tugas-2 sistem komunikasi satelit beny nurmanda 1101120215

BENY NURMANDA (1101120215)
TT-36-G2
CHAPTER 2 – SATELLITE COMMUNICATIONS (DENNIS RODDY)
2.9. The exact conversion factor between feet and meters is 1 ft = 0.3048 m. A satellite travels in an
unperturbed circular orbit of semi major axis a = 27,000 km. Determine its tangential speed in (a)
km/s, (b) ft/s, and (c) mi/h.
Answer :
a. 𝑣 = √
𝐺𝑀
𝑅
6.673π‘₯10βˆ’11 π‘₯5.97π‘₯1024
27000π‘₯103
= √
b.
3841.1π‘₯103
0.3048
= 12602034.121 𝑓𝑑/𝑠
c.
3841.1π‘₯103
0.000621
= 2386.748 π‘šπ‘–/𝑠
= 3841.1 π‘˜π‘š/𝑠
2.10. Explain what is meant by apogee height and perigee height. The Cosmos 1675 satellite has an
apogee height of 39,342 km and a perigee height of 613 km. Determine the semi major axis and the
eccentricity of its orbit. Assume a mean earth radius of 6371 km.
Answer :
Apogee : The point farthest from earth
Perigee : The point of closest approach to earth
COSMOS 1675
Apogee = 39342 km
Perigee = 613 km
Semi major axis =
β„Žπ‘Ž = π‘Ÿπ‘Ž βˆ’ 𝑅
39342 βˆ’ 6371 = π‘Ÿπ‘Ž
π‘Ÿπ‘Ž = 6410.342 π‘˜π‘š
β„Žπ‘ = π‘Ÿπ‘ βˆ’ 𝑅
π‘Ÿπ‘ = 613 + 6371
π‘Ÿπ‘ = 6984 π‘˜π‘š
π‘Ÿπ‘Ž = π‘Ž(1 + 𝑒)
π‘Ÿπ‘ = π‘Ž(1 βˆ’ 𝑒)
π‘Ž=
TUGAS-2 SISTEM KOMUNIKASI SATELIT
π‘Ÿπ‘ + π‘Ÿπ‘Ž
= 6697.171 π‘˜π‘š
2
BENY NURMANDA (1101120215)
TT-36-G2
π‘Ÿπ‘Ž
𝑒 = ( ) βˆ’ 1 = βˆ’0.043
π‘Ž
2.11. The Aussat 1 satellite in geostationary orbit has an apogee height of 35,795 km and a perigee
height of 35,779 km. Assuming a value of 6378 km for the earth’s equatorial radius, determine the
semimajor axis and the eccentricity of the satellite’s orbit.
β„Žπ‘Ž = 35795 π‘˜π‘š
β„Žπ‘ = 35779 π‘˜π‘š
𝑅 = 6378 π‘˜π‘š
β„Žπ‘Ž = π‘Ÿπ‘Ž βˆ’ 𝑅
π‘Ÿπ‘Ž = 35795 + 6378
π‘Ÿπ‘Ž = 6413.795 π‘˜π‘š
β„Žπ‘ = π‘Ÿπ‘ βˆ’ 𝑅
π‘Ÿπ‘ = 35779 + 6378
π‘Ÿπ‘Ž = 6413.779 π‘˜π‘š
π‘Ÿπ‘ + π‘Ÿπ‘Ž
= 6413.787 π‘˜π‘š
2
π‘Ÿπ‘Ž
𝑒 = βˆ’ 1 = 1.25π‘₯10βˆ’6
π‘Ž
π‘Ž=
2.17. A satellite in polar orbit has a perigee height of 600 km and an apogee height of 1200 km.
Calculate (a) the mean motion, (b) the rate of regression of the nodes, and (c) the rate of rotation of
the line of apsides. The mean radius of the earth may be assumed equal to 6371 km.
a. Mean motion =
π‘…π‘Ž = 1200 + 6371 = 7571 π‘˜π‘š
𝑅𝑝 = 600 + 6371 = 6971 π‘˜π‘š
π‘†π‘€π‘Ž =
π‘…π‘Ž +𝑅𝑝
2
=
7571+6971
2
= 7271 π‘˜π‘š -οƒ  Semi-major Axis
𝐺𝑀 6.673π‘₯10βˆ’11 π‘₯5.97π‘₯1024
√
π‘šπ‘’π‘Žπ‘› π‘šπ‘œπ‘‘π‘–π‘œπ‘› = 𝑛 = π‘€π‘š = √
= 7402.026
π‘†π‘€π‘Ž
7271π‘₯103
b. The rate of regression of the nodes = 0 οƒ because of polar orbit
c. The rate of rotation of the line of apsides = -3.158 deg/day
2.23. The Molnya 3-(25) satellite has the following parameters specified: perigee height 462 km;
apogee height 40,850 km; period 736 min; inclination 62.8°. Using an average value of 6371 km for
TUGAS-2 SISTEM KOMUNIKASI SATELIT
BENY NURMANDA (1101120215)
TT-36-G2
the earth’s radius, calculate (a) the semimajor axis and (b) the eccentricity. (c) Calculate the nominal
mean motion n0. (d) Calculate the mean motion. (e) Using the calculated value for a, calculate the
anomalistic period and compare with the specified value. Calculate (f ) the rate of regression of the
nodes, and (g) the rate of rotation of the line of apsides.
Answer :
a. Semi-major Axis
β„Žπ‘Ž = π‘Ÿπ‘Ž βˆ’ 𝑅
40850 βˆ’ 6371 = π‘Ÿπ‘Ž
π‘Ÿπ‘Ž = 34479 π‘˜π‘š
β„Žπ‘ = π‘Ÿπ‘ βˆ’ 𝑅
π‘Ÿπ‘ = 613 + 6371
π‘Ÿπ‘ = 6984 π‘˜π‘š
π‘Ÿπ‘Ž = π‘Ž(1 + 𝑒)
π‘Ÿπ‘ = π‘Ž(1 βˆ’ 𝑒)
π‘Ž=
π‘Ÿπ‘ + π‘Ÿπ‘Ž
= 20731.5 π‘˜π‘š
2
b. Eccentricity
𝑒=
π‘Ÿπ‘Ž
βˆ’ 1 = 0.6631
π‘Ž
c. Nominal mean motion
πœ‡
3.986005π‘₯1014
𝑛0 = √ 3 = √
= 2.115π‘₯10βˆ’4
π‘Ž
(20731.5π‘₯103 )3
d. Mean motion
𝐺𝑀 6.673π‘₯10βˆ’11 π‘₯5.97π‘₯1024
√
π‘šπ‘’π‘Žπ‘› π‘šπ‘œπ‘‘π‘–π‘œπ‘› = 𝑛 = π‘€π‘š = √
= 4383.614
π‘†π‘€π‘Ž
20731.5π‘₯103
e. Anomalistic Period
𝑃𝐴 =
2πœ‹
2π‘₯3.14
=
= 1.432π‘₯10βˆ’3 𝑠
𝑛
4383.614
2.30. A β€œno name” satellite has the following parameters specified: perigee height 197 km; apogee
height 340 km; period 88.2 min; inclination 64.6°. Using an average value of 6371 km for the earth’s
radius, calculate (a) the semimajor axis and (b) the eccentricity. (c) Calculate the nominal mean
motion n0. (d) Calculate the mean motion. (e) Using the calculated value for a, calculate the
TUGAS-2 SISTEM KOMUNIKASI SATELIT
BENY NURMANDA (1101120215)
TT-36-G2
anomalistic period and compare with the specified value. Calculate (f ) the rate of regression of the
nodes, and (g) the rate of rotation of the line of apsides.
a. Semi-major Axis
β„Žπ‘Ž = π‘Ÿπ‘Ž βˆ’ 𝑅
340 + 6371 = π‘Ÿπ‘Ž
π‘Ÿπ‘Ž = 6711 π‘˜π‘š
β„Žπ‘ = π‘Ÿπ‘ βˆ’ 𝑅
π‘Ÿπ‘ = 197 + 6371
π‘Ÿπ‘ = 6568 π‘˜π‘š
π‘Ÿπ‘Ž = π‘Ž(1 + 𝑒)
π‘Ÿπ‘ = π‘Ž(1 βˆ’ 𝑒)
π‘Ž=
π‘Ÿπ‘ + π‘Ÿπ‘Ž
= 6639.5 π‘˜π‘š
2
b. Eccentricity
𝑒=
π‘Ÿπ‘Ž
βˆ’ 1 = 0.0107
π‘Ž
c. Nominal mean motion
πœ‡
3.986005π‘₯1014
𝑛0 = √ 3 = √
= 570418.0413
π‘Ž
(0.0107π‘₯103 )3
d. Mean motion
𝐺𝑀 6.673π‘₯10βˆ’11 π‘₯5.97π‘₯1024
√
π‘šπ‘’π‘Žπ‘› π‘šπ‘œπ‘‘π‘–π‘œπ‘› = 𝑛 = π‘€π‘š = √
= 774.604
π‘†π‘€π‘Ž
6639.5π‘₯103
e. Anomalistic Period
𝑃𝐴 =
2πœ‹
2π‘₯3.14
=
= 8.107π‘₯10βˆ’3 𝑠
𝑛
774.604
2.36. A satellite is in an exactly polar orbit with apogee height 7000 km and perigee height 600 km.
Assuming a spherical earth of uniform mass and radius 6371 km, calculate (a) the semimajor axis, (b)
the eccentricity, and (c) the orbital period. (d) At a certain time the satellite is observed ascending
directly overhead from an earth station on latitude 49°N. Give that the argument of perigee is 295°
Calculate the true anomaly at the time of observation.
a. Semi-major Axis
TUGAS-2 SISTEM KOMUNIKASI SATELIT
BENY NURMANDA (1101120215)
TT-36-G2
β„Žπ‘Ž = π‘Ÿπ‘Ž βˆ’ 𝑅
7000 + 6371 = π‘Ÿπ‘Ž
π‘Ÿπ‘Ž = 13371 π‘˜π‘š
β„Žπ‘ = π‘Ÿπ‘ βˆ’ 𝑅
π‘Ÿπ‘ = 600 + 6371
π‘Ÿπ‘ = 6971 π‘˜π‘š
π‘Ÿπ‘Ž = π‘Ž(1 + 𝑒)
π‘Ÿπ‘ = π‘Ž(1 βˆ’ 𝑒)
π‘Ž=
π‘Ÿπ‘ + π‘Ÿπ‘Ž
= 10171 π‘˜π‘š
2
b. Eccentricity
𝑒=
π‘Ÿπ‘Ž
βˆ’ 1 = 0.314
π‘Ž
c. Nominal mean motion
πœ‡
3.986005π‘₯1014
𝑛0 = √ 3 = √
= 6.154π‘₯10βˆ’4
π‘Ž
(10171π‘₯103 )3
d. Mean motion
𝐺𝑀 6.673π‘₯10βˆ’11 π‘₯5.97π‘₯1024
√
π‘šπ‘’π‘Žπ‘› π‘šπ‘œπ‘‘π‘–π‘œπ‘› = 𝑛 = π‘€π‘š = √
= 6258.43
π‘†π‘€π‘Ž
10171π‘₯103
e. Anomalistic Period
𝑃𝐴 =
2πœ‹
2π‘₯3.14
=
= 1.0034π‘₯10βˆ’3 𝑠
𝑛
6258.43
TUGAS-2 SISTEM KOMUNIKASI SATELIT