Persistent or repeated surface habitability on Mars during the Late Hesperian - Amazonian EdwinS.Kite1,*,JonathanSneed1,DavidP.Mayer1,SharonA.Wilson2 1.UniversityofChicago(*[email protected]) 2.SmithsonianInstitution. Abstract. LargealluvialfandepositsonMarsrecordthemostrecentundisputedhabitablewindowof surfaceconditions(≲3.5Ga,LateHesperian–Amazonian).Wefindnetsedimentationrate <(4-8)μm/yrinthealluvial-fandeposits,usingthefrequencyofcratersthatareinterbedded withalluvial-fandeposits.Consideringonlytheobservedinterbeddedcraterssetsalower boundof>20Myronthetotaltimeintervalspannedbyalluvial-fanaggradation,>103-fold longerthanpreviouslowerlimits.Amorerealisticapproachthatcorrectsforcratersfully entombedinthefandepositsraisesthelowerboundto>(100-300)Myr.Severalfactorsnot includedinourcalculationswouldfurtherincreasethelowerbound.Thelowerboundrules outfan-formationbyabriefclimateanomaly.Therefore,duringtheLateHesperian– AmazonianonMars,persistentorrepeatedprocessespermittedhabitablesurface conditions. 1.Introduction. LargealluvialfansonMarsrecordoneormoreriver-supportingclimateson≲3.5GaMars (e.g.Moore&Howard2005,Grant&Wilson2012,Kiteetal.2015,Williamsetal.2013)(Fig. 1).Thisclimatepermittedprecipitation-sourcedrunoffproductionof>0.1mm/hrthatfed riverswithdischargeupto102m3/s(Palucisetal.2014,Morganetal.2014).Thelarge alluvialfanscorrespondtotheyoungest(Grant&Wilson2011)unambiguousevidencefor Marssurfacehabitability.Althoughsmall(<10km2)alluvialfanswith>10°slopesformed<5 MyaonMars,theseneednotrecordahabitableenvironment(e.g.Williams&Malin2008), andmightnotbetheresultofliquidwater(Pilorget&Forget2016).Bycontrast,large(>10 km2)alluvialfanswith≲2°slopesformedfromaqueousflows(Williamsetal.2013),and thesefansaremoredeeplyerodedandmorecratered,sotheyareolder.Inthispaperwe focusonthelargealluvialfans.Didtheyresultfromasingleanomalousburstofwet conditions,suchasmightresultfromanimpact(Williams&Malin2008)orvolcanic eruption?Or,dothefansrecordpersistentorrepeatedwetconditions,forexampleasthe resultofasustainedwarmerclimateregime?Betterconstraintsonthetimespanofalluvial fanformationwouldconstrainmodelsofLateHesperian–Amazonianclimate. Previousworkonthedurationoftheintervaloffanbuild-upusedsedimentologytoestimate thetimeoverwhichsedimenttransportoccurred(e.g.,Armitage2011,Williamsetal.2011, Palucisetal.2014).Thesesedimentologicmethodsrequireassumptionsaboutflow intermittencyorsediment:waterratio,which(foralmostallMarsalluvialfans)arepoorly constrained.Therefore,thelowerlimitsobtainedfromsedimentologicalmethodsareshort– 1 forexample,~3600years(Morganetal.2014).Moreover,brief(1-100yr)aggradation intervalshavebeenproposedfordeltasonMarsthataresimilartothealluvialfansinage andvolume(Kleinhansetal.2010,Hauberetal.2013).Anotherapproachtoestimatingthe intervalofalluvial-fanbuild-upistomeasurethedensityofcraterssuperimposedon differentfans,andusethespreadofcrater-retentionagesforthefansurfacesasaproxyfor therangeoffan-formationages.Thismethodisnotreliable,becausecrater-retentionages forareas<103km2arenotreliable(Warneretal.2015).Therefore,thetimespanof habitableclimatesintheLateHesperian-Amazonianremainsanopenquestion. Figure1.LargealluvialfansonMars(28°S333°E).The≲3.5Gaageofthefansisshownby theirlowcraterdensity.Aeolianerosionexposeslayersandchannelswithinthedeposit. 2 A: B: Figure2.Idealizedcross-sectionthroughanalluvialfandeposit.Craterdensitywithin alluvialfansmaybeestimatedusingthefrequencyofvisibleinterbeddedcratersatthe exposedsurface.CaseA:Ifpostfluvialerosionwasmodest,somecratersthatformedlatein thehistoryofalluvial-fanaggradation(filledsemicircles)areonlypartiallyburiedandare visibletoday(thoughoutnumberedbypostfluvialcraters;outlines).CaseB:Ifpostfluvial erosionwassevere,thearealdensityofexposedembeddedcratersofagivendiameteris stillproportionaltothevolumetricdensityofthosecraters.Ineithercase,assumingsteady aggradation,acountofinterbeddedcratersconstrainsthefanaggradationrate. Togetamoreaccurateestimateoftheintervaloverwhichalluvialfansformed,weusedthe embedded-cratermethod(Hartmann1974,Kiteetal.2013a).Thismethodworksasfollows. Craterdensityonaquiescentplanetarysurfaceisproportionaltoexposureduration.This methodmaybeextendedtothreedimensions:thetotalnumberofcratersinterbedded withinasedimentarydepositisproportionaltothetimespannedbyactivesedimentation (includinganyhiatuses)(Fig.2).Thegreaterthevolumetricdensityofcraters,thelongerthe timespanofdeposition.Ofcourse,manyormostoftheinterbeddedcratersmaybe 3 completelyburied(Fig.2);thereforeacompletecountofinterbeddedcratersisusually impossible.However,ifanimpactoccursneartheendofactivesedimentation,thenthe correspondingcratermaybeonlypartiallyburied.Smallercratersaremorereadilyburied, andlargercratersrequiremoresedimenttobecompletelyobscured.Thetimeneededto accumulatethepopulationofvisiblyembedded(synfluvial)cratersis τraw,D=ND/(fDa) [1] whereDistheminimumcraterdiameterofinteresttobeconsidered,τraw,Distheminimum timerequiredtobuilduptheobservedembedded-craterpopulation,NDisthenumberof observedembeddedcraters,fDisthepastcraterflux(#/km2/yr),andaisthecountarea (km2).Prefluvialcraters(whichareoverlainbyalluvialfandeposits,butthatformedbefore thestartoffluvialdeposition;Irwinetal.2015)areexcluded.Thisproceduregivesastrict lowerlimitontheintervaloffanformation;itdoesnotaccountforcratersthatarefully entombedwithinthedeposit.Tocorrectforfullyentombedcraters,wecanassumesteady aggradationanddividefanthicknessZbybest-fitaggradationrateWtogetdurationoffan formationτsteady: WD≈1.33Dφ/τD [2] τsteady,D=Z/WD [3] Thenumeratorin[2]correspondstotherequiredburialdepthforobliteration.Theamount ofburialthatisrequiredisconstrainedbythegeometryofsmallimpactcraters(Melosh 1989,Wattersetal.2015).φistheobliterationdepthfractionforagivencrater,expressed relativetocraterdiameter.(Inthispaper,wedefineacrateras“obliterated”ifitcanno longerbeidentifiedinahigh-resolutionopticalimage;Kite&Mayer2016).Thefactorof 1.33correctsforthefactthat,foranyminimum-diameterD,themediandiameterinacount willexceedD–thus,Dφisanunderestimateoftherequiredburialdepth.Thiscorrection dependsonthecraterproductionfunctionused.Thecorrectionisrelativelysmall(1.3×– 1.5×)inoursizerangeofinterest,becausecraterfrequencyfallsoffsteeplywithincreasing diameter,andwerepresentitbyafixedfactor.Post-depositionalerosionofalluvialfan depositsdoesnotaffectthisprocedure.Arandomlyorientedcutthroughthecratercontainingvolumeintersectseachcraterwithaprobabilityproportionaltothatcrater’ssize; thesampleofcraterspartiallyexhumedatanerosionalsurfaceisbiasedtowardslarger impacts.Justaswithpartialburial,thenumberofcratersthatareexposedisproportionalto thevolumetriccraterdensity(andinverselyproportionaltoaggradationrate).Thus,the volumetricdensityofinterbeddedcratersmaybeestimatedfromsurfacecountsbothon pristinefansurfacesandforfansthataredeeplyeroded(Kiteetal.2013a).Therefore, embedded-cratercountscanbeusedasaMarsfluvialprocessspeedometer. 2.Methodsandresults. Inordertosetalowerboundonthetimespanofalluvial-fanformation,wesearched1.7× 104km2ofpreviously-cataloguedfans(correspondingtomostofthesurfaceareaoflarge alluvialfansonMars;Wilsonetal.2012)using6m-per-pixelCTXimagestoscoutfor candidateembeddedcraters.Candidatecratersshowpossibleevidenceofinterbeddingwith 4 paleochannelsorotherfandeposits.Eachcandidatefeaturewasreviewedbythreeofthe authors(E.S.K,D.P.M.,andJ.S.)forfinalclassification.Whereavailable,25cm-per-pixel HiRISEimagesandanaglyphs,plusCTXDigitalTerrainModels(DTMs)wereusedtoinspect candidatesflaggedintheinitialCTXsurvey.HiRISEanaglyphsprovedparticularlyvaluable fordetectingcraterrims.Eachcandidatefeaturewascategorizedasqualitylevel1,2,3 (representingdecreasingconfidencethatthecraterwasembedded),oritwasdiscarded.A totalof25embeddedcraterswerefoundat<30°latitude(D=0.08-5.0km;Fig.3, SupplementaryInformation).Theseembeddedcraterswerethenclassified(usuallywiththe aidof24-m-per-pixelCTXDTMs)as“synfluvial,”“uncertain”,or“prefluvial.”Thesecraters constituteatinyfractionofthetotalnumberofcratersonthesurfacesofthefans(Grant& Wilson2012). Figure3.EmbeddedcraterswithinalluvialfansonMarsfromourcatalog(Supplementary Information). AsupplementaryHiRISE-onlysurvey(570km2)wascarriedouttocheckforresolution effects.13embeddedcraterswerefound(D=0.05–0.22km;SupplementaryInformation). HiRISEembedded-craterdensitiesND/aforD<0.2kmarethesame(withinPoissonerror)as CTXembedded-craterdensitiesforD>0.2km.Therefore,theHiRISEcheckprovidesno evidencethatourconclusionswouldbechangedbyaHiRISEre-surveyofthe1.7×104km2 areacoveredbyourCTXsurvey. Diametermeasurementerrorwasestimatedbyblindlyremeasuringcratersandfoundtobe negligiblecomparedtoothererrors.Possiblecratershrinkageorexpansionduring degradationisignored. Thecontributionoffalsepositivestoourcatalogislikelysmall.Althoughpolygonalfaulting inEarthmarinesedimentscanproducecrater-likeconcentriclayering(Tewkseburyetal. 2014),thisisunlikelyforMarsalluvial-fandeposits.Forexample,theembeddedcratersare isolated(notspace-filling),andfrequentlyshowpreservedrims.Ontheotherhand,there arecertainlyfalsenegativesinoursurveyarea:re-surveyofacraterofinterestfound severaladditionalcandidateswithscores≤3onpanelinspection.Therefore,ourcrater densitiesarelowerlimits. WeestimatedalluvialfanthicknessesbydifferencingCTXDTMprofilesacrossfansand analogousprofilesacrosspartsofthesamefan-hostingcraters(n=13)thatlackedfans.We foundmaximumfanthicknessof1.1km,withthicknesses~1kmcommon. 5 3.Analysis. Theusualprocedureforestimatingcrater-countingerroristousePoissonstatistics(Michael etal.2016).Theresultsofthisprocedureareshownbythebluelinesandblueerrorbarsin Fig.4.Togeneratetheseresults,weassumedafixedcraterflux(Michaeletal.2013),no changeinatmosphericscreeningfromtoday’sMars,astrong-rocktargetstrength,anda fixedobliterationdepthfractionφ=0.1. Thetrueerrorislargerthanthisbecauseofuncertaintyin(1)truecraterflux(Johnsonetal. 2016),(2)targetstrength,(3)filteringbyapotentiallythickerpastatmosphere,(4)thetime offormationofthealluvialfans,and(5)theamountofburialorerosion–expressedasa fractionofthecrater’sdiameter–thatisneededtopreventthecraterfrombeingdetectedat CTXresolution.Therefore,weadoptedconservativepriorprobabilitiesonparameters(1)- (5)inaMonteCarlosimulationofourlowerboundthatalsoincludesPoissonerror(details aregivenintheSupplementaryInformation).Specifically,weassumed(1)afactor-of-4 uncertaintyincraterflux(log-uniformuncertaintybetween0.5×and2×theMichaeletal. 2013fluxes);(2)log-uniformuncertaintyintargetstrengthbetweenlimitsof65kPaand10 MPa(Dundasetal.2010);(3)log-uniformuncertaintyinpaleo-atmosphericpressure betweenlimitsof6mbarand1000mbarforasimplemodelofatmosphericfiltering;(4)a uniformuncertaintybetweenfanformation2.0Ga(low-endfancraterretentionage)and3.6 Ga(ageofthelargecraterswhichhostalluvialfans);and(5)alog-uniformpriorfor obliterationdepthfraction(expressedasafractionofcraterdiameter)from0.05(rimburial; Melosh1989)and0.2(originalcraterdepth;Wattersetal.2015).Foreachof103Monte Carlotrials,theeffectofPoissonerroriscalculatedanalytically.Giventheobservationsand therandomly-sampledparameters,eachMonteCarlotrialyieldsananalyticprobabilityfor eachcandidateage(oreachcandidateaggradationrate)ineachsizebin.Theseprobabilities aresummedover103MonteCarlotrialsandnormalized.Resultsareshownbythegray errorbandsandblackstarsinFig.4. Wereportonlylowerlimitsbecausewedonotknowourfalsenegativerate,anditis possiblethatmanyembeddedcratersareeasilyidentifiableasimpactcratersinCTX imagery,buthaveanexpressionthatisindistinguishablefrompostfluvialcratersatCTX scale. Thebest-fitlowerlimit(Fig.4a)increaseswithincreasingdiameter,asexpected.Bins≥1.4 kmcontainonly1crater,andthePoissonuncertaintyconstitutesmostofthetotal uncertaintyinthelowerlimit.Forthesmallerdiameters,thecounting-statisticserroris smallcomparedtothetotaluncertaintyinthelowerlimit,butsystematicundercountingof embeddedcratersismostlikelyforcratersthataresmallerandthusmoreeasilyburiedand modified.Thelargest>1km-diameterbincontains2embeddedcratersandyieldsa2-sigma lowerlimitof>17Myr,whichweroundto>20Myr.Usingthesingle~5kmcraterfoundin oursurveygivesa>54Myrlowerbound. 6 (a) (b) Figure4.(a).Minimumtime-spanofsedimentationbasedonobservedsynfluvialcraters. Blueerrorbarsbracketthe90%confidenceintervalsonlowerlimit(byPoissonestimation). FullMonteCarlofitcorrespondstothegrayband.Blackzoneisexcludedwith>95% confidence.Whitezoneisexcludedin<5%oftrials.Blackasteriskscorrespondtothe medianoutcomeoftheMonteCarloprocedure.Reddashedlinesassumeaconstant aggradationrateandthatburialby10%ofacrater’sdiameterissufficienttoobscurethe craterfromorbiter-imagesurveys.(b)Correspondingaggradationrateestimatesforalluvial fans,binnedbydiameter.Errorbarsarethesameasin(a). 7 Turningtotherateplot(Fig.4b),constantaggradationratesof<(4-8)μm/yearmatchour data.Forsediment:waterratioof10-4,thiscorrespondstorunoffof<(4-8)cm/yr.Different craterdiametersprobedifferentdepthrangesandthusaggradationrateoverdifferent timescales,butourdatadonotprovidestrongevidenceforachangeinaggradationratewith timescale(Jerolmack&Sadler2007).Dividingtypicalfanthicknessesbythisrategives125250Myr,whichweroundto100-300Myr.Forbothplots,theMonteCarloproceduregives limitsthataremoreuncertain(graybandversusblueerrorbarsinFig.4)andslightlymore permissive(blackasterisksversusbluelinesinFig.4). The>(100-300)Myrageestimatefromsteadyaggradation(Fig.4b)isamorerealistic estimateofthetruefan-formingintervalthanthe>20Myrtimespanfromobserved synfluvialcraters(Fig.4a).Thatisbecause,iftheobservedembeddedcratersrepresentthe totalembedded-craterpopulation,thenfanaggradationmusthavestartedveryfastand decreasedsharplyneartheendoffanbuild-up.Suchanaccumulationhistorywouldfavor small-craterpreservationrelativetolarge-craterpreservation–theoppositeofwhatis observed.Furthermore,afterfluvialdepositionstopped,manyofthealluvialfandeposits wereerodedbyaeolianprocesses(e.g.Fig.1).Becausepostfluvialerosionwoulddestroy someembeddedcraters,theobservedembeddedcratersareveryunlikelytorepresentthe totalpopulationofcratersthatformedembeddedwithinthealluvialfans. Resultsareplottedexcludingcratersforwhichsynfluvialversusprefluvialstatuscouldnot bedetermined,butincludingcratersofqualityscore3.Thesechoiceshavelittleeffectonour conclusions.Thatisbecausethequality-3embeddedcraters,andthecraterswhose synfluvialstatusisuncertain,correspondtosmalldiameterbinsforwhichourcountsare probablyincomplete. 4.Discussion. 4.1.Factorsnottakenintoaccountwouldincreaseourlowerlimit. Byfittingasingletime-span(andseparatelyfittingasingleerosionrate)tothefandeposits, weimplicitlyassumethattheprobabilityoffindinganembeddedcraterisspatiallyuniform. However,theobservedspatialdistributionofembeddedcratersistooclumpytobe consistentwithaspatiallyuniformprobability.Forexample,onesite(Crater“W”;Kraaletal. 2008)has20%oftheembeddedcraters(5outof25)eventhoughthefanareaatthatsiteis only500km2,3%ofthetotal.Thisclusterisunlikelytobeduetochance(assuming crateringisaPoissonprocess):ifthefanareaisdividedinto(17000km2)/(500km2)=34 equal-areasites,thentheexpectednumberofcraterspersiteisλ=25/34=0.73.The probabilityoffinding5ormoreembeddedcratersinatleastonesiteisthenonly 1–(1–Σx=5∞f(x|0.73))34=3%,wherefisthePoissonprobabilitydistributionfunction.To beconsistentwithdataatthe50%level,wemustincreaseλ(equivalently,fanage)by200%. Thismightcorrespondtouniformfanagewithspatiallynon-uniformdetectabilityof embeddedcraters.AlternativelyCrater“W”mightrecordanomalouslyslowaggradation.In eithercase,ourbestestimateofthetimespanoffan-formingclimatesis200%longerthanin ourlowerlimit. 8 Spatialstaggeringoffanaggradationwouldincreaseourlowerlimit.Time-varyingorbital forcingwouldfavorsnowmelt(e.g.Kiteetal.2013b)indifferentplacesatdifferenttimes. Localizedprecipitationwouldnotbegloballycorrelated(Williams&Malin2008,Kiteetal. 2011). Ifthealluvialfandepositsunderwenterosionduringtheperiodofnetaggradation,thenthis woulddestroysomeembeddedcraters.Therefore,iferosionoccurredduringfan aggradation,ourupperlimitwouldincreasefurther. MarscraterfluxesareextrapolatedfromLunarradiogenicagesandcorrespondingcrater densities.Thosecraterdensitieshavebeenarguedtobeincorrect(Robbins2014).We comparedRobbins’chronologyfunctiontotheNeukum(2001)chronologyfunctionatDmin= 1km.Anagerangeof2.0–3.6Gyr(Neukum)mapsto1.4–3.0Ga(Robbins).Theflux uncertaintyisreducedfrom(1-12)×modern(Neukum)to(1.5–2.2)×modern(Robbins). BecausehighaggradationratesinourMonteCarlorunsalwayscorrespondtohighcrater fluxes,includingRobbins’chronologywouldcauseourerrorbarstoshrinkandthusraise ourlowerlimit. 4.2.Implicationsforpaleohydrologyandclimate. D<100membeddedcratersplaceanupperlimitonpaleoatmosphericpressure(Kiteetal. 2014).SinceD<50mimpactcratersareextremelyrareonEarth(atmosphericcolumn density104kg/m3),theexistenceofD<100membeddedcratersinthealluvialfansonMars suggestsatmosphericcolumndensity<2×104kg/m3,i.e.P<1bararoundthetimeofalluvial fanaggradation. Previousanalysesoftheintervaloverwhichalluvialfansformedhavedividedfanvolumeby theinferredfluvialsedimenttransportflux(e.g.Jerolmacketal.2004).Thisdurationisa lowerboundontheintervaloverwhichalluvialfansformed,becausenotallyearsneed producerunoff.Ourlowerboundexceedssedimentologicallowerboundsby>1000×.Many alluvialfansare~1kmthick.Supposeafan:alcovearearatioof0.5.Typicalwater:sediment ratiosonEarthare103:1.2000kmofwaterat0.5msnowmelt/yeargives4Myr.However thesecalculationsarehighlyuncertain.Forexample,iftheamountofsnowmeltislimitedby asnowsupplyrateof10cm/yr,thenthetimerequiredrisesto20Myr,equaltoourstrict lowerlimitonthetotaltimespanofalluvialfanformation.Thereforeourdatadonotrequire intermittency.However,givenquasi-periodicorbitalvariability,fine-tuningofMars’ hydrologicalcycleisrequiredtoproducesmallamountsofrunoffeveryyear,especiallyfor ourpreferredlowerlimitof>(100-300)Myr.Broadly,theveryslownetaggradationratesin areasofsteeprelief(Fig.1)suggestintermittency. Intermittencyinalluvial-fan-formingclimateisfurthersuggestedbycombiningourdata withotherconstraints.Thepaucityofmineralogicevidenceforin-situalterationoffan deposits(McKeownetal.2013),thepresenceofhydratedsilica(possiblyopal;Carteretal. 2012),andthepersistenceofolivinewhichdissolvesat0°CandpH=5.5in<5Myr(Stopar etal.2006),whencombinedwiththe>20Myrspanofsurfaceliquidwaterrequiredbyour 9 data,suggestthatclimateconditionswerecoldandthatintermittencyfurtherreducedliquid waterinteractionwithsoil.Coldconditionsarealsosuggestedbysedimentary-deposit mineralogyatGale(McLennanetal.2014,Siebachetal.2017).Intermittencyisalso suggestedbymultiplepulsesoffanformationatHolden(Irwinetal.2008),Gale(Paluciset al.2016),andMelasChasma(Williams&Weitz2014). Insummary,thedataexcludeanyexplanationthatproducesasingleburstofhabitabilityof <20Myrduration.Forexample,thedataexclude triggeringbythethermalpulsecausedby theimpactsthatformedthelargecraterswhichhostthealluvialfans.Thedatadisfavor fluvialsedimenttransporteveryyearfor>20Myr. Amongotherpossibilities,thedatapermit a long-livedhabitableenvironment(snowmeltorrainfall);achaostrigger(Bakeretal. 1991);orobliquity-pacedfluvialintermittency(Kiteetal.2013b). Figure5.GeomorphichistoryofMars(Howard2007,Fassett&Head2011).FSV=Fresh ShallowValleys(Wilsonetal.2016).RSL=RecurringSlopeLineae,FSV=FreshShallow Valleys.“*”symboldenotesquestionablestatusofgullies,whicharemodifiedbyCO2ice.PrevalleynetworkfluvialsedimenttransportisfromIrwinetal.(2013). 4.3.Implicationsforhabitability. Thetimespanofaggradationofthealluvialfandepositsthatwehavecalculatedisaproxy forthetimespanofspatiallyassociatedpaleolakes.Thosepaleolakesincludecandidate playadepositsatthetoesofalluvialfans(e.g.Morganetal.2014),a>100mdeeppaleolake inCrater“P”(Kraaletal.2008)suggestedbyacommonfan-frontal-scarpelevationof-2700 m(inourCTXDTMs),andtheEberswaldepaleolake(whichsharesadrainagedividewith alluvialfansatHolden;Irwinetal.2015).Inaddition,riversandlakesoccurredduringthe LateHesperian-AmazonianinVallesMarineris(e.g.Mangoldetal.2004,Williams&Weitz 2014)andArabiaTerra(Wilsonetal.2016).Lakedepositshavegoodbiosignaturerecovery potential(Summonsetal.2011),andbiosignaturerecoveryfromProterozoiclakedeposits 10 isroutine(Petersetal.2005).Ontheotherhand,biosignatureswouldhavebeendestroyed iflakewaterswereoxidizing. 5.Conclusions. ExplainingyoungalluvialfansonMarsisachallengetoclimatemodels.Todeterminethe timespanofalluvialfanformingconditions,wecountedembeddedcraters.Wefoundahigh densityofembeddedcraters,whichrequiresthattheriver-permittingclimate(s)spanned >20Myr.Ifaggradationwassteadyat<(4-8)μm/yr,whichisconsistentwithourdata,then fanbuild-uprequired>(100-300)Myr(Table1). Thedatamakethechallengeofexplaining thealluvialfansmoresevere,becausetheyexcludeasingleshort-livedanomalyasthecause ofthealluvialfans. Acknowledgements. WethankAlanHoward,MarisaPalucis,BeckyWilliams,RossIrwin,Jean-PierreWilliams,Bill Dietrich,andBrianHynek. References. Armitage,JohnJ.,Warner,NicholasH.,Goddard,Kate,Gupta,Sanjeev,2011.Timescalesofalluvialfan developmentbyprecipitationonMars.Geophys.Res.Lett.38(17).CiteIDL17203. Baker,V.R.,Strom,R.G.,Gulick,V.C.,Kargel,J.S.,Komatsu,G.1991.Ancientoceans,icesheetsandthe hydrologicalcycleonMars.Nature352,589-594. Carter,J.,etal.,2012.CompositionofDeltasandAlluvialFansonMars.In:43rdLunarandPlanetary ScienceConference.March19–23,2012,Woodlands,TX.LPIContributionNo.1659,id.1978. Dundas,C.M.,Keszthelyi,L.P.,Bray,V.J.&McEwen,A.S.Roleofmaterialpropertiesinthecratering recordofyoungplaty-ridgedlavaonMars.Geophys.Res.Lett.37,L12203(2010). C.I.FassettandJ.W.Head,2011,SequenceandtimingofconditionsonearlyMars.Icarus,211, 1204-1214. Grant,J.A.,Wilson,S.A.,2011.LatealluvialfanformationinsouthernMargaritiferTerra,Mars. Geophys.Res.Lett.38(8).CiteIDL08201. Grant,J.A.,Wilson,S.A.,2012,Apossiblesynopticsourceofwaterforalluvialfanformationin southernMargaritiferTerra,Mars,Planetary&SpaceScience Grindrod,P.M.;Heap,M.J.;Fortes,A.D.;Meredith,P.G.;Wood,I.G.;Trippetta,F.;Sammonds,P.R.2010, Experimentalinvestigationofthemechanicalpropertiesofsyntheticmagnesiumsulfatehydrates: ImplicationsforthestrengthofhydrateddepositsonMars,J.Geophys.Res.115,CiteIDE06012. Hartmann,W.K.,1974,GeologicalobservationsofMartianarroyos.,J.Geophys.Res.79,3951–3957. Hartmann,W.K.,2005.Martiancratering8:isochronrefinementandthechronologyofMars.Icarus 174,294–320. 11 Hauber,E.;Platz,T.;Reiss,D.;LeDeit,L.;Kleinhans,M.G.;Marra,W.A.;Haas,T.;Carbonneau,P., 2013,AsynchronousformationofHesperianandAmazonian-ageddeltasonMarsandimplications forclimate,J.Geophys.Res.:Planets,118,pp.1529-1544. Howard,A.D.,2007.SimulatingthedevelopmentofMartianhighlandlandscapesthroughthe interactionofimpactcratering,fluvialerosion,andvariablehydrologicforcing.Geomorphology91, 332–363. Irwin,R.P.;Grant,J.A.;Howard,A.D.,2008,TheAlluvialFanComplexinHoldenCrater:Implications fortheEnvironmentofEarlyMars,39thLunarandPlanetaryScienceConference,abstractid.1869 Irwin,R.P.,Lewis,K.W.,Howard,A.D.,Grant,J.A.,2015.PaleohydrologyofEberswaldecrater,Mars. Geomorphology.http://dx.doi.org/10.1016/j.geomorph.2014.10.012. Jerolmack,DouglasJ.;Mohrig,David;Zuber,MariaT.;Byrne,Shane,2004,Aminimumtimeforthe formationofHoldenNortheastfan,Mars,GeophysicalResearchLetters,31,CiteIDL21701. Jerolmack,D.J.,Sadler,P.,2007.Transienceandpersistenceinthedepositionalrecordofcontinental margins.J.Geophys.Res.(EarthSurface)112,F03S13. Kite,E.S.,Michaels,T.I.,Rafkin,S.C.R.,Manga,M.,&W.E.Dietrich,2011.Localizedprecipitationand runoffonMars,J.Geophys.Res.Planets,116,E07002. Kite,E.S.,Lucas,A.,Fassett,C.I.,2013a.PacingearlyMarsriveractivity:embeddedcratersinthe AeolisDorsaregionimplyriveractivityspanned>∼(1-20)Myr.Icarus225,850–855. Kite,E.S.,I.Halevy,M.A.Kahre,M.Manga,andM.Wolff,2013b,Seasonalmeltingandtheformation ofsedimentaryrocksonMars,Icarus,223,181–210 Kite,E.S.,Williams,J.-P.,Lucas,A.,Aharonson,O.,2014.Lowpalaeopressureofthemartian atmosphereestimatedfromthesizedistributionofancientcraters.Nat.Geosci.7,335–339. Kite,E.S.,Howard,A.,Lucas,A.S.,Armstrong,J.C.,Aharonson,O.,Lamb,M.P.,2015.Stratigraphyof AeolisDorsa,Mars:stratigaphiccontextofthegreatriverdeposits.Icarus253,223-242. Kite,E.S.;Mayer,D.P.,2016,Marssedimentaryrockerosionratesconstrainedusingcratercounts, withapplicationstoorganicmatterpreservationandtotheglobaldustcycle,arXiv:1610.02748(in pressatIcarus) Kleinhans,M.G.,vandeKasteele,H.E.,Hauber,E.,2010.Palaeoflowreconstructionfromfandelta morphologyonMars.EarthPlanet.Sci.Lett.294,378–392. Kraal,E.R.,etal.,2008,Catalogueoflargealluvialfansinmartianimpactcraters,Icarus,194,101110. Mangold,N.,etal.,2004.EvidenceforprecipitationonMarsfromdendriticvalleysintheValles MarinerisArea.Science305,78–81. McLennan,S.M.,etal.,2014.ElementalgeochemistryofsedimentaryrocksatYellowknifeBay,Gale Crater,Mars.Science343(6169).http://dx.doi.org/10.1126/science.1244734 Melosh,H.J.,1989.Impactcratering:ageologicprocess.In:ResearchsupportedbyNASA,253.Oxford UniversityPress,NewYork,p.11.(OxfordMonographsonGeologyandGeophysics,No.11),1989. 12 Johnson,B.C.;Collins,G.S.;Minton,D.A.;Bowling,T.J.;Simonson,B.M.;etal.2016,Spherulelayers, craterscalinglaws,andthepopulationofancientterrestrialimpactors,Icarus,271,350-359. Michael,G.G.;Kneissl,T.;Neesemann,A.,2016,Planetarysurfacedatingfromcratersize-frequency distributionmeasurements:Poissontiminganalysis,Icarus,277,279-285. Moore,J.M.,&Howard,A.D.,2005,LargealluvialfansonMars,J.Geophys.Res.,110,E4,E04005. Michael,G.G.,2013.Planetarysurfacedatingfromcratersize-frequencydistributionmeasurements: multipleresurfacingepisodesanddifferentialisochronfitting.Icarus,226,885–890. Morgan,A.M.,etal.,2014.Sedimentologyandclimaticenvironmentofalluvialfansinthemartian SahekicraterandacomparisonwithterrestrialfansintheAtacamaDesert.Icarus,229,131–156. Neukum,G.;Ivanov,B.A.;Hartmann,W.K.,2001,CrateringRecordsintheInnerSolarSystemin RelationtotheLunarReferenceSystem,SpaceScienceReviews,v.96,Issue1/4,p.55-86. Okubo,C.H.,2007,Strengthanddeformabilityoflight-tonedlayereddepositsobservedbyMER Opportunity:EagletoErebuscraters,Mars.GeophysicalResearchLetters34,CiteIDL20205. Palucis,M.,etal.2014,TheoriginandevolutionofthePeaceVallisfansystemthatdrainstothe Curiositylandingarea,GaleCrater,Mars,J.Geophys.Res.Planets.,119,Issue4,pp.705-728 Peters,K.E.,etal.(eds.),2005,Thebiomarkerguide:volume2,CambridgeUniversityPress. Pilorget,C.,&F.Forget,2016,FormationofgulliesonMarsbydebrisflowstriggeredbyCO2 sublimation,NatureGeoscience9,65-69. Robbins,StuartJ.,2014,Newcratercalibrationsforthelunarcrater-agechronology,Earthand PlanetaryScienceLetters,Volume403,p.188-198. Siebach,K.L.,M.B.Baker,J.P.Grotzinger,S.M.McLennan,R.Gellert,L.M.Thompson,J.A.Hurowitz, 2017,SortingoutCompositionalTrendsinSedimentaryRocksoftheBradburyGroup(AeolusPalus), GaleCrater,Mars,J.Geophys.Res.Planets,DOI:10.1002/2016JE005195 Stopar,J.D.,G.J.Taylor,V.E.Hamilton,L.Browning(2006)Kineticmodelofolivinedissolutionand extentofaqueousalterationonMars,GCA,70,p.6136-6152 Summons,R.E.,etal.,2011.PreservationofMartianorganicandenvironmentalrecords:finalreport oftheMarsBiosignatureWorkingGroup.Astrobiology11,157–181 Tewksbury,B.J.;Hogan,J.P.;Kattenhorn,S.A.;Mehrtens,C.J.;Tarabees,E.A.,2014,Polygonalfaults inchalk:InsightsfromextensiveexposuresoftheKhomanFormation,WesternDesert,Egypt Geology,vol.42,issue6,pp.479-482. Warner,N.H.;Gupta,S.;Calef,F.;Grindrod,P.;Boll,N.;Goddard,K.,2015,Minimumeffectiveareafor highresolutioncratercountingofmartianterrains,Icarus,Volume245,p.198-240. Watters,W.A.,Geiger,L.M.,Fendrock,M.,Gibson,R.,2015.Morphometryofsmallrecentimpact cratersonMars:sizeandterraindependence,short-termmodification.J.Geophys.Res.(Planets)120, 226–254. Williams,RebeccaM.E.;Malin,MichaelC.,2008,Sub-kilometerfansinMojaveCrater,Mars,Icarus, 198,365-383. 13 Williams,R.M.E.,DeanneRogers,A.,Chojnacki,M.,Boyce,J.,Seelos,K.D.,Hardgrove,C.,Chuang,F., 2011.EvidenceforepisodicalluvialfanformationinfarwesternTerraTyrrhena,Mars,Icarus211 (1),222–237. Williams,R.M.E.etal.,2013,MartianFluvialConglomeratesatGaleCrater,Science,Volume340, Issue6136,pp.1068-1072. Williams,R.M.E.,Weitz,C.M.,2014.Reconstructingtheaqueoushistorywithinthesouthwestern MelasBasin,Mars:cluesfromstratigraphicandmorphometricanalysesoffans.Icarus242,19–37. Wilson,S.A.;Grant,J.A.;Howard,A.D.,2012,DistributionofIntracraterAlluvialFansandDeltaic DepositsintheSouthernHighlandsofMars,43rdLunar&Planet.Sci.Conf.,abstractid.2462. Wilson,S.A.;Howard,A.D.;Moore,J.M.;Grant,J.A.,2016,Acold-wetmiddle-latitudeenvironmenton MarsduringtheHesperian-Amazoniantransition:EvidencefromnorthernArabiavalleysand paleolakes,J.Geophys.Res.:Planets,121,1667-1694. 14
© Copyright 2026 Paperzz