BENY NURMANDA (1101120215) TT-36-G2 CHAPTER 2 β SATELLITE COMMUNICATIONS (DENNIS RODDY) 2.9. The exact conversion factor between feet and meters is 1 ft = 0.3048 m. A satellite travels in an unperturbed circular orbit of semi major axis a = 27,000 km. Determine its tangential speed in (a) km/s, (b) ft/s, and (c) mi/h. Answer : a. π£ = β πΊπ π 6.673π₯10β11 π₯5.97π₯1024 27000π₯103 = β b. 3841.1π₯103 0.3048 = 12602034.121 ππ‘/π c. 3841.1π₯103 0.000621 = 2386.748 ππ/π = 3841.1 ππ/π 2.10. Explain what is meant by apogee height and perigee height. The Cosmos 1675 satellite has an apogee height of 39,342 km and a perigee height of 613 km. Determine the semi major axis and the eccentricity of its orbit. Assume a mean earth radius of 6371 km. Answer : Apogee : The point farthest from earth Perigee : The point of closest approach to earth COSMOS 1675 Apogee = 39342 km Perigee = 613 km Semi major axis = βπ = ππ β π 39342 β 6371 = ππ ππ = 6410.342 ππ βπ = ππ β π ππ = 613 + 6371 ππ = 6984 ππ ππ = π(1 + π) ππ = π(1 β π) π= TUGAS-2 SISTEM KOMUNIKASI SATELIT ππ + ππ = 6697.171 ππ 2 BENY NURMANDA (1101120215) TT-36-G2 ππ π = ( ) β 1 = β0.043 π 2.11. The Aussat 1 satellite in geostationary orbit has an apogee height of 35,795 km and a perigee height of 35,779 km. Assuming a value of 6378 km for the earthβs equatorial radius, determine the semimajor axis and the eccentricity of the satelliteβs orbit. βπ = 35795 ππ βπ = 35779 ππ π = 6378 ππ βπ = ππ β π ππ = 35795 + 6378 ππ = 6413.795 ππ βπ = ππ β π ππ = 35779 + 6378 ππ = 6413.779 ππ ππ + ππ = 6413.787 ππ 2 ππ π = β 1 = 1.25π₯10β6 π π= 2.17. A satellite in polar orbit has a perigee height of 600 km and an apogee height of 1200 km. Calculate (a) the mean motion, (b) the rate of regression of the nodes, and (c) the rate of rotation of the line of apsides. The mean radius of the earth may be assumed equal to 6371 km. a. Mean motion = π π = 1200 + 6371 = 7571 ππ π π = 600 + 6371 = 6971 ππ πππ = π π +π π 2 = 7571+6971 2 = 7271 ππ -ο Semi-major Axis πΊπ 6.673π₯10β11 π₯5.97π₯1024 β ππππ πππ‘πππ = π = ππ = β = 7402.026 πππ 7271π₯103 b. The rate of regression of the nodes = 0 ο because of polar orbit c. The rate of rotation of the line of apsides = -3.158 deg/day 2.23. The Molnya 3-(25) satellite has the following parameters specified: perigee height 462 km; apogee height 40,850 km; period 736 min; inclination 62.8°. Using an average value of 6371 km for TUGAS-2 SISTEM KOMUNIKASI SATELIT BENY NURMANDA (1101120215) TT-36-G2 the earthβs radius, calculate (a) the semimajor axis and (b) the eccentricity. (c) Calculate the nominal mean motion n0. (d) Calculate the mean motion. (e) Using the calculated value for a, calculate the anomalistic period and compare with the specified value. Calculate (f ) the rate of regression of the nodes, and (g) the rate of rotation of the line of apsides. Answer : a. Semi-major Axis βπ = ππ β π 40850 β 6371 = ππ ππ = 34479 ππ βπ = ππ β π ππ = 613 + 6371 ππ = 6984 ππ ππ = π(1 + π) ππ = π(1 β π) π= ππ + ππ = 20731.5 ππ 2 b. Eccentricity π= ππ β 1 = 0.6631 π c. Nominal mean motion π 3.986005π₯1014 π0 = β 3 = β = 2.115π₯10β4 π (20731.5π₯103 )3 d. Mean motion πΊπ 6.673π₯10β11 π₯5.97π₯1024 β ππππ πππ‘πππ = π = ππ = β = 4383.614 πππ 20731.5π₯103 e. Anomalistic Period ππ΄ = 2π 2π₯3.14 = = 1.432π₯10β3 π π 4383.614 2.30. A βno nameβ satellite has the following parameters specified: perigee height 197 km; apogee height 340 km; period 88.2 min; inclination 64.6°. Using an average value of 6371 km for the earthβs radius, calculate (a) the semimajor axis and (b) the eccentricity. (c) Calculate the nominal mean motion n0. (d) Calculate the mean motion. (e) Using the calculated value for a, calculate the TUGAS-2 SISTEM KOMUNIKASI SATELIT BENY NURMANDA (1101120215) TT-36-G2 anomalistic period and compare with the specified value. Calculate (f ) the rate of regression of the nodes, and (g) the rate of rotation of the line of apsides. a. Semi-major Axis βπ = ππ β π 340 + 6371 = ππ ππ = 6711 ππ βπ = ππ β π ππ = 197 + 6371 ππ = 6568 ππ ππ = π(1 + π) ππ = π(1 β π) π= ππ + ππ = 6639.5 ππ 2 b. Eccentricity π= ππ β 1 = 0.0107 π c. Nominal mean motion π 3.986005π₯1014 π0 = β 3 = β = 570418.0413 π (0.0107π₯103 )3 d. Mean motion πΊπ 6.673π₯10β11 π₯5.97π₯1024 β ππππ πππ‘πππ = π = ππ = β = 774.604 πππ 6639.5π₯103 e. Anomalistic Period ππ΄ = 2π 2π₯3.14 = = 8.107π₯10β3 π π 774.604 2.36. A satellite is in an exactly polar orbit with apogee height 7000 km and perigee height 600 km. Assuming a spherical earth of uniform mass and radius 6371 km, calculate (a) the semimajor axis, (b) the eccentricity, and (c) the orbital period. (d) At a certain time the satellite is observed ascending directly overhead from an earth station on latitude 49°N. Give that the argument of perigee is 295° Calculate the true anomaly at the time of observation. a. Semi-major Axis TUGAS-2 SISTEM KOMUNIKASI SATELIT BENY NURMANDA (1101120215) TT-36-G2 βπ = ππ β π 7000 + 6371 = ππ ππ = 13371 ππ βπ = ππ β π ππ = 600 + 6371 ππ = 6971 ππ ππ = π(1 + π) ππ = π(1 β π) π= ππ + ππ = 10171 ππ 2 b. Eccentricity π= ππ β 1 = 0.314 π c. Nominal mean motion π 3.986005π₯1014 π0 = β 3 = β = 6.154π₯10β4 π (10171π₯103 )3 d. Mean motion πΊπ 6.673π₯10β11 π₯5.97π₯1024 β ππππ πππ‘πππ = π = ππ = β = 6258.43 πππ 10171π₯103 e. Anomalistic Period ππ΄ = 2π 2π₯3.14 = = 1.0034π₯10β3 π π 6258.43 TUGAS-2 SISTEM KOMUNIKASI SATELIT
© Copyright 2025 Paperzz