Persistent or repeated surface habitability on Mars during the Late

Persistent or repeated surface habitability on Mars
during the Late Hesperian - Amazonian
EdwinS.Kite1,*,JonathanSneed1,DavidP.Mayer1,SharonA.Wilson2
1.UniversityofChicago(*[email protected])
2.SmithsonianInstitution.
Abstract.
LargealluvialfandepositsonMarsrecordthemostrecentundisputedhabitablewindowof
surfaceconditions(≲3.5Ga,LateHesperian–Amazonian).Wefindnetsedimentationrate
<(4-8)μm/yrinthealluvial-fandeposits,usingthefrequencyofcratersthatareinterbedded
withalluvial-fandeposits.Consideringonlytheobservedinterbeddedcraterssetsalower
boundof>20Myronthetotaltimeintervalspannedbyalluvial-fanaggradation,>103-fold
longerthanpreviouslowerlimits.Amorerealisticapproachthatcorrectsforcratersfully
entombedinthefandepositsraisesthelowerboundto>(100-300)Myr.Severalfactorsnot
includedinourcalculationswouldfurtherincreasethelowerbound.Thelowerboundrules
outfan-formationbyabriefclimateanomaly.Therefore,duringtheLateHesperian–
AmazonianonMars,persistentorrepeatedprocessespermittedhabitablesurface
conditions.
1.Introduction.
LargealluvialfansonMarsrecordoneormoreriver-supportingclimateson≲3.5GaMars
(e.g.Moore&Howard2005,Grant&Wilson2012,Kiteetal.2015,Williamsetal.2013)(Fig.
1).Thisclimatepermittedprecipitation-sourcedrunoffproductionof>0.1mm/hrthatfed
riverswithdischargeupto102m3/s(Palucisetal.2014,Morganetal.2014).Thelarge
alluvialfanscorrespondtotheyoungest(Grant&Wilson2011)unambiguousevidencefor
Marssurfacehabitability.Althoughsmall(<10km2)alluvialfanswith>10°slopesformed<5
MyaonMars,theseneednotrecordahabitableenvironment(e.g.Williams&Malin2008),
andmightnotbetheresultofliquidwater(Pilorget&Forget2016).Bycontrast,large(>10
km2)alluvialfanswith≲2°slopesformedfromaqueousflows(Williamsetal.2013),and
thesefansaremoredeeplyerodedandmorecratered,sotheyareolder.Inthispaperwe
focusonthelargealluvialfans.Didtheyresultfromasingleanomalousburstofwet
conditions,suchasmightresultfromanimpact(Williams&Malin2008)orvolcanic
eruption?Or,dothefansrecordpersistentorrepeatedwetconditions,forexampleasthe
resultofasustainedwarmerclimateregime?Betterconstraintsonthetimespanofalluvial
fanformationwouldconstrainmodelsofLateHesperian–Amazonianclimate.
Previousworkonthedurationoftheintervaloffanbuild-upusedsedimentologytoestimate
thetimeoverwhichsedimenttransportoccurred(e.g.,Armitage2011,Williamsetal.2011,
Palucisetal.2014).Thesesedimentologicmethodsrequireassumptionsaboutflow
intermittencyorsediment:waterratio,which(foralmostallMarsalluvialfans)arepoorly
constrained.Therefore,thelowerlimitsobtainedfromsedimentologicalmethodsareshort–
1
forexample,~3600years(Morganetal.2014).Moreover,brief(1-100yr)aggradation
intervalshavebeenproposedfordeltasonMarsthataresimilartothealluvialfansinage
andvolume(Kleinhansetal.2010,Hauberetal.2013).Anotherapproachtoestimatingthe
intervalofalluvial-fanbuild-upistomeasurethedensityofcraterssuperimposedon
differentfans,andusethespreadofcrater-retentionagesforthefansurfacesasaproxyfor
therangeoffan-formationages.Thismethodisnotreliable,becausecrater-retentionages
forareas<103km2arenotreliable(Warneretal.2015).Therefore,thetimespanof
habitableclimatesintheLateHesperian-Amazonianremainsanopenquestion.
Figure1.LargealluvialfansonMars(28°S333°E).The≲3.5Gaageofthefansisshownby
theirlowcraterdensity.Aeolianerosionexposeslayersandchannelswithinthedeposit.
2
A:
B:
Figure2.Idealizedcross-sectionthroughanalluvialfandeposit.Craterdensitywithin
alluvialfansmaybeestimatedusingthefrequencyofvisibleinterbeddedcratersatthe
exposedsurface.CaseA:Ifpostfluvialerosionwasmodest,somecratersthatformedlatein
thehistoryofalluvial-fanaggradation(filledsemicircles)areonlypartiallyburiedandare
visibletoday(thoughoutnumberedbypostfluvialcraters;outlines).CaseB:Ifpostfluvial
erosionwassevere,thearealdensityofexposedembeddedcratersofagivendiameteris
stillproportionaltothevolumetricdensityofthosecraters.Ineithercase,assumingsteady
aggradation,acountofinterbeddedcratersconstrainsthefanaggradationrate.
Togetamoreaccurateestimateoftheintervaloverwhichalluvialfansformed,weusedthe
embedded-cratermethod(Hartmann1974,Kiteetal.2013a).Thismethodworksasfollows.
Craterdensityonaquiescentplanetarysurfaceisproportionaltoexposureduration.This
methodmaybeextendedtothreedimensions:thetotalnumberofcratersinterbedded
withinasedimentarydepositisproportionaltothetimespannedbyactivesedimentation
(includinganyhiatuses)(Fig.2).Thegreaterthevolumetricdensityofcraters,thelongerthe
timespanofdeposition.Ofcourse,manyormostoftheinterbeddedcratersmaybe
3
completelyburied(Fig.2);thereforeacompletecountofinterbeddedcratersisusually
impossible.However,ifanimpactoccursneartheendofactivesedimentation,thenthe
correspondingcratermaybeonlypartiallyburied.Smallercratersaremorereadilyburied,
andlargercratersrequiremoresedimenttobecompletelyobscured.Thetimeneededto
accumulatethepopulationofvisiblyembedded(synfluvial)cratersis
τraw,D=ND/(fDa) [1]
whereDistheminimumcraterdiameterofinteresttobeconsidered,τraw,Distheminimum
timerequiredtobuilduptheobservedembedded-craterpopulation,NDisthenumberof
observedembeddedcraters,fDisthepastcraterflux(#/km2/yr),andaisthecountarea
(km2).Prefluvialcraters(whichareoverlainbyalluvialfandeposits,butthatformedbefore
thestartoffluvialdeposition;Irwinetal.2015)areexcluded.Thisproceduregivesastrict
lowerlimitontheintervaloffanformation;itdoesnotaccountforcratersthatarefully
entombedwithinthedeposit.Tocorrectforfullyentombedcraters,wecanassumesteady
aggradationanddividefanthicknessZbybest-fitaggradationrateWtogetdurationoffan
formationτsteady:
WD≈1.33Dφ/τD [2]
τsteady,D=Z/WD
[3]
Thenumeratorin[2]correspondstotherequiredburialdepthforobliteration.Theamount
ofburialthatisrequiredisconstrainedbythegeometryofsmallimpactcraters(Melosh
1989,Wattersetal.2015).φistheobliterationdepthfractionforagivencrater,expressed
relativetocraterdiameter.(Inthispaper,wedefineacrateras“obliterated”ifitcanno
longerbeidentifiedinahigh-resolutionopticalimage;Kite&Mayer2016).Thefactorof
1.33correctsforthefactthat,foranyminimum-diameterD,themediandiameterinacount
willexceedD–thus,Dφisanunderestimateoftherequiredburialdepth.Thiscorrection
dependsonthecraterproductionfunctionused.Thecorrectionisrelativelysmall(1.3×–
1.5×)inoursizerangeofinterest,becausecraterfrequencyfallsoffsteeplywithincreasing
diameter,andwerepresentitbyafixedfactor.Post-depositionalerosionofalluvialfan
depositsdoesnotaffectthisprocedure.Arandomlyorientedcutthroughthecratercontainingvolumeintersectseachcraterwithaprobabilityproportionaltothatcrater’ssize;
thesampleofcraterspartiallyexhumedatanerosionalsurfaceisbiasedtowardslarger
impacts.Justaswithpartialburial,thenumberofcratersthatareexposedisproportionalto
thevolumetriccraterdensity(andinverselyproportionaltoaggradationrate).Thus,the
volumetricdensityofinterbeddedcratersmaybeestimatedfromsurfacecountsbothon
pristinefansurfacesandforfansthataredeeplyeroded(Kiteetal.2013a).Therefore,
embedded-cratercountscanbeusedasaMarsfluvialprocessspeedometer.
2.Methodsandresults.
Inordertosetalowerboundonthetimespanofalluvial-fanformation,wesearched1.7×
104km2ofpreviously-cataloguedfans(correspondingtomostofthesurfaceareaoflarge
alluvialfansonMars;Wilsonetal.2012)using6m-per-pixelCTXimagestoscoutfor
candidateembeddedcraters.Candidatecratersshowpossibleevidenceofinterbeddingwith
4
paleochannelsorotherfandeposits.Eachcandidatefeaturewasreviewedbythreeofthe
authors(E.S.K,D.P.M.,andJ.S.)forfinalclassification.Whereavailable,25cm-per-pixel
HiRISEimagesandanaglyphs,plusCTXDigitalTerrainModels(DTMs)wereusedtoinspect
candidatesflaggedintheinitialCTXsurvey.HiRISEanaglyphsprovedparticularlyvaluable
fordetectingcraterrims.Eachcandidatefeaturewascategorizedasqualitylevel1,2,3
(representingdecreasingconfidencethatthecraterwasembedded),oritwasdiscarded.A
totalof25embeddedcraterswerefoundat<30°latitude(D=0.08-5.0km;Fig.3,
SupplementaryInformation).Theseembeddedcraterswerethenclassified(usuallywiththe
aidof24-m-per-pixelCTXDTMs)as“synfluvial,”“uncertain”,or“prefluvial.”Thesecraters
constituteatinyfractionofthetotalnumberofcratersonthesurfacesofthefans(Grant&
Wilson2012).
Figure3.EmbeddedcraterswithinalluvialfansonMarsfromourcatalog(Supplementary
Information).
AsupplementaryHiRISE-onlysurvey(570km2)wascarriedouttocheckforresolution
effects.13embeddedcraterswerefound(D=0.05–0.22km;SupplementaryInformation).
HiRISEembedded-craterdensitiesND/aforD<0.2kmarethesame(withinPoissonerror)as
CTXembedded-craterdensitiesforD>0.2km.Therefore,theHiRISEcheckprovidesno
evidencethatourconclusionswouldbechangedbyaHiRISEre-surveyofthe1.7×104km2
areacoveredbyourCTXsurvey.
Diametermeasurementerrorwasestimatedbyblindlyremeasuringcratersandfoundtobe
negligiblecomparedtoothererrors.Possiblecratershrinkageorexpansionduring
degradationisignored.
Thecontributionoffalsepositivestoourcatalogislikelysmall.Althoughpolygonalfaulting
inEarthmarinesedimentscanproducecrater-likeconcentriclayering(Tewkseburyetal.
2014),thisisunlikelyforMarsalluvial-fandeposits.Forexample,theembeddedcratersare
isolated(notspace-filling),andfrequentlyshowpreservedrims.Ontheotherhand,there
arecertainlyfalsenegativesinoursurveyarea:re-surveyofacraterofinterestfound
severaladditionalcandidateswithscores≤3onpanelinspection.Therefore,ourcrater
densitiesarelowerlimits.
WeestimatedalluvialfanthicknessesbydifferencingCTXDTMprofilesacrossfansand
analogousprofilesacrosspartsofthesamefan-hostingcraters(n=13)thatlackedfans.We
foundmaximumfanthicknessof1.1km,withthicknesses~1kmcommon.
5
3.Analysis.
Theusualprocedureforestimatingcrater-countingerroristousePoissonstatistics(Michael
etal.2016).Theresultsofthisprocedureareshownbythebluelinesandblueerrorbarsin
Fig.4.Togeneratetheseresults,weassumedafixedcraterflux(Michaeletal.2013),no
changeinatmosphericscreeningfromtoday’sMars,astrong-rocktargetstrength,anda
fixedobliterationdepthfractionφ=0.1.
Thetrueerrorislargerthanthisbecauseofuncertaintyin(1)truecraterflux(Johnsonetal.
2016),(2)targetstrength,(3)filteringbyapotentiallythickerpastatmosphere,(4)thetime
offormationofthealluvialfans,and(5)theamountofburialorerosion–expressedasa
fractionofthecrater’sdiameter–thatisneededtopreventthecraterfrombeingdetectedat
CTXresolution.Therefore,weadoptedconservativepriorprobabilitiesonparameters(1)-
(5)inaMonteCarlosimulationofourlowerboundthatalsoincludesPoissonerror(details
aregivenintheSupplementaryInformation).Specifically,weassumed(1)afactor-of-4
uncertaintyincraterflux(log-uniformuncertaintybetween0.5×and2×theMichaeletal.
2013fluxes);(2)log-uniformuncertaintyintargetstrengthbetweenlimitsof65kPaand10
MPa(Dundasetal.2010);(3)log-uniformuncertaintyinpaleo-atmosphericpressure
betweenlimitsof6mbarand1000mbarforasimplemodelofatmosphericfiltering;(4)a
uniformuncertaintybetweenfanformation2.0Ga(low-endfancraterretentionage)and3.6
Ga(ageofthelargecraterswhichhostalluvialfans);and(5)alog-uniformpriorfor
obliterationdepthfraction(expressedasafractionofcraterdiameter)from0.05(rimburial;
Melosh1989)and0.2(originalcraterdepth;Wattersetal.2015).Foreachof103Monte
Carlotrials,theeffectofPoissonerroriscalculatedanalytically.Giventheobservationsand
therandomly-sampledparameters,eachMonteCarlotrialyieldsananalyticprobabilityfor
eachcandidateage(oreachcandidateaggradationrate)ineachsizebin.Theseprobabilities
aresummedover103MonteCarlotrialsandnormalized.Resultsareshownbythegray
errorbandsandblackstarsinFig.4.
Wereportonlylowerlimitsbecausewedonotknowourfalsenegativerate,anditis
possiblethatmanyembeddedcratersareeasilyidentifiableasimpactcratersinCTX
imagery,buthaveanexpressionthatisindistinguishablefrompostfluvialcratersatCTX
scale.
Thebest-fitlowerlimit(Fig.4a)increaseswithincreasingdiameter,asexpected.Bins≥1.4
kmcontainonly1crater,andthePoissonuncertaintyconstitutesmostofthetotal
uncertaintyinthelowerlimit.Forthesmallerdiameters,thecounting-statisticserroris
smallcomparedtothetotaluncertaintyinthelowerlimit,butsystematicundercountingof
embeddedcratersismostlikelyforcratersthataresmallerandthusmoreeasilyburiedand
modified.Thelargest>1km-diameterbincontains2embeddedcratersandyieldsa2-sigma
lowerlimitof>17Myr,whichweroundto>20Myr.Usingthesingle~5kmcraterfoundin
oursurveygivesa>54Myrlowerbound.
6
(a)
(b)
Figure4.(a).Minimumtime-spanofsedimentationbasedonobservedsynfluvialcraters.
Blueerrorbarsbracketthe90%confidenceintervalsonlowerlimit(byPoissonestimation).
FullMonteCarlofitcorrespondstothegrayband.Blackzoneisexcludedwith>95%
confidence.Whitezoneisexcludedin<5%oftrials.Blackasteriskscorrespondtothe
medianoutcomeoftheMonteCarloprocedure.Reddashedlinesassumeaconstant
aggradationrateandthatburialby10%ofacrater’sdiameterissufficienttoobscurethe
craterfromorbiter-imagesurveys.(b)Correspondingaggradationrateestimatesforalluvial
fans,binnedbydiameter.Errorbarsarethesameasin(a).
7
Turningtotherateplot(Fig.4b),constantaggradationratesof<(4-8)μm/yearmatchour
data.Forsediment:waterratioof10-4,thiscorrespondstorunoffof<(4-8)cm/yr.Different
craterdiametersprobedifferentdepthrangesandthusaggradationrateoverdifferent
timescales,butourdatadonotprovidestrongevidenceforachangeinaggradationratewith
timescale(Jerolmack&Sadler2007).Dividingtypicalfanthicknessesbythisrategives125250Myr,whichweroundto100-300Myr.Forbothplots,theMonteCarloproceduregives
limitsthataremoreuncertain(graybandversusblueerrorbarsinFig.4)andslightlymore
permissive(blackasterisksversusbluelinesinFig.4).
The>(100-300)Myrageestimatefromsteadyaggradation(Fig.4b)isamorerealistic
estimateofthetruefan-formingintervalthanthe>20Myrtimespanfromobserved
synfluvialcraters(Fig.4a).Thatisbecause,iftheobservedembeddedcratersrepresentthe
totalembedded-craterpopulation,thenfanaggradationmusthavestartedveryfastand
decreasedsharplyneartheendoffanbuild-up.Suchanaccumulationhistorywouldfavor
small-craterpreservationrelativetolarge-craterpreservation–theoppositeofwhatis
observed.Furthermore,afterfluvialdepositionstopped,manyofthealluvialfandeposits
wereerodedbyaeolianprocesses(e.g.Fig.1).Becausepostfluvialerosionwoulddestroy
someembeddedcraters,theobservedembeddedcratersareveryunlikelytorepresentthe
totalpopulationofcratersthatformedembeddedwithinthealluvialfans.
Resultsareplottedexcludingcratersforwhichsynfluvialversusprefluvialstatuscouldnot
bedetermined,butincludingcratersofqualityscore3.Thesechoiceshavelittleeffectonour
conclusions.Thatisbecausethequality-3embeddedcraters,andthecraterswhose
synfluvialstatusisuncertain,correspondtosmalldiameterbinsforwhichourcountsare
probablyincomplete.
4.Discussion.
4.1.Factorsnottakenintoaccountwouldincreaseourlowerlimit.
Byfittingasingletime-span(andseparatelyfittingasingleerosionrate)tothefandeposits,
weimplicitlyassumethattheprobabilityoffindinganembeddedcraterisspatiallyuniform.
However,theobservedspatialdistributionofembeddedcratersistooclumpytobe
consistentwithaspatiallyuniformprobability.Forexample,onesite(Crater“W”;Kraaletal.
2008)has20%oftheembeddedcraters(5outof25)eventhoughthefanareaatthatsiteis
only500km2,3%ofthetotal.Thisclusterisunlikelytobeduetochance(assuming
crateringisaPoissonprocess):ifthefanareaisdividedinto(17000km2)/(500km2)=34
equal-areasites,thentheexpectednumberofcraterspersiteisλ=25/34=0.73.The
probabilityoffinding5ormoreembeddedcratersinatleastonesiteisthenonly
1–(1–Σx=5∞f(x|0.73))34=3%,wherefisthePoissonprobabilitydistributionfunction.To
beconsistentwithdataatthe50%level,wemustincreaseλ(equivalently,fanage)by200%.
Thismightcorrespondtouniformfanagewithspatiallynon-uniformdetectabilityof
embeddedcraters.AlternativelyCrater“W”mightrecordanomalouslyslowaggradation.In
eithercase,ourbestestimateofthetimespanoffan-formingclimatesis200%longerthanin
ourlowerlimit.
8
Spatialstaggeringoffanaggradationwouldincreaseourlowerlimit.Time-varyingorbital
forcingwouldfavorsnowmelt(e.g.Kiteetal.2013b)indifferentplacesatdifferenttimes.
Localizedprecipitationwouldnotbegloballycorrelated(Williams&Malin2008,Kiteetal.
2011).
Ifthealluvialfandepositsunderwenterosionduringtheperiodofnetaggradation,thenthis
woulddestroysomeembeddedcraters.Therefore,iferosionoccurredduringfan
aggradation,ourupperlimitwouldincreasefurther.
MarscraterfluxesareextrapolatedfromLunarradiogenicagesandcorrespondingcrater
densities.Thosecraterdensitieshavebeenarguedtobeincorrect(Robbins2014).We
comparedRobbins’chronologyfunctiontotheNeukum(2001)chronologyfunctionatDmin=
1km.Anagerangeof2.0–3.6Gyr(Neukum)mapsto1.4–3.0Ga(Robbins).Theflux
uncertaintyisreducedfrom(1-12)×modern(Neukum)to(1.5–2.2)×modern(Robbins).
BecausehighaggradationratesinourMonteCarlorunsalwayscorrespondtohighcrater
fluxes,includingRobbins’chronologywouldcauseourerrorbarstoshrinkandthusraise
ourlowerlimit.
4.2.Implicationsforpaleohydrologyandclimate.
D<100membeddedcratersplaceanupperlimitonpaleoatmosphericpressure(Kiteetal.
2014).SinceD<50mimpactcratersareextremelyrareonEarth(atmosphericcolumn
density104kg/m3),theexistenceofD<100membeddedcratersinthealluvialfansonMars
suggestsatmosphericcolumndensity<2×104kg/m3,i.e.P<1bararoundthetimeofalluvial
fanaggradation.
Previousanalysesoftheintervaloverwhichalluvialfansformedhavedividedfanvolumeby
theinferredfluvialsedimenttransportflux(e.g.Jerolmacketal.2004).Thisdurationisa
lowerboundontheintervaloverwhichalluvialfansformed,becausenotallyearsneed
producerunoff.Ourlowerboundexceedssedimentologicallowerboundsby>1000×.Many
alluvialfansare~1kmthick.Supposeafan:alcovearearatioof0.5.Typicalwater:sediment
ratiosonEarthare103:1.2000kmofwaterat0.5msnowmelt/yeargives4Myr.However
thesecalculationsarehighlyuncertain.Forexample,iftheamountofsnowmeltislimitedby
asnowsupplyrateof10cm/yr,thenthetimerequiredrisesto20Myr,equaltoourstrict
lowerlimitonthetotaltimespanofalluvialfanformation.Thereforeourdatadonotrequire
intermittency.However,givenquasi-periodicorbitalvariability,fine-tuningofMars’
hydrologicalcycleisrequiredtoproducesmallamountsofrunoffeveryyear,especiallyfor
ourpreferredlowerlimitof>(100-300)Myr.Broadly,theveryslownetaggradationratesin
areasofsteeprelief(Fig.1)suggestintermittency.
Intermittencyinalluvial-fan-formingclimateisfurthersuggestedbycombiningourdata
withotherconstraints.Thepaucityofmineralogicevidenceforin-situalterationoffan
deposits(McKeownetal.2013),thepresenceofhydratedsilica(possiblyopal;Carteretal.
2012),andthepersistenceofolivinewhichdissolvesat0°CandpH=5.5in<5Myr(Stopar
etal.2006),whencombinedwiththe>20Myrspanofsurfaceliquidwaterrequiredbyour
9
data,suggestthatclimateconditionswerecoldandthatintermittencyfurtherreducedliquid
waterinteractionwithsoil.Coldconditionsarealsosuggestedbysedimentary-deposit
mineralogyatGale(McLennanetal.2014,Siebachetal.2017).Intermittencyisalso
suggestedbymultiplepulsesoffanformationatHolden(Irwinetal.2008),Gale(Paluciset
al.2016),andMelasChasma(Williams&Weitz2014).
Insummary,thedataexcludeanyexplanationthatproducesasingleburstofhabitabilityof
<20Myrduration.Forexample,thedataexclude triggeringbythethermalpulsecausedby
theimpactsthatformedthelargecraterswhichhostthealluvialfans.Thedatadisfavor
fluvialsedimenttransporteveryyearfor>20Myr. Amongotherpossibilities,thedatapermit
a long-livedhabitableenvironment(snowmeltorrainfall);achaostrigger(Bakeretal.
1991);orobliquity-pacedfluvialintermittency(Kiteetal.2013b).
Figure5.GeomorphichistoryofMars(Howard2007,Fassett&Head2011).FSV=Fresh
ShallowValleys(Wilsonetal.2016).RSL=RecurringSlopeLineae,FSV=FreshShallow
Valleys.“*”symboldenotesquestionablestatusofgullies,whicharemodifiedbyCO2ice.PrevalleynetworkfluvialsedimenttransportisfromIrwinetal.(2013).
4.3.Implicationsforhabitability.
Thetimespanofaggradationofthealluvialfandepositsthatwehavecalculatedisaproxy
forthetimespanofspatiallyassociatedpaleolakes.Thosepaleolakesincludecandidate
playadepositsatthetoesofalluvialfans(e.g.Morganetal.2014),a>100mdeeppaleolake
inCrater“P”(Kraaletal.2008)suggestedbyacommonfan-frontal-scarpelevationof-2700
m(inourCTXDTMs),andtheEberswaldepaleolake(whichsharesadrainagedividewith
alluvialfansatHolden;Irwinetal.2015).Inaddition,riversandlakesoccurredduringthe
LateHesperian-AmazonianinVallesMarineris(e.g.Mangoldetal.2004,Williams&Weitz
2014)andArabiaTerra(Wilsonetal.2016).Lakedepositshavegoodbiosignaturerecovery
potential(Summonsetal.2011),andbiosignaturerecoveryfromProterozoiclakedeposits
10
isroutine(Petersetal.2005).Ontheotherhand,biosignatureswouldhavebeendestroyed
iflakewaterswereoxidizing.
5.Conclusions.
ExplainingyoungalluvialfansonMarsisachallengetoclimatemodels.Todeterminethe
timespanofalluvialfanformingconditions,wecountedembeddedcraters.Wefoundahigh
densityofembeddedcraters,whichrequiresthattheriver-permittingclimate(s)spanned
>20Myr.Ifaggradationwassteadyat<(4-8)μm/yr,whichisconsistentwithourdata,then
fanbuild-uprequired>(100-300)Myr(Table1). Thedatamakethechallengeofexplaining
thealluvialfansmoresevere,becausetheyexcludeasingleshort-livedanomalyasthecause
ofthealluvialfans.
Acknowledgements.
WethankAlanHoward,MarisaPalucis,BeckyWilliams,RossIrwin,Jean-PierreWilliams,Bill
Dietrich,andBrianHynek.
References.
Armitage,JohnJ.,Warner,NicholasH.,Goddard,Kate,Gupta,Sanjeev,2011.Timescalesofalluvialfan
developmentbyprecipitationonMars.Geophys.Res.Lett.38(17).CiteIDL17203.
Baker,V.R.,Strom,R.G.,Gulick,V.C.,Kargel,J.S.,Komatsu,G.1991.Ancientoceans,icesheetsandthe
hydrologicalcycleonMars.Nature352,589-594.
Carter,J.,etal.,2012.CompositionofDeltasandAlluvialFansonMars.In:43rdLunarandPlanetary
ScienceConference.March19–23,2012,Woodlands,TX.LPIContributionNo.1659,id.1978.
Dundas,C.M.,Keszthelyi,L.P.,Bray,V.J.&McEwen,A.S.Roleofmaterialpropertiesinthecratering
recordofyoungplaty-ridgedlavaonMars.Geophys.Res.Lett.37,L12203(2010).
C.I.FassettandJ.W.Head,2011,SequenceandtimingofconditionsonearlyMars.Icarus,211,
1204-1214.
Grant,J.A.,Wilson,S.A.,2011.LatealluvialfanformationinsouthernMargaritiferTerra,Mars.
Geophys.Res.Lett.38(8).CiteIDL08201.
Grant,J.A.,Wilson,S.A.,2012,Apossiblesynopticsourceofwaterforalluvialfanformationin
southernMargaritiferTerra,Mars,Planetary&SpaceScience
Grindrod,P.M.;Heap,M.J.;Fortes,A.D.;Meredith,P.G.;Wood,I.G.;Trippetta,F.;Sammonds,P.R.2010,
Experimentalinvestigationofthemechanicalpropertiesofsyntheticmagnesiumsulfatehydrates:
ImplicationsforthestrengthofhydrateddepositsonMars,J.Geophys.Res.115,CiteIDE06012.
Hartmann,W.K.,1974,GeologicalobservationsofMartianarroyos.,J.Geophys.Res.79,3951–3957.
Hartmann,W.K.,2005.Martiancratering8:isochronrefinementandthechronologyofMars.Icarus
174,294–320.
11
Hauber,E.;Platz,T.;Reiss,D.;LeDeit,L.;Kleinhans,M.G.;Marra,W.A.;Haas,T.;Carbonneau,P.,
2013,AsynchronousformationofHesperianandAmazonian-ageddeltasonMarsandimplications
forclimate,J.Geophys.Res.:Planets,118,pp.1529-1544.
Howard,A.D.,2007.SimulatingthedevelopmentofMartianhighlandlandscapesthroughthe
interactionofimpactcratering,fluvialerosion,andvariablehydrologicforcing.Geomorphology91,
332–363.
Irwin,R.P.;Grant,J.A.;Howard,A.D.,2008,TheAlluvialFanComplexinHoldenCrater:Implications
fortheEnvironmentofEarlyMars,39thLunarandPlanetaryScienceConference,abstractid.1869
Irwin,R.P.,Lewis,K.W.,Howard,A.D.,Grant,J.A.,2015.PaleohydrologyofEberswaldecrater,Mars.
Geomorphology.http://dx.doi.org/10.1016/j.geomorph.2014.10.012.
Jerolmack,DouglasJ.;Mohrig,David;Zuber,MariaT.;Byrne,Shane,2004,Aminimumtimeforthe
formationofHoldenNortheastfan,Mars,GeophysicalResearchLetters,31,CiteIDL21701.
Jerolmack,D.J.,Sadler,P.,2007.Transienceandpersistenceinthedepositionalrecordofcontinental
margins.J.Geophys.Res.(EarthSurface)112,F03S13.
Kite,E.S.,Michaels,T.I.,Rafkin,S.C.R.,Manga,M.,&W.E.Dietrich,2011.Localizedprecipitationand
runoffonMars,J.Geophys.Res.Planets,116,E07002.
Kite,E.S.,Lucas,A.,Fassett,C.I.,2013a.PacingearlyMarsriveractivity:embeddedcratersinthe
AeolisDorsaregionimplyriveractivityspanned>∼(1-20)Myr.Icarus225,850–855.
Kite,E.S.,I.Halevy,M.A.Kahre,M.Manga,andM.Wolff,2013b,Seasonalmeltingandtheformation
ofsedimentaryrocksonMars,Icarus,223,181–210
Kite,E.S.,Williams,J.-P.,Lucas,A.,Aharonson,O.,2014.Lowpalaeopressureofthemartian
atmosphereestimatedfromthesizedistributionofancientcraters.Nat.Geosci.7,335–339.
Kite,E.S.,Howard,A.,Lucas,A.S.,Armstrong,J.C.,Aharonson,O.,Lamb,M.P.,2015.Stratigraphyof
AeolisDorsa,Mars:stratigaphiccontextofthegreatriverdeposits.Icarus253,223-242.
Kite,E.S.;Mayer,D.P.,2016,Marssedimentaryrockerosionratesconstrainedusingcratercounts,
withapplicationstoorganicmatterpreservationandtotheglobaldustcycle,arXiv:1610.02748(in
pressatIcarus)
Kleinhans,M.G.,vandeKasteele,H.E.,Hauber,E.,2010.Palaeoflowreconstructionfromfandelta
morphologyonMars.EarthPlanet.Sci.Lett.294,378–392.
Kraal,E.R.,etal.,2008,Catalogueoflargealluvialfansinmartianimpactcraters,Icarus,194,101110.
Mangold,N.,etal.,2004.EvidenceforprecipitationonMarsfromdendriticvalleysintheValles
MarinerisArea.Science305,78–81.
McLennan,S.M.,etal.,2014.ElementalgeochemistryofsedimentaryrocksatYellowknifeBay,Gale
Crater,Mars.Science343(6169).http://dx.doi.org/10.1126/science.1244734
Melosh,H.J.,1989.Impactcratering:ageologicprocess.In:ResearchsupportedbyNASA,253.Oxford
UniversityPress,NewYork,p.11.(OxfordMonographsonGeologyandGeophysics,No.11),1989.
12
Johnson,B.C.;Collins,G.S.;Minton,D.A.;Bowling,T.J.;Simonson,B.M.;etal.2016,Spherulelayers,
craterscalinglaws,andthepopulationofancientterrestrialimpactors,Icarus,271,350-359.
Michael,G.G.;Kneissl,T.;Neesemann,A.,2016,Planetarysurfacedatingfromcratersize-frequency
distributionmeasurements:Poissontiminganalysis,Icarus,277,279-285.
Moore,J.M.,&Howard,A.D.,2005,LargealluvialfansonMars,J.Geophys.Res.,110,E4,E04005.
Michael,G.G.,2013.Planetarysurfacedatingfromcratersize-frequencydistributionmeasurements:
multipleresurfacingepisodesanddifferentialisochronfitting.Icarus,226,885–890.
Morgan,A.M.,etal.,2014.Sedimentologyandclimaticenvironmentofalluvialfansinthemartian
SahekicraterandacomparisonwithterrestrialfansintheAtacamaDesert.Icarus,229,131–156.
Neukum,G.;Ivanov,B.A.;Hartmann,W.K.,2001,CrateringRecordsintheInnerSolarSystemin
RelationtotheLunarReferenceSystem,SpaceScienceReviews,v.96,Issue1/4,p.55-86.
Okubo,C.H.,2007,Strengthanddeformabilityoflight-tonedlayereddepositsobservedbyMER
Opportunity:EagletoErebuscraters,Mars.GeophysicalResearchLetters34,CiteIDL20205.
Palucis,M.,etal.2014,TheoriginandevolutionofthePeaceVallisfansystemthatdrainstothe
Curiositylandingarea,GaleCrater,Mars,J.Geophys.Res.Planets.,119,Issue4,pp.705-728
Peters,K.E.,etal.(eds.),2005,Thebiomarkerguide:volume2,CambridgeUniversityPress.
Pilorget,C.,&F.Forget,2016,FormationofgulliesonMarsbydebrisflowstriggeredbyCO2
sublimation,NatureGeoscience9,65-69.
Robbins,StuartJ.,2014,Newcratercalibrationsforthelunarcrater-agechronology,Earthand
PlanetaryScienceLetters,Volume403,p.188-198.
Siebach,K.L.,M.B.Baker,J.P.Grotzinger,S.M.McLennan,R.Gellert,L.M.Thompson,J.A.Hurowitz,
2017,SortingoutCompositionalTrendsinSedimentaryRocksoftheBradburyGroup(AeolusPalus),
GaleCrater,Mars,J.Geophys.Res.Planets,DOI:10.1002/2016JE005195
Stopar,J.D.,G.J.Taylor,V.E.Hamilton,L.Browning(2006)Kineticmodelofolivinedissolutionand
extentofaqueousalterationonMars,GCA,70,p.6136-6152
Summons,R.E.,etal.,2011.PreservationofMartianorganicandenvironmentalrecords:finalreport
oftheMarsBiosignatureWorkingGroup.Astrobiology11,157–181
Tewksbury,B.J.;Hogan,J.P.;Kattenhorn,S.A.;Mehrtens,C.J.;Tarabees,E.A.,2014,Polygonalfaults
inchalk:InsightsfromextensiveexposuresoftheKhomanFormation,WesternDesert,Egypt
Geology,vol.42,issue6,pp.479-482.
Warner,N.H.;Gupta,S.;Calef,F.;Grindrod,P.;Boll,N.;Goddard,K.,2015,Minimumeffectiveareafor
highresolutioncratercountingofmartianterrains,Icarus,Volume245,p.198-240.
Watters,W.A.,Geiger,L.M.,Fendrock,M.,Gibson,R.,2015.Morphometryofsmallrecentimpact
cratersonMars:sizeandterraindependence,short-termmodification.J.Geophys.Res.(Planets)120,
226–254.
Williams,RebeccaM.E.;Malin,MichaelC.,2008,Sub-kilometerfansinMojaveCrater,Mars,Icarus,
198,365-383.
13
Williams,R.M.E.,DeanneRogers,A.,Chojnacki,M.,Boyce,J.,Seelos,K.D.,Hardgrove,C.,Chuang,F.,
2011.EvidenceforepisodicalluvialfanformationinfarwesternTerraTyrrhena,Mars,Icarus211
(1),222–237.
Williams,R.M.E.etal.,2013,MartianFluvialConglomeratesatGaleCrater,Science,Volume340,
Issue6136,pp.1068-1072.
Williams,R.M.E.,Weitz,C.M.,2014.Reconstructingtheaqueoushistorywithinthesouthwestern
MelasBasin,Mars:cluesfromstratigraphicandmorphometricanalysesoffans.Icarus242,19–37.
Wilson,S.A.;Grant,J.A.;Howard,A.D.,2012,DistributionofIntracraterAlluvialFansandDeltaic
DepositsintheSouthernHighlandsofMars,43rdLunar&Planet.Sci.Conf.,abstractid.2462.
Wilson,S.A.;Howard,A.D.;Moore,J.M.;Grant,J.A.,2016,Acold-wetmiddle-latitudeenvironmenton
MarsduringtheHesperian-Amazoniantransition:EvidencefromnorthernArabiavalleysand
paleolakes,J.Geophys.Res.:Planets,121,1667-1694.
14