2.71 The quarterback Q throws the football when the receiver R is in the the position shown. The receiver’s velocity is constant at 10 yd/sec, and he catches passes when the ball is 6 ft above the ground. If the quarterback desires the receiver to catch the ball 2.5 sec after the launch instant shown, determine the initial speed and angle θ required. Given: Initial position and speed of receiver. Release point and time Find: Speed and angle of throw Assumptions: No acceleration in the x-direction, acceleration in the y-direction is equal to −g. Solution: a x t2 2 a y t2 y = yo + voy t + 2 xo = ax = 0 yo = 7 ft ft ay = −g = −32.2 2 s ft x = 90 ft + 30 (2.5 s) = 165 ft s y = 6 ft voy tan θ = v qox 2 + v2 vo = vox oy x = xo + vox t + So, x = xo + vox t x − xo 165 ft ft vox = = = 66.0 t 2.5 s s gt2 y = yo + voy t − 2 gt −1 ft 32.2 sft2 (2.5 s) ft y − yo + = + = 39.85 voy = t 2 2.5s 2 s ! 39.85 fts θ = arctan = 0.543 rad (31.1◦ ) 66.0 fts s 2 2 ft ft ft vo = + 39.85 = 77.1 66.0 s s s 2.81 The muzzle velocity of a long-range rifle at A is u = 400 m/s. Determine the two angles of elevation θ which will permit the projectile to hit the mountain target B. Given: y = 1500 m, x = 5000 m, vo = 400 m/s. Find: θ Assumptions: No acceleration in the x-direction, acceleration in the y-direction is equal to −g. Solution: a x t2 2 a y t2 y = yo + voy t + 2 xo = yo = ax = 0 x = xo + vox t + ay = −g vox = vo cos (θ) voy = vo sin (θ) Plugging in what we know, x = vo cos (θ) t (1) 2 y = vo sin (θ) t − gt 2 (2) We have two equations and two unknowns. Identifying that we need to solve these two equations is the important part. The rest of the solution is just algebra. There are many ways to handle the algebra. Here are two: Solving (1) for t, t= x vo cos θ (3) pluggining into (2), g h x vo cos θ i2 x − vo cos θ 2 2 g x = x tan θ − 2 vo2 cos2 θ g x2 sec2 θ = x tan θ − 2 vo2 g x2 1 + tan2 θ = x tan θ − 2 vo2 g x2 g x2 −y 0 = − 2 tan2 θ + x tan θ − 2 vo 2 vo2 y = vo sin (θ) = A tan2 θ + B tan θ + C √ −B ± B 2 − 4AC tan θ = 2A (4) (5) (6) (7) (8) (9) (10) where, A=− 9.81 sm2 (5000 m)2 gx2 = − = −766 m 2 2vo2 2 400 m (11) s B = x = 5000 m (12) 2 gx − y = −766 m − 1500 m = −2266 m 2vo2 tan θ1 = 0.490 ⇒ θ1 = 0.456 rad (21.6◦ ) tan θ2 = 6.037 ⇒ θ2 = 1.41 rad (80.6◦) C =− (13) (14) (15) Here is another way to do the algebra. Solving (1) for cos θ, cos θ = x vo t (16) Using cos2 θ + sin2 θ = 1 to replace sin θ in (2), y = vo t p gt2 1 − cos2 θ − 2 (17) y = vo t s (18) plugging (15) into (18) y= 1− x vo t 2 p gt2 vo2 t2 − x2 − 2 − gt2 2 (19) rearranging y+ squaring both sides y 2 + ygt2 + gt2 p 2 2 = t vo − x2 2 (20) g2 4 t = t2 vo2 − x2 4 (21) rearranging g2 4 t + yg − vo2 t2 + x2 + y 2 = 0 4 2 A t2 + B t2 + C = 0 t2 = (22) −B ± (23) √ B 2 − 4AC 2A (24) with, 9.81 sm2 g2 = A= 4 4 2 m2 = 24.1 4 s m m 2 m2 B = yg − vo2 = (1500 m) 9.81 2 − 400 = −145285 2 s s s 2 2 2 2 2 C = x + y = (5000 m) + (1500 m) = 27250000 m (25) (26) (27) so, 2 t = 2 145285 m s2 ± q t2 = 193.8 s2 , 5845 s2 t1 = 13.9 s 2 −145285 m s2 2 2 2 − 4 24.1 m s4 27250000 m m2 2 24.1 s4 t2 = 76.5 s (28) (29) (30) (31) For each time use (1) to find θ. θ = arccos x vo t # 5000 m = 0.456 rad (21.6◦ ) θ1 = arccos (13.9 s) 400 m s " # 5000 m θ2 = arccos = 1.41 rad (80.6◦ ) 400 m (76.5 s) s " (32) (33) (34) Height at a range of 5.0 km as a function of launch angle. 8000 7000 Height (m) 6000 5000 4000 3000 2000 1000 0 0 0.5 θ (radians) 1 1.5
© Copyright 2025 Paperzz