Name __________________ Date __________________ CC Geometry H Hwk. #21 1. ΔRST has altitude SU drawn to hypotenuse RT, ST = 15, RS = 36, RT = 39. SUT RUS (1) Complete the similarity statement: ΔRST ~ Δ______ ~ Δ______ (2) Complete the table of ratios. shorter leg : hypotenuse longer leg : hypotenuse shorter leg : longer leg ΔRST 15:39 36:39 15:36 ΔRUS SU:36 RU:36 SU:RU ΔSTU TU:15 SU:15 TU:SU (3) Use the values of the ratios to find SU. SU = 180/13 or 13 11/13 2. Use similar triangles to find the length of altitude z. I 25 K 4 J z z = 10 L OVER 3. Given right triangle RST with altitude RU to its hypotenuse, , and , find the lengths of the sides of ΔRST. RT = 7, ST = 25, RS = 24 4. Given right triangle ABC with altitude CD, find AD, BD, AB, and DC. C 2√5 A AD = 4, BD = 1, AB = 5, DC = 2 √5 D B 5. In right triangle ABD, AB = 53, and altitude DC = 14. Find the lengths of BC and AC. BC = 4, AC = 49 or BC = 49, AC = 4
© Copyright 2026 Paperzz