
Odour mdcx
(Iog) and
EV/OV (Iog)
0.257***
0.277*
0.196*
0.491***
0.132
0.303***
0.070
0.540***
0.556***
0.442***
0.239
—0.074
0.084
—0.091
—0.212
0.866’
—0.029
0.140
0.379
0.308
0.881***
—0.087
0.136
—0.343
—0.144
0.634***
0.606***
Table 18. The mean values of the indices and the amounts of algae inducing odour- and taste defects in the different
eutrophication groups (Table 4).
Odour/taste inducing algae, mg/1
s
Proportion of odour/taste inducing
%
algae in total phytoplankton
Odourindex
s
n
0.08
0.040
57.7
0.06
0.048
212
III
IV
0.40
0.168
0.84
0.284
II
1
Group
0.19
0.083
58.2
0.15
0.145
322
59.0
0.31
0.442
129
69.2
0.55
0.354
49
VI
V
1.45
0.495
72.9
1.02
0.762
40
2.65
0.878
76.8
1.17
0.700
35
VII
VIII
5.59
1.92
15.3
9.54
80.7
3.99
4.17
25
87.3
16.3
32.9
14
49
was strong for the overail material (Groups
1—ylh) and also in the most eutrophic group
(biomass > 10 mg/1). In the most oligotrophic
sampies (Groups 1 and II) fair correlation was
observed with biomass, but with increasing
eutrophication (from group IV, biomass 1;01—
1.5 mg/1) the correlation became insignificant.
Correlations of the odour iridex with the quotients
of Järnefelt et al. (1963) were fair for the whole
material (Groups 1—ylh), butmainly insignificant
within individual eutrophication groups.
The odour index as calculated in this work
has been compared by Granberg (1979) with
the odour threshold value employed in sensory
testing of drinking-water. A good correlation
was found.
The occurrence frequencies of the 50 most
commonly observed taxons are presented in
Table 20. This table does not take into account
the species densities in the sampies in which
the species occurred.
Of these taxons 7 belonged to the division
Cyanophyta, 14 to Chlorophyta, 25 to Chryso
pbyta and 4 to Pyrropbyta. The hist of the 50
most commonly observed taxons did not contain
a single Euglenopbyta species.
In this investigation it was not possible to
compare the obtained results with the observa
tions made earlier by Järnefelt (1956a).
5.52 Quantitative analysis
5.5 Occurrence of species
5.51 Qualitative analysis
A total of 680 phytoplankton taxons were
identified from water sampies during the course
of this investigation. No species occured in ali
826 sampies and a large number of the species
were observed in only a few sampies. More
precisely, the frequencies of occurrence were
distributed in the following manner:
Number
of species
2
8
35
87
155
277
357
Occurrence percentage
(of ali 826 sampies)
90
75
50
25
10
5
1
The remaining 323 species were observed
in less than 1 % of the sampies.
The total biomass of the whole research material
(826 sampies) was constituted as follows (it should
be remembered that the total abundance of a
taxon is not necessarily related to its frequency
of occurrence (cf Table 20):
Cumulative percentage
Order of taxon
of total biomass
total
in
abundance
sampies)
(826
material
15.1
1
28.2
3
59.6
10
73.3
20
86.5
50
The 50 most abundant taxons and ‘their
proportions of the total biomass are displayed
in Table 21.
Of these 50 taxons 11 belonged to the division
Cyanophyta, 9 to Chlorophyta 26 to Chryso
phyta and 4 to Pyrrophyta.
50
Table 20. The 50 most frequently observed phytoplankton taxons.
Rank
Name of
Occurrence frequency
(% of sampies)
Fiagellata sp. (small)
Cryptomonas sp.
Sphaerocystis scbroetei’i Chod.
Aphanocapsa delicatissima W. et G.S. West
Rhjzosolenia langiseta Zach.
96
6
7
8
9
10
Scenedesmus bicelluiaris Chod.
Tabellaria fenestrata var. asterionejioidea Grun.
Melosira distans (E.) Kg.
Cyclotella stelligera CI. et Grun.
Mallomonas caudata Iwanoff
78
77
11
12
13
14
Mallomonas reginae Teiing
Ankistrodesmus falcatus var. setiformis Nygaard
Dinobryon bavaricum Imh.
Peridineae (unknown species)
Dinobiyon divergens Imh.
64
64
Asterionella gracillima (Hantzsch) Heib.
Tabellaria flocculosa (Roth) Kg.
Anabaena flos-aquae (Lyngb.) Breb.
Pennales (srnall, unknown species)
Gemeliicystis neglecta Teiling em Skuja
64
63
63
63
63
Mallomonas akrokomos Ruttner
Crucigenia tetrapedia (Kirchn.) W. et G.S. West
Melosira islandica 0. MUller
Scenedesmus armatus Chod.
Coelospbaerium Naegelianum Ung.
61
60
60
58
58
1
2
3
4
5
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Ankistrodesmus convolutus Corda
Gloeocystisplanctonica (W. et G.S. West) Lemm.
Asterionella formosa Hass.
Peridinium inconspicuum Lemm.
Ceratium birundinella (0. F. Miiller) Schrank
92
82
78
78
75
74
69
66
65
65
57
56
55
54
54
35
Gompbosphaeria Iacustris Chod.
Melosira distans var. alpigena Grun.
Aukistrodesmus falcatus var. mirabilis W. et G.S. West
Ankistrodesmus falcatus (Corda) Ralfs.
Mallomonas tonsurata Teiling
50
50
36
37
38
39
40
Merismopedia tenaissima Lemm.
Melosira italica (E.) Kg.
Crucigenia quadrata Morren
Gomphosphaeria aponina Kg.
Diceras chodatii Rev.
49
48
47
46
46
41
42
43
Apbanocapsa elachista W et G.S. West
Cyclotella comta (E.) Kg.
Gyromitus cordiformis Skuja.
Salpingoeca frequentissima (Zach.) Lemm.
Botryococcus Braunii Kuetz,
46
45
45
44
43
Dinobryon acuminatum Ruttn.
Tabellaria fenestrata (Lyngb.) Kg.
Fragilaria crotonensis (Edw.) Kitt.
Tetraedron minimum (A. Braun) Hansgirg.
Dictyosphaerium pulchellum Wood
41
41
39
38
38
31
32
33
34
44
45
46
47
48
49
50
53
52
50
51
Table 21. Quantitative representation of the 50 most abundant taxons.
Rank
1
2
3
4
5
Narne of taxon
Melosira isiandica 0. Miiller
Aphanizomenon graciie Lemm.
Ciyptomonas sp. (small)
Melosira italica (E.) Kg.
MeIosiraranulata (E.) Ralfs.
Percentage of total
phytoplankton biomass
15.124
6.658
6.436
6.226
5.691
5.041
6
7
8
9
10
Maliomonas caudata Iwanoff
Fiageilata sp. (small)
Rhizosoienia iongiseta Zach.
Tabellaria fenestrata var. asterioneiloides Grun.
SynurauveiiaE.
11
12
13
14
15
Asterioneila gracillima (Hantzsch) Heib.
Melosira distans (E.) Kg.
Melosira ambigua (Grun.) 0. MUller
Aphanocapsa deiicatissima W. et. G.S. West
Pragilaria crotonensis (Edw.) Kitt.
16
17
18
19
20
Scenedesmus quadricauda Chod.
Aphanizomenonflos-aquae (L.) Ralfs.
Melosiragranulata var. angustissima Muller
Melosira italica var. tenuissima (Grun.) 0. Miiller
Stephanodiscus Hantzschii Grun.
1.399
1.219
1.160
1.124
1.042
21
22
23
24
25
Cyciotella stelligera CI. et Grun.
Anabaena spiroides Kleb.
Aphanocapsa eiachista W. et G.S. West
Anabaena flos-aquae (Lyngb.) Brb.
Planctospbaeria geiatinosa G.M. Smith
0.994
0.640
0.627
0.591
0.522
26
27
28
29
30
Scenedesmus bijuga (Turp.) Lagerh.
Gymnodinium fuscum (Ehrenb.) Stein
Anabaena scheremetievi var. incurvata Elenk.
Microcystisflos-aquae (Wittr.) Kirchn.
Rhizosolenia eriensis H.L. Smith
0.5 17
0.488
0.471
0.464
0.439
31
32
33
34
35
Staurastrum vestitum Ralfs.
Scenedesmus armatus Chod.
Cyciotella Kutzingiana Thwaites
Mailomonas reginae Teiling
Diatoma eiongatum (Lyngb.) Ag.
0.431
0.428
0.422
0.414
0.409
36
37
38
39
40
Tabeilaria fenestrata (Lyngb.) Kg.
Scenedesmus dimorphus (Turp.) Kitz.
Peridinium inconspicuum Lemm.
Mallomonas akrokomos Ruttner
Anabaena pian ctonica Brunnth.
0.39 1
0.390
0.379
0.3 78
0.376
41
42
43
44
45
Anabaena cjrcjnalis Rbh.
Cycioteiia Meneghiniana Kg.
Peridineae (unknown species)
Cycioteila comta (E.) Kg.
Melosira variaas C.A. Agardh
0.368
0.366
0.360
0.3 55
0.353
46
47
48
49
50
Asterionella formosa Hass.
Pediastrum Boryanum (Turp.) Meneghini
Gemeliicystisnegiecta Teiing cm Skuja
Lyngbya limnetica Lemm.
Oedogonium sp.
0.348
0.3 32
0.3 16
0.302
0.284
4.269
3.812
3.306
3.001
1.691
1.662
,1.646
1.413
1.399
52
5.53 Indicator species
5.5 31 Indicators used by Jarnefeit
In occurrences of so-called indicator species
favouring eutrophic or oligotrophic waters in
the present work the main attention was paid to
the eutrophic and oligotrophic indicators of
Järnefelt et al. (1963). The occurrence frequency
of each indicator species was calculated (as
Name of species
percentage of i:he sampies containing at least one
of the species in question) for each eutrophica
tion group 1—Viil.
On the basis of the results obtained the
following species, which commonly occurred in
eutrophic (groups VI—VUI) lakes, but were
either absent or comparatively rare in oligo
trophic (groups I—II) lakes, can be considered as
the best indicators of eutrophication:
Occurrence frequency (%)
in eutrophic lakes
in oligotrophic lakes
(biomass> 2.50 mg/l)
(biomass 0.01—0.50 mg/1)
Actinastrum Hantzschii Lagerheim
Amphiprora paludosa W. Smith
Chroococcus dispersus (Keissi.) Lemm.
Closterium gracile Brb.
Coelastrum cambricum Archer.
Dichtyosphaerium ehrenbergianum Naeg.
D. eiegans Bachman
Dimorphococcus lunatus A. Br.
Eugiena acus E.
E. charkowiensis Swir.
E. proxima Dang.
Glenodinium gymnodinium Penard
Kirchnerieila elongata G.M. Smith
K. lunaris (Kirchn.) Moebius
K. obesa (W. West) Schmidle
Lagerheimia genevensis Chod.
Lepocinclis texta (Duj.) Lemm. em. Conr.
Melosira granulata (E.) Ralfs
M. varians C.A. Agardh
Micractinium pusilum Fresenius
Microcystis aeruginosa Kg.
M. flos-aquae (Wittr.) Kirchn.
M. viridis (A. Br.) Lemm.
Oscilatoria limnetica Lemm.
Pandorina morum (MUller) Bory
Pediastrum duplex Meyen
P. graciliimum (W. et G.S. West) Thunmark
P. Iimneticum Thunmark
P. tetras (Ehrenb.) Ralfs.
Peridinium bipes Stein
Phacus longicauda (E.) Duj.
P. curvicauda Swir.
P. tortus (Lemm.) Skv.
Scenedesmus abundans (Kirchn.) Chod.
S. armatus v. bicaudatus (Guglielmetti-Printz) Chod.
S. falcatus Chod.
S. naegelii Breb.
0
4
19
28
0
16
4
3
3
38
31
51
57
15
18
32
26
42
16
31
38
28
39
81
8
1
0
0
7
5
1
1
4
4
0
8
4
4
0
2
1
6
3
8
0
0
9
2
0
3
0
1
2
0
0
47
61
15
34
15
59
20
76
36
39
62
21
25
45
14
29
27
18
14
53
Name of species
Occurrence frequency (%)
in eutrophic lakes
in oligotrophic lakes
(biomass> 2.50 mgfl)
(biomass 0.01—0.50 mg/1)
0
6
2
5
1
3
7
7
1
4
2
8
S. opoliensis P. Richt.
Sphaerozosma granulatum Roy et Biss.
Staurastrum paradoxum v. parvum West
Synedra berolinensis Lemm.
Tetraedron caudatum (Corda) Hansgirg.
T. Iimneticum Borge
T. planctonicum G.M. Smith
T. trigonum (Naeg.) Hansgirg.
Tetrastrum staurogeniaforme (Schroeder) Lemm.
Trachelomonas hispida (Perty) Stein em. Defi.
T. varians Defi.
T. volvocina E.
18
19
41
35
26
32
52
54
20
58
25
80
Of the eutrophic indicators of Järnefelt et al.
(1963), the following were found in the present
investigation to occur more commonly in oligo
trophic than in eutrophic waters:
Name of species
Cosmarium punctulatum Brb.
Nephrocytium limneticum (G.M. Smith) Skuja
N. lunatum W. West
Occurrence frequency (%)
in eutrophic lakes
in oligotrophic lakes
2.50 mg/l)
(biomass>
(biomass 0.01—0.50 mg/l)
4
7
2
10
1
13
Of the oligotrophic indicators of Järnefelt
et al. (1963), the following were found also in
this investigation to occur frequently in oligo
trophic waters:
Name of species
Arthrodesmus incus (Brb.) Hass.
Dinobryon cylindricum Imh.
Mallomonas Allorgei (Dofi.) Conr.
Occurrence frequency (%)
in eutrophic lakes
in oligotrophic lakes
2.50 mgIl)
(biomass>
(biomass 0.01—0.50 mg/I)
4
27
2
21
1
18
Most of the oligotrophic indicators were,
however, also found quite frequently in eutrophic
waters.
54
5.532 New indicator species
Reliable indicators of oligotrophy were
distinctly fewer in number. The following
species were not observed at ali in eutrophic
lakes (biomass> 2.50 mg/1):
In this research the following algae were observed
only in sampies in which the total phytoplankton
biomass exceeded 1.0 mg/1:
Occurrence
frequency (%)
in eutrophic lakes
(biomass> 2.50 mg/1)
Closteriopsis longissima Lemm.
19
Pediastrum biradiatum Meyen
16
Polyedriopsis spinulosa
Schmidle
19
Scenedesmus ovalternus v.
graewenitzii (Bernard) Chod.
21
Selenastrum gracile Reinsch 18
18
Strombomonas verrucosa
(Daday) Defi.
25
Trachelomonas planctonica Swir.
42
Name of species
These species may therefore be considered as
eutrophic indicators. The following species were
found to occur 2—4 times more frequently in
eutrophic than in oligotrophic sampies, and
may therefore also be considered as indicating
eutrophication:
Ankistrodesmus falcatus v. spirilliformis West
Characiopsis longipes (Rab.) Borzi
Chrysococcus minutus (Fritsch) Nyg.
Closterium aciculare T. West
C. macilentum Brb.
C. pronum Brb.
Diatoma elongatum (Lyngb.) Ag.
Franceia ovalis (Franc) Lemm.
Lyngbya limnetica Lemm.
Nitzschia acicularis W. Sm.
Pediastrum tetras v. tetraodon (Corda) Raben
horst
Peridinium penardiforme Lindem.
Trachelomonas intermedia Dang.
T. volvocinopsis Swir.
Occurrence fre
quency (%) in oligo
trophic lakes (biomass)
0.01—0. 50 mg/1)
Diatoma vuigare Bory
Quadrigula lacustris (Chod.)
G.M. Smith
Stichogloea Doederleinii
(Schmidle) WilIe
7
9
7
The following species may also be considered
as indicators of oligotrophy, occurring consider
ably more frequently in oligotrophic than in
eutrophic waters:
Cosmarium contractum Kirchn.
Crucigenia rectangularis (A. Braun) Gay
Dinobryon acuminatum Ruttn.
D. sertidaria E.
Euastrum bidentatum Näg.
E. elegans (Brb.) Kiitz.
Mallomonas akrokomos Ruttn.
By excluding those species presented in the
lists by Järnefelt et al. (1963) that in this in
vestigation were found to he unsatisfactory
indicators and by adding these new trophic
indicators to the list, new ElO and EVIOV
quotients could be calculated. However, the
applicability of these new parameters to the
monitoring of eutrophication should of course be
tested by using a different collection of sampies.
Proposais for new oligotrophic and eutrophic
indicator species are presented in Appendix 3.
6.
SUMMARY
In this research phytoplankton sampies taken
from Finnish inland waters in midsummer
1963 and 1965 were investigated. The material
consisted of 826 sampies, which were examined
55
in the Water Pollution Control Bureau of the
National Board of Agriculture (asfroni 1.7.1970
in the Water Research Office of the National
Board of Waters).
The aims of the investigation were to give an
account of the quantity and composition of
phytoplankton in midsummer in different water
courses, to estimate the significance of the para
meters based on phytoplankton composition,
and to determine the value of different phyto
plankton species as trophic indicators in Finnish
waters.
The most eutrophic waters were found te
be small lakes situated in coastal regions. Of the
waters of the inland lake district the most
eutrophic were found to be the southern source
waters of the Kokemäenjoki river basin and also
the lower reaches of the same river basin. Of the
lakes in the Vuoksi river basin, those in the
Iisalmi-Kuopio chain were found to be most
eutrophic.
Total phytopiankton in the sampies varied in
1963 between 0.01 and 45.0 mg/l and in 1965
between 0.02 and 18.6 mg/l. On the basis of
the regional examination and also other available
information concerning the lakes examined, the
lakes were divided into eutrophication groups
on the basis of their midsummer phytoplankton
as fellows:
Phytoplankton biomass
(mg/1, fresh weight)
< 0.20
0.21—0.50
0.51 1.00
1.01—2.50
2.51—10.0
>10.0
—
Classification
uitra-eiigetrephic
eligetrephic
incipient eutrophy
mesetrephic
eutrephic
hypereutrophic
On the basis of this division 64.7% of the lakes
investigated were found te be oligotrophic and
a further 15.6 % were in a state of incipient
eutrophy. Mesotrophic were 10.8 % of the lakes,
while 8.9 % were clearly eutrophic.
The dominating algal species in ali the eutro
phication groups were Centrales diatoms of the
division Chrysopbyta. The amounts of Hormo
gonales biue-green algae increased considerably
with the increasing degree of eutrophication. Of
the green aigae, species within the order Proto
coccales were found te increase with eutrephica
tien. The amounts of Euglenophyta aigae were
iow in oiigotrophic waters, and even a small
increase in the amount of these organisms mdi
cated eutrophication or pellution of the water.
A total of 680 taxons were identified from
the sampies. The number of different organisms
in a single sampie varied from 3 te 10. The
number of species per sample increased with
eutrophication at ieast te a biemass level of
5.0 mg/i. In sampies with biomass leveis of over
10 mg/l the species number was, however, found
te decrease with further inerease in biomass.
Of the different available expressions ef
diversity, the index of Margaief (1958) was
found te correlate very strongly with the species
number of a sainpie. The diversity according te
Shannon (Hutchinson 1967) was not correlated
with either species number or biomass. On the
basis of results obtained in this work, values for
diversity do not add the information available
from water sampies.
As weil as the ElO- and EV/OV quotients of
Järnefelt et al. (1963), the species quotients of
Thunmark (1945) and Nygaard (1949) were
aiso examined for the research material. The
two latter quetients were found te be totaily
unsuitable for application te Finnish waters.
Of the quetients due to Järnefelt et al. (1963)
the deviatien ef the volume quotient was found
te be high, which limited its applicability.
The amount ef algae inducing odour and/or
taste was described for each sample using a new
variable, the odour index. The amounts of the
algae in question were compared te critical
threshold values ebtained from the literature
(Seppevaara 1971). The sum of the partial
amounts ef ali the relevant species was the edeur
mdcx ef a sample. The value ef this variable
increased neticeably with increasing eutrephica
tien. In eligetrephic waters the edeur mdcx was
usuaily weii belew 0.2, while in eutrephic
sampies the value was ever 1.0. The odeur index
was strengly cerreiated with the level ef biemass
and weaker correiations were alse found with the
quotients ef Järnefelt et ai. (1963).
Mest ef the 680 taxens ebserved in the ceurce
ef this investigatien occurred in enly a few
sampies. Only 35 taxens were feund te occur
in ever 50 % of the sampies, while the 50 mest
56
common taxons occurred for 86.5 % of the total
biomass of the whole research material.
The applicability of the indicator species
proposed by Järnefelt et al. (1963) to the eutro
phication grouping employed in this research was
investigated. On the basis of the observations
made, 21 new eutrophication indicators and 10
indicators of oligotrophy were proposed.
7. ACKNOWLEDGEMENTS
Firstly 1 would like to express my thanks to the
field workers of the National Board of Agriculture,
most of whom remain unknown to me person
ally, but who in the summers of 1963 and 1965
carried out the collection of sampies according
to the programme drawn up by the late Sakari
Kerminen M.Sc. Their careful sampling work
created a sound basis for this research.
My greatest debt of gratitude is to Ms. Ainikki
Naulapää and Ms. Liisa Lepistö, whose accurate
microscopy of the sampies was an enormous
work carried out with great professional skil
and attention to detail, and without which this
work would not have been possible in its final
extent.
Valuable advice in the handling of the research
results 1 have received from Prof. Reino Ryhä
nen, Prof. Seppo Mustonen, Pertti ElorantaPh.D.,
Kari Kinnunen Ph.D., Reino Laaksonen Ph.D.,
Lea Kauppi Lic. Phil., Jorma Niemi Lic. Phil. and
Toini Tikkanen Lic. Phil. to whom 1 express
sincere thanks. 1 am especially indebted to Kaj
Granberg Ph.D., my mentor in the detailed field
of plankton research.
Petteri Pulkkinen M.Sc. afforded me much
versatile and patient advice in ADP-techniques,
for which 1 am most grateful. Without further
specification of individual names 1 would also
like to thank the staff of the Water Research
Office and the Organisation Office for much
and varied assistance.
Finally, 1 express may thanks to Michael
Bailey B.Sc., who translated the text of this
report into English.
Helsinki, January 1980
To my family
Pertti Heinonen
LOPPUTIIVISTELMÄ
Tässä tutkimuksessa on käsitelty vuosina 1963
ja 1965 keskikesällä Suomen sisävesistä otettuja
kasviplanktonnäytteitä, joita oli yhteensä 826.
Näytteet on tutkittu Maataloushallituksen ve
siensuojelulaboratoriossa (1.7.1970 alkaen vesi
hallituksen vesitutkimustoimistossa).
Tutkimuksen tarkoituksena oli kuvata kasvi
planktonin kvantiteettia ja koostumusta keskikesällä eri vesistöalueittain, arvioida kasviplank
tonin koostumukseen perustuvien tunnuslukuj en
merkitystä ja tarkastella eri kasviplanktonlajien
indikaattoriarvoa vesistöjen tilan kuvaajana.
Rehevimmiksi osoittautuivat rannikkoaluei
den suhteellisen pienet järvet. Järviseudun ve
sistöistä Kokemäenjoen vesistön eteläiset latva
vesistöt ja saman vesistön alaosat olivat rehevim
mät. Vuoksen vesistön alueella Iisalmen-Kuopion
reitti osoittautui rehevimmäksi.
Kasviplanktonin kokonaismäärät vaihtelivat
vuonna 1963 välillä 0,01—45,0 mgIl, ja vuonna
1965 välillä 0,02—18,6 mg/l. Alueellisen tarkas
telun ja tutkimista järvistä olevan muun tietou
den perusteella suoritettiin järvien rehevyysluo
kittelu niiden keskikesän kasviplanktonin mu
kaan seuraavasti:
Kasviplanktonin biomassa Luokittelu
(tuorepaino) mg/l
<0,20
ultraoligotrofinen
0,21—0,50
oligotrofinen
alkava rehevöityminen
0,51—1,00
mesotrofinen
1,01—2,50
2,51—10,0
eutrofinen
hypereutrofinen
>10,0
Tutkimukseen kuuluneista järvistä oli oligotro
fisia tämän luokittelun mukaan 64,7 %. Alkava
eutrofioituminen havaittiin 15,6 % ssa järvistä.
Mesotrofisia oli 10,8 % ja selvästi eutrofisia 8,9 %
järvistä.
Vallitsevina levinä olivat kaikissa rehevyys
ryhmissä Chrysophyta-pääluokan Centrales-piile
vät. Rehevyyden lisääntyessä Hormogonales-sini
levien määrä kasvoi tuntuvasti. Viherlevistä
Pro tococcales-lahkon levien määrä kasvoi rehe
vyyden myötä. Euglenophyta-levien määrä oligo
trofisissa vesissä oli alhainen. Pienikin määrän
57
kasvu merkitsi rehevyyttä tai vesien likaantumista.
Näytteistä määritettiin yhteensä 680 taksonia.
Yhden näytteen taksonimäärä vaihteli 3—160.
Määrä kasvoi biomassan lisääntyessä ainakin ar
voon 5,0 mgIl saakka. Yli 10 mg/l biomassanäyt
teissä taksonimäärä kuitenkin jo laski biomassan
lisääntyessä.
Diversiteettiarvoista Margalef-diversiteetti (Mar
galef 1958) korreloi erittäin merkitsevästi näytteen lajimäärän kanssa. Shannon-diversiteetti
(Hutchinson 1967) ei korreloinut lainkaan lajimäärään eikä biomassan määrään. Diversiteetti
arvot eivät tämän tutkimuksen mukaan lisää ve
sistöä kuvaavaa informaatiota.
Kvotienttien arvoista on tutkittu ElO- ja
EV/OV-kvotienttien (Järnefelt et al. 1963) ohella
eräitä Thunmarkin (1945) ja Nygaardin (1949)
lajikvotientteja. Viimeksi mainitut eivät sovellu
Suomessa käytettäviksi. Järnefeltin kvotienteista
tilavuuskvotientin hajonta on suuri, mikä rajoit
taa sen käyttöä.
Hajua ja/tai makua aiheuttavien levien määrää
näytteessä on pyritty kuvaamaan uudella para
metrilla, hajuindeksillä. Kyseisten levien määriä
on verrattu kirjallisuudessa (Seppovaara 1971)
esitettyihin kriittisiin raja-arvoihin. Osamäänen
summa näytteessä on näytteen hajuindeksi. Re
hevöitymisen myötä hajuindeksi kasvoi selvästi.
Oligotrofisissa vesissä hajuindeksi oli yleensä
selvästi pienempi kuin 0,2 ja eutrofisissa suurem
pi kuin 1,0. Hajuindeksillä oli vahva korrelaatio
biomassan määrään ja kohtalainen korrelaatio
Järnefeltin kvotientteihin.
Suurin osa lajeista esiintyi vain harvoissa näyt
teissä. Hyvin yleisiä lajeja, jotka esiintyivät yli
50 %:ssa näytteistä, oli vain 35 yhteensä 680
lajista. Vastaavasti 50 määrällisesti yleisintä lajia
muodosti 86,5 % kokonaisbiomassasta.
Tutkimuksessa tarkasteltiin Järnefeltin esittä
mien indikaattorilajien soveltuvuutta tämän ai
neiston rehevyysryhmittelyyn. Aineiston perus
teella esitettiin myös 21 uutta eutrofian ja 10
uutta oligotrofian indikaattorilajia.
REFERENCES
Airaksinen, E. & Heinonen, P. 1976. Inarinjärven tutki
mus vuonna 1974. Summary: Data on the Water
Quality in Lake man in the Year 1974. National
Board of Waters, Finland, Report 103. 59 p.
Andronikova, I.N. & Drabkova, V.G. 1972. Specificity
of annual limnological cycles in Lake Krasnoe versus
climatic factors. Verh. Internat. Verejn. L.imnol.
18:522—527.
Anttila, R. 1969. Tuusulanjärven nopea rehevöityminen.
Summary: Tuusulanjärvi, an example of “rash eutro
phication”. Limnologisymposion 1968:53—60.
Archibald, R.E.M. 1972. Diversity in some South African
diatom associations and itS relation to water quality:
Wat. Res. 6:1229—1238.
Armitage, B. & Simmons, G.M. 1975. Phytoplankton
periodicity in a new reservoir, Lake Anna, Virginia.
Verh. Internat. Verein. Limnol. 19:1814—1819.
Brook, A.J. 1965. Planktonic algae as indicators of lake
types, with special reference to the Desmidiaceae.
Limnol. Oceanogr. 10:403—411.
Cronberg, G., Gelin, C. & Larsson, K. 1975. Lake
Trummen restoration project II. Bacteria, phyto
plankton and phytoplankton productivity. Verh.
Internat. Verein. Limnol. 19:1088—1096.
Edmondson, W.T. 1972. The present condition of lake
Washington. Verh. Internat. Verein. Limnol. 18:
284—291.
Eloranta, P. 1972. On the phytoplankton of waters
polluted by a sulphite cellulose faetory. Ann. Bot
Fennici 9:20—28.
Eloranta, P. 1974. Lake Keurusselkä, physical and
chemical properties of water, phytoplankton, zoo
plankton and fishes. Aqua Fennica 1973, 18—43.
Eloranta, P. 1976. Species diversity in the phytoplank
ton of some Finnish lakes. Ann. Bot. Fennici 13:
42—48.
Eloranta, P. 1978. Effects of size of sample counted in
phytoplankton analyses. Ann. Bot. Fennici 15:
169—176.
Findenegg, 1. 1958. Trophiezustand und Produktion der
Kärtner Seen. Verh. Internat. Verein. Limnol. 13:
170—180.
Fleming, W.M. 1975. A model of the phosphorus cycle
and phytoplankton growth in Skaha Lake, British
Columbia, Canada. Verh. Internat. Verein. Linmol.
19:229—240.
Fott, B. 1971. Aigenkunde. 2nd Ed. VEB Gustav
Fischer Verlag, 581 p. Jena.
Gliwicz, Z.M. 1975. Effect of zooplankton grazing on
photosynthetic activity and composition of phyto
plankton. Verh. Internat. Verein. Limnol. 19:1490—
1497.
Goldman, C.R., Stuli, E.A. & dc Amezaga, E. 1973.
Vertical patterns of primary productivity in Castle
Lake, California. Verh. Internat. Verein. Limnol.
18:1760— 1767.
Granberg, K. 1969. Jyväskylän kaupungin asuma- ja
teollisuusjätevesien vaikutuksesta Jyväsjärveen ja
Pohjois-Päijänteeseen sekä suositus jätevesien aiheut
tamien haittojen vähentämiseksi. Jyväskylän Yliopis
ton Hydrobiologian tutkimuskeskuksen tiedonanto
2. 104 p.
58
Granberg, K. 1970a. Lievestuoreenjärven nykytilasta.
Vesitalous 5:10—12.
Granberg, K. 1970b. Kasviplankton- ja perustuotanto
tutkimus Päijänteellä v. 1969. Alustava tutkimus
selostus. Jyväskylän Yliopiston Hydrobiologian
tutkimuskeskuksen tiedonanto 5. 33 p.
Granberg, K. 1970c. Seasonal fluctuations in numbers
and biomass of the plankton of the Lake Paäjärvi,
southern Finland. Ann. Zool. Fennici 7:1—24.
Granberg, K. 1972. Kasviplankton- ja perustuotanto
tutkimus Päijänteellä v. 1971. Jyväskylän Yliopis
ton Hydrobiologin tutkimuskeskuksen tiedonanto
1.70p.
2
Granberg, K. 1973. The eutrophication and pollution of
Lake Päijänne, Central Finland. Ann. Bot. Fennici
10:267—308.
Granberg, K. 1979. Kasviplanktonin laskennasta. Pres
entation held at Tvärminne Zoological station
9.10. 1979. 5 p.
Granberg, K. & Lappalainen, K.M. 1973. Leppäveden
limnologinen tutkimus. Jyväskylän Yliopiston Hyd
robiologian tutkimuskeskuksen tiedonanto 32. 58 p.
Haedrich, R.L. 1975. Diversity and overlap as measures
of environmental quality. Wat. Res. 9:945—952.
Hallegraeff, G.M. 1977. A comparison of different
methods used for the quantitative evaluation of
biomass of freshwater phytoplankton. Hydrobiologia
55(2):145165.
Hammer, U.T. 1969. Blue-green algal blooms in Saskat
chewan Lakes. Verh. Internat. Verein. Limnol. 17:
116— 125.
Harjula, H. 1979. Analysis of errors in estimating phyto
plankton primary productivity and chlorophyll a
with special reference to Lake Päijänne. Ann. Bot.
Fennici 16:307—337.
Harjula, H. & Langi, A. 1974. Control of algae at Vantaa
river basin. Aqua Fennica 1973:69—81.
Hecky, R.E. 1975. The phytoplankton and primary
productivity of Southern Indian Lake (Manitoba),
a high latitude, riverine lake. Verh. lnternat. Verein.
Limnol. 19:599—605.
Heinonen, P. 1966. Selvitys vesistön veden laadusta.
Alue 1: Kyläniemen eteläpuolinen Saimaa ja Vuoksi.
Saimaan vesiensuojeluyhdistys ry:n tiedonantoja 1.
60 p.
Heinonen, P. 1972. Jätevesien vaikutus järvien rehevöit
täjänä. Summary: The Effect of Waste Water on
Lake Recipient. National Board of Waters, Finland.
Publications of the Water Research Institute 5, 87 p.
Heinonen, P. & Myllymaa, U. 1974. Kuusamon vesistö
tutkimus vuonna 1973. National Board of Waters,
Finland. Report 60. 162 p.
Heinonen, P., Kettunen, 1 & Kivinen, J. 1975. Saimaan
tilan kehittymisestä vuosina 1962—1972. National
Board ofWaters, Finland. Report 89. 75 p.
van Heusden, G.P.H. 1972. Estimation of the Biomass
of Plankton. Hydrobiologia 39(2) :165—208.
Hobro, R. & Wiln, E. 1975. Phytoplankton countings
a method
and volume calculations from the Baltic
—
comparison. Vatten 31:317—326.
Holland, R.E. 1968. Correlation of Melosira species
with trophic conditions iii Lake Michigan. Limnol.
Oceanogr. 13:555—557.
Holtan, H. 1978. Eutrophication of Lake Mjøsa in
relation to the pollutional load. Verh. Internat.
Verein. Limnol. 20:734—742.
Hutchinson, G.E. 1967. A treatise on Iimnoloy. II.
Introduction to lake biology and the limnoplankton.
John Wiley & Sons, Inc. 1115 p. New York.
Ilmavirta, K. & Kotimaa, A.-L. 1974. Spatial and
seasonal variations in phytoplanktonic primary
production and biomass in the oligotrophic lake
Pääjärvi, southern Finland. Ann. Bot. Fennici 11:
112— 120.
Ilmavirta, V., Ilmavirta, K. & Kotimaa, A.-L. 1974.
Phytoplanktonic primary production during the
summer stagnation in the eutrophicated lakes Lovo
järvi and Ormajärvi, southern Finland. Ann. Bot.
Fennici 11: 121—132.
Janus, L.L. & Duthie, H.C. 1979. Phytoplankton com
position and periodicity in a northeastern Quebec
Lake. Hydrobiologia 63(2):129—134.
Jumppanen, K. 1976. Effects of waste waters on a lake
ecosystem. Ann. Zool. Fennici 13:85—138.
Järnefelt, H. 1925. Zur Limnologie einiger Gewässer
Finnlands. Ann. Soc. Zool. J3ot. Fennicae, Vanamo
2(5):185—356.
Järnefelt, II. 1927. Zur Limnologie einiger Gewässer
Finnlands III. Pyhäjärvi. Ann. Soc. Zool. Bot.
Fennicae, Vanamo 6(6):101—153.
Järnefelt, H. 1928. Zur Limnologie einiger Gewässer
Finnlands V. Vesijärvi. Ann. Soc. Zool. Fennicae,
Vanamo 8(1):1—17.
Järnefelt, H. 1929. Zur Limnologie einiger Gewässer
Finnlands VII. Witträsk. Ann. Soc. Zool. Bot.
Fennicae, Vanamo 8(10):181—192.
Järnefelt, H. 1930. Zur Limnologie einiger Gewässer
Finnlands VIII. Iso-Kiskonjärvi und Muurajärvi. Ann.
Soc. Zool. Bot. Fennicae, Vanamo 10(2):143—226.
Järnefelt, H. 1934. Zur Limnologie einiger Gewässer
Finnlands Xl. Petsamo. Ann. Soc. Zool. Bot. Fen
nicae, Vanamo 14(10):172—347.
Järnefelt, H. 1936a. Zur Limnologie einiger Gewässer
Finnlands XII. Ann. Zool. Soc. Zool. Bot. Fennicae,
Vanamo 3(3):1—206.
Järnefelt, H. 1936b. Zur Limnologie einiger Gewässer
Finnlands XIII. Aun. Zool. Soc. ZooI. Bot. Fennicae,
Vanamo 4(2):1—152.
Järnefelt, H. 1937. Ein kleiner Beitrag zur Lixnnologie
des Tuusulanjärvi (Tuusulasee). Acta Soc. pro Fauna
et Flora Fenn. 74(5):1—17.
Järnefelt, H. 1952a. Zur Limnologie einiger Gewässer
Finnlands XV. Ann. Zool. Soc. Zool. Bot. Fennicae,
Vanamo 14(7):1—84.
Järnefelt, H. 1952b. Plankton als Indikator der Trophie
gruppen der Seen. Ann. Acad. Scient. Fennicae A
IV(18) :1—29.
Järnefelt, H. 1956a. Zur Limnologie einiger Gewässer
59
Finnlands XVI. Mit besonderer Beriicksichtigung des
Planktons. Ann. Zool. Soc. Zool. Bot. Fennicae,
Vanamo 17(1):1—201.
Järnefelt, H. 1956b. Zur Limnologie einiger Gewässer
Finnlands XVII. Ann. Zool. Soc. Zool. Bot. Fennicae,
Vanamo 18(2):1—61.
Järnefelt, H. 1956c. Materialien zur Hydrobiologie des
Sees Tuusulanjärvi. Acta Soc. pro Fauna et Flora
Fenn. 71(5):1—38.
Järnefelt, H. 1961. Die Einwirkung der Sulfitablaugen
auf das Planktonbild. Verh. Internat. Verein. Limnol.
14:1057—1062.
Järnefelt, II. 1963. Zur Limnologie einiger Gewässer
Finnlands XIX. Ann. Zool. Soc. Zool. Bot. Fennicae,
Vananio 24(7):1—118.
Järnefelt, H., Naulapää, A. & Tikkanen, T. 1963. Plank
tonopas. Suomen Kalastusyhdistyksen opaskirjasia
34:1—33.
Kaartotie, T. 1962. Järvityyppiemme jakautumasta.
Abstract: A Preliminary Note on the Regionality of
Lininological Lake Types in Finland. Suomen Kalas
tuslehti 1:1—4.
Kaatra, K. & Harjula, H. 1976. Methodological Aspects
of Phytoplankton Sampling and Counting. Aqua
Fennjca 1975:69—90.
Karinio, K., Leskelä, H., Mikkola, P. & Ryhänen, R.
1970. Vesien pilaantuminen ja sen ehkäiseminen.
Maataloushallitus. Maa- ja vesiteknillisiä tutkimuk
sia 18:1—278.
Kettunen, 1. 1975. Kymen vesipiirin alueen pienvesis
töjen laadun nykytilan selvitys. Summary: The
Water Qaulity of Some Small Riverbasins in the
Kymi District. National Board of Waters, Finland.
Report 96:1—79.
Koivo, L. 1978. Species diversity in net diatom plank
ton of some lakes of prairie, deciduous forest and
coniforous-deciduous forest regions of Central North
America. Ann. Bot. Fennici 15:138— 146+Appendix.
Kostiainen, R. 1965. Planktonlevät järven ravinnepitoi
suuden ilmentäjänä. Zusammenfassung: Planktonal
gen als Indikator des Nährstoffgehaltes der Seen.
Limnologisymposion 1964:67—78.
Kutkuhn,J.H. 1958. Notes on the Precision ofNumerical
and Volumetric Plankton Estimates from Small
sample Concentrates. Limnol. Oceanogr. 3:69—83.
Laaksonen, R. 1969. Vesistöjen veden laadusta vesiensuojelun valvontaviranomaisen vuosina 1962—1968
tekemien eräiden tarkkailututkimusten valossa. 1 osa.
Vesiensuojelutoimiston tiedonantoja 47. 512 p.
Helsinki.
Laaksonen, R. 1970. Vesistöjen veden laatu. Vesiensuo
jelun valvontaviranomaisen vuonna 1962—1968 suo
rittamaan tarkkailuun perustuva tutkimus. Summary:
Water quality in the water systems. A study based on
observations carried out by the water pollution
control authority 1962—1968. Maataloushallitus.
Maa-ja vesiteknilhisiä tutkimuksia 17:1—132.
Laaksonen, R. 1972. Järvisyvänteet vesiviranomaisen
1965—1970 maaliskuussa tekemien havaintojen va
lossa. Summary: Observations on Lake Deeps by
the Water Authority in March 1965—1970. National
Board of Waters, Finland. Publications of the Water
Research Institute 4:1—80.
Lehmusluoto, P.O. & Heinonen, P. 1970. Eräiden jäte
vesien vaikutus Saimaan perustuotantoon. Vesi, 4,
1—8.
Lehn, H. 1972. Zur Trophie im Bodensee. Verh. In
ternat. Verein. Limnol. 18:467—474.
Lepistö, L., Kokkonen, P. & Puumala, R. 1979. Kasvi
planktonin määristä ja koostumuksesta Vuoksen,
Kymijoen ja Kokemäenjoen vesistöalueilla kesällä
1971. National Board of Waters, Finland. Report
172 :1—250.
Levander, K.M. 1900. Zur Kenntnis der Fauna und
Flora fmnischer Binnenseen. Acta Soc. pro Fauna
et Flora Fenn. XIX(2):1—55.
Levander, K.M. & Wuorentaus, Y. 1915. Plankton
sammansättningen i Kemi, Uleå och Kumo alf samt
Kymmene och Saima system på grund af från juni
1913 till juni 1914 månatligen utfårda håfningar
(Redogörelse afgifven af arbetsutskottet för under
sökning af de finska insjöarnas vatten och plankton,
III). Fennia 39(2):1—36.
Levander, K.M. & Wuorentaus, Y. 1917. Plankton
sammansättningen i finska insjöar och fioder på grund
af håfningar utförda sommaren 1913 (Redogörelse
afgifven af arbetsutskottet för undersökning af de
finska insjöarnas vatten och plankton, IV). Fennia
40(6) :1—95.
Margalef, R. 1958. Information theory in ecology.
General Systems 3:36—7 1.
Maristo, L. 1941. Die Seetypen Finnlands auf fioris
tischer und vegetations-physiognomischer Grundlage.
Ann. Bot. Soc., Vanamo 15(5):1—312.
Mikkola, H. 1975. Iisalmen reitin hydrologiasta ja
kuormituksesta. In “Iisalmen reitin ekologinen
vesitutkimus”. National Board of Waters, Finland.
Report 97:8—11.
Moskalenko, B.K. 1972. Biological productive system
of Lake Baikal. Verh. Internat. Verein. Limnol.
18:568— 573.
Munawar, M. & Munawar, I.F. 1975. The abundance
and significance of phytoflagellates and nanno
plankton in the St. Lawrence Great Lakes. 1 Phyto
fiagellates. Verh. Internat. Verein. Limnol. 19:705—
723.
Murphy, P.M. 1978. The temporal variability of biotic
indices. Environ. Pollut. 17:227—236.
National Board of Waters, Finland. 1974. Mäntyharjun
reitin vesien käytön kokonaissuunnitelma. National
Board ofWaters, Finland. Report 64:1—157.
National Board of Waters, Finland. 1975. Kallaveden
reitin vesien käytön kokonaissuunnitelma. 1 osa.
Suunnittelualue, vesivarat, niiden käyttö ja suojelu.
Nationalf Board of Waters, Finland. Report 90:1—
327.
National Board of Waters, Finland. 1976. Pohjois-Karja
lan vesien käytön kokonaissuunnitelma. 1 osa. Suun-
60
nittelualue ja vesivarat. National Board of Waters,
Finland. Report 102:1—99.
National Board of Waters, Finland. 1977a. Kymijoen
vesistön yläosan vesien käytön kokonaissuunniteima.
Vesihallituksen asettaman työryhmän ehdotus. 1 osa.
Suunnittelualue ja vesivarat. National Board of
Waters, Finland. Report 122:1—130.
National Board of Waters, Finland. 1977b. Mäntyharjun
reitin vesien käytön kokonaissuunnitelma. Vesihalli
tuksen asettaman työryhmän ehdotus. Sunimary:
Integrared Water Resources Development Pian for
the Mäntyharju Watercourse. Publications of The
National Board ofWaters, Finland 20:1—103.
National Board of Waters, Finland. 1977c. Läntisen Uu
denmaan vesien käytön kokonaissuunnitelma. Vesi
hallituksen asettaman työryhmän ehdotus. Summary:
Integrated Water Resources Development Pian for
the Westem Uusimaa Region. Publications of The
National Board ofWaters, Finland 22:1—15 5.
National Board of Waters, Finland. 1977d. LounaisSuomen vesien käytön kokonaissuunnitehna. Vesi
hallituksen asettaman työryhmän ehdotus. 1 osa.
Suunnittelualue ja vesivarat. National Board of
Waters, Finland. Report 126:1—200.
National Board of Waters, Finland. 1977e. Pohjanmaan
keskiosan vesien käytön kokonaissuunnitelma. Vesi
hallituksen asettaman työryhmän ehdotus. 1 osa.
Yleiskuvaus suunnittelualueesta, vesivarat ja vesien
nykyinen käyttö. National Board of Waters, Finland.
Report 123:1—249.
National Board of Waters, Finland. 1977f. Oulujoen
vesistön vesien käytön kokonaissuunnitelma. Vesi
hallituksen asettaman työryhmän ehdotus. 1 osa.
Suunnittelualue ja vesivarat. National Board of
Waters, Finland. Report 125:1—102.
National Board of Waters, Finland. 1977g. Ii- ja Kiimin
kijoen sekä Kuusamon vesistöjen vesien käytön ko
konaissuunnitelma. Vesihallituksen asettanlan työ
ryhmän ehdotus. National Board of Waters, Finland.
Report 136:1—331.
National Board of Waters, Finland. 1978a. Kokemäen
joen ja Karvianjoen vesistöjen vesien käytön koko
naissuunnitelma. Vesihallituksen asettaman työryh
män ehdotus. 1 osa. Kokemäenjoen vesistö. Suunnit
telualue. Vesivarat. National Board of Waters, Fin
land. Report 142:1—187.
National Board of Waters, Finland. 1978b. Kokemäen
joen ja Karvianjoen vesistöjen vesien käytön koko
naissuunnitelma. Vesihallituksen asettaman työryh
män ehdotus. IV osa. Karvianjoen vesistö. National
Board ofWarers, Finland. Report 142:1—291.
National Board of Waters, Finland. 1978c. Pohjanmaan
eteläosan vesien käytön kokonaissuunnitelma. Vesi
hallituksen asettaman työryhmän ehdotus. 1 osa A.
Koko suunnittelualue. B. Kyrönjoki. C. Lapuanjoki.
Vesivarat, niiden käyttö, tavoitteet ja toimenpide
suositukset. National Board of Waters, Finland.
Report 140:1—259.
National Board of Waters, Finland. 1978d. Pohjanmaan
pohjoisosan vesien käytön kokonaissuunnitelma.
Vesihallituksen asettaman työryhmän ehdotus. 1 osa.
Yleiskuva suunnittelualueesta, vesivarat ja vesien
nykyinen käyttö. National Board of Waters, Finland.
Report 137:1—328.
Naulapää, A. 1972. Eräiden Suomessa esiintyvien plank
tereiden tilavuuksia. Summat>’: Mean volumes of
some Plankton Organisms found in Finland. National
Board ofWaters, Finland. Report 40:1—47.
Niinioja, R. 1975. Kasviplanktonin ajalhisestavaihtelusta.
Pro gradu-työ, Helsingin yliopiston limnologian lai
tos. 121 p.
Nygaard, G. 1949. Hydrobiological studies on some
Danish ponds and lakes. II. The quotient hypothesis
and some new or little known phytoplankton or
ganisms. Danske Vidensk. Selsk. Biol. Skr. 7: 1—293.
Nyman, T. 1970. Sellujätevesien vaikutuksista järviresi
pientin kasviplanktonkoostumukseen ja -määrään.
Pro gradu-työ, Helsingin yliopiston limnologian lai
tos. 173 p.
Nyroos, H. 1973. Lohjanjärven tilan kehittyminen ja
siihen vaikuttaneet tekijät. Summary: The Develop
ment of Lake Lohjanjärvi and the Factors Affecting
it. National Board of Waters, Finland. Report
54:1—191.
Pieczyiiska, E. 1971. Mass appearance of algae in the
littoral of several Mazurian lakes. Mitt. Internat.
Verein. Limnol. 19:59—69.
Popova, T.G., Vershinin, N.V., Blagovidova, L.A.,
Setsko, R.l. & Chaikovskaia, T.S. 1972. Biological
characteristics of the first reservoirs on the Ob and
Venisey rivers. Verh. Internat. Verein. Limnol. 18:
872—876.
Preston, F.W. 1948. The commonnes, and rarity, of
species. Ecology 29, 254—283.
Rawson, D.S. 1956. Aigal Indicators of Trophic Lake
Types. Limnol. Oceanogr. 1:18—25.
Rodhe, W. 1958. Primärproduktion und Seetypen.
Verh. Internat. Verein. Limnol. 13:121—141.
Ruuhijärvi, R. 1974. A general description of the
oligotrophic lake Pääjärvi, southern Finland, and
the ecological studies on it. Ann. Bot. Fennici
11:95— 104.
Ryhänen, R. 1961. tiber die Einwirkung von Grubenab
fallen auf einen dystrophen See. Ann. Zool. Soc.
Zool. Bot. Fennicae, Vanamo 22(8):1—70.
Ryhänen, R. 1962. Uber den Zustand der Gewässer im
siidlichen Einzugsgebiet des Kokemäenjoki (Finland).
III a. Ergebnisse der chemischen und physikalischen
Winteruntersuchungen. Ann. Acad. Sci. Fenn. A,
3(64) :1—82.
Sakamoto, M. 1966. Primary production by phyto
plankton community in some Japanise lakes, and
ks dependence on lake depth. Arch. Hydrobiol.
62:1—28
Schindler, D.W., Kalff, J., Welch, H.E., Brunskil, G.J.,
Kling, H. & Kritsch, N. 1974. Eutrophication in the
High Arctic-Meretta Lake, Comwalhis Island (75°N
Lat.). J. Fish. Res. Board Can. 31:647—662.
61
Seppovaara, 0. 1969. Nieriä (Salvelinus alpinus L.) ja
sen kalataloudellinen merkitys Suomessa. Sunimary:
Char (Salvelinus alpinus L.) and ks fishing industrial
irnportance in Finland. Suomen Kalatalous 37:1—75.
Seppovaara, 0. 1971. The Effect on Fish of the Mass
Development of Brackish Water Plankton. Aqua
Fennica 1971:118—129.
Seppovaara, 0. 1977. Kalojen lisääntymisedellytykset
metsäteollisuuden voimakkaasti likaaman itäisen
Pieni-Saimaan alueella. Ympäristö ja Terveys 4—5:
429—436.
Seppänen, H. 1969. Biometodiikka ja käytännön vesi
talous. Zusammenfassung: Biologische Methoden
und die Praxis des Wasserhaushaltes. Limnologi
symposion 1968:124—132.
Seppänen, P. 1968. Eutrofoituvien järviemme mangaani
pitoisuuden merkityksestä vesihuollolle. Summary:
On the significance of manganese in water supply in
connection with the eutrophication of our lakes.
Limnologisymposion 1967:49—63.
Seuna, P. 1971. Suomen vesistöalueet. National Board
ofWaters, Finland. Report 10:1—53.
Spodniewska, 1. 1974. The structure and production of
phytoplankton in Mikolajskie Lake. Ekol. p01. 22(1):
65—106.
Spodniewska, 1. 1978. Phytoplankton as the indicator
of lake eutrophication 1. Summer situation in 34
Masurjan lakes jn 1973. Ekol. p01. 26(1):53—70.
Steemaun Nielsen, E. 1952. The use of radio-active
carbon C)
14 for measuring organic production in
(
the sea. J. Cons. int. Explor. Mer. 18:117—140.
Striekland, J.D.H. & Parsons, T.R. 1965. A manual of
sea-water analysis. Bulletin 125. Fish. Bd. Canada.
185 p.
Surakka, 5. 1969. Yhteenveto Pohjois-Karjalassa vv.
1961—67 Suoritetuista vesistötutkimuksista. Maata
loushallitus. Vesiensuojelutoimiston tiedonantoja 48:
1—39.
Thunmark, S. 1945. Zur Soziologie des SUsswasser
planktons. Eine methodologisch-ökologische Studie.
Folia Limnol. Scand. 3:1—66.
Tie- ja vesirakennushallitus. 1965. Hydrologinen vuosi
kirja 18. Helsinki. 89 p.+ Appendices.
Tie- ja vesirakennushallitus. 1968. Hydrologinen vuosi
kirja 19. Helsinki. 97 p. +Appendices.
Tinnberg, L. 1979. The use of diversity indices in aquatic
monitoring programs. In: The Use of Ecological
Variables in Environmental Monitoring. The National
Swedish Environment Protection Board. Report PM
1151:134— 13 7.
Tirronen, E. 1963. Sulfiittiselluloosateollisuuden jäteve
sien vaikutuksista vastaanottavan vesistön plankton
koostumukseen. Pro gradu-työ. Helsingin Yliopiston
limnologian laitos. 165 p.
Tolstoy, A. 1966. Kvantitativ bestämning av klorofyll-a
i Mälaren, 1965. Limnologiskainstitutionen, Uppsala.
Mälarundersökningen. Meddelande 4:1—46.
Tolstoy, A. 1977. Methods of determining chlorophyll a
in phytoplankton. SNV. PM 831/Naturvårdsverkets
lininologiska undersökning 9 1:1—62.
Tolstoy, A. 1979. Chlorophyll a in relation to phyto
plankton volume in some Swedish lakes. Arch.
Hydrobiol. 85(2):133—151.
Topatschewsky, A.V. & Sirenko, L.A. 1973. 3kologophysiologische Aspekten der “Biyte” und Probiem
des reinen Wassers. Verh. Intemat. Verein. Limnol.
18:13 38—1347.
Tuunainen, P., Granberg, K. & Lappalainen, K.M. 1971.
Lake Päijänne Research. Aqua Fennica 1971:131—
142.
Utermöhl, H. 1931. Neue Wege in der quantitativen
Erfassung des Planktons. Verh. Internat. Verein.
Limnol. 5:567—596.
Utermöhl, H. 1958. Zur Vervollkomnung der quantita
tiven Phytoplanktonmethodik. Mitt. Internat. Verein.
Limnol. 9:1—38.
Velikoretskaya, J.J. & Forsh, L.F. 1972. Lakes of
different landscapes of the Kola Peninsula. Verh.
Internat. Verein. Limnol. 18:517—521.
Viitasaari, M. & Seppänen, P. 1967. Kemijoen tutkimus
1964—1966. Oy Vesitekniikka Ah. 320 p.
Viljamaa, H., Forskåhl, M., Huttunen, M. & Melvasalo,
T. 1978. Chlorophyll
iii phytoplankton iii the
Helsinki sea area. Aqua Fennica 1978: 58—69.
Willn, E. 1976. Phytoplankton in Lake Hjälmaren.
Acta univ. upsaliensis 378:1—18.
Willn, T. 1972. Biological aspets on the large lakes in
South Sweden. Verh. Internat. Verein. Limnol. 18:
370— 378.
2.
Name of lake
3.
Sampling
site
Coordinates
Kiteenjärvi
Simpeleenjärvi
Simpeleenjärvi
Simpeleenjärvi
Torsanjärvi
02.02
03.02
03.02
03.02
03.05
275
279
278
277
54
55
4—681220—45700
4—683320—48100
4—682890—47240
4—682310—46980
4—688840—50902
4—689740—52025
40
41
Pyttyselkä
Heinävedenselkä
Enonvesi
Kuorinkajärvi
Heposelkä
Heposelkä
04.22
04.22
04.22
04.31
04.31
04.31
42
65
63
60
57
Kermajärvi
04.22
56
Kermajärvi
04.22
4—694220—46360
4—694340—46560
4—694615—46930
4—689248—44422
4—690140—43420
4 690535—43045
4 -692430—43730
4—692750—43170
2. The Vuoksi river basin
2.1 Watercourses east of Lake Haukivesi
Tohmajärvi
02.01
1. Small river basins draining into Lake Ladoga.
1.
River
basin
30.7.1963 0—8
28.7.1965 0—7
30.7.1963 0—10
28.7.1965 0—6
28.7.1965 0—9
19.7.1965 0—12
28.7.1965 0—4
28.7.1965 0—14
26.7.1965 0—12
2.7.1963 0—8
26.7.1965 0—10
18.7.1963 0—5
20.7.1965 0—8
19.7.1963 0—6
21.7.1965 0—10
19.7.1963 0—7
21.7.1965 0—12
10.8.1963 0—7
20.7.1965 0—9
10.8.1963 0—10
31.7.1965 0—1
10.8.1963 0—2
3 1.7.1965 0—4
5.
Depth
m
6.
Sampling
Date
0.08
<0.01
-
0.01
<0.01
<0.01
<0.01
<0.01
<0.01
0.02
<0.01
0.02
0.01
0.07
0.01
0.01
0.03
0.09
0.03
0.08
0.02
0.32
0.01
0.14 <0.01
0.56
0.17
0.07
0.07
0.11
0.20
0.11
0.14
0.10
0.25
0.11
0.36
0.11
0.70
0.17
0.45
0.11
0.82
0.70
1.16
0.94
7.
-
<0.01
-
<0.01
-
-
-
-
-
-
-
-
-
-
0.02
0.01
0.04
0.02
-
-
-
-
<0.01 <0.01
<0.01
0.02
0.02
0.01
0.02
0.02
0.02
0.03
0.03
0.01
0.16
0.02
0.01
0.01
-
0.05
0.05 <0.01
-
0.07
0.03 <0.01
0.13
0.01
0.04
<0.01
0.01
0.01
0.02
0.06
0.01
0.03
0.03
0.06
0.01
0.19
0.02
0.03
0.01
0.02
<0.01
0.04
0.02
0.06
0.24
0.13 <0.01
0.30
0.14
0.02
0.05
0.08
0.16
0.08
0.06
0.07
0.17
0.06
0.25
0.08
0.28
0.12
0.39
0.06
0.65
0.61
0.98
0.87
5.87
4.27
67
42
5.77
3.38
2.60
61
33
3.52
23
6.05
5.64
4.67
2.34
5.79
4.54
3.42
6.62
3.67
6.87
4.81
3.43
3.51
5.37
6.14
5.97
5.89
32
59
57
45
23
57
50
34
74
33
78
48
38
35
63
67
70
61
3.36
4.24
2.87
4.49
4.16
2.23
3.95
3.90
4.04
3.72
3.02
3.75
3.27
3.87
3.50
3.15
3.92
3.88
1.46
3.61
4.30
4.32
4.48
1.5
0.6
1.8
1.3
4.0
1.0
0.6
1.1
0.7
2.0
1.0
1.0
1.0
3.0
2.7
2.7
2.7
3.0
1.0
3.0
6.7
3.0
5.5
3.9
1.6
2.9
6.9
28.5
0.5
0.1
2.3
0.6
3.1
0.4
0.4
0.3
3.0
0.5
1.3
0.2
<0.1
0.4
8.8
19.6
18.1
28.2
0.22
0.05
0.21
0.05
<0.01
0.03
0.04
0.06
0.05
0.05
0.04
0.10
0.04
0.17
0.05
0.20
0.07
0.05
0.07
0.20
0.16
0.22
0.20
Diversity
Quotients by Odour
Number
Järnefelt
Cyano- Chloro- Eugieno- Chryso- Pyrro- of
Mar- Shannon
mdcx
phyta phyta phyta phyta phyta species galef
ElO EV/OV
8.
10.
11.
12.
17.
9.
13.
14.
15.
16.
18.
Phytoplankton biomass, mg/I (fresh weight)
Total
o
Orivirta
Pyhäselkä
Pyhäselkä
Pyhäselkä
Pyhäselkä
Pyhäselkä
Orjvesj
Orivesi
Rukavesi
Joukiinen
Viinijärvi
Viinijärvi
Viinijärvi
Viinijärvi
04.31
04.32
04.32
04.32
04.32
04.32
04.32
04.32
04.34
04.34
04.35
04.35
04.35
04.35
49
Paasivesj
Orivesi
04.31
Sampaanselkä
04.31
04.31
48
Savonselkä
04.31
39
38
37
36
20
17
47
46
30
29
28
27
26
64
50
45
44
Onkisalmi
43
Heposelkä
3.
04.31
2.
04.31
1.
4—695289—45930
4—696560—46255
4—695015—46985
4—696020—46520
4—696570—51150
4—697845 --51208
4—691223—47491
4—692075—47720
4—694095—48250
4—692900-48975
4—694370—48350
4—693600—48608
4—694130—48760
4—689460—45950
4—689371—49238
4—689287—47108
4--690300—47215
4—691993—46439
4--693100—46580
4—693684—46495
4.
6.
0—14
0—8
0—12
0—12
1
27.7.1963 0—4
26.7.1965 0—4
26.7.1965 0—9
27.7.1963 0—10
26.7.1965 0—6
26.7.1963 0—12
26.7.1965 0—6
29.7.1965 0—13
29.7.1965
29.7.1963 0—2
29.7.1965 1
29.7.1963 0—10
29.7.1965 1
31.7.1963
30.7.196
31.7.1963
30.7.1965
31.7.1963 0—10
30.7.1965 0—10
31.7.1963 0—14
30.7.1965 0—9
9.8.1963 0—2
19.7.1965 0—8
13.8.1963 0—8
31.7.1965 0—9
31.7.1965 0—12
13.9.1963 0—14
29.7.1965 0—12
28.7.1965 0—12
29.7.1963 0—10
28.7.1965 1
28.7.1965 0—7
5.
0.01
0.01
0.01
0.01
0.04
0.01
0.01
0.03
0.17
0.01
0.06
0.03
0.07
0.01
0.01
<0.01
0.05
0.01
0.01
8.
0.41
0.15
0.10
0.28
0.08
0.63
0.21
0.29
0.13
0.58
0.37
0.02
<0.01
<0.01
0.01
<0.01
0.03
0.01
0.02
0.01
0.11
0.05
0.30
0.02
0.20 <0.01
0.07
0.32
0.41
0.25
0.40
0.19
0.42
0.21
1.04
0.06
0.38
0.19
0.21
0.18
0.15
0.21
0.63
0.25
0.17
7.
-
-
-
-
<0.01
-
-
-
-
<0.01
10.
-
<0.01
0.03
0.03
0.04
0.05
0.03
0.04
0.03
0.03
0.03
0.05
0,14
0.03
0.01
<0.01
-
<0.01
-
-
0.01
-
-
•
<0.01
<0.01
-
-
-
-
0.01
0.02 .0.01
0.01
0.03 <0.01
0.02 <0.01
0.06 <0.01
0.03
0.01
0.06 <0.01
0.01
0.05
0.03
0.01
0.01
0.01
0.02
0.04
0.02
0.02
9.
0.26
0.11
0.05
0.18
0.05
0.41
0.16
0.21
0.07
0.34
0.17
0.17
0.16
0.05
0.21
0.27
0.16
0.26
0.12
0.27
0.15
0.63
0.04
0.10
<0.01
0.01
0.03
<0.01
0.14
0.01
0.02
0.01
0.08
0.01
0.09
0.03
0.01
0.08
0.12
0.05
0.07
0.01
0.10
0.03
0.18
0.01
-
0.03
0.03
0.02
0.02
0.10
0.02
0.03
12.
0.27
0.12 <0.01
0.09
0.13
0.12
0.17
0.44
0.20
0.11
11.
73
68
48
47
39
69
70
50
44
85
80
42
54
52
53
33
37
58
56
62
43
68
46
68
69
50
42
54
49
68
60
48
13.
6.75
6.85
4.65
4.34
3.92
6.11
6.95
5.03
4.44
7.18
7.86
3.75
5.27
3.67
3.63
4.95
5.21
5.26
5.46
5.82
4.17
5.51
4.90
6.29
6.90
4.94
4.05
5.62
4.89
5.85
599
5.04
14.
3.57
4.44
3.03
4.11
3.50
2.39
4.27
4.44
3.28
4.17
3.21
4.17
3.25
3.93
3.32
3.65
4.43
4.10
4.07
2.24
4.01
4.05
2.15
4.13
4.56
3.20
4.50
4.09
4.26
3.89
3.90
2.51
15.
1.5
1.7
2.0
1.2
1.4
2.6
1.8
2.7
0.8
2.4
2.4
2.5
1.1
0.5
1.3
1.3
4.0
2.7
2.5
2.7
1.5
1.6
2.5
7.0
2.2
1.2
1.0
3.3
1.4
1.2
1.7
2.3
16.
1.0
8.1
7.9
0.2
17.7
0.9
18.1
7.9
0.4
8.8
16.9
3.0
2.4
0.5
0.1
10.1
12.8
50.5
1.2
22.3
0.8
8.5
3.5
2.6
9.6
7.9
3.9
7.8
11.9
0.8
16.4
18.5
17.
0.18
0.06
0.06
0.10
0.04
0.21
0.06
0.06
0.07
0.17
0.11
0.12
0.11
0.02
0.10
0.20
0.07
0.19
0.06
0.15
0.12
0.35
0.05
0.16
0.08
0.13
0.07
0.07
0.06
0.27
0.07
0.06
18.
0.15
0.01
0.11
0.01
0.10
0.01
0.01
0.01
0.01
0.46
0.95
0.01
0.01
0.01
0.01
0.03
0.02
0.01
0.01
0.03
0.02
0.02
0.01
<0.01
0.01
0.01
0.05
0.02
0.07
0.05
0.03
0.02
0.01
0.02
0.05
0.01
0.04
0.02
0.01
0.03
0.02
0.05
0.04
0.04
0.06
0.01
0.03
0.02
0.03
0.01
0.03
0.04
0.07
0.02
<0.01
0.01
0.01
0.06
0.02
0.03
0.02
0.05
0.30
0.10
0.21
0.13
0.19
0.19
0.10
0.23
1.08
0.79
1.39
0.49
0.29
0.44
0.33
0.37
0.38
0.19
0.40
0.27
0.34
0.31
0.15
0.52
0.18
0.38
0.31
0.29
0.44
0.25
0.46
29.7.1963 0—12
31.7.1965 0—18
12.8.1963 0—11
31.7.1965 0—8
22.7.1963 0—9
18.7.1963 0—2
19.7.1965 1
19.7.1965 0—7
18.7.1963 0—9
20.7.1965 0—8
20.7.1965 0—9
19.7.1963 0—12
20.7.1965 0—9
19.7.1963 0—12
20.7.1965 0—9
20.7.1963 0—4
21.7.1965 0—6
21.7.1965 0—8
24.7.1963 0—8
22.7.1965 0—5
24.7.1963 0—16
23.7.1965 0—7
24.7.1963 0—2
23.7.1965 0—5
19.7.1963 0—4
22.7.1965 0—6
20.7.1963 0—10
21.7.1965 1
4—688085—49615
4—686610—50000
4—685507—49343
4—704880—45820
4—704670—45770
4—704080—46090
4—704070—45500
4—702120—47890
4—702200—48250
4—701900—48460
4—701885—49490
4—700880—49400
4—699450—50100
4—698070—50950
4—703000—51000
4—702325—50120
51
52
53
280
2
3
4
5
7
8
12
13
14
15
16
9
11
Pyhäjärvi
Pyhäjärvi
Pyhäjärvi
Pyhäjärvi
Pielinen
Pielinen
Pielinen
Pielinen
Pielinen
Pjelinen
Pielinen
Pielinen
Pielinen
Pielinen
Rukavesi
Pankajärvi
Pielinen
04.39
04.39
04.39
04.39
04.41
04.41
04.41
04.41
04.41
04.41
04.41
04.41
04.41
04.41
04.41
04.42
04.42
9.
8.
7.
12.8.1963 0—6
30.7.1965 1
6.
30.7.1965 0—8
5.
4—691286—49965
4.
4—688083—49482
3.
SuuriOnkainojärvi 31
2.
04.37
1.
-
<0.01
<0.01
-
<0.01
-
-
-
2.5
3.7
4.12
3.93
6.18
5.62
66
60
0.03
0.05
0.16
0.33
3.2
22.7
0.5
40.0
1.7
1.8
2.43
3.65
4.06
6.50
42
70
0.07
0.04
0.18
0.30
0
0.3
0
1.5
3.49
3.40
3.52
4.58
39
48
0.13
0.03
0.23
0.17
0.13
0.05
25.2
0.6
1.0
1.0
4.13
2.82
3.61
3.69
41
37
0.13
0.03
0.38
0.13
29.5
6.6
2.3
2.0
4.03
2.56
4.04
5.33
45
51
0.03
0.01
0.20
0.11
<0.01
<0.01
0.14
0.12
0.05
16.3
3.7
4.48
4.77
50
0.09
0.18
<0.01
0.08
0.15
0.07
0.24
0.13
0.11
0.17
0.11
3.3
5.1
8.0
2.0
4.08
3.54
4.51
6.38
49
67
0.10
0.04
0.28
0.17
-
-
0.12
0.09
12.3
21.6
1.7
4.0
4.12
2.69
4.16
3.70
0.04
0.01
0.30
0.15
-
<0.01
47
38
0.07
0.09
0.24
0.21
-
-
0.44
0.12
0.22
0.12
0.12
0.20
0.99
0.17
0.06
0.06
0.04
0.03
0.04
0.03
0.07
0.10
18.
22.0
20.2
2.25
2.75
3.68
3.90
56.2
1.5
20.4
316
0.5
0.2
0.5
0.1
0.9
12.5
0.6
19.4
26.9
17.
26.1
2.5
6.0
2.7
4.17
5.42
57
41
41
0.06
0.31
<0.01
2.0
1.8
<0.01
2.5
4.40
2.67
3.42
4.96
38
52
0.20
0.09
0.24
0.16
-
4.60
5.92
64
0.10
0.28
<0.01
1.7
1.7
3.77
6.06
43
65
0.20
0.09
0.84
0.22
-
2.5
3.94
4.75
2.84
5.02
51
0.07
0.14
-
1.7
10
4.04
2.83
4.05
3.65
44
35
0.02
0.01
0.11
0.05
-
1.7
3.0
4.00
4.26
4.45
5.81
44
56
<0.01
0.01
1.3
1.7
0.07
0.06
-
-
<0.01
3.8
16.
4.74
3.10
15.
4.11
6.16
4.63
4.66
62
-
<0.01
47
45
14.
0.01
13.
0.02
0.02
12.
0.11
Ii.
0.06
0.07
10.
0.01
<0.01
0.03
0.06
0.02
1.76
0.06
0.01
0.02
0.07
0.02
0.03
<0.01
0.02
0.03
0.01
0.08
0.03
0.01
0.02
0.01
0.01
0.21
0.06
0.28
1.59
0.26
3.67
1.18
0.14
0.24
0.36
0.26
26.7.1963 0 -12
27.7.1965 0—6
23.7.1965
22.7.1963 0—4
30.7.1965 0—5
23.7.1963 0—1
30.7.1965 0—2
23.7.1963 0—12
31.7.1965 0—19
23.7.1963 0—10
30.7.1965 0—11
4—696610—48140
4—696582—52100
4--695289—55897
4—695388—54640
4—698300—53235
4—698445—54420
35
19
22
23
18
21
Höytiäinen
Jäsysjärvi
Nuorajärvi
llomantsinjärvi
Koitere
Koitere
04.82
04.91
04.92
04.92
04.94
04.94
<0.01
<0.01
<0.01
0.02
0.03
0.02
0.03
0.01
0.04
0.03
0.04
0.70
1.57
1.54
1.29
18.7.1963 0—10
15.7.1965 0—14
18.7.1963 0—12
15.7.1965 0—14
3—693540—52280
3—691974—54678
3--692380—54820
203
139
140
Kuvansi
Unnukka
Unnukka
04.27
04.27
04.26
0.06
1.30
22.7.1965 0—7
3—693770—52880
202
Sorsavesi
0.01
0.04
0.24
0.30
04.26
0.04
0.05
0.27
8.7.1965 0—6
20.7.1963 0—6
8.7.1965 0—5
3—692810—53230
201
Sorsavesi
04.26
-
1.38
1.14
0.58
1.40
0.12
0.08
0.10
0.11
6.14
8.77
73
111
3.10
4.11
3.43
3.61
6.09
7.77
68
99
3.54
3.20
4.02
3.11
3.92
3.97
3.55
<0.01
3.49
6.83
6.36
6.64
8.17
4.69
3.13
4.69
5.89
0.14
1.04
<0.01
0.06
4.13
2.87
2.97
5.75
4.14
3.38
33.3
149
4.2
6.5
3.97
3.76
7.72
7.57
75
36
77
0.15
71
-
-
0.02
69
87
0.02
0.01
0.02
0.03
48
0.01
34
47
0.20
0.18
0.12
0.14
0.06
0.05
-
31
56
0.03
0.02
0.09
0.18
0.28
0.18
100
86
0.07
<0.01
1.76
1.07
0.01
0.04
<0.01
<0.01
0.01
0.03
0.02
0.01
0.17
0.19
19.7.1963 1
8.7.1965 0—4
3—692647—53510
200
04.26
Sorsavesi
0.02
0.03
3—687946—55766
Kolkonjärvi
04.24
79
0.12
<0.01
<0.01
-
<0.01
-
<0.01
0.01
26.7
3.7
2.0
1.7
9.2
30.7
125
24.8
7.0
2.8
5.0
5.0
0.6
1.1
0.3
1.2
1.6
1.9
0.6
0.6
0.8
1.3
1.3
1.3
0.4
0.66
0.70
0.24
0.60
0.17
0.05
0.08
0.10
0.05
0.07
0.09
0.21
0.10
5.4
35.0
1.5
1.7
1.0
0.06
0.07
2.3
1.5
0.5
2.0
0.81
0.30
0.91
0.11
0.11
3.20
2.78
5.32
5.17
64
53
0.06
0.03
1.44
0.20
-
-
6.80
8.5
2.4
4.03
69
0.03
0.21
0.04
0.02
5.7
4.7
2.7
1.5
3.82
2.49
3.16
2.89
<0.01
-
41
23
0.01
0.01
0.16
0.05
<0.01
0.03
0.03
0.4
13.7
2.7
4.0
1.82
3.95
4.15
2.88
41
28
0.19
0.01
0.05
0.06
-
-
0.03
0.02
0.16
0.58
0.48
0.17
18.
1.0
8.8
215
141
24.0
16.0
17.
0.7
2.5
4.17
2.46
0.06
0.05
2.52
2.16
.
-
25
21
9.0
3.0
0.03
<0.01
2.0
3.2
3.19
3.23
4.01
3.70
16.
15.
4.68
4.58
4.46
6.54
14.
54
58
51
65
13.
0.09
0.05
12.7.1965 0—8
2.2 Watercourses north of Lake Haukivesi
0.01
0.01
0.02
0.28
0.08
25.7.1963 0—10
27.7.1965 0—6
4—696890—48630
34
Höytiäinen
04.82
1
<0.01
<0.01
<0.01
<0.01
0.10
0.05
25.7.1963 0—12
27.7.1965 0—4
4—695970—48807
33
Höytiäinen
04.82
-
0.48
1.99
<0.01
<0.01
0.02
0.11
0.20
0.08
0.79
2.25
18.7.1963 0—2
20.7.1965 0—10
4—703120—48700
6
Viekinjärvi
04.47
0.33
0.07
0.51
0.12
-
<0.01
12.
11.
0.01
0.11
10.
0.03
0.01
9.
8.
7.
0.89
0.30
6.
18.7.1963 0—9
19.7.1965 0—2
5.
4—705300—45545
4.
1
3.
Pielinen
2.
04.47
1.
144
145
146
147
148
149
156
157
Kallavesi
Kallavesi
Kallavesj
Kallavesi
Kallavesi
Kallavesi
Kallavesi
Kallavesi
Kallavesj
Kallavesi
Suvasvesi
Suvasvesi
Suvasvesi
Suvasvesi
Jännevirta
Kallavesi
Ruokovesi
Ruokovesi
Ruokovirta
04.27
04.27
04.27
04.27
04.27
04.27
04.27
04.27
04.27
04.27
04.27
04.27
04.27
04.27
04.27
04.28
04.28
04.28
04.28
142
Koirusvesi
155
154
176
173
172
171
170
153
152
151
150
143
Koirusvesi
3.
04.27
2.
04.27
1.
3—700036—51699
3—699583--51660
3—699239—51885
3—698693—52280
3—698560—54229
3—696130—55700
3—695178—56147
3—694180—56120
3—693190—56180
3—698523—52664
3—697632—52770
3—698506—53322
3—697462—53930
3—697038—54030
3—696950—54434
3—696500—54030
3—696310—55145
3—695768—53904
3—695530—53880
3—694554—53658
3—693098—54251
4.
6.
1
1
20.7.1963
17.7.1965
1
1
15.7.1965 0—13
15.7.1965 0—10
20.7.1963 0—7
17.7.1965 0—12
18.7.1963
15.7.1965 0—8
18.7.1963 0—8
15.7.1965 0—8
18.7.1963 0—2
10.7.1965 0—6
18.7.1963 0—9
10.7.1965 0—6
17.7.1965 0—12
17.7.1965 0—12
17.7.1965 0—10
20.7.1963 0—11
17.7.1965 0—10
17.7.1965 0—12
17.7.1965 0—16
20.7.1963 0—8
17.7.1965 0—10
20.7.1963 0—5
17.7.1965 1
20.7.1963 0—10
17.7.1965 1
20.7.1963 0—12
15.7.1965 0—10
15.7.1965
15.7.1965 0—5
5.
8.42
3.15
1.67
1.07
0.66
0.70
0.31
0.74
0.20
0.92
0.16
0.20
0.52
0.63
1.02
0.75
0.81
1.00
1.61
2.00
1.26
0.77
2.05
0.52
1.38
0.27
3.55
0.32
2.87
1.85
2.25
7.
0.16
0.14
0.05
0.10
<0.01
0.01
0.01
0.03
<0.01
0.28
<0.01
0.01
0.03
0.02
0.02
0.02,
0.02
0.02
0.07
0.03
0.04
0.01
0.04
0.03
0.34
0.01
0.07
0.03
0.05
0.02
0.05
8.
0.08
0.03
0.02
0.03
0.01
0.01
<0.01
0.03
<0.01
0.03
<0.01
0.02
0.04
0.06
0.02
0.02
0.02
0.01
0.03
0.03
0.02
0.03
0.02
0.01
0.02
0.01
0.05
0.02
0.03
0.02
0.03
9.
0.01
<0.01
<0.01
<0.01
<0.01
<0.01
•
<0.01
<0.01
-
<0.01
•
<0.01
<0.01
<0.01
-
-
-
-
-
•
<0.01
-
-
-
<0.01
-
<0.01
-
<0.01
<0.01
10
7.78
2.71
1.16
0.46
0.47
0.30
0.23
0.65
0.16
0.56
0.09
0.15
0.38
0.45
0.39
0.41
0.33
0.38
1.24
1.74
0.96
0.31
1,82
0.26
0.94
0.14
3.14
0.17
2.64
1.68
2.01
11.
0.39
0.26
0.45
0.49
0.18
0.38
0.07
0.03
0.04
0.04
0.06
0.02
0.08
0.10
0.59
0.31
0.44
0.58
0.27
0.20
0.24
0.42
0.16
0.22
0.07
0.11
0.29
0.12
0.15
0.13
0.16
12.
118
108
100
99
46
74
43
81
41
98
33
62
83
99
88
79
69
48
91
90
88
46
89
37
83
30
101
35
93
91
109
13.
9.12
8.92
8.87
8.58
4.10
6.72
3.91
6.65
3.95
8.08
3.18
5.72
7.46
8.57
7.62
6.90
6.14
4.14
7.62
7.32
7.47
4.04
7.17
3.28
6.88
2.79
7.45
3.36
7.03
7.10
8.26
14.
3.92
3.68
3.74
3.53
3.13
3.21
2.51
1.82
2.40
3.74
3.62
3.25
3.22
4.02
3.94
3,33
4.19
3.60
2.95
3.96
3.27
3.26
2.95
2.24
2.29
2.05
3.11
1.96
3.47
2.74
2.05
15.
12.0
8.0
3.6
5.2
8.0
3.4
6.0
1.3
0.5
2.2
0
1.3
2.4
2.1
3.6
5.0
5.0
6.0
8.5
4.5
8.0
11.0
6.5
4.0
4.7
3.4
-
4.0
4.2
3.0
4.8
16.
206
102
82.5
96.5
141
8.8
108
2.0
0.4
47.0
0
2.6
2.8
18.2
166
27.4
61.5
5.1
407
473
299
71.1
261
0.8
302
104
-
1.4
102
117
13.0
17.
1.66
0.70
0.33
0.44
0.41
0.25
0.14
0.12
0.05
0.19
0.05
0.04
0.24
0.17
0.35
0.28
0.30
0.58
0.54
0.66
0.57
0.57
0.82
0.43
0.72
0.17
2.09
0.19
1.69
1.15
1.29
18.
0’
0’
3—702615—51865
3—703030—51463
3--703650—51540
3—704653—51075
3—704894—50958
3—705516—49710
3—705910—48450
3—705614—50848
3—707985—47330
3—698288—55881
161
162
163
164
165
166
167
169
168
175
177
Onkjvesi
Onkivesi
Nerkoonjärvi
Porovesj
Porovesj
Haapajarvi
Kiurujärvi
lijärvi
Nä1ntöjärvi
Melavesi
Juurusvesi
Siilinjärvi
04.51
04.51
04.51
04.52
04.52
04.52
04.52
04.53
04.56
04.61
04.61
04.61
04.61
6.
1
1
7.77
6.47
1.93
3.18
2.08
1.85
2.44
18.7.1963 0—10
6.7.1965 0—12
6.7.1965 0—5
6.7.1965 0—7
6.7.1965 0—7
1.80
3—701537—56126
186
Syvän
19.7.1963 0—8
13.7.1965 0—9
0.22
0.40
0.27
04.63
0.32
13.7.1965 0—6
3—701490—56825
14.7.1965 0—10
3—700720—56760
184
3—699930 56715
183
Vuotjärvi
04.62
185
0.34
14.7.1965 0—12
3—698940—56114
Muuruvesi
04.61
Vuotjärvi
0.77
0.50
2.7.1963 0—7
14.7.1965 0—10
181
Ala-Siikajärvi
0.47
13.7.1965 0—6
3—699700—55215
180
Ala-Pieksanjärvi
04.62
0.02
2.68
3.26
2.7.1963 0—6
16.7.1965 0—6
3—699580—53500
178
04.62
0.28
0.13
0.25
0.53
2.7.1963 0—10
16.7.1965 0—13
3—698780—54455
0.01
0.02
0.02
0.01
0.01
0.01
0.02
0.02
0.02
0.02
0.05
0.23
0.15
0.01
0.02
0.14
0.03
0.01
0.01
0.01
0.01
0.01
0.04
0.05
0.10
0.57
0.64
2.7.1963 0—7
15.7.1965 0—6
6.7.1965
<0.01
<0.01
-
<0.01
-
<0.01
<0.01
-
<0.01
<0.01
<0.01
-
.
.
0.12
0.29
0.14
0.20
0.23
0.52
0.33
0.36
2.10
2.59
0.15
0.33
0.29
0.42
0.56
0.02
0.01
<0.01
0.02
0.07
0.43
1.51
0.02
1.67
0.02
0.18
0.10
1.58
2.72
<0.01
<0.01
0.02
0.04
3.39
5.15
12.3
7.28
6.07
3.72
5.39
7.00
9.09
12.9
3.54
2.20
11.
<0.01
<0.01
0.01
0.01
0.01
0.01
0.01
<0.01
0.02
0.01
<0.01
<0.01
10.
0.04
0.06
0.04
0.03
0.13
0.12
0.06
0.19
0.03
0.09
0.03
0.04
9.
0.10
0.04
0.10
0.03
0.06
0.04
0.34
0.10
0.11
0.03
0.06
0.19
0.16
0.03
0.03
8.
1.29
1
3.70
5.50
18.7.1963 1
6.7.1965 0—5
16.7.1965 0—10 12.5
4.05
5.7.1965 0—12
5.64
7.33
9.51
13.4
3.78
2.64
7.
18.7.1963 0—9
5.7.1965 0—11
18.7.1963 0—8
5.7.1965 0—11
20.7.1963
17.7.1965
20.7.1963 0—9
16.7.1965 0—9
5.
2.42
3—701580-—51645
160
Onkjvesj
04.51
3—701300—51042
159
Vianta
3—700530—51450
4.
04.28
158
3.
Maaninkajarvi
2.
04.28
1.
0.07
0.08
0.10
0.09
0.09
0.23
0.13
0.04
45
64
43
57
62
63
64
86
116
125
43
77
0.09
0.14
0.06
0.39
58
84
0.09
0.08
77
132
0.13
147
135
3.41
3.97
3.00
3.92
5.20
7.13
4.14
6.78
4.34
5.83
3.32
3.38
3.81
4.05
5.27
3.81
5.70
4.08
4.47
3.21
4.69
5.38
5.76
7.75
3.59
4.82
3.84
9.40
10.09
4.97
6.21
0.57
2.7
0.2
3.1
4.5
10.1
2.3
0.4
1.7
1.6
15.4
19.3
34.4
2.5
1.4
3.7
3.2
0.09
0.11
0.09
0.16
0.14
0.34
0.24
0.21
534
70.4
0.2
1.06
1.06
3.1
36.8
3.0
1.4
8.0
8.8
0.12
0.21
0.3
0.4
0.22
0.16
0.83
0.63
8.0
318
0.68
58.7
1.2
1.4
11.2
6.7
8.6
12.5
3.98
0.68
0.60
12.0 138
8.7 4840
4.24
10.92
11.85
11.29
3.35
3.50
6.02
8.29
71
101
0.60
0.15
0.11
0.28
0.32
0.69
0.81
6.7 2270
6.0 2730
0.77
1.63
1.05
1.61
747
385
473
1.29
1.11
1.80
2.12
0.83
0.53
18.
381
5.3
3.42
7.2
9.0 320
18.0 3790
12.3 1050
7.6 461
12.7
6.7
3.19
3.50
17.
5.2 180
14.0 1780
16.
3.21
4.27
3.26
3.11
3.41
3.68
2.92
4.03
3.18
15.
6.26
7.23
9.33
11.16
7.68
9.00
7.45
8.46
7.99
10.02
6.54
8.78
14.
76
91
123
0.13
0.23
0.23
139
97
114
94
108
103
132
79
105
13.
0.10
0.11
0.16
0.15
0.08
0.18
0.19
0.18
0.37
12.
190
188
174
194
195
196
198
Kiltuanjärvi
Laakajärvi
Kevätönjärvi
Ala-Keyritty
Riistavesi
Juojärvi
Juojärvi
Juojärvi
Juojärvi
Rikkavesi
Rikkavesi
Kaavinjärvi
Saarijärvi
04.64
04.64
04.65
04.67
04.69
04.71
04.71
04.71
04.71
04.72
04.72
04.73
04.74
4—698280—43190
4--698590—57490
4—697860—43460
4—696762—43636
4—696560—42010
4--695936—42967
4—694960—43100
4—694780—44120
3—697800—55810
3—704330—56350
3—699892—53084
3—707715—55142
3—707640—54330
3—704610—54360
3—702860—55030
4.
3—683341—53793
137
Luonteri
04.11
3—682142—52450
93
04.11
3—681082—53384
3—682090—55340
Louhivesi
Vövesj
04.11
89
91
3—681800—51799
Yövesj
92
Lietvesi
04.11
04.11
6.
14.7.1965 0—6
20.7.1963 0—6
14.7.1965 0—8
14.7.1965 0—6
20.7.1963 0—6
14.7.1965 0—8
14.7.1965 0—9
20.7.1963 0—9
14.7.1965 0—14
20.7.1963 0—9
15.7.1965 0—10
20.7.1963 0—7
15.7.1965 0—12
20.7.1963 0—9
15.7.1965 0—6
13.7.1965 0—10
20.7.1963 0—3
16.7.1965 0—3
19.7.1963 0—3
7.7.1965 0—5
7.7.1965 0—10
7.7.1965 0—10
19.7.1963 0—8
13.7.1965 0—10
5.
9.7.1963 0—4
27.7.1965 0—10
27.7.1965 0—10
27.7.1965 0—10
8.7.1965 0—12
2.3 Laite Haukivesi and watercourses to the south of it
197
199
193
192
179
191
189
Sälevänjärvi
04.64
187
3.
Syvän
2.
04.63
1.
0.15
0.24
0.13
0.14
0.20
0.49
0.28
0.21
0.38
0.12
0.19
0.27
0.59
0.33
0.48
0.20
0.13
0.22
0.37
0.74
0.63
13.2
10.3
0.29
0.13
0.20
0.67
0.49
0.65
7.
0.01
0.06
0.03
<0.01
0.03
0.01
0.07
0.02
0.01
0.01
0.01
0.02
0.01
0.04
0.01
<0.01
0.01
0.01
0.07
0.03
<0.01
2.98
0.86
<0.01
<0.01
<0.01
0.01
<0.01
0.01
8.
0.01
0.05
0.01
0.02
0.01
0.08
<0.01
0.02
0.03
0.01
0.02
0.02
<0.01
0.01
<0.01
0.02
<0.01
0.02
0.04
0.21
0.02
1.29
4.29
0.03
0.03
0.01
0.02
0.02
0.03
9.
•
-
<0.01
-
-
-
-
-
<0.01
-
-
-
-
-
<0.01
-
<0.01
-
<0.01
-
<0.01
0.31
0.12
-
-
<0.01
0.01
<0.01
<0.01
10.
0.12
0.10
0.06
0.11
0.15
0.22
0.11
0.17
0.24
0.08
0.16
0.18
0.55
0.21
0.43
0.17
0.09
0.17
0.21
0.42
0.50
8.30
4.61
0.25
0.09
0.18
0.53
0.25
0.25
11.
0.01
0.04
0.03
0.01
0.01
0.18
0.10
0.01
0.09
0.03
0.01
0.05
0.03
0.06
0.03
0.01
0.03
0.02
0.04
0.08
0.11
0.26
0.39
0.01
0.01
0.01
0.10
0.21
0.35
12.
24
64
47
49
44
59
30
60
65
30
62
69
35
57
47
62
43
69
95
83
53
90
133
44
45
40
59
41
72
13.
2.42
6.08
4.86
4.95
4.32
5.28
2.88
5.50
5.79
3.01
5.75
6.46
2.98
5.12
4.11
5.72
4.23
6.51
8.77
7.35
4.78
6.17
9.64
4.10
4.35
3.82
5.22
3.67
6.60
14.
3.37
3.75
3.75
3.19
3.93
2.92
3.22
3.03
3.03
3.51
3.59
3.34
2.86
1.08
3.33
2.21
3.20
2.90
1.36
5.11
3.70
4.22
3.47
2.63
3.48
2.42
3.76
2.93
3.32
15.
-
12.8
14.3
0
2.3
4.0
6.9
17.
1.0
3.2
1.6
0.8
1.7
0.8
0.3
0.6
0.6
0
0.8
0.6
0
0.6
0.3
1.1
0
1.3
2.3
2.7
0.8
2.4
13.5
9.3
0.2
2.3
1.8
0.2
2.5
0.1
0
2.5
0.6
0
0.8
0
0.3
0
0.8
5.6
5.5
21.4
21.5 2150
-
0.5
1.0
0
1.0
2.0
2.7
16.
0.07
0.10
0.04
0.04
0.11
0.15
0.20
0.08
0.18
0.05
0.06
0.07
0.09
0.08
0.12
0.04
0.06
0.05
0.18
0.27
0.12
2.78
2.85
0.15
0.20
0.03
0.08
0.21
0.22
18.
9.
0.01
0.01
0.01
0.04
0.03
0.01
0.03
0.06
0.06
0.01
<0.01
8.
0.02
0.03
0.01
0.03
0.03
<0.01
<0.01
0.09
<0.01
0.01
0.01
0.21
0.22
0.18
0.35
0.57
0.21
0.33
15.7.1963 0—11
15.7.1963 0—11
19.7.1965 0—15
9.7.1963 0—7
9.8.1965 0—14
9.7.1963 0—7
9.8.1965 0—14
0.02
0.01
<0.01
0.05
0.26
0.08
0.16
9.7.1965 0—10
9.7.1965 0—8
12.7.1965 0—8
4—684940—43475
4—685123—42390
3—682350—56380
86
87
88
Pihlajavesi
Pihlajavesi
Pihlajavesi
04.12
04.12
04.12
3.92
4.16
41
42
-
-
-
4.74
4.98
45
50
0.01
0.01
<0.01
0.11
0.06
0.10
0.03
0.06
0.7
1.7
1.7
2.0
3.87
0.17
2.43
2.59
0.16
-
0.15
0.06
3.6
-
1.0
4.0
1.3
0.61
1.7
0.02
0.18
12.7.1965 0—12
4—685625—44085
85
Pihlajavesi
04.12
0.9
3.17
2.15
5.57
0.12
0.02
0.11
0.02
0.03
0.16
9.7.1965 0—10
4—683590—45640
71
Pihlajavesi
04.12
59
4.19
5.03
0.11
0.05
5.64
58
0.01
0.14
0.01
0.12
0.01
<0.01
0.01
0.01
0.04
<0.01
0.18
15.7.1965 0—16
4—684740—46225
70
Pihlajavesi
04.12
45
50
35.6
0.5
4.0
0.3
3.63
3.02
0.14
0.02
0.13
0.08
<0.01
<0.01
0.02
0.01
0.01
0.02
0.29
0.13
15.7.1963 0—6
21.7.1965 0—10
3—679858—43620
262
Saimaa
04.11
0.13
0.06
0.06
0.17
0.15
0.97
0.14
0.04
0.5
0.7
1.7
1.0
4.71
3.64
50
37
2.88
3.56
0.08
0.01
-
-
1.8
0.6
4.98
52
3.39
0.17
0.11
0.01
0.01
0.03
0.01
0.29
0.14
15.7.1963 0—9
19.7.1965 0—13
3—680165—55465
261
Saimaa
04.11
-
3.54
3.99
17.0 1430
105
3.3
0.05
3—680490—54535
260
Saimaa
04.11
-
-
4.04
-
0.2
5.3
2.5
0.13
<0.01
0.01
0.19
10.7.1963 0—10
4—678887—42806
259
Saimaa
04.11
0.01
-
1.5
3.57
3.56
4.12
4.36
44
42
0.03
0.01
0.15
0.19
6.64
3.19
3—677850—57125
258
Sikosalonselkä
04.11
•
-
0.08
0.09
29.7
1.4
4.5
‘2.5
3.77
3.39
5.38
3.19
56
32
0.06
0.06
0.14
0.09
72
32
0.49
0.25
13.7.1963 0—11
23.7.1965 0—6
3—677380--56172
257
Sunisenselkä
04.11
-
-
0.15
0.16
31.7
1.9
4.0
2.2
3.45
3.36
5.36
4.27
58
44
0.05
0.12
0.48
0.19
0.13
0.09
4.09
12.7.1963 0—7
3—679350—43528
256
Vatavalkama
04.11
-
<0.01
0.10
0.12
5.0
61.8
1.3
2.5
3.99
4.49
5.84
3.30
61
33
0.08
0.04
0.16
0.15
0.32
0.13
0.02
<0.01
0.02
0.02
0.25
0.26
9.7.1963 0—8
9.8.1965 0—9
4—678600—42236
255
Saimaa
04.11
-
-
1.12
0.13
30.0 6410
3.9
7.5
4.62
2.52
6.58
5.54
82
57
0.50
0.08
4.38
0.16
7.65
0.24
0.07
0.26
0.17
13.7.1963 0—11
21.7.1965 0—4
3—679032—56816
254
Saimaa
04.11
<0.01
<0.01
0.10
0.16
4.1
7.6
3.3
2.8
4.33
3.31
5.52
6.59
57
67
0.07
0.06
0.12
0.25
95
0.04
0.07
0.04
<0.01
0.55
0.33
12.7.1963 0—8
22.7.1965 0—6
3—678350-57364
253
Saimaa
04.11
-
-
0.18
0.18
1.4
13.4
2.3
4.2
3.84
3.77
5.45
8.29
59
88
0.06
0.03
0.11
0.08
3.60
3.44
0.21
0.48
0.10
6.1
18.7
3.1
1.3
2.0
1.7
4.14
18.
5.11
17.
4.89
3.88
0.03
0.05
0.14
0.12
16.
15.
14.
51
39
0.06
0.12
13.
53
12.
11.
0.46
0.04
0.02
0.01
<0.01
0.26
0.20
19.7.1963 0—7
28.7.1965 0—7
3—678073-56147
252
Saimaa
04.11
-
<0.01
-
-
-
10.
3.31
0.01
0.01
0.01
0.02
5.04
0.30
12.7.1963 0—6
22.7.1965 0—4
3—678190—55420
251
Rjuttasejka
04.11
04.11
Petranselkl
04.11
3—679500—56360
6.
7.
5.
250
4.
Ilkonselkä
3.
3—680429—56672
2.
249
1.
Haukivesi
Haukivesi
Haukivesi
Haukivesi
04.21
04.21
Haukivesi
04.21
04.21
Haukivesi
04.21
04.21
Pieni Haukivesi
Haapavesi
04.21
Haukivesi
04.21
04.21
Haukivesi
Iminalanjärvi
04.19
04.21
Puruvesi
04.18
Haukivesi
Puruvesj
04.18
04.21
Puruvesj
04.18
Haukivesi
Ukonvesi
04.15
Haukjvesi
Ukonvesi
04.15
04.21
Kuolimo
04.14
04.21
Kuolimo
2.
04.14
1.
101
100
99
98
97
96
82
81
80
78
77
76
74
273
69
68
67
95
94
243
242
3.
3—689035—55860
3—689575—56820
3—689418—54692
3—690142—57316
3—690270—55835
3—690806—54856
4—686680—43770
4—687305—43368
4—687770—42625
4—688460—42328
3—688945—57131
3—688955—57350
4—689758—42520
4—679137—44274
4—686475—47500
4—685642—46648
4—685082—46724
3—683280—51550
3—682600—51550
3—679112—53230
3—679645—52695
4.
6.
10.8.1965 0—16
30.7.1965 0—12
10.8.1965 0—12
26.7.1965 0—6
17.7.1963 0—4
29.7.1965 0—12
11.7.1963 0—4
29.7.1965 0—10
12.7.1965 0—12
28.7.1965 0—10
5.8.1965 0—18
4.8.1965 0—12
5.8.1965 0—12
5.8.1965 0—12
28.7.1965 0—12
11.7.1963 0—6
20.7.1965 0—11
19.7.1965 0—10
19.7.1965 0—10
15.7.1965 0—6
10.7.1963 0—4
27.7.1965 0—10
16.7.1963 0—1
27.7.1965 0—2
8.7.1963 0—4
4.8.1965 0—8
8.7.1963 0—6
4.8.1965 0—10
5.
0.36
0.16
0.47
0.18
0.77
0.45
0.79
0.23
0.26
0.34
0.16
0.27
0.38
0.33
0.17
0.44
0.32
0.19
0.07
0.14
3.04
0.42
4.34
3.20
0.20
0.16
0.14
0.12
7.
0.01
<0.01
0.11
0.01
0.01
0.01
0.08
<0.01
<0.01
0.05
<0.01
0.01
0.01
<0.01
0.01
0.04
0.03
<0.01
0.01
0.02
1.53
0.02
0.32
0.03
0.01
<0.01
0.01
0.01
8.
0.02
0.03
0.05
0.02
0.40
0.05
0.01
0.02
0.12
0.02
0.02
0.02
0.03
0.04
0.02
0.08
0.04
0.12
0.02
0.03
0.20
0.05
0.19
0.13
0.01
0.01
<0.01
0.01
9.
<0.01
<0.01
<0.01
•
<0.01
-
<0.01
-
-
<0.01
-
-
<0.01
<0.01
-
-
-
-
-
-
<0.01
<0.01
0.01
-
-
-
<0.01
-
10.
0.27
0.13
0.29
0.14
0.19
0.32
0.58
0.19
0.12
0.21
0.10
0.19
0.27
0.24
0.13
0.25
0.24
0.06
0.04
0.09
1.03
0.28
3.74
2.99
0.12
0.08
0.08
0.09
11.
0.06
-
0.02
0.01
0.17
0.07
0.12
0.02
0.02
0.06
0.03
0.05
0.07
0.05
0.02
0.08
0.02
0.01
0.01
-
0.28
0.07
0.10
0.04
0.06
0.06
0.04
0.02
12.
71
69
107
65
32
67
27
48
55
62
57
72
80
74
59
69
53
52
48
46
55
77
58
108
41
52
44
53
13.
6.66
6.70
10.07
6.55
2.91
6.38
2.36
4.85
5.32
5.79
5.44
6.67
7.41
6.98
5.70
6.11
4.92
5.28
5.01
4.75
4.41
7.15
4.17
8.79
4.12
5.41
4.46
5.32
14.
4.33
5.24
4.12
4.63
3.96
3.22
3.35
3.15
3.21
1.70
3.35
4.04
4.54
1.32
3.29
4.28
3.57
2.79
1.94
2.57
2.26
3.38
3.66
1.68
4.06
3.35
4.15
3.90
15.
2.5
2.1
4.7
1.0
2.5
3.8
3.0
9.0
2.3
1.5
3.5
2.0
2.2
2.0
1.3
1.5
1.7
1.3
0.8
0.8
20.0
-
7.2
-
1.5
0.3
0.7
1.3
16.
0.5
2.2
8.9
0.2
10.7
4.8
20.2
202
0.5
8.8
7.8
1.4
1.8
3.6
1.0
1.1
0.3
0.1
0.8
0.5
12.6
-
115
-
4.5
0.2
2.2
0.1
17.
0.13
0.12
0.28
0.06
0.38
0.18
0.52
0.17
0.14
0.12
0.05
0.11
0.14
0.15
0.08
0.22
0.18
0.03
0.05
0.05
3.24
0.18
0.69
1.83
0.06
0.03
0.05
0.04
18.
-4
0
2.
3.
4.
3—692575-44700
Lievestuoreenjärvi 353
309
311
312
314
356
357
Saravesi
Vatianjärvi
Peurunkajärvi
Kuhnamo
Kuusvesi
Kynsivesi
Kynsivesi
Uuraanjärvi
Liesvesi
14.31
14.32
14.33
14.33
14.33
14.35
14.35
14.35
14.35
14.36
14.37
0.30
0.15
17.7.1963 0—8
7.7.1965 0—8
20.7.1963 0—9
19.7.1965 0—10
0.38
0.28
Keitele
14.41
3--695860—44638
0.62
2.18
20.7.1963 0—8
5.7.1965 0—8
Keitele
14.41
318
0.23
0.18
9.7.1963 0—7
19.7.1965 0—11
3—695016—43750
316
Keitele
14.41
3—694372—43900
0.64
0.36
18.7.1963 0—8
7.7.1965 0—10
3—692570—47762
359
Armisvesi
14.37
317
0.40
0.49
18.7.1963 0—9
7.7.1965 0—10
3—692010—47010
358
0.02
0.46
0.01
0.03
0.01
0.04
0.01
0.01
0.10
0.03
0.28
0.07
0.04
0.01
0.03
0.05
0.01
0.06
0.01
<0.01
0.01
0.07
0.01
0.03
0.02
0.02
0.03
0.01
0.07
0.01
0.04
<0.01
<0.01
0.05
0.01
0.03
0.01
<0.01
0.19
7.7.1965 0—8
Kuuhankavesi
0.02
0.28
20.7.1965 0—9
0.01
<0.01
0.01
0.01
0.30
0.15
17.7.1963 0—8
7.7.1965 0—10
0.10
0.01
0.01
0.02
<0.01
0.01
<0.01
-
-
0.02
0.01
0.02
0.06
0.01
0.01
0.01
<0.01
0.02
<0.01
0.37
0.11
0.31
0.17
0.25
0.11
0.22
0.01
0.08
0.51
0.67
0.12
0.13
-
0.01
0.09
9.
<0.01
8.
0.29
0.26
17.7.1963 0—10
20.7.1965 0—12
10.7.1963 0—10
6.7.1965 0—14
5.7.1965 0—6
8.7.1963 0—8
5.7.1965 0—11
8.7.1963 0—8
5.7.1965 0—13
9.7.1963 0—7
6.7.1965 0—7
8.7.1963 0—6
9.7.1965 0—6
9.7.1963 0—6
6.7.1965 0—6
0.44
0.63
7.
3—694020—46330
3—693130—45556
3—693120—45984
3—692070—46150
3—692555—45170
3—694307—43508
3—692726—44088
3—693010—44336
3—689239—44695
6.
3.7.1963 0—6
7.7.1965 0—9
5.
360
355
352
3—691186—45645
307
Leppävesi
14.31
3—690750—45038
306
Leppävesi
14.31
3—690760—44469
305
Leppävesi
14.31
3. The Kymijoki river basin
3.1 Watercourses north of the rapid of Haapakoski
1.
-
-
-
<0.01
-
-
<0.01
-
-
-
-
-
-
-
-
-
-
-
-
0.04
-
0.01
<0.01
<0.01
-
-
-
<0.01
-
-
-
<0.01
<0.01
10.
0.14
0.16
0.21
0.79
0.22
0.05
0.10
0.86
0.02
0.02
0.16
0.02
0.40
0.32
0.10
0.12
0.09
0.03
0.26
0.40
0.05
0.14
3.61
5.93
4.73
5.51
50
62
4.60
4.89
5.82
6.61
6.88
6.30
5.06
7.17
4.94
4.64
4.34
4.46
4.69
6.52
6.25
7.27
5.09
4.47
7.08
5.43
7.23
1.11
0.24
7.15
8.75
3.27
3.98
5.90
5.76
14.
41
76
48
51
68
71
75
69
52
78
54
45
0.07
0.03
0.03
47
41
51
70
65
71
56
46
75
54
78
0.06
0.02
0.07
0.04
0.05
0.01
0.04
0.03
0.03
0.01
0.07
9
3
77
99
0.04
0.13
0.01
0.08
33
40
65
62
13.
0.03
0.06
0.09
0.33
12.
0.17
0.21
0.11
0.21
0.04
0.20
0.18
0.16
0.07
0.23
0.09
0.16
0.08
0.12
<0.01
<0.01
0.43
0.47
0.08
0.07
0.33
0.22
11.
3.9
2.0
4.03
3.77
3.50
2.78
4.77
3.39
3.64
3.75
4.18
4.67
5.0
1.5
11.5
-
0.6
0.2
102
-
6.6
0.8
3.0
2.3
0.09
0.14
0.57
1.44
0.15
0.61
0.16
0.17
0.3
<0.1
0.8
0.4
0.07
0.11
0.16
0.23
1.3
0.1
0.11
0.02
0.09
0.03
0.21
0.09
0.13
0.05
0.19
0.03
0.15
0.07
0.21
0.01
0.03
0.24
0.39
0.07
0.04
0.20
0.30
18.
1.4
0.3
3.0
3.3
1.0
0.5
4.15
3.09
1.0
1.9
0.3
1.5
2.0
1.0
0.8
1.0
1.6
1.1
1.0
0.7
23.9
6.1
147
6.5
6.0
5.0
4.7
3.2
6.3
1.4
-
8.1
4.0
3.8
-
1.0
162
0.8
17.9
7.0
2.0
2.7
6.0
4.4
10.6
10.9
17.
3.3
3.3
16.
3.84
3.69
1.13
3.51
4.12
3.93
3.29
3.88
4.67
4.74
2.85
4.15
4.17
1.18
0.48
3.44
4.32
3.78
3.67
1.73
3.94
15.
2—699688—55829
2—700880—55752
366
323
325
326
328
329
330
Keitele
Keitele
Muurasjarvi
Vuosjärvi
Kivijärvi
Kivijärvi
14.42
14.43
14.43
14.44
14.44
14.44
334
335
Kannonselkä
Kolimajärvi
Kolimajärvi
14.45
14.46
14.47
14.47
339
340
337
338
Alvajärvi
Muurasjärvi
Saanijärvi
Elämäjärvi
Suminasjärvi
14.48
14.48
14.49
14.49
14.6 1
343
336
Kolimajärvi
Alvajärvi
14.47
14.48
333
327
331
Kivijärvi
Kivijärvi
14.44
322
2—694975—57117
3—704175—43622
2—703637—42995
2—704490—56737
2—703466—57150
3—702882—42609
3—702744—43181
3—702014—43713
3—701645—44548
2—697926—56298
2—702441—55603
3—698734—56180
3—698883—42537
3—699850—42512
3—699760—43830
3—696472—46616
3—699952—44453
3--699160—44696
Keitele
14.42
321
Keitele
14.42
3—698329—45036
320
Keitele
14.42
3—697080—45070
4.
319
3.
Keitele
2.
14.41
1.
6.
11.7.1963 0—7
12.7.1965 0—9
14.7.1965 0—2
14.7.1965 0—2
18.7.1963 0—11
13.7.1965 0—11
18.7.1963 0—6
13.7.1965 0—4
14.7.1965 0—16
15.7.1965 0—10
17.7.1963 0—11
15.7.1965 0—13
18.7.1963 0—7
12.7.1965 0—9
12.7.1965 0—8
12.7.1963 0—6
13.7.1965 0—9
12.7.1965 0—4
18.7.1963 0—11
12.7.1965 0—15
19.7.1963 0—9
12.7.1965 0—7
19.7.1963 0—5
16.7.1965 0—4
19.7.1963 0—9
16.7.1965 0—10
17.7.1963 0—8
16.7.1965 0—17
20.7.1965 0—14
17.7.1963 0—8
16.7.1965 0—16
17.7.1965 0—17
16.7.1963 0—8
17.7.1965 0—19
19.7.1965 0—14
5.
0.41
0.41
0.53
0.99
0.37
0.34
0.41
0.26
0.49
0.71
0.41
0.33
0.38
0.40
0.50
1.28
0.60
0.25
0.11
0.26
0.37
0.23
0.21
0.32
0.50
0.50
0.11
0.22
0.18
0.23
0.20
0.19
0.20
0.10
0.31
7.
0.01
0.02
0.01
0.01
0.01
0.01
0.02
0.01
0.03
0.01
<0.01
0.02
0.01
0.01
0.01
0.01
<0.01
0.02
0.01
0.01
<0.01
<0.01
0.01
<0.01
0.02
<0.01
<0.01
<0.01
0.02
<0.01
<0.01
0.01
0.01
0.01
0.01
8.
0.01
0.01
0.04
0.06
0.01
0.05
0.01
0.02
0.01
0.10
<0.01
0.08
0.01
0.02
0.01
0.02
0.16
0.02
<0.01
0.04
<0.01
0.01
0.01
0.05
0.02
0.05
<0.01
0.04
0.03
<0.01
0.01
0.02
<0.01
0.01
0.05
9.
<0.01
<0.01
<0.01
<0.01
-
<0.01
-
<0.01
<0.01
<0.01
-
-
-
-
<0.01
<0.01
-
-
-
<0.01
-
<0.01
-
<0.01
<0.01
<0.01
-
-
-
-
<0.01
-
-
-
10.
0.17
0.16
0.44
0.91
0.33
0.29
0.29
0.18
0.41
0.53
0.11
0.22
0.28
0.35
0.39
1.08
0.12
0.11
0.07
0.17
0.25
0.12
0.13
0.21
0.33
0.36
0.08
0.12
0.10
0.13
0.15
0.14
0.16
0.08
0.20
11.
0.22
0.22
0.05
<0.01
-
0.02
0.08
0.05
0.04
0.08
0.29
0.02
0.08
0.03
0.09
0.17
0.31
0.10
0.02
0.05
0.11
0.10
0.06
0.06
0.13
0.09
0.02
0.06
0.03
0.09
0.02
0.03
0.03
0.01
0.05
12.
42
45
75
96
45
59
74
76
78
77
34
63
58
79
57
64
55
60
28
49
46
49
47
86
69
86
40
51
61
42
59
72
37
57
78
13.
3.96
4.40
7.32
8.08
4.19
5.47
7.00
7.34
7.32
6.91
3.35
5.99
5.20
7.38
5.19
5.42
5.19
5.83
3.04
4.70
4.24
4.89
4.50
8.27
6.36
8.04
4.21
4.94
5.36
4.07
5.74
6.85
3.63
5.79
7.09
14.
2.74
3.12
2.76
4.38
4.53
3.44
3.64
4.01
3.42
3.87
4.09
3.24
3.27
3.38
4.67
3.98
3.26
3.48
3.28
3.55
3.28
3.95
4.52
3.52
3.27
4.30
3.95
3.74
4.04
4.06
4.03
4.10
4.24
3.77
3.46
15.
32.9
-
-
19.3
108
0.6
2.8
7.3
2.0
8.2
12.7
<0.1
0.5
<0.1
1.0
4.9
60.8
12.4
1.6
<0.1
1.8
<0.1
0.2
0.3
2.0
2.2
0.6
0.1
0.5
<0.1
0.3
0.6
0.3
0.4
0.1
0.1
17.
3.3
.9.0
4.2
2.3
1.4
4.0
2.2
1.6
2.7
1.0
0.9
1.0
0.9
1.0
3.0
4.5
1.4
0.5
2.5
0.4
0.6
0.5
3.5
2.0
1.3
0.5
0.6
1.5
1.0
1.3
1.0
1.5
0.6
0.9
16.
0.21
0.13
0.10
0.56
0.13
0.15
0.12
0.12
0.28
0.32
0.04
0.09
0.08
0.10
0.19
0.83
0.21
0.10
0.06
0.14
0.13
0.07
0.09
0.15
0.18
0.18
0.04
0.07
0.11
0.09
0.09
0.11
0.07
0.06
0.15
18.
2—699560—52882
2—694020—57440
2—695658—54213
2—695849—57400
350
351
342
348
344
Pääjärvi
Kyyjärvi
Lannevesi
Karankajärvi
Pyhäjärvi
Pyhäjärvi
14.64
14.65
14.66
14.68
14.68
14.71
Konnevesi
Konnevesi
lisvesi
14.71
14.71
14.72
Konnevesi
14.71
3—696652—47292
3—696670—49180
212
3—695710—47548
3—694372—48120
365
364
363
362
Konnevesi
14.71
3—694908—47004
3—694540—47378
361
Konnevesi
14.71
3—696180—47460
210
Konnevesi
14.71
3—694630—48620
Konnevesi
3—694850—48300
Hankavesi
14.71
14.71
209
3—695220—49320
207
Koskelovesi
208
2—696352—57600
345
2—697555—53541
2—696501—54346
2—696364—55055
14.63
367
349
Kalmarinjärvi
Päiljärvi
2—695820—56063
4.
14.62
346
3.
14.63
Saarijilrvi
2.
14.61
1.
6.
18.7.1963 0—8
20.7.1965 0—12
18.7.1963 0—10
20.7.1965 0—14
20.7.1965 0—4
19.7.1963 0—8
8.7.1965 0—8
8.7.1965 0—8
19.7.1963 0—8
8.7.1965 0—8
10.7.1963 0—6
20.7.1965 0—11
10.7.1963 0—10
20.7.1965 0—10
20.7.1965 0—10
10.7.1963 0—4
7.7.1965 0—3
7.7.1965 0—8
10.7.1963 0—8
7.7.1965 0—10
11.7.1963 0—7
8.7.1965 0—6
6.7.1965 0—8
12.7.1963 0—7
9.7.1965 0—7
12.7.1963 0—11
9.7.1965 0—8
9.7.1965 0—4
8.7.1965 0—8
11.7.1963 0—5
7.7.1965 0—6
5.
0.34
0.30
0.33
0.20
0.33
0.43
0.30
0.29
0.22
0.30
0.31
0.66
0.33
0.20
0.53
0.25
0.25
0.26
0.19
0.20
0.45
0.42
0.49
0.84
1.41
1.13
3.98
1.40
1.24
0.23
0.48
7.
0.01
0.03
0.02
0.01
0.03
<0.01
0.01
<0.01
<0.01
<0.01
0.02
0.03
0.01
0.02
0.06
0.02
0.02
0.02
0.01
0.01
<0.01
0.13
0.06
0.02
0.09
0.02
0.02
0.05
0.01
0.01
0.01
8.
0.01
0.09
0.02
0.01
0.11
0.01
0.01
<0.01
0.01
0.01
0.05
0.05
0.01
0.02
0.07
0.01
0.06
0.04
0.01
0.01
0.01
0.01
0.02
0.03
0.06
0.03
0.03
0.03
0.05
0.01
0.01
9.
-
-
-
-
-
-
-
-
<0.01
-
-
<0.01
-
-
<0.01
-
-
-
-
-
<0.01
<0.01
<0.01
<0.01
0.01
<0.01
<0.01
<0.01
<0.01
<0.01
-
10.
0.15
0.16
0.25
0.13
0.17
0.29
0.24
0.25
0.14
0.26
0.23
0.56
0.24
0.14
0.20
0.17
0.17
0.19
0.16
0.14
0.21
0.23
0.33
0.62
1.21
0.87
3.89
1.08
0.84
0.15
046
11.
0.17
0.03
0.04
0.04
0.02
0.13
0.04
0.03
0.08
0.03
0.02
0.01
0.06
0.02
0.20
-
0.04
0.01
0.02
0.04
0.23
0.06
0.08
0.17
0.03
0.20
0.05
0.24
0.34
-
0.05
12.
50
84
64
65
78
54
62
58
44
55
83
63
52
78
104
70
77
70
54
46
41
37
53
71
65
66
61
66
76
51
45
13.
4.71
7.56
5.64
6.20
7.28
4.84
5.66
5.41
4.12
5.00
7.30
5.26
4.84
7.17
9.00
6.61
6.95
6.86
5.46
4.60
3.82
3.40
4.66
6.23
5.61
5.89
5.04
5.80
6.55
5.11
4.19
14.
2.99
3.06
4.58
3.09
3.32
3.21
2.43
2.97
3.53
2.40
3.70
3.56
3.0
1.0
0.6
0.8
0.6
1.0
0.7
0.5
0.3
0.4
0.9
1.5
1.7
0.4
1.0
2.41
1.8
1.6
0.3
0.3
0.6
4.0
9.0
3.5
4.5
5.7
4.2
5.0
4.0
6.0
3.7
3.3
16.
4.18
3.49
3.85
3.91
4.06
3.06
4.10
3.65
3.50
4.05
4.14
3.85
4.23
3.21
3.50
3.22
4.36
4.21
15.
1.5
0.8
<0.1
0.5
0.4
0.1
0.4
<0.1
0.2
<0.1
0.4
1.3
0.3
2.4
0.5
0.9
0.2
0.5
0.4
0.1
106
310
12.6
6.4
96.6
205
718
234
28.0
50.6
12.4
17.
0.07
0.08
0.19
0.08
0.10
0.07
0.10
0.08
0.05
0.07
0.11
0.31
0.10
0.05
0.19
0.08
0.05
0.06
0.08
0.07
0.30
0.17
0.19
0.40
0.46
0.33
0.52
0.59
0.81
0.22
0.15
18.
<0.01
<0.01
0.03
0.02
0.02
0.02
0.05
0.05
0.07
0.02
0.01
0.02
0.25
0.17
3.59
3.87
6.55
7.46
0.03
0.11
0.33
0.44
16.7.1963 0—4
20.7.1965 0—4
4.39
3.41
6.79
7.94
77
89
0.03
0.02
0.45
0.29
16.7.1963 0—8
20.7.1965 0—10
10.95
131
0.04
0.02
0.98
21.7.1965 0—10
<0.01
<0.01
<0.01
<0.01
0.02
0.01
<0.01
0.06
0.05
0.05
0.03
0.01
0.03
0.11
0.07
0.08
0.02
0.10
0.04
0.04
0.02
0.05
0.02
0.04
0.05
0.03
0.04
0.22
1.21
0.82
0.48
0.23
0.19
0.29
1.21
1.07
0.55
0.49
12.7.1963 0—10
19.7.1965 0—10
19.7.1965 0—16
19.7.1965 0—10
19.7.1965 0—12
12.7.1963 0—9
19.7.1965 0—10
19.7.1965 0—10
12.7.1963 0—3
19.7.1965 0—12
20.7.1965 0—2
3—698360—48782
3—698680—48320
3—700416—47854
3—700450—47210
223
224
225
226
232
Ravanki
Nilakka
Nilakka
Nilakka
Nilakka
14.72
14.73
14.73
14.73
14.73
3—702430—47510
3—702780—47300
3—703000—49680
3—704090—46270
227
228
229
231
230
211
Pielavesj
Pielavesi
Lanipaanjärvi
Koivujärvi
Kiesimä
14.74
14.74
14.74
14.74
14.75
14.76
3—696350—47620
3—700460—46620
3—701220—48340
233
Koutajärvi
Pielavesi
14.73
12.7.1963 0—8
19.7.1965 0—8
0.03
0.05
0.38
0.39
12.7.1963 0—3
19.7.1965 0—8
3—698200—48910
222
Rasvanki
14.72
3—700940—48270
0.23
0.18
12.7.1963 0—4
19.7.1965 0—10
3—697220—50460
218
Kuttajärvi
14.72
0.03
0.04
0.04
0.03
0.02
0.03
0.10
0.02
0.03
79
94
0.10
0.01
0.06
0.02
0.01
0.01
0.14
0.12
0.10
0.13
0.24
0.28
0.15
1.04
<0.01
<0.01
<0.01
<0.01
-
-
-
0.41
0.91
0.42
1.00
0.10
0.21
0.17
0.61
0.35
79
95
0.01
0.01
0.24
0.28
<0.01
<0.01
-
63
75
0.02
0.02
0.36
0.23
<0.01
<0.01
0.39
0.21
0.13
41.8
10.0
0.1
2.1
4.6
2.2
0.6
4.24
4.37
7.09
8.61
7.89
9.55
6.07
44
78
102
91
107
71
0.03
0.03
0.05
0.03
0.01
0.01
3.30
3.82
4.38
5.9
1.5
0.8
0.5
1.6
2.3
1.7
3.81
2.58
3.54
5.98
67
0.01
0.43
0.14
0.08
0.07
0.32
0.17
10.7
2.1
2.8
1.5
3.79
4.14
8.50
7.46
99
85
0.13
0.05
0.09
0.26
1.4
0.3
1.6
7.37
1.2
0.14
0.13
3.83
7.38
8.37
0.06
0.06
0.07
0.07
4.23
3.72
2.81
3.1
14.6
9.6
3.0
2.7
1.2
2.6
3.0
1.0
0.2
2.0
1.8
3.37
4.36
0.16
0.10
0.2
0.2
1.4
1.4
1.6
0.7
0.54
17.3
3.8
0.19
0.11
0.27
0.08
0.2
2.1
1.1
1.3
2.5
1.8
2.85
2.47
2.60
5.67
6.81
5.55
7.01
7.13
5.77
0.10
0.11
7.45
60
73
73
86
0.03
0.01
0.82
<0.01
-
<0.01
-
-
2.95
3.52
83
66
0.13
0.02
0.40
0.17
0.04
0.03
0.59
0.24
18.7.1963 0—7
21.7.1965 0—10
3—697140—50018
217
Virmasvesi
14.7 2
0.01
0.04
1.2
0.1
3.25
3.36
4.72
5.55
49
64
0.03
0.02
0.15
0.23
0.02
0.04
0.20
0.33
18.7.1963 0—11
20.7.1965 0—12
3—697400—48180
216
Niinivesj
14.72
-
-
3.0
0.4
1.5
0.6
2.77
2.46
4.69
5.69
50
65
0.09
0.02
0.01
0.03
0.10
0.10
0.06
0.07
0.3
0.2
1.0
0.8
3.48
2.30
5.11
5.99
0.24
0.25
<0.01
0.03
0.35
0.33
18.7.1963 0—7
20.7.1965 0—12
3—696338—48898
214
Niinivesi
56
69
0.12
0.01
0.26
0.27
-
18.
0.6
0.4
17.
15.
16.
14.
<0.01
13.
<0.01
0.04
0.03
0.03
0.41
0.34
18.7.1963 0—11
20.7.1965 0—13
12.
11.
10.
9.
8.
6.
7.
5.
14.7 2
3—695980—49140
4.
213
3.
Niinivesi
2.
14.72
1.
-4
219
220
221
204
205
103
Tallusjärvi
Hirvijärvi
Ahvenisenjärvi
Suontee
Suontee
Pieksänjärvi
14.77
14.77
14.77
14.78
14.78
14.79
3—691266—50733
3—694266—50875
3—693170—51580
3—698260—49370
3—698340—49500
3—698160—50220
3—697100—47960
4.
125
126
128
129
451
452
468
469
711
712
713
714
Päijänne
Päijänne
Päijänne
Päijänne
Päijänne
Päijänne
Päijänne
Päijänne
Päijänne
Päijänne
Päijänne
Päijänne
Päijänne
Päijänne
Paijä.nne
Päijänne
14.22
14.22
14.22
14.22
14.22
14.22
14.22
14.22
14.22
14.22
14.22
14.22
14.22
14.22
14.22
14.22
132
716
715
131
127
470
Päijänne
Päijänne
14.21
14.21
3—679880—42284
3—684015—42096
2—681826—57416
2—682362—57605
2—685083—56931
3—685302—42246
3—686704—42354
3—680366—42144
3—680956—42008
2—684332—57611
2—682290—56784
3—679950—42105
3—681720—41920
3--682664—42426
3—682900—41996
3—683820—42355
3—682015—43024
3—679256—42168
6.
21.7.1965 0—9
18.7.1963 0—10
21.7.1965 0—10
21.7.1965 0—10
20.7.1965 0—4
20.7.1965 0—3
20.7.1965 0—6
20.7.1963 0—6
20.7.1965 0—8
5.
1
1.7.1965 0—10
2.7.1965 0—10
2.7.1965 0—10
1.7.1965 0—10
2.7.1965 0—10
2.7.1965 0—10
5.7.1965 0—10
5.7.1965 0—11
2.7.1965 0—10
2.7.1965 0—10
20.7.1965 0—8
20.7.1965 0—8
20.7.1965 0—12
20.7.1965 0—8
20.7.1965 0—12
20.7.1965 0—10
5.7.1965
20.7.1965 0—8
3.2 Lake Päijänne and watercourses draining into it
215
3.
Sonkavesi
2.
14.76
1.
0.52
0.41
0.16
0.52
1.33
1.18
0.19
0.11
0.35
0.23
0.23
0.34
0.36
0.37
0.39
0.73
0.16
0.14
0.97
0.11
0.34
0.24
0.36
0.40
0.76
0.45
0.37
7.
0.01
0.02
0.02
0.01
0.04
<0.01
0.01
0.02
<0.01
0.01
0.05
0.02
<0.01
0.02
0.01
0.01
0.02
0.01
0.01
0.01
0.05
0.02
0.04
0.06
0.04
0.14
0.02
8.
0.02
0.02
0.01
0.01
0.04
0.02
0.01
0.01
0.01
0.01
0.03
0.03
0.03
0.04
0.03
0.24
0.02
0.02
0.14
0.01
0.03
0.03
0.09
0.12
0.10
0.03
0.05
9.
-
-
-
-
-
-
<0.01
-
-
<0.01
-
<0.01
-
-
-
<0.01
-
-
<0.01
<0.01
<0.01
<0.01
-
<0.01
<0.01
-<0.01
<0.01
10.
0.36
0.32
0.13
0.33
1.14
1.02
0.15
0.08
0.21
0.17
0.14
0.28
0.31
0.29
0.34
0.44
0.11
0.10
0.64
0.09
0.21
0.18
0.21
0.22
0.53
0.25
0.28
11.
0.13
0.05
0.01
0.18
0.12
0.13
0.02
0.01
0.12
0.05
0.01
0.01
0.01
0.02
<0.01
0.04
0.01
<0.01
0.18
0.05
-
0.01
0.01
<0.01
0.09
0.03
0.02
12.
69
60
41
53
52
40
63
41
56
46
49
60
58
62
54
86
64
45
101
33
71
71
116
117
114
84
95
13.
6.14
5.25
3.88
4.73
4.19
3.31
6.18
4.21
5.20
4.29
4.57
5.68
5.56
6.05
5.13
8.20
6.10
4.59
8.56
3.35
6.27
6.52
10.33
10.09
9.46
7.46
8.50
14.
4.28
3.97
3.72
2.91
2.14
1.55
3.95
2.65
3.42
3.71
4.39
4.24
4.34
3.85
5.06
4.55
4.01
3.71
3.73
3.71
2.51
1.79
4.39
3.17
4.41
2.46
4.00
15.
3.3
2.0
1.5
3.5
3.3
-
6.5
1.3
2.0
1.4
1.4
4.0
3.0
3.0
3.0
6.0
2.0
2.0
3.8
0.3
1.0
0.9
3.5
2.4
3.2
1.7
1.7
16.
53.6
3.1
2.3
355
26.2
-
5.6
10.0
78.5
23.5
3.0
43.4
64.1
14.6
2.5
100
5.3
9.7
3.3
0.1
1.5
0.3
2.4
2.6
1.9
0.8
4.7
17.
0.25
0.15
0.11
0.26
0.55
0.85
0.08
0.04
0.20
0.11
0.13
0.15
0.33
0.32
0.19
0.16
0.10
0.08
0.31
0.03
0.08
0.07
0.13
0.20
0.23
0.21
0.08
18.
21.7J965 0—8
3—677158—42406
2—682225—55390
2—684636—55027
2—684526—55461
3—689216—42485
3—690802—43503
3—690638—43450
475
450
453
454
298
301
302
303
347
291
Vesijärvi
Lummenejärvi
Isojärvi
Isojärvi
Muurarjärvi
Palokkajärvi
Tuomiojärvi
Alvajärvi
Mahlunjärvi
lso-Rautavesi
Petäjävesi
14.24
14.25
14.26
14.26
14.28
14.29
14.29
14.29
14.29
14.52
14.53
14.81
0.05
4.26
0.03
0.01
0.46
5.19
0.33
0.12
0.20
5.7.1965 0—10
5.7.1965 0—10
18.7.1963 0—8
20.7.1965 0—10
21.7.1965 0—8
-
3.7.1963 0—4
21.7.1965 0 7
3—691303—43378
2—695333—55654
36.0 2440
15.0 133
3.61
4.83
9.84
10.82
6.68
3.29
5.61
68
37
54
65
0.01
0.07
0.01
0.07
0.03
0.25
0.32
0.08
0.03
0.01
0.02
0.07
0.02
0.01
0.01
<0.01
0.06
0.02
0.29
0.41
0.11
0.39
0.17
21.7.1965 0—10
17.7.1963 0—5
21.7.1965 0—12
16.7.1963 0—4
10.7.1965 0—6
3--683990—45185
3—683065—45012
3—684938—45150
122
123
293
Jääsjärvi
Jääsjärvi
Angesselkä
14.82
14.82
14.83
-
-
-
-
-
-
0.18
0.11
4.26
50
0.08
0.56
0.14
0.15
0.93
17.7.1963 0—0.5
3—681545—43904
124
Nuoramoinen
55
5.63
5.24
4.39
4.22
<0.01
<0.01
0.01
0.02
0.01
0.01
1.01
0.52
15.7.1963 0—3
12.7J965 0—5
2—690337—56237
292
5.91
6.77
67
74
0.10
0.14
0.89
0.35
<0.01
0.18
0.54
6.7.1963 0—5
15.7.1965 0—4
3.83
3.15
3.40
5.80
2—688497—55492
2.65
5.37
34
62
0.02
0.08
0.15
0.42
61
0.09
0.68
0.01
0.04
<0.01
0.01
-
<0.01
0.04
<0.01
0.82
7.7.1965 0—9
5.5
0
17.3
0
6.0
1.8
0.8
4.40
3.49
0.15
0.12
0.10
0.17
0.04
12.5
4.0
0.2
<0.1
0.46
2.3
1.7
4.7
2.5
0.10
0.24
0.25
1.66
0.41
0.65
1.81
1.02
0.07
0.12
0.05
0.06
0.32
0.32
1.4
2.5
2.2
493
415
112
0.1
<0.1
4.5
0.9
0.11
0.04
8.80
0.41
0.23
0.21
0.01
3.40
0
3.54
0.10
18.
2.0
0.7
4.0
5.0
2.18
4.57
4.09
4.64
4.93
9.00
117
0.17
3.81
<0.01
0.06
0.04
4.09
21.7.1965 0—7
115
134
0.18
0.60
0.75
2.51
0.01
0.02
0.12
0.80
0.02
0.07
1.08
3.98
8.2
12.0
11.5
2.74
4.04
7.39
10.75
90
133
1.48
1.22
0.01
0.04
0.06
0.16
0.07
0.05
0.24
0.72
1.85
2.20
0.6
0.4
4.41
5.52
48
60
3.96
3.80
0.04
0.04
3.7.1963 0—4
21.7.1965 0—7
-
-
1.5
0.14
0.28
0.01
0.02
0.05
0.02
0.24
0.35
1.0
3.45
3.71
35
0.03
15.7.1963 0—6
16.7.1965 0—6
-
0.06
<0.01
0.02
0.11
3.98
4.06
41
0.04
0.14
<0.01
6.06
-
<0.1
0.6
0.7
0.8
-
42.4
276
3.08
3.90
4.36
2.38
6.0
15.0
2.09
76.6
-
-
-
5.69
79
<0.01
-
0.01
0.01
0.15
11.0
2.14
-
-
-
-
1.3
1.8
-
17.
16.
6.20
3.87
67
63
2.74
31
4.18
43
49
0.02
<0.01
0.35
0.04
<0.01
0.01
0.25
0.03
0.02
0.22
0.08
0.01
0.38
2.7.1965 0—10
0.53
3—678256—41932
-
2.76
0.04
0.03
3—688524—43595
710
474
0.12
Vesijärvi
0.23
Päijänne
14.24
0.34
0.31
<0.01
0.76
2.7.1965 0—10
0.04
14.23
3—689789—43726
709
0.48
2.44
0.06
Päijänne
-
3.46
12
68
1.09
5.23
0.08
15.3
0.06
0.52
2.80
1.67
4.70
13
61
-
4.32
8.09
89
15.
0.03
<0.01
0.34
0.02
13.6
0.23
0.01
0.03
0.02
-
-
0.09
18.5
14.23
3—690400—43688
300
0.01
0.25
3.7.1963 0—4
21.7.1965 0—7
Jyväsjärvi
0.06
0.01
14.
13.
12.
<0.01
0.04
11.
0.03
17.4
10.
0.33
9.
8.
3.7.1963 0—4
21.7.1965 0—4
14.23
3—690327—43782
299
7.
19.7.1965 0—4
Äijälänsahni
3—687163—45172
297
Rutajlrvi
6.
14.23
5.
1423
4.
3.
2.
1.
Suonne
Suonne
Suonne
14.84
14.85
14.85
295
113
296
294
3.
3—683686—47084
3—684880—47383
3--685628—46122
3—684504—46240
4.
133
471
241
237
117
118
Ruotsalainen
Ruotsalainen
Salajärvi
Rapojärvi
Lappalanjärvi
Ylä-Kivijärvi
Ylä-Kivijärvi
Ala-Kivijärvi
Lahnavesi
Peruvesi
Juolasvesi
Vuohijärvi
Puulavesi
14.14
14.14
14.16
14.18
14.18
14.19
14.19
14.19
14.91
14.91
14.91
14.91
14.92
106
236
120
239
238
240
476
135
Konnivesi
14.13
234
Kirkkojärvi
14.12
3—687508—48266
3—687650—48397
3—680818—48428
3—681687—47704
3—681944—48282
3—676212—52625
3---676035—53640
3—677204—54083
3—676020—48620
3—676040—49332
3—676844—44340
3—679300—44412
3—679285—44415
3—678250—45415
3—675862—46275
3.3 Watercourses south of the Kalkkinen canal
Suonne
2.
14.84
1.
6.
0—6
0—5
0—5
0—8
22.7.1965 0—10
3.7.1963 0—9
16.7.1965 0—10
17.7.1963 0—3.7
23.7.1965 0—10
23.7.1965 0—6
23.7.1965 0—6
5.7.1963 0—4
6.8.1965 0—8
4.7.1963
3.8.1965
4.7.1963
3.8.1965
6.7.1963 0—7
2.8.1965 0—14
5.7.1963 0—5
2.8.1965 0—10
7.7.1965 0—10
14.7.1965 0—9
14.7.1965 0—12
14.7.1965 0—16
2.7.1963 0—15
17.7.1965 0—16
16.7.1963 0—4
20.7.1965 0—6
22.7.1965 0—8
20.7.1965 0—4
16.7.1963 0—5
20.7.1965 0—5
5.
0.24
0.28
0.12
0.07
0.14
0.19
0.53
0.35
0.12
1.42
1.20
0.54
0.14
0.62
0.45
0.23
0.17
0.69
0.15
0.17
0.12
0.17
0.19
0.17
0.18
0.84
0.33
0.34
0.22
7.
0.01
0.01
<0.01
0.01
<0.01
0.01
0.01
0.20
0.01
0.06
0.09
0.27
0.02
0.03
0.01
0.03
0.04
0.05
0.03
0.03
<0.01
0.01
<0.01
0.01
<0.01
<0.01
0.01
0.03
<0.01
8.
0.03
0.01
0.01
<0.01
0.01
0.03
0.02
0.07
0.03
0.08
0.04
0.11
0.03
0.07
0.03
0.01
0.01
0.05
0.02
0.04
0.02
0.01
0.02
<0.01
0.01
0.01
0.05
0.01
0.01
9.
-
-
-
-
-
<0.01
-
-
-
-
-
0.01
<0.01
<0.01
<0.01
-
-
<0.01
-
-
-
-
<0.01
-
-
-
<0.01
-
-
10.
0.18
0.23
0.10
0.06
0.10
0.12
0.43
0.06
0.08
1.00
1.03
0.13
0.08
0.28
0.39
0.13
0.11
0.54
0.10
0.09
0.10
0.10
0.14
0.10
0.11
0.80
0.22
0.21
0.12
11.
0.02
0.03
0.01
<0.01
0.02
0.03
0.08
0.01
<0.01
0.28
0.04
0.04
0.01
0.25
0.02
0.06
0.01
0.05
<0.01
0.02
0.01
0.04
0.02
0.06
0.06
0.03
0.06
0.09
0.09
12.
74
46
44
24
43
66
66
52
60
118
88
65
61
86
86
52
57
104
51
48
43
60
63
48
39
36
91
54
50
13.
7.14
4.45
4.56
2.36
4.42
6.55
6.21
4.46
5.84
10.19
7.85
5.53
5.99
7.82
8.02
4.72
5.86
9.42
4.96
4.83
4.42
6.02
6.07
4.64
3.79
3.70
8.36
4.79
4.92
14.
3.64
3.59
3.49
4.50
2.40
3.87
4.68
3.87
2.22
2.68
5.15
4.42
2.81
4.53
4.32
4.28
3.46
2.21
4.15
4.17
3.79
1.72
4.63
3.07
3.77
1.79
2.04
3.40
3.30
15.
2.0
0.2
0.8
2.0
2.0
1.5
1.8
1.0
1.0
4.1
3.4
1.3
1.1
2.6
3.6
0.8
2.2
2.9
1.0
2.0
4.0
6.0
4.0
0
0.3
1.0
1.4
0.8
0.8
16.
1.4
<0.1
0.3
3.1
0.4
4.9
3.3
0.7
0.4
39.5
18.0
0.4
1.0
5.0
2.2
0.3
0.2
0.9
0.4
0.8
92.8
5.4
5.2
0
0.1
21.8
1.4
0.3
0.2
17.
0.10
0.05
0.02
0.04
0.05
0.07
0.08
0.33
0.05
0.70
0.28
0.28
0.09
0.29
0.11
0.12
0.09
0.67
0.11
0.09
0.08
0.09
0.13
0.06
0.01
0.01
0.12
0.10
0.04
18.
3—672891—43804
2—670330—55818
2—669296—52089
2—668574—52069
2—668230—50129
2—668180—49845
2—668638—50009
478
513
529
530
522
523
525
Pyhäjärvi
Kirkkojärvi
Tuusulanjärvi
Enäjärvi
Palojärvi
Lohjanjärvi
Lohjanjärvi
Hormajärvi
16.00
16.00
21.08
22.00
22.00
23.02
23.02
23.02
3—675930—56984
3—673442—44614
284
477
Haapajärvi
06.00
4. River basins to the south of Salpausseikä
4.11
6.07
7.12
7.50
1.16
2.41
0.96
2.93
0.81
1.81
0.14
0.15
18.7.1963 0—6
3.7.1965 0—8
1.7.1963 0—4
19.7.1965 0—4
0—4
0—6
0—8
0—4
2.7.1963 0—8
19.7.1965 0—11
2.7.1963 0—6
19.7.1965 0—8
1.7.1963
10.7.1965
2.7.1963
19.7.1965
19.9
17.1
1.12
1.33
17.7.1963 0—8
20.7.1965 0—8
15.7.1963 0—2
2.7.1965 0—2
6.54
18.8.1965 0—3
0.01
<0.01
0.03
0.02
0.08
0.11
0.03
0.04
<0.01
-
<0.01
0.03
0.04
0.02
0.60
1.50
0.01
0.02
0.15
0.23
42
52
82
70
4.07
4.82
7.66
5.98
3.15
4.46
4.15
4.12
7.38
10.71
6.65
8.97
86
130
74
108
0.13
0.22
0.44
0.39
0.56
1.68
0.48
2.27
0.03
0.05
<0.01
0.14
0.09
0.22
0.02
0.10
0.36
0.24
0.02
0.03
3.10
3.82
5.65
7.24
73
103
0.01
0.14
0.49
1.48
0.04
0.11
0.24
1.63
6.35
4.14
3.82
3.44
4.23
4.69
3.42
3.69
5.85
6.35
70
89
0.08
0.43
0.53
3.48
0.08
0.15
3.14
1.27
0.27
0.74
2.96
2.32
5.81
7.99
83
109
0.12
0.18
14.4
9.23
1.62
0.50
1.15
1.77
2.60
5.44
0.01
3.62
4.76
1.76
2.96
4.18
33
50
4.57
64
0.80
0.33
.
0.04
0.23
0.03
2.01
3.99
0.01
0.10
0.43
3.5
3.0
9.7
7.7
12.5
19.5
-
-
41.0
-
-
-
-
-
-
-
9.3
20.9
13.3
85.2
253
81.6
130
-
-
130
-
-
.
-
-
•
-
11.8
0.05
0.04
0.44
1.47
0.65
2.41
1.06
0.69
7.97
4.65
2.92
2.98
5.62
8.50
0.74
0.22
4.73
0.08
1.5
1.7
4.41
7.05
73
0.17
0.09
0.86
0.06
<0.01
0.03
0.05
0.04
0.02
0.1
0.2
0.3
0.5
4.29
2.43
4.27
4.09
50
39
0.01
0.01
0.01
0.26
14.7.1965 0—8
3—681330—49000
119
Pyhävesi
14.97
.
-
0.04
0.04
0.07
0.02
0.07
1.61
59
0.18
<0.01
0.30
0.07
3.7.1963 0—5
15.7.1965 0—8
3—678250—46940
235
Karijärvi
14.94
-
0.18
0.02
5.3
2.0
5.61
0.02
<0.01
0.22
16.7.1965 0—14
3—687410—50735
105
Kyyvesi
14.93
0.11
8.6
4.4
2.55
9.45
98
0.03
0.31
<0.01
0.03
0.01
0.38
16.7.1965 0—6
3—688025—50820
104
Kyyvesi
14.93
0.09
0.10
<0.01
0.03
2.8
0.01
0.18
23.7.1965 0—6
3—683505—48948
116
Ryökäsvesi
14.92
0.07
5.3
11.1
2.2
4.42
71
4.22
6.43
6.97
66
0.04
0.04
0.14
<0.01
0.02
0.21
23.7.1965 0—8
3—683590—48190
115
Vahvajärvi
14.92
0.08
1.1
3.24
5.40
0.01
0.01
0.30
0—6
23.7.1965
3—684160—48445
114
Liekunen
14.92
0.09
5.1
0.5
0.6
2.58
4.63
0.03
0.22
<0.01
54
0.08
49
0.04
0.18
<0.01
0.04
<0.01
0.24
22.7.1965 0—12
3—684825—49070
111
Puulavesi
14.92
0.02
0.02
0.14
22.7.1965 0—8
3—685460—47780
110
Puulavesi
0.03
2.8
1.2
<0.1
1.6
3.83
58
0.02
4.35
0.04
0.5
6.08
18.
17.
6.21
58
0.01
-
0.05
14.92
0.6
4.36
4.21
41
0.01
0.09
16.
15.
14.
13.
12.
11.
0.09
0.05
-
10.
<0.01
0.02
<0.01
0.12
22.7.1965 0—8
14.92
3—686002—46956
Puulavesj
14.92
109
9.
8.
Puulavesi
7.
0.02
6.
<0.01
5.
0.12
4.
22.7.1965 0—12
3.
3—686567—47978
2.
108
1.
Kirkkojärvi
Hiidenvesi
23.03
532
520
519
3.
2—669458—50952
2—669989—51674
2—669750—50934
4.
535
536
Pyhäjärvi
Pyhäjärvi
Pyhäjärvi
Köyliönjärvi
Köyliönjärvi
34.03
34.03
34.03
34.05
34.05
1—677817—57330
1—678175—57168
1—677770—56360
1—675800—57400
1—677090—57290
1—676908—56534
2—672436—47188
Näsijärvi
Näsijärvi
Näsijärvi
Näsijärvi
Näsijärvi
Näsijärvi
35.31
35.31
35.31
35.31
35.31
35.31
405
404
403
402
401
400
2—685402—48902
2-684909—46884
2—684037—48500
2—683440—48624
2—682922—48722
2—682518—48713
6. The Kokemäenjoki river basin
6.1 Watercourses north of Lake Pyhäjärvi
538
537
534
533
Pyhäjärvi
34.03
518
Kirkkojärvi
27.03
5. Rivei basins of southwest Finland
fjjdenvesj
23.03
2.
23.03
1.
6.
1
5.7.1963 0—8
15.7.1965 0—14
5.7.1963 0—8
15.7.1965 0—14
4.7.1963 0—10
15.7.1965 0—14
4.7.1963 0—8
15.7.1965 0—12
4.7.1963 0---12
15.7.1965 0—14
15.7.1965 0—12
11.7.1963 0—6
21.7.1965 0—2
11.7.1963 0—6
10.7.1963 0—1.5
10.7.1963 0—5
19.7.1965 0—2
10.7.1963 0—2
19.7.1965 0—2
10.7.1963 1
19.7.1965 0—2
9.7.1963 0—1
1.7.1963
1.7.1963 0—2
19.7.1965 0—1.5
19.7.1965 0—8
5.
0.21
0.14
0.17
0.17
0.18
0.24
0.28
0.17
0.24
0.12
0.29
9.21
3.26
7.83
0.22
0.22
0.26
0.21
0.18
0.19
0.28
0.70
0.64
6.81
2.28
0.90
7.
<0.01
<0.01
0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
1.59
0.72
3.58
0.07
0.13
0.13
0.03
0.09
0.05
0.10
0.03
0.03
0.04
0.05
0.05
8.
0.01
0.01
<0.01
0.01
0.01
<0.01
<0.01
0.01
<0.01
0.01
0.05
0.80
0.61
1.98
0.05
0.02
0.04
0.03
0.05
0.09
0.07
0.03
0.02
0.39
0.26
0.03
9.
-
-
-
-
-
-
-
-
<0.01
-
-
0.03
0.09
0.02
<0.01
0.01
0.01
<0.01
<0.01
<0.01
-
0.30
<0.01
0.24
0.22
0.01
10.
0.13
0.04
0.09
0.04
0.05
0.07
0.13
0.07
0.12
0.07
0.09
6.65
1.69
2.17
0.09
0.05
0.07
0.10
0.03
0.04
0.11
0.20
0.25
5.93
1.52
0.30
11.
0.06
0.09
0.07
0.12
0.11
0.16
0.15
0.09
0.11
0.04
0.15
0.13
0.15
0.09
0.01
0.01
0.02
0.05
0.01
0.01
0.01
0.12
0.35
0.21
0.23
0.50
12.
31
26
37
28
32
25
26
29
27
28
33
124
160
128
72
62
96
59
77
56
79
45
54
87
76
75
13.
2.96
2.71
3.65
2.84
3.17
2.54
2.53
2.93
2.58
2.70
2.76
9.17
12.49
9.07
6.98
5.80
8.78
5.75
7.25
5.66
7.34
4.18
5.01
6.52
6.35
6.70
14.
2.16
3.34
1.70
3.17
2.86
2.73
2.44
2.56
1.11
2.16
3.52
3.98
4.47
2.97
2.86
4.09
2.56
3.75
2.40
3.45
3.52
3.73
5.10
4.37
2.59
3.93
15.
412
12.7
12.4
29.1
87.5
7.8
6.2
24.3
-
293
-
601
11.1
17.
-
-
3.0
0
2.0
-
1.0
-
1.0
-
1.9
0
109
-
2.5
-
2.7
3.0
7.8
6.0 2030
-
26.5 1970
19.7 174
26.0
4.7
2.0
4.7
10.0
4.0
1.8
3.5
-
17.0
-
19.0
12.5
16.
0.25
0.05
0.16
0.07
0.07
0.09
0.11
0.08
0.10
0.07
0.32
2.08
0.80
3.89
0.05
0.05
0.11
0.03
0.05
0.04
0.27
0.09
0.42
6.45
2.74
4.93
18.
<0.01
<0.01
<0.01
<0.01
<0.01
0.01
<0.01
0.01
<0.01
0.01
<0.01
<0.01
0.01
<0.01
0.01
<0.01
0.01
0.02
0.01
0.03
0.02
0.02
0.03
0.02
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
0.01
<0.01
0.01
<0.01
<0.01
<0.01
<0.01
0.01
<0.01
0.02
<0.01
<0.01
0.05
0.01
<0.01
0.06
<0.01
0.20
0.01
0.16
0.36
0.19
0.38
0.10
0.05
0.08
0.34
0.02
0.01
0.05
0.25
0.15
0.28
0.26
0.18
0.50
0.39
0.11
0.16
0.42
0.33
0.46
0.67
0.78
0.24
0.78
1.06
0.91
0.54
5.7.1963 0—7
14.7.1965 0--12
14.7.1965 0—10
14.7.1965 0—10
14.7.1965 0—10
5.7.1963 0—8
14.7.1965 0—18
5.7.1963 0—4
16.7.1965 0—3
5.7.1963 0—7
16.7.1965 0—10
6.7.1963 0—4
16.7.1965 0—1
8.7.1963 0—7
16.7.1965 0—12
8.7.1963 0—8
16.7.1965 0—10
16.7.1965 0—12
8.7.1963 0—7
16.7.1965 0—8
8.7.1963 0—8
17.7.1965 0—12
17.7.1965 0—8
8.7.1963 0—2
4.7.1963 0—4
14.7.1965 0—4
17.7.1963 0—10
23.7.1965 0—16
1.7.1963 0—10
23.7.1965 0—12
2—686546—49675
2—687064—50226
2—687346—50718
2—687773—50555
2—688184—50530
2—687963—51159
2—688126—51610
2—688428—50381
2—688114—50413
2—689265—50208
2—689065—49392
2—689262—48835
2—690910—48658
2—691638—48276
2—694975—50520
2—691785—51530
2—682714—46161
2—683414—45878
408
409
410
411
412
420
421
413
414
415
416
417
418
419
692
285
383
384
Palovesi
Jäminginselkä
Ruovesi
Ruovesj
Mustaselkä
Hanhonvuolle
Paloselkä
Syvinginsalmi
Tarjannevesi
Tarjannevesi
Visuvesi
Vaskivesi
Toisvesi
Toisvesi
Ähtärinjärvi
Pihlajavesi
Mahnalanselkä
Kirkkojärvi
35.32
35.32
35.33
35.33
35.33
35.33
35.33
35.41
35.41
35.41
35.41
35.41
35.42
32.42
35.43
35.48
35.51
35.52
-
-
-
-
<0.01
<0.01
0.02
<0.01
0.01
<0.01
-
0.01
9.
8.
<0.01
7.
0.29
6.
15.7.1965 0—12
5.
2—686076—49184
4.
406
3.
Näsijärvi
2.
35.31
1.
18.
0.19
0.12
0.42
17.
4.0 3640
2.0
0.08
0.38
0.07
0.74
0
767
<0.1
240
707
2.5
5.0
0
5.0
0.3
4.0
6.0
2.71
2.38
0.10
1.84
3.11
4.06
2.77
3.64
3.11
3.86
3.47
0.98
0.45
0.58
0.89
4.46
3.23
3.59
3.24
3.96
3.51
11
4
5
8
46
32
38
31
40
36
0.31
0.02
0.01
0.05
0.09
0.06
0.03
0.03
0.02
0.07
0.11
0.03
0.09
<0.01
<0.01
0.14
0.08
0.23
0.22
0.15
0.43
0.27
0.07
0.07
0.28
0.14
-
14.1
0.7
1.4
2.7
1.0
0.7
4.0 134
8.5 2210
2.82
4.02
2.38
2.35
3.55
4.19
3.64
3.53
3.29
5.99
3.63
4.56
5.14
4.07
5.72
3.81
34
69
40
49
56
45
67
40
0.13
0.09
0.01
0.01
0.04
0.16
0.04
0.11
0.32
0.50
0.74
0.20
0.65
0.88
0.64
0.41
<0.01
<0.01
0.01
-
-
-
<0.01
-
6.3
10.0
-
55.7
438
•
0.16
0.14
0.15
1.13
0.16
0.11
0.36
0.41
0.17
0.23
-
1.6
-
1.0
3.18
4.24
4.12
3.85
44
39
0.04
0.07
0.11
0.18
<0.01
-
-
9.5
0.7
0.31
0.07
0.06
<0.01
0.02
0.07
0.01
0.02
0.04
0.03
0.60
2.0
2.5
3.53
4.03
-
-
3.67
12.6
69.1
-
4.30
3.34
-
-
-
-
-
-
5.6
15.4
0.4
-
-
-
37
<0.01
<0.01
2.0
3.0
2.61
3.24
3.09
2.82
28
26
0.02
0.04
0.02
0.03
3.27
3.25
0.03
3.0
0.97
3.22
30
0.07
30
0.07
0.31
-
-
0.09
2.35
1.74
17
0.14
0.04
-
2.43
3.51
3.19
2.74
0.1
2.03
2.50
0.08
0.12
0.07
0.24
32
27
0.07
0.22
25
16.
15.
14.
13.
12.
11.
42
33
-
-
-
-
-
-
-
-
-
-
*
-
-
-
-
-
-
-
10.
389
390
392
393
394
423
424
286
287
425
Kyrösjärvi
Kyrösjärvi
Parkanojärvi
Kankarijärvi
Nerkoonjärvi
Nerkoonjärvi
Kuivasjärvi
Aurejärvi
Kuorevesi
Kuorevesi
Keurusselkä
Keurusselkä
Keurusselkä
35.52
35.52
35.53
35.53
35.53
35.53
35.56
35.57
35.61
35.61
35.62
35.62
35.62
426
427
428
Keurusselkä
Kaijanselkä
Ukonselkä
35.62
35.62
35.62
396
391
388
387
Kyrösjärvi
35.52
386
3.
Kyrösjärvi
2.
35.52
1.
2—689218—52444
2—689141—52869
2—688822—53516
2—688183—53462
2—689412—53538
2—689760—53500
2—687280—53693
2—687814—53267
2—688180—46705
2—689442—44837
2—689179—45768
2—689500—46070
2—689836—45363
2—687446—44902
2—685674—44894
2—684942—44892
2—685415—45282
2—684743—45862
4.
6.
22.7.1965 0—12
22.7.1965 0—10
22.7.1965 0—10
9.7.1963 0—4
22.7.1965 0—6
5.7.1963 0—8
14.7.1965 0—4
4.7.1963 0—8
14.7.1965 0—13
3.7.1963 0—8
28.7.1965 0—9
3.7.1963 0—6
28.7.1965 0—10
3.7.1963 0—10
28.7.1965 0—8
3.7.1963 0—8
27.7.1965 0—10
28.7.1965 0—10
3.7.1963 0—8
28.7.1965 0—10
3.7.1963 0—6
28.7.1965 0—10
27.7.1963 0—8
28.7.1965 0—10
2.7.1963 0—8
23.7.1965 0—10
23.7.1965 0—9
2.7.1963 0—10
23.7.1965 0—10
27.7.1963 0—10
23.7.1965 0—10
5.
0.19
0.18
0.18
0.18
0.21
0.58
0.58
0.51
0.62
0.21
0.18
0.35
0.19
0.39
0.24
1.40
0.42
0.64
0.27
0.24
0.39
0.40
0.58
0.28
0.21
0.31
0.63
0.18
0.24
0.51
0.16
7.
0.01
<0.01
0.03
0.01
<0.01
0.04
0.04
0.04
0.02
0.01
0.01
0.01
<0.01
0.08
0.02
0.03
0.01
0.23
0.01
0.01
0.03
0.01
0.01
<0.01
0.02
0.01
0.01
0.02
0.01
0.16
<0.01
8.
<0.01
0.01
0.01
0.02
<0.01
0.02
0.03
0.01
0.06
0.01
<0.01
0.03
0.01
0.02
0.01
0.03
<0.01
<0.01
0.01
<0.01
0.05
0.09
0.05
0.05
0.01
0.01
<0.01
0.01
0.01
0.01
<0.01
9.
-
-
<0.01
-
<0.01
-
<0.01
<0.01
<0.01
<0.01
-
<0.01
<0.01
-
-
-
-
-
-
-
0.01
<0.01
<0.01
<0.01
-
-
<0.01
-
<0.01
-
<0.01
10.
0.12
0.10
0.14
0.16
0.14
0.44
0.48
0.29
0.47
0.17
0.14
0.27
0.14
0.29
0.17
1.34
0.38
0.38
0.23
0.15
0.29
0.27
0.38
0.19
0.15
0.20
0.53
0.13
0.14
0.30
0.12
11.
0.05
0.06
0.01
<0.01
0.05
0.08
0.03
0.17
0.07
0.02
0.03
0.04
0.05
0.01
0.04
0.03
-
0.02
0.03
0.07
0.01
0.03
0.13
0.03
0.03
0.09
0.10
0.03
0.08
0.04
0.04
12.
49
62
42
49
44
62
73
52
78
49
54
56
45
26
22
23
31
40
41
27
80
48
60
36
45
41
34
47
33
55
27
13.
4.85
6.25
4.26
4.93
4.51
5.60
6.70
4.76
6.88
4.76
5.32
5.42
4.64
2.49
2.28
2.06
2.93
3.77
4.05
2.74
7.59
4.55
5.53
3.59
4.48
4.07
3.16
4.81
3.27
5.14
2.76
14.
4.03
3.69
3.48
3.49
3.93
3.70
3.58
2.36
3.36
3.61
3.36
2.03
4.23
2.85
2.90
3.71
2.08
3.36
3.43
3.71
3.45
4.35
3.70
3.82
3.69
3.93
3.43
3.33
3.80
3.45
4.06
15.
-
1.8
601
-
13.2
9.8
26.5
16.0
29.4
3.2
63.1
-
30.9
13.4
56.7
45.3
17.
1.3
2.4
2.7
1.7
1.2
2.7
2.2
5.0
5.0
0.8
3.3
6.0
3.5
52.0
33.9
127
24.0
1.7
7.4
327
2.4
53.1
1.5
11.6
14.1
7.2
2.0
0.8
1.0 1520
-
0.7
1.0
-
1.3
4.0
1.7
3.2
3.3
5.0
3.3
-
7.0
3.5
3.0
6.0
16.
0.55
0.06
0.11
0.06
0.08
0.17
0.19
0.21
0.36
0.07
0.08
0.29
0.07
0.10
0.26
0.28
0.13
0.59
0.10
0.11
0.13
0.10
0.15
0.14
0.04
0.25
0.17
0.04
0.09
0.31
0.11
18.
00
2.
3.
4.
5.
377
378
379
490
491
Pyhäjilrvi
Pyhäjärvi
Pyhäjärvi
Korteselkä
Konhonvuolle
Lotilanjärvi
Vanajavesi
Vanajavesi
Vanajavesi
Vanajavesi
Vanajavesi
Vanajavesi
Vanajavesi
Lehijärvi
Katumajärvi
Kalvolanjärvi
35.21
35.21
35.21
35.22
35.22
35.22
35.22
35.22
35.22
35.23
35.23
35.23
35.23
35.23
35.23
35.26
493
496
495
492
489
488
487
486
483
382
381
376
Pyhjkrvi
35.21
2—677620—50437
2—676482—52778
2—677042—51679
2—677808—51772
2—676346—52651
2—677302—52172
2—678630—51364
2—678903—49195
2—678614—50280
2—679120—49904
2—679614—50042
2—-678897—49203
2—679467—48877
2—680163—48177
2—680610—47428
2—681488—47495
2—682000—48550
6.
9.7.1965 0—3
4.7.1963 0—4
4.7.1963 0—6
15.7.1965 0—7
5.7.1963 0—6
9.7.1965 0—8
4.7.1963 0—2
9.7.1965 1
4.7.1963 0—4
15.7.1965 0—10
9.7.1963 0—8
15.7.1965 0—10
9.7.1963 0—1
8.7.1965 0—1
9.7.1963 0—8
15.7.1965 0—10
8.7.1963 0—6
15.7.1965 0—7
8.7.1963 0—4
8.7.1965 0—6
17.7.1963 0—8
7.7.1965 0—7
17.7.1963 0—6
7.7.1965 0—7
17.7.1963 0—12
7.7.1965 0—6
7.7.1965 0—10
17.7.1963 0—9
7.7.1965 0—10
20.7.1963 0—8
6.7.1965 0—12
6.2 Lake Pyhäjärvi and watercourses to the east of it
1.
45.0
18.6
7.40
0.23
1.67
2.64
1.23
3.95
11.5
0.70
0.48
1.10
2.81
8.37
1.16
9.49
2.00
2.00
22.7
2.16
4.04
3.64
2.17
2.23
1.92
0.27
2.14
1.23
0.29
5.43
2.23
7.
41.3
14.1
0.09
0.01
0.20
0.01
0.05
0.06
0.04
0.15
0.05
0.11
0.06
0.30
0.07
0.05
0.02
0.01
-
-
0.05
0.07
0.01
0.07
0.02
0.01
0.02
0.02
<0.01
0.21
<0.01
8.
0.72
0.35
0.45
0.06
0.57
0.03
0.52
0.84
0.37
0.07
0.06
0.05
0.13
1.29
0.04
0.12
0.15
0.67
22.6
0.02
0.10
0.09
0.10
0.08
0.04
0.01
0.05
0.07
0.01
0.18
0.02
9.
0.08
0.32
<0.01
<0.01
<0.01
0.01
0.05
0.21
0.08
<0.01
<0.01
<0.01
0.08
0.07
0.02
0.07
0.07
0.27
-
-
0.11
<0.01
0.09
0.01
-
0.01
<0.01
-
<0.01
<0.01
-
10.
3.64
2.85
6.79
0.09
0.78
2.50
0.51
2.38
10.9
0.42
0.15
0.61
2.25
6.49
0.76
8.80
1.60
0.73
0.02
2.14
3.31
3.41
1.70
2.04
1.55
0.24
1.96
0.96
0.27
4.25
1.71
11.
0.12
0.11
0.06
0.08
0.11
0.09
0.10
0.46
0.11
0.06
0.22
0.32
0.29
0.22
0.28
0.44
0.15
0.32
-
-
0.48
0.06
0.27
0.03
0.29
0.01
0.11
0.19
0.01
0.79
0.49
12.
79
64
71
35
91
59
87
121
103
73
65
79
117
108
95
123
112
79
6
15
104
76
92
68
89
36
92
99
39
69
44
13.
5.58
4.18
4.95
3.16
7.37
4.40
7.06
9.63
7.60
6.32
6.13
6.87
9.47
8.13
8.13
9.44
8.59
6.31
0.93
0.38
8.11
6.11
7.43
5.56
7.45
3.30
7.64
8.61
3.66
5.39
3.48
14.
4.25
1.70
1.31
0.63
3.14
4.04
3.35
3.67
3.02
3.51
3.83
3.76
2.57
4.61
2.16
4.58
4.48
1.72
4.37
0.85
3.51
4.89
1.90
4.87
3.41
3.20
2.58
2.29
4.48
3.61
2.94
15.
660
-
92.2
-
232
17.
-
•
21.0
-
-
53.2
625
36.9
571
218
809
-
12.5
-
-
-
-
11.0 1420
3.5
0.7
-
32.0
41.0 659
26.5 8010
14.0
12.5
18.0 1980
30.0 5370
20.0
8.6
51.3
9.7
13.0 3980
-
42.0
-
9.0
11.0
7.7
12.4
31.0 4260
-
18.5 1700
18.0
-
13.5
-
13.5
16.
125
37.7
0.27
0.05
0.68
0.39
1.88
0.69
2.25
0.41
0.22
0.47
1.02
1.68
1.23
1.92
0.47
0.32
24.6
<0.01
1.70
0.77
1.14
0.60
0.62
0.14
0.76
1.18
0.16
5.15
1.18
18.
441
442
Längelmävesi
Längelmävesi
Längelmävesi
Längelmävesi
lso-Löyräneenjärvi466
35.72
35.72
3 5.72
35.72
443
440
439
438
485
484
436
3 5.72
Roine
35.71
435
Längelmävesi
Roine
35.71
434
35.72
Pälkänevesi
35.71
433
Längehnävesi
Pälkänevesi
35.71
430
432
35.72
Pälkänevesi
Mallasvesi
Mallasvesi
35.71
35.71
429
Mallasvesj
Mallasvesi
35.71
515
35.71
Rutajärvi
35.28
494
3.
35.71
Kalvolanjärvi
2.
35.26
1.
2—683107—54501
2—684189—5345 1
2—683839—52892
2—683354—52142
2—682572—5 1832
2—682100—51194
2—681547—50935
2—679516—50187
2—679700—50450
2—681193—50702
2—680617—50561
2—680500—51702
2—680676—51982
2—680685—52625
2—680076—51180
2—679812—50805
2—677327—47161
2—677174—50900
4.
6.
20.7.1965 0—9
12.7.1965 0—8
10.7.1963 0—8
12.7.1965 0—12
10.7.1963 0—8
12.7.1965 0—10
10.7.1963 0—8
9.7.1965 0—12
10.7.1963 0—6
9.7.1965 0—10
8.7.1963 0—8
8.7.1965 0—12
8.7.1963 0—1
8.7.1965 0—1
8.7.1965 0—5
12.7.1963 0—9
9.7.1965 0—12
12.7.1963 0—11
9.7.1965 0—12
19.7.1965 0—12
11.7.1963 0—8
19.7.1965 0—12
11.7.1963 0—8
19.7.1965 0—12
8.7.1965 0—14
12.7.1963 0—10
8.7.1965 0—14
17.7.1963 0—-8
12.7.1965 0—12
5.7.1963 0—6
9.7.1965 0—8
5.
0.07
0.32
0.29
0.17
4.21
0.49
0.14
0.45
0.35
0.16
0.17
0.09
0.24
0.67
0.71
0.12
0.07
0.13
0.05
0.06
0.10
0.09
0.29
0.24
0.03
0.26
0.13
1.84
1.80
1.61
10.6
7.
0.04
<0.01
0.01
0.01
0.02
0.01
0.02
0.01
0.03
0.01
0.03
<0.01
0.04
0.07
0.32
0.01
<0.01
0.01
<0.01
<0.01
0.02
<0.01
0.02
<0.01
<0.01
<0.01
<0.01
0.09
0.12
0.69
0.77
8.
0.01
0.03
0.02
0.01
3.94
0.04
0.01
0.02
0.03
0.01
0.04
0.01
0.04
0.02
0.01
0.02
<0.01
0.02
<0.01
0.01
0.02
0.01
0.03
0.01
<0.01
0.04
<0.01
0.03
0.05
0.08
1.31
9.
-
<0.01
-
-
<0.01
-
-
-
-
<0.01
<0.01
-
<0.01
<0.01
<0.01
-
<0.01
<0.01
-
-
-
-
-
-
-
<0.01
-
<0.01
0.01
0.02
0.05
10.
<0.01
0.26
0.25
0.13
0.21
0.38
0.09
0.31
0.28
0.13
0.09
0.05
0.13
0.57
0.38
0.08
0.04
0.10
0.03
0.02
0.05
0.02
0.24
0.18
0.02
0.10
0.13
1.12
1.51
0.72
8.45
11.
0.01
0.03
0.01
0.03
0.04
0.06
0.01
0.10
0.02
0.01
0.01
0.03
0.02
0.02
0.01
0.02
0.03
<0.01
0.01
0.03
0.01
0.05
<0.01
0.05
0.01
0.11
<0.01
0.60
0.11
0.10
0.04
12.
34
73
61
56
67
80
61
65
67
66
57
45
101
82
73
54
43
57
45
40
53
35
62
28
28
52
37
76
81
118
125
13.
3.10
6.95
5.71
5.69
5.80
7.49
6.27
6.18
6.68
7.15
5.70
4.76
9.91
7.51
7.11
5.36
4.78
5.66
5.17
4.40
5.55
3.93
6.23
2.92
3.72
5.07
4.20
6.62
6.95
9.89
10.20
14.
4.42
3.98
4.54
3.27
3.97
2.33
4.27
4.30
3.39
4.83
3.19
4.15
4.45
5.28
2.36
3.60
2.41
3.20
2.76
2.92
2.97
3.79
3.88
4.30
3.42
3.94
3.52
3.33
3.81
2.18
3.93
15.
17.
0.7
4.0
2.5
7.0
3.0
11.5
3.0
4.0
3.2
6.5
9.0
5.5
9.7
4.4
4.7
11.0
2.7
7.5
2.3
-
1.7
2.5
-
4.0
-
1.0
4.5
12.5
31.0
1.2
31.0
1.3
37.6
4.4
287
52.7
5.2
36.4
117
5.4
11.4
7.8
9.6
213
74.2
16.7
12.9
15.4
-
0.5
480
-
1.2
-
0.6
2.1
58.6
43.2
22.5 2300
22.5 1780
16.
0.01
0.58
0.13
0.06
0.11
0.39
0.07
0.79
0.39
0.15
0.08
0.04
0.13
0.36
0.20
0.05
0.03
0.05
0.03
0.03
0.03
0.04
0.10
0.16
0.02
0.13
0.16
0.55
0.83
1.45
2.09
18.
2—679629—51787
2—679538—51954
2—679242—54700
2—680880—55333
2—675030—53469
2—677260—56107
445
455
464
465
467
431
500
502
503
504
446
447
448
509
511
506
507
498
512
Vesijärvi
Oriselkä
Kuoksenjärvi
Pitkävesi
Hahmajärvi
Pintele
Ilmoilanselkä
Hauhonselkä
Hauhonselkä
Iso-Roinevesi
Kukkiajärvi
Kukkiajärvi
Vehkajärvi
Kuohijärvi
Vesijako
Pyhäjärvi
Ormajärvi
Kernaalanjärvi
Pääjärvi
3 5.73
35.74
35.76
35.76
35.76
35.77
35.77
35.77
35.77
35.77
35.78
35.78
35.78
35.78
35.78
35.79
35.79
35.81
35.83
6.
21.7.1965 0—9
2—683203—55320
8.7.1965 0—10
2---677793—55264
2—678481—53950
0.66
0.17
3.31
6.39
5.7.1963 0—4
15.7.1965 0—5
12.7.1963 0—6
7.7.1965 0—9
5.89
0.18
0.01
0.02
0.03
0.14
4.12
0.01
0.02
2.04
12.7.1963 0—6
8.7.1965 0—8
0.01
0.01
0.04
0.02
14.7.1965 0—9
0.02
0.01
0.02
0.15
0.01
0.01
0.26
0.20
0.88
0.02
0.08
0.02
0.02
0.02
0.03
0.01
0.02
0.02
0.02
0.03
<0.01
0.02
0.01
0.02
0.04
0.01
<0.01
-
0.07
0.20
<0.01
-
-
<0.01
-
-
-
-
-
-
-
-
•
<0.01
<0.01
-
<0.01
-
-
-
<0.01
-
<0.01
<0.01
<0.01
0.08
0.03
0.03
<0.01
-
10.
0.02
0.01
9.
0.01
0.01
<0.01
0.01
0.02
0.10
0.01
0.05
-
0.01
0.02
0.02
<0.01
0.02
0.01
0.01
0.28
0.19
0.60
0.23
0.34
0.66
0.13
0.29
2.48
0.69
0.19
0.06
0.24
0.19
0.08
0.24
0.07
1.01
0.02
0.02
0.01
0.01
0.12
0.16
0.25
0.40
8.
7.
0.32
0.16
11.7.1963 0—6
13.7.1965 0—10
11.7.1963 0—7
20.7.1965 0—7
18.7.1963 0—10
20.7.1965 0—12
19.7.1965 0—10
2—680230—54082
2—681916—54629
11.7.1963 0—8
19.7.1965 0—10
2—678864—52786
2—680270—53616
14.7.1965 0—10
2—678497—52676
8.7.1965 0—1
9.7.1963 0—1
8.7.1965 0—1
18.7.1963 0—6
14.7.1965 0—7
2--678843—52628
21.7.1965
2—683111—54502
0—10
21.7.1965 0—8
12.7.1965 0—9
12.7.1963 0—6
13.7.1965 0—8
12.7.1963 0—8
13.7.1965 0—14
5.
2—684034—55062
2—683949—52131
2—682948—51282
2—682105—50524
444
Vesijärvi
35.73
4.
3.
2.
1.
0.19
0.13
2.83
5.64
0.37
0.14
1.85
0.24
0.13
0.14
0.16
0.24
0.05
0.28
0.57
0.10
0.21
1.81
0.54
0.14
0.06
0.16
0.15
0.03
0.11
0.04
0.46
0.14
0.34
0.07
0.03
11.
0.45
0.02
0.12
0.21
0.52
0.02
44
45
108
116
65
34
63
58
51
0.05
<0.01
0.10
48
59
65
47
85
86
52
63
61
73
85
17
79
54
31
65
47
53
95
58
48
34
13.
0.09
0.01
0.31
0.02
0.03
0.05
0.02
0.05
0.63
0.02
0.01
0.01
-
0.02
0.01
0.07
0.02
0.50
-
-
0.01
0.10
12.
4.09
4.48
8.58
9.08
4.97
3.15
5.41
5.35
4.88
4.59
5.89
6.12
4.62
8.19
7.45
5.60
5.98
5.19
6.69
8.30
1.77
7.58
5.41
2.67
6.12
5.42
4.85
9.20
5.42
4.81
3.44
14.
4.42
2.66
2.34
3.77
2.87
2.51
3.33
4.60
3.24
4.29
3.96
4.86
4.19
4.47
3.46
3.89
3.87
5.02
4.69
4.17
4.21
2.86
2.62
3.83
3.7
60.1
38.7
28.9
0.1
0.5
0.2
607
-
13.8
0.7
6.2
17.
2.5
1.3
22.5
55.0
-
-
7.5
0.4
0.8
1.0
0.7
1.0
0.3
2.3
1.9
0.8
2.4
3.0
0.3
188
634
-
-
2.6
5.3
0.3
4.9
0.8
1.3
1.6
7.9
1.1
1.6
0.5
18.0 6720
4.2
9.0
2.7
4.0
4.0
6.0
0.3
1.2
0.4
3.88
16.0
3.60
-
8.3
5.0
5.0
16.
3.83
2.80
5.14
4.23
3.61
15.
0.22
0.04
1.26
2.22
13.3
0.17
1.94
0.29
0.06
0.13
0.06
0.22
0.04
0.12
0.33
0.05
0.16
0.66
0.38
0.07
0.02
0.05
0.19
0.02
0.07
0.02
0.27
0.08
0.12
0.11
0.08
18.
Lopenjärvi
2.
499
3.
2—673123—52354
4.
517
Pyhäjärvi
35.93
463
461
462
Karvianjärvi
Karhijärvi
Karhijärvi
Kuortaneenjärvi
Evijärvi
Evijärvi
Lappajärvi
Lappajärvi
36.04
36.09
36.09
44.04
47.02
47.02
47.03
47.03
686
685
672
671
695
459
Inhottujärvi
36.02
457
Isojärvi
36.01
6.
3.7.1963 0—3
1—681045—57500
2—700530—48780
2—699575--48210
2—703500—47280
2—703169—47305
2—696795—47305
2—683204—42240
1—683110—57611
2—690200—42112
1—683531—54020
1—685036—54245
1
11.7.1963 0—5
11.7.1963 0—1
11.7.1963 2.5
11.7.1963 0—1
11.7.1963
26.7.1965 0—4
16.7.1963 0—6
26.7.1965 0—7
3.7.1963 0—6
27.7.1965 0—7
16.7.1963 0—4
16.7.1963 0—5.5
27.7.1965 0—8
12.7.1965 0--3.5
3.7.1963 0—3
1—681184—57123
2—674184—48715
3.7.1963 0—4
21.7.1965 0—2
26.7.1965 0—12
5.7.1965 0—16
11.7.1963 0—8
5.7.1965 0—12
21.7.1965 0—10
11.7.1963 0—10
21.7.1965 0—10
12.7.1965 0—2
5.
2—681210—57422
2—682260—43574
2—681778—46151
2—681479—45723
2—681226—45052
2—680504—44491
7. River basins of Ostrobotbnia
545
540
Sääksjärvi
Sääksjärvi
35.15
539
Sääksjärvi
35.15
35.15
372
458
Kulovesi
Mouhijärvi
35.15
371
35.13
35.13
370
Kulovesi
Kulovesi
35.13
369
Rautavesi
35.13
6.3 Watercourses below the River Nokianvirta
35.87
1.
0.54
0.90
1.11
1.55
2.72
7.29
14.5
3.46
0.15
0.35
0.37
2.05
2.20
3.49
2.85
4.34
2.87
1.78
0.82
1.12
5.79
1.09
1.13
1.84
2.80
0.24
7.
0.07
0.11
0.90
1.24
0.13
2.22
2.46
1.24
0.12
0.09
0.06
0.05
0.02
0.12
0.78
0.04
<0.01
<0.01
0.02
0.02
0.02
0.16
<0.01
0.01
0.23
0.55
<0.01
0.14
<0.01
0.20
2.46
4.57
10.6
1.95
0.09
0.13
0.33
1.62
2.16
3.18
2.76
4.16
2.72
1.61
0.70
0.64
4.67
0.77
0.76
1.43
2.59
0.09
0.11
0.15
0.01
0.05
0.12
0.36
0.62
0.23
0.01
0.04
0.01
0.12
0.02
0.05
0.03
0.10
0.07
0.04
0.11
0.45
0.91
0.30
0.35
0.36
0.19
0.03
67
74
90
67
71
95
110
78
56
38
56
84
41
113
64
92
79
76
63
75
90
57
56
58
46
84
11.12.13.
<0.01
0.01
<0.01
0.01
0.03
0.01
-
0.02
0.01
0.03
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
-
-
<0.01
10.
0.11
0.01
0.13
0.05
0.05
0.05
0.07
<0.01
0.02
0.13
0.02
0.02
0.03
0.01
0.09
9.
0.19
0.02
0.10
0.02
0.03
0.03
0.06
0.01
<0.01
0.08
<0.01
0.01
0.01
<0.01
0.02
8.
6.06
6.56
8.29
5.82
5.95
7.28
7.94
6.36
5.41
3.87
5.58
7.09
3.74
9.10
5.05
7.17
6.33
6.18
6.17
6.34
6.84
5.03
4.85
4.84
3.58
7.85
14.
193
395
410
73.7
141
441
8.7
18.0
15.0
3.06
4.50
7.0
4.43
23.0
3.18
-
41.0
135
336
97.9
17.4
-
-
48.7
12.0
-
2.7
40.5
235
2.0
2.7
8.5
14.5
27.7
13.0 4310
10.5
4.7
5.4
4.5 241
5.0 1030
9.0 1270
13.0
3.67
2.55
2.58
4.06
3.16
4.19
3.56
2.91
4.29
4.03
2.50
1.89
4.98
2.63
2.53
3.00
13.5
14.0
17.0 1390
2.69
1.97
1.87
2.8
17.
3.3 232
5.5 2060
2.5
16.
4.27
2.63
3.87
15.
0.22
0.29
0.29
1.59
0.55
3.27
6.71
2.12
0.06
0.12
0.07
1.17
0.20
1.20
1.19
1.58
0.95
0.86
0.12
0.58
17.8
0.91
0.90
4.11
2.18
0.06
18.
690
691
678
683
566
565
Lappajärvi
Lappajärvi
Lestijärvi
Reisjäxvi
Pyhäjärvi
Pyhäjärvi
Ainalinjärvi
lso-Laniujärvi
47.03
51.04
53.05
54.04
54.05
54.07
57.06
3—710280—46280
2—712440—56770
3—704915—44921
3—706645—45035
2—705660—54850
2—704710—54360
2—701350—48445
2—700375--48320
2—701170—48746
4.
587
585
589
592
Oulujärvi
Oulujärvi
Oulujarvi
Oulujärvi
Iijärvi
Kiantojärvi
Alanteenjärvi
Nuasjärvi
Pirttijärvi
Kaitainjärvi
59.32
59.32
59.33
59.33
59.41
59.51
59.61
59.81
59.82
59.82
598
597
590
594
596
586
584
Oulujärvi
59.31
583
Oulujarvi
59.31
3—711966—57070
3—711650—56740
3—712420—54288
4—719540—45118
4—721509—45876
3—715490—55596
3—713880—53226
3—713592—52882
3—713438—51483
3—713262—49912
3—714736—49971
3—715966—49288
6.
8.7.1963 0—4
6.7.1965 0—4.5
8.7.1963 0—1
6.7.1965 0—1
11.7.1963 0—17
11.7.1963 0—8
11.7.1963 0—10
11.7.1963 0—4.5
11.7.1963 0—2
11.7.1963 0—5
11.7.1963 0—5
5.
26.7.1963 0—2
1.8.1963 0—6
7.7.1965 0—11
22.7.1963 0—5
2.7.1965 0—9
22.7.1963 0—2
5.7.1965 1
17.7.1963 0—5
5.7.1965 0—10
5.7.1965 0—10
5.7.1965 0—8
16.7.1963 0—8
9.7.1965 0—8
14.7.1965 0—10
14.7.1965 0—11
16.7.1965 0—6
20.7.1965 0—11
8. The Oulujoki, lijoki, Kuivajoki and Simojoki river basins
668
682
687
Lappajärvi
3.
47.03
2.
47.03
1.
0.60
0.79
0.53
0.45
0.59
0.12
1.47
0.19
0.61
0.26
0.66
0.39
0.32
0.33
0.32
0.26
0.51
0.58
0.59
0.55
0.54
0.18
1.02
1.31
0.20
0.67
0.72
0.73
7.
0.05
0.04
<0.01
0.04
0.03
0.02
0.02
<0.01
0.01
0.02
0.01
<0.01
0.01
<0.01
<0.01
0.01
0.01
0.04
<0.01
0.16
0.03
0.01
0.19
0.08
0.01
0.08
0.04
0.09
8.
0.03
0.03
0.02
0.02
<0.01
0.01
0.04
<0.01
0.01
0.02
0.04
0.01
0.01
0.01
0.02
0.01
0.01
-
-
-
-
<0.01
<0.01
<0.01
-
-
<0.01
-
<0.01
<0.01
-
<0.01
-
-
-
<0.01
-
-
<0.01
0.01
-
<0.01
-
10.
0.05
0.19 <0.01
0.08
0.10
<0.01
0.30
0.03
0.02
0.13
0.06
0.14
9.
0.43
0.54
0.45
0.36
0.46
0.07
1.11
0.15
0.56
0.18
0.56
0.24
0.20
0.27
0.26
0.24
0.48
0.46
0.34
0.31
0.39
0.12
0.53
0.97
0.11
0.31
0.57
0.42
11.
0.08
0.18
0.06
0.03
0.10
0.03
0.29
0.04
0.03
0.05
0.06
0.14
0.09
0.05
0.04
0.01
0.02
0.04
0.05
0.01
0.01
0.05
<0.01
0.21
0.07
0.13
0.05
0.08
12.
55
32
73
31
61
67
57
57
58
40
47
S
44
43
47
52
57
55
71
58
59
41
69
83
45
57
57
64
13.
4.91
4.96
5.36
3.65
4.45
3.07
6.04
3.14
4.89
6.36
5.09
4.03
4.67
4.03
4.41
5.02
5.33
4.81
6.24
4.93
5.02
4.07
6.33
7.21
4.43
5.05
5.01
5.59
14.
3.85
3.31
3.44
3.67
3.20
3.96
2.96
2.57
3.39
3.53
3.81
3.70
3.40
3.92
3.29
4.02
3.55
4.84
3.47
4.09
2.97
4.69
2.81
3.44
4.47
3.45
4.26
4.03
15.
1.5
3.0
1.5
3.0
2.0
0.5
6.0
0.3
1.0
7.0
2.5
8.0
4.0
1.3
2.5
7.0
7.0
3.3
5.5
-
3.0
1.3
12.0
7.3
2.5
5.0
12.0
3.7
16.
8.6
8.0
14.0
64.0
31.4
5.3
0.7
0.3
0.4
0.4
183
1.7
19.1
112
20.2
51.5
31.5
11.3
10.2
-
2.6
0.6
11.1
116
6.8
16.0
118
5.4
17.
0.13
0.44
0.18
0.06
0.35
0.02
0.43
0.04
1.18
2.00
0.71
0.09
0.11
0.12
0.14
0.11
0.20
0.16
0.35
0.05
0.05
0.05
0.18
0.57
0.05
0.26
0.26
0.37
18.
00
0.10
0.07
0.10
0.02
0.69
0.45
0.04
0.10
0.04
0.15
1.3
1.6
9.9
56.6
7.1
0.2
14.0
5.8
3.4
19.3
5.0
101
5.1
6.7
1.6
4.4
0.7
105
4.1
4.2
3.2
<0.1
0.1
29.6
1.8
10.5
9.1
0.5
0.8
1.7
7.0
2.0
0.5
4.0
5.5
3.0
6.0
2.8
5.0
2.2
1.5
2.8
2.3
2.7
5.0
3.8
1.0
4.5
0.7
1.0
1.0
1.5
4.2
4.1
3.98
3.12
3.63
3.64
3.13
3.49
3.30
3.92
4.34
4.44
3.28
3.66
2.98
3.87
3.84
4.41
2.68
3.87
4.29
1.85
2.94
3.57
2.97
4.24
3.43
3.84
3.74
3.33
5.47
7.20
42
39
41
41
34
58
77
0.05
0.01
0.01
<0.01
0.02
0.01
0.02
0.03
0.03
0.47
0.28
0.11
0.08
0.17
0.18
0.18
0.22
0.18
3.64
5.92
40
67
39
72
59
113
<0.01
0.01
0.01
<0.01
0.25
0.06
0.34
0.26
0.24
0.20
<0.01
<0.01
<0.01
<0.01
0.06
<0.01
0.02
0.07
0.04
1.17
0.07
0.15
0.01
0.06
0.28
0.01
0.38
0.41
0.58
1.38
5.19
0.76
10.7.1963 0—3
7.7.1965 0—3
10.7.1963 0—5
2.7.1965 0—5
9.7.1963 0—2
2.7.1965 0—2
4—731770—44740
3—724630—54330
3—728200—44940
571
569
564
Kurkijärvi
Puhosjärvi
Oijärvi
61.66
61.74
63.02
1
1
-
-
<0.01
-
<0.01
-
-
-
-
-
-
3.29
0.41
3.05
6.17
32
70
0.01
0.03
0.27
0.38
<0.01
<0.01
0.04
0.07
0.02
0.35
0.48
10.7.1963 0—6
7.7.1965 0—7
3—729900—56670
570
Kostonjärvi
61.62
1.8.1963
6.7.1965
1.53
0.13
6.43
9.74
75
115
0.05
0.02
0.88
1.02
0.11
0.07
0.15
0.11
1.19
1.22
11.7.1963 0—6
9.7.1965 0—6
4—726398—43992
572
Tyräjärvi
61.38
4.34
3.90
45
34
0.03
0.02
0.16
0.03
0.01
0.02
0.05
0.01
0.24
0.07
11.7.1963 0—8
9.7.1965 0—6
4—730320—47130
575
lijärvi
61.34
5.15
8.23
58
89
0.02
0.04
0.37
0.17
<0.01
<0.01
0.02
0.15
0.04
0.01
0.45
0.37
11.7.1963 0—6
9.7.1965 0—5.5
4—728640—46160
574
Kerojärvi
61.32
3.64
8.48
38
91
0.07
0.05
0.27
0.26
<0.01
<0.01
0.01
0.02
0.02
0.01
0.38
0.34
11.7.1963 0—9
9.7.1965 0—8
4—728044—46064
573
Irnijärvi
61.32
0.01
0.01
0.12
0.16
<0.01
<0.01
<0.01
0.04
0.01
<0.01
0.15
0.21
10.7.1963 0—1.7
6.7.1965 0—2.5
3—724680—51060
568
Jongunjärvi
61.21
<0.01
0.07
0.02
0.07
0.03
0.39
0.26
10.7.1963 0—1
6.7.1965 0—1.5
3—725433—49627
567
Pudasjärvi
61.13
0.01
0.01
0.02
-<0.01
0.22
0.21
59.93
29.7.1963 0—4
6.7.1965 0—10
4—715100—49269
606
Änättijärvi
59.92
0.02
0.01
0.01
<0.01
0.11
0.19
605
Änättijärvi
4—714408—49184
4—712607—47630
604
Lentua
59.91
-
*
38
76
4.44
9.89
3.44
6.18
3.71
7.10
3.74
3.94
4.33
4.40
0.01
0.01
0.01
<0.01
47
44
0.06
0.02
0.31
0.13
1
29.7.1963 0—15
6.7.1965 0—10
6.7.1965
0.60
4—711380—47980
603
Lammasjärvi
59.91
-
<0.01
2.19
3.60
0.06
0.10
16.0
16.3
1.7
1.5
3.98
3.66
4.10
4.83
43
52
0.10
0.05
0.23
0.43
-<0.01
0.01
2.10
0.69
0.53
0.07
0.10
0.09
0.06
0.16
0.08
0.19
0.06
0.12
0.05
0.04
0.33
0.31
0.66
0.13
0.43
2.2
6.2
0.5
2.0
3.22
2.34
4.32
5.36
47
55
0.12
0.01
18.
0.27
0.21
0.01
<0.01
601
Ontojarvi
59.91
<0.01
17.
16.
15.
14.
13.
12.
11.
0.35
0.49
599
Kiimasjärvi
59.82
-
10.
1.8.1963 0—6
7.7.1965 0—12
9.
8.
7.
4—711270—46312
6.
0.01
0.01
5.
0.01
0.02
4.
0.41
0.25
3.
1.8.1963 0—4
7.7.1965 0—8
2.
4—711212—43614
1.
Simojärvi
Simojärvi
64.05
64.05
619
618
617
3.
3—733495—49956
3—732570—50930
2—733260—50990
4.
623
624
Yli-Suolijärvi
Ala-Suolijärvi
Karhujärvi
Unari
Unari
Pallasjärvi
Jerisjärvi
65.39
65.39
65.39
65.59
65.59
65.65
67.47
612
613
Iso-Vietonen
Raanujärvi
67.96
67.96
611
634
Jerisjärvi
Miekojärvi
67.47
67.93
633
635
629
628
622
653
Kemijärvi
65.31
626
Kemijärvi
65.31
2—739830—53200
2—739090—52750
2—738640—51750
2—753560—50700
2—753860—50160
2—754940—50750
3—745540—44120
3—745460—44500
3—737868—56200
3—736236—54200
3—735144—54870
3—739280—52600
3-738485—51575
9. The Kemijoki and Tornionjoki river basins
Simojärvi
2.
64.05
1.
12.7.1963 0.5
22.7.1965 0—2
12.7.1963 0—2
22.7.1965 0—4
12.7.1963 0—2
22.7.1965 0—4
20.7.1965 0—6
11.7.1963 0—2
20.7.1965 0—2
11.7.1963 0—2
20.7.1965 0—2
23.7.1965 0—2
11.7.1963 0—6
23.7.1965 0—6
28.7.1965 0—8
9.7.1963 0—1
29.7.1965 0—8
9.7.1963 0—2
30.7.1965 0—8
5.7.1963 0—10
26.7.1965 0—2
26.7.1965 0—4.5
14.7.1965 0—1
<0.01
0.05
0.02
0.01
0.01
0.03
0.05
0.01
0.02
0.02
0.01
0.02
0.01
0.01
0.01
8.
0.37
0.86
0.55
0.68
0.22
0.74
1.49
0.95
0.74
0.06
0.01
0.03
0.02
0.01
0.13
0.01
0.16
0.02
0.30 <0.01
0.60 <0.01
0.50
0.74
0.54
0.20
0.21
0.39
0.54
0.36
0.35
0.22
0.25
0.80
0.11
1.39
8.7.1963 0—4
0.17
7.
8.7.1963 0—2
6.
14.7.1965 0—6
5.
0.02
0.08
0.01
0.02
0.01
0.04
0.17
0.08
0.06
0.02
<0.01
0.09
0.01
0.01
0.01
0.01
0.02
0.02
0.02
0.03
0.03
0.03
0.30
0.01
0.34
0.01
9.
<0.01
-
<0.01
-
<0.01
.
<0.01
<0.01
0.01
-
<0.01
<0.01
<0.01
-
-
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
-
-
-
10.
0.26
0.68
0.47
0.59
0.19
0.52
1.17
0.59
0.51
0.24
0.49
0.26
0.66
0.24
0.17
0.15
0.23
0.45
0.27
0.28
0.15
0.19
0.45
0.06
0.12
1.02
11.
0.03
0.09
0.05
0.05
<0.01
0.04
0.14
0.12
0.13
0.04
0.10
0.15
0.02
0.27
0.01
0.04
0.11
0.03
0.06
0.03
0.02
0.03
0.03
0.04
0.03
0.02
12.
63
74
50
70
51
82
81
71
87
27
34
77
47
56
62
50
74
61
70
71
101
86
74
38
40
66
13.
5.93
6.52
4.65
6.27
5.03
7.24
7.04
6.17
7.75
2.53
3.09
7.02
4.19
5.08
6.01
4.80
6.75
5.11
6.58
6.77
9.20
8.08
6.57
4.04
4.04
5.63
14.
4.08
4.03
4.42
3.62
3.42
3.58
4.22
4.12
3.72
3.64
2.80
2.79
4.32
3.73
4.26
4.20
3.58
3.20
1.92
4.04
4.47
4.13
3.73
3.72
4.13
4.08
15.
3.5
2.0
4.0
2.5
4.0
1.8
9.5
6.3
6.3
3.0
0.7
1.8
6.0
4.5
0.5
2.7
1.1
5.7
4.0
3.8
5.4
3.7
2.2
0.8
1.0
1.6
16.
7.1
3.2
24.4
6.5
7.9
0.9
169
287
46.9
3.9
1.0
1.8
12.6
21.0
0.1
7.1
0.4
0.7
4.8
107
2.9
2.2
5.8
0.8
1.7
9.2
17.
0.17
0.21
0.22
0.60
0.10
0.42
0.23
0.15
0.13
0.04
0.07
0.19
0.28
0.21
0.09
0.05
0.15
0.16
0.13
0.10
0.09
0.08
0.14
0.02
0.07
0.21
18.
2.
3.
4.
5.
578
Kuusamojärvi
74.01
580
Kiitämö
73.04
577
579
Kirpistö
73.04
Muojärvi
646
Kitkajärvi
73.02
74.01
637
Muddusjärvi
71.24
576
636
Muddusjärvi
71.24
74.01
642
Inarinjärvi
71.11
581
641
Inarinjarvi
71.11
Suininki
640
Enarinjärvi
71.11
Joukamojärvi
639
Inarinjärvi
71.11
73.04
638
Inarinjärvi
71.11
4—731118—47288
4—731440—48860
4—730720—49290
4—733040—48100
4--732260—48800
4—732020—48220
3—733390—56454
3—765700—49300
3—765300—49550
3—766250—54170
3—767460—55330
3—766800—53800
3—764700—52730
3—763524—52410
6.
11.7.1963 0—6.5
7.7.1965 0—7.5
11.7.1963 0—8
8.7.1965 0—8
12.7.1963 0—4.5
8.7.1965 0—4
8.7.1965 0—7
12.7.1963 0—4.5
8.7.1965 0—4
12.7.1963 0—6.5
8.7.1965 0—6
12.7.1963 0—4
16.7.1965 0—6
6.9.1963 0—6
7.7.1965 0—4
12.7.1963 0—6
7.7.1965 0—6
5.7.1965 0—6
5.7.1965 0—4
5.7.1965 0—4
5.7.1965 0—6
5.7.1965 0—10
10. River basins of northern Lapland and Kuusamo
1.
0.93
0.59
0.23
0.34
0.63
0.24
0.74
0.39
0.60
0.41
0.30
0.27
0.55
0.25
0.09
1.10
0.17
0.11
0.14
0.15
0.18
0.09
7.
0.27
0.01
0.01
0.01
0.12
0.01
0.01
0.08
0.01
0.03
0.01
0.01
0.01
<0.01
<0.01
0.01
0.01
0.01
0.03
0.02
0.01
<0.01
8.
0.03
0.05
0.0l
0.05
0.03
0.05
0.04
0.01
0.10
0.03
0.03
0.01
0.02
<0.01
0.01
0.01
0.01
<0.01
0.01
<0.01
<0.01
<0.01
9.
<0.01
.
<0.01
<0.01
0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
-
-
.
<0.01
-
<0.01
<0.01
<0.01
<0.01
10.
0.60
0.51
0.19
0.26
0.45
0.15
0.66
0.27
0.48
0.33
0.23
0.19
0.51
0.22
0.06
1.04
0.12
0.07
0.09
0.10
0.11
0.06
11.
0.03
0.02
0.02
0.02
0.03
0.04
0.02
0.02
0.02
0.02
0.03
0.06
0.02
0.03
0.02
0.04
0.04
0.03
0.02
0.01
0.05
0.01
12.
71
88
38
79
55
94
86
50
89
52
69
52
77
24
38
44
49
41
40
40
49
46
13.
6.02
7.69
3.69
7.14
4.72
8.81
7.45
4.50
7.78
4.73
6.49
5.01
6.74
2.22
3.65
3.77
4.49
4.04
3.97
3.84
4.64
4.55
14.
3.13
3.21
3.71
3.37
3.70
3.51
3.18
3.69
2.89
2.87
3.81
2.94
3.93
3.57
1.73
3.22
2.20
3.49
2.38
3.00
3.12
3.33
15.
3.4
4.6
3.5
3.6
3.2
6.3
2.7
1.2
1.6
3.2
2.7
2.7
1.8
0.3
0.4
0.7
0.3
0.6
0.8
0.4
0.5
2.0
16.
25.8
3.2
12.2
1.5
1.9
2.6
2.2
0.8
1.4
13.0
0.8
2.2
3.8
0.1
0.4
0.2
0.2
1.5
1.3
0.8
0.4
1.1
17.
0.30
0.13
0.07
0.07
0.13
0.06
0.17
0.05
0.08
0.50
0.09
0.07
0.14
0.10
0.04
0.14
0.09
0.03
0.03
0.02
0.05
0.06
18.
00
90
Appendix 2. Odiferous planktonic algae and their critical limits (Seppovaara 1971).
Plankton groups
and species
Cyanophyta
Anabaena
Aphanizomenon
Comphosphaeria
Microcystis
Oscillatoria
Chlorophyta
Ankistrodesmus
Chlamydomonas
Closterium
Eudorina
Pandorina
Scenedesmus
Critical Iimits
individuals/
lOOmi
(530 000)
(660 O00)
(3.500 O00)
(5.300 000)
coloniesl
lOOmi
(20 000)
53 ooo2
20 000
17 000
2
17 ooo
260 ooo2
(300 000)
400 000
360 000
20 000
(20 000)
Euglenophyta
Eugiena
80 000
Chrysophyta
Dinobryon
Mallomonas
Synura
Asterionella
Cyclotella
Melosira
Synedra
Tabellaria
300 000
45 000
20 ooo2
300 000
220 000
250 000
300 000
75 000
Pyrrophyta
Ceratium
Cryptomonas
20 000
120 000
8 000
1 0002
150 000
(1 ooo)
1 These values presented by Seppovaara were not used
2 New values (due to different method of calculation that were used) used in this investigation
91
Appendix 3. Indicator species.
A. Phytoplankton species indicating eutrophy
Actinastrum Hantzschii Lagerheim
Amphiprora paludosa W. Smith
Ankistrodesmus falcatus v. spirilliforinis West
Characiopsis longipes (Rab.) Borzi
Chroococcus dispersus (Keissi.) Lemm.
Chrysococcus minutus (Fritsch) Nyg.
Closteriopsis longissima Lemm.
Closterium aciculare T. West
C. gracile Brb.
C. macilentum Brb.
C. pronum Brb.
Coelastrum cambricum Archer.
Diatoma elongatum (Lyngb.) Ag.
Dichtyosphaerium ehrenbergianum Naeg.
D. elegans Bachman
Dimorphococcus lunatus A.Br.
Eugiena acus E.
E. cbarkowiensis Swir.
E. proxima Dang.
Franceia avaus (Franc) Lemm.
Glenodinizsm gymnodinium Penard
Kirchneriella elongata G.M. Smith
K. lunaris (Kirchn.) Moebius
K. obesa (W.West) Schmidle
Lagerheimia genevensis Chod.
Lepocinclis texta (Duj.) Lemm. cm. Conr.
Lyngbya limnetica Lemm.
Melosira granulata (E.) Ralfs.
M. varians C.A. Agardh
Micractinium pusillum Fresenius
Microcystis aeruginosa Kg.
M. flos-aquae (Wittr.) Kirchn.
M. viridis (A.Br.) Lemm.
Nitzschia acicularis W. Sm.
Oscilatoria limnetica Lemm.
Pandorima morum (MUller) Bory.
Pediastrum biradiatum Meyen
P. duplex Meyen
P. gracillium (W. et G.S. West) Thunmark
P. limneticum Thunmark
P. tetras (Ehrenb.) Ralfs.
P. tetras v. tetraodon (Corda) Rabenhorst
Peridinium bipes Stein
P. penardiforme Lindem.
P. curvicauda Swir.
Phacus longicauda (E.) Duj.
P. tortus (Lemm.) Skv.
Polyedriopsis spinulosa Schmidle
Scenedesmus abundans (Kirchn.) Chod
S. armatus v. bicaudatus (Guglielmetti-Printz) Chod
S. falcatus Chod.
S. naegelii Breb.
S. opoliensis P. Richt
S. ovalternus v. graewenitzii (Bernard) Chod.
Selenastrum gracile Reinsch
Sphaerozosma granulatum Roy et Biss.
Staurastrum paradoxum v. parvum West
Strombomonas verrucosa (Daday) Defi.
Synedra berolinensis Lemm.
Tetraedron caudatum (Corda) Hansgirg.
T. limneticum Borge
T. planctonicum G.M. Smith
T. trigonum (Naeg.) Hansgirg.
Tetrastrum staurogeniaforme (Schroeder) Lemm.
Trachelomonas hispida (Perty) Stein cm. Defi.
T. intermedia Dang.
T. planctonica Swir.
T. varians Defi.
T. volvocina E.
T. volvocinopsis Swir.
B. Phytoplankton species indicating oligotrophy
Arthrodesmus incus (Brb.) Hass.
Cosmarium contractum Kirchn.
Crucigenia rectangularis (A. Braun) Gay
Diatoma vuigare Bory
Dinobiyon acuminatum Ruttn.
D. sylindricum Imh.
D. sertularia E.
Euastrum bidentatum Näg.
E. elegans (Breb.) Kiitz
Mallomonas akrokomos Ruttn.
M. Allorgei (Dofi.) Conr.
Nephrocytium limneticum (G.M. Smith) Skuja
N. lunatum W. West
Quadrigula lacustris (Chod.) G.M. Smith
Stichogloea Doederleinii (Schmidle ) Wille