Evaluation of 660 nm LED light irradiation on the

Original Article
Lasers in Medical Science
August 2016, Volume 31, Issue 6, pp 1113-1121
First online: 16 May 2016
Evaluation of 660 nm LED light irradiation on the
strategies for treating experimental periodontal
intrabony defects
Chih-Yun Tao
, Ning Lee
, Hao-Chieh Chang
, Connie Yang
, Xin-Hong Yu
, Po-Chun Chang
Abstract
This study aims to investigate the therapeutic value of 660 nm light-emitting diode (LED) light irradiation on the
strategies for treating experimental periodontal intrabony defects in vivo. Large-sized periodontal intrabony defects were
created bilaterally on the mesial aspect of the maxillary second molars of 48 Sprague–Dawley rats, and the rats were
equally divided into four treatment groups with primary wound intention (n = 6/treatment/time point), including open
flap debridement alone (OD), barrier membrane alone (MB), xenograft alone (BG), and xenograft plus barrier membrane
(MG). Each group received daily 0 or 10 J/cm2 LED light irradiation. The animals were sacrificed after 1 or 4 weeks. The
treatment outcome was evaluated by gross observation of wound dehiscence and healing, micro-CT imaging for
osteogenesis, and histological assessments for inflammatory cell infiltration and periodontal reattachment. With LED light
irradiation, the extent of wound dehiscence was reduced, wound closure was accelerated, epithelial downgrowth was
prevented, inflammation was reduced, and periodontal reattachment was promoted in all treatment strategies. Significant
reduction of inflammation with LED light irradiation was noted at 1 week in the groups BG and MG (p < 0.05).
Osteogenesis was significantly promoted only in the group OD at both time points (p < 0.05). Our study showed that
660 nm LED light accelerates mucoperiosteal flap healing and periodontal reattachment. However, the enhancement of
osteogenesis appeared to be limited while simultaneously treating with a barrier membrane or xenograft.
Keywords
Low level laser therapy Guided tissue regeneration Wound healing Osteogenesis
Electronic supplementary material
The online version of this article (doi:10.​1007/​s10103-016-1958-z) contains supplementary material, which is available to
authorized users.
Concepts found in this article
Periodontal Intrabony Defect
Denude Root Surface
Barrier Membrane
What is this?
Periodontal Soft Tissue
Guide Tissue Regeneration
Fiber
Collagen Fibril
Inflammatory Cell Infiltration
Epithelial Downgrowth
Light Irradiation
Periodontal Therapy
Bone Substitute Material
Periodontal Ligament
Human Periodontitis
Related articles containing similar concepts (313 articles)
Evaluation of simulated periodontal defects via
various radiographic methods
Zengin, A. · Sumer, P., et al. in Clinical Oral Investigations
(2015)
Treatment of periodontal intrabony defects using
autologous periodontal ligament stem cells: a
randomized clinical trial
Chen, F. · Gao, L., et al. in Stem Cell Research & Therapy
(2016)
Comparative study of DFDBA in combination with
enamel matrix derivative versus DFDBA alone for
treatment of periodontal intrabony defects at 12
months post-surgery
Aspriello, S., et al. in Clinical Oral Investigations (2010)
Clinical and microbiological changes after minimally
invasive therapeutic approaches in intrabony
defects: a 12-month follow-up
Ribeiro, F. · Casarin, R., et al. in Clinical Oral Investigations
(2012)
Connective tissue graft as a biological barrier for
guided tissue regeneration in intrabony defects: a
histological study in dogs
Ribeiro, F. · Pontes, A., et al. in Clinical Oral Investigations
(2014)
Page
1
of 14
blah10103_2016_1958_MOESM1_ESM.jpg (1654313)
Fig. S1 The thickness of gingiva of the edentulous ridge is generally less than 1.0 mm. Scale bar: 200 µm. Magnification:
100× (JPG 1615 kb)
References
1. Graziani F, Gennai S, Cei S et al (2012) Clinical performance of access flap surgery in the treatment of the intrabony defect. A systematic
review and meta-analysis of randomized clinical trials. J Clin Periodontol 39:145–156
CrossRef (http://dx.doi.org/10.1111/j.1600-051X.2011.01815.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22117895)
2. Caton JG, Greenstein G (1993) Factors related to periodontal regeneration. Periodontol 1:9–15
CrossRef (http://dx.doi.org/10.1111/j.1600-0757.1993.tb00202.x)
3. Rosen PS, Reynolds MA, Bowers GM (2000) The treatment of intrabony defects with bone grafts. Periodontol 22:88–103
CrossRef (http://dx.doi.org/10.1034/j.1600-0757.2000.2220107.x)
4. Gottlow J, Nyman S, Karring T (1992) Maintenance of new attachment gained through guided tissue regeneration. J Clin Periodontol
19:315–317
CrossRef (http://dx.doi.org/10.1111/j.1600-051X.1992.tb00651.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1517475)
5. Kao RT, Nares S, Reynolds MA (2015) Periodontal regeneration—intrabony defects: a systematic review from the AAP regeneration
workshop. J Periodontol 86:S77–S104. doi:10.​1902/​jop.​2015.​130685 (http://dx.doi.org/10.1902/jop.2015.130685)
CrossRef (http://dx.doi.org/10.1902/jop.2015.130685) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25216204)
6. von Arx T, Broggini N, Jensen SS et al (2005) Membrane durability and tissue response of different bioresorbable barrier membranes: a
histologic study in the rabbit calvarium. Int J Oral Maxillofac Implants 20:843–853
7. Nowzari H, MacDonald ES, Flynn J et al (1996) The dynamics of microbial colonization of barrier membranes for guided tissue regeneration.
J Periodontol 67:694–702. doi:10.​1902/​jop.​1996.​67.​7.​694 (http://dx.doi.org/10.1902/jop.1996.67.7.694)
CrossRef (http://dx.doi.org/10.1902/jop.1996.67.7.694) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8832481)
8. Machtei EE (2001) The effect of membrane exposure on the outcome of regenerative procedures in humans: a meta-analysis. J Periodontol
72:512–516. doi:10.​1902/​jop.​2001.​72.​4.​512 (http://dx.doi.org/10.1902/jop.2001.72.4.512)
CrossRef (http://dx.doi.org/10.1902/jop.2001.72.4.512) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11338304)
9. Schindl A, Neumann R (1999) Low-intensity laser therapy is an effective treatment for recurrent herpes simplex infection. Results from a
randomized double-blind placebo-controlled study. J Investig Dermatol 113:221–223
CrossRef (http://dx.doi.org/10.1046/j.1523-1747.1999.00684.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10469307)
10. Schindl A, Schindl M, Pernerstorfer-Schön H et al (2000) Low-intensity laser therapy: a review. J Investig Med 48:312–326
PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10979236)
11.
Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation a review. J Clin Periodontol
23:492–496
CrossRef (http://dx.doi.org/10.1111/j.1600-051X.1996.tb00580.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8783057)
12. Desmet KD, Paz DA, Corry JJ et al (2006) Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg
24:121–128
CrossRef (http://dx.doi.org/10.1089/pho.2006.24.121) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16706690)
13. Chang PC, Chien LY, Ye Y et al (2013) Irradiation by light-emitting diode light as an adjunct to facilitate healing of experimental
periodontitis in vivo. J Periodontal Res 48:135–143. doi:10.​1111/​j.​1600-0765.​2012.​01511.​x (http://dx.doi.org/10.1111/j.1600-0765.2012.01511.x)
CrossRef (http://dx.doi.org/10.1111/j.1600-0765.2012.01511.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22845797)
14. Chang PC, Wang CY, Sheng-Chueh T (2014) Combination of LED light and platelet-derived growth factor to accelerate dentoalveolar
osteogenesis. J Clin Periodontol 41:999–1006. doi:10.​1111/​jcpe.​12301 (http://dx.doi.org/10.1111/jcpe.12301)
CrossRef (http://dx.doi.org/10.1111/jcpe.12301) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25139309)
15. Wang CY, Tsai SC, Yu MC et al (2015) Light-emitting diode irradiation promotes donor site wound healing of the free gingival graft. J
Periodontol 86:674–681. doi:10.​1902/​jop.​2015.​140580 (http://dx.doi.org/10.1902/jop.2015.140580)
CrossRef (http://dx.doi.org/10.1902/jop.2015.140580) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25630628)
16. Chang P-C, Dovban AS, Lim LP et al (2013) Dual delivery of PDGF and simvastatin to accelerate periodontal regeneration in vivo.
Biomaterials 34:9990–9997
CrossRef (http://dx.doi.org/10.1016/j.biomaterials.2013.09.030) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24079892)
17. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66
CrossRef (http://dx.doi.org/10.1109/TSMC.1979.4310076)
18. Chang PC, Tsai SC, Jheng YH et al (2014) Soft-tissue wound healing by anti-advanced glycation end-products agents. J Dent Res 93:388–
393. doi:10.​1177/​0022034514523785​ (http://dx.doi.org/10.1177/0022034514523785)
CrossRef (http://dx.doi.org/10.1177/0022034514523785) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24554538)
19. Susin C, Fiorini T, Lee J et al (2015) Wound healing following surgical and regenerative periodontal therapy. Periodontol 2000(68):83–98.
doi:10.​1111/​prd.​12057 (http://dx.doi.org/10.1111/prd.12057)
CrossRef (http://dx.doi.org/10.1111/prd.12057)
20. Schupbach P, Gaberthuel T, Lutz F et al (1993) Periodontal repair or regeneration: structures of different types of new attachment. J
Periodontal Res 28:281–293
CrossRef (http://dx.doi.org/10.1111/j.1600-0765.1993.tb02095.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8336247)
21. Renvert S, Garrett S, Nilveus R et al (1985) Healing after treatment of periodontal intraosseous defects. VI. Factors influencing the healing
response. J Clin Periodontol 12:707–715
CrossRef (http://dx.doi.org/10.1111/j.1600-051X.1985.tb01396.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3863841)
22. Behdin S, Monje A, Lin GH et al (2015) Effectiveness of laser application for periodontal surgical therapy: systematic review and metaanalysis. J Periodontol 86:1352–1363. doi:10.​1902/​jop.​2015.​150212 (http://dx.doi.org/10.1902/jop.2015.150212)
CrossRef (http://dx.doi.org/10.1902/jop.2015.150212) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26269936)
23.
Newman MG, Takei H, Klokkevold PR et al (2011) Carranza’s clinical periodontology. Elsevier, Philadephia
24. Wang C, Tsai S, Yu M et al (2015) 660 nm LED light irradiation promotes the healing of the donor wound of free gingival graft. J
Periodontol 86:674–681. doi:10.​1902/​jop.​2015.​140580 (http://dx.doi.org/10.1902/jop.2015.140580)
CrossRef (http://dx.doi.org/10.1902/jop.2015.140580) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25630628)
25. Wu JY, Chen CH, Yeh LY et al (2013) Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human
periodontal ligament cells via cyclic adenosine monophosphate. Int J Oral Sci 5:85–91. doi:10.​1038/​ijos.​2013.​38
(http://dx.doi.org/10.1038/ijos.2013.38)
CrossRef (http://dx.doi.org/10.1038/ijos.2013.38) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23788285) PubMedCentral
(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707076)
26. Park SH, Wang HL (2007) Clinical significance of incision location on guided bone regeneration: human study. J Periodontol 78:47–51.
doi:10.​1902/​jop.​2007.​060125 (http://dx.doi.org/10.1902/jop.2007.060125)
CrossRef (http://dx.doi.org/10.1902/jop.2007.060125) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17199538)
27. Pritlove-Carson S, Palmer RM, Floyd PD et al (1994) Immunohistochemical analysis of tissues regenerated from within periodontal defects
treated with expanded polytetrafluoroethylene membranes. J Periodontol 65:134–138. doi:10.​1902/​jop.​1994.​65.​2.​134
(http://dx.doi.org/10.1902/jop.1994.65.2.134)
CrossRef (http://dx.doi.org/10.1902/jop.1994.65.2.134) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7512647)
28. Basford JR (1995) Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 16:331–342
CrossRef (http://dx.doi.org/10.1002/lsm.1900160404) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7651054)
29. Polimeni G, Koo KT, Pringle GA et al (2008) Histopathological observations of a polylactic acid-based device intended for guided
bone/tissue regeneration. Clin Implant Dent Relat Res 10:99–105. doi:10.​1111/​j.​1708-8208 (http://dx.doi.org/10.1111/j.1708-8208)
CrossRef (http://dx.doi.org/10.1111/j.1708-8208.2007.00067.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18462206)
30. Ghahroudi AAR, Rokn AR, Kalhori KA et al (2014) Effect of low-level laser therapy irradiation and Bio-Oss graft material on the
osteogenesis process in rabbit calvarium defects: a double blind experimental study. Lasers Med Sci 29:925–932. doi:10.​1007/​s10103-013-14035 (http://dx.doi.org/10.1007/s10103-013-1403-5)
CrossRef (http://dx.doi.org/10.1007/s10103-013-1403-5)
31. Cunha MJ, Esper LA, Sbrana MC et al (2014) Effect of low-level laser on bone defects treated with bovine or autogenous bone grafts: in vivo
study in rat calvaria. Biomed Res Int 2014:104230. doi:10.​1155/​2014/​104230 (http://dx.doi.org/10.1155/2014/104230)
PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24982858)
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058460)
32. Yu S-H, Chan H-L, Chong L-Y et al (2015) Evaluation of the osteogenic potential of growth factor–rich demineralized bone matrix in vivo. J
Periodontol 86:36–43
CrossRef (http://dx.doi.org/10.1902/jop.2014.140333) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25272981)
33. Kim Y-D, Song W-W, Kim S-S et al (2009) Expression of receptor activator of nuclear factor-κB ligand, receptor activator of nuclear factorκB, and osteoprotegerin, following low-level laser treatment on deproteinized bovine bone graft in rats. Lasers Med Sci 24:577–584
CrossRef (http://dx.doi.org/10.1007/s10103-008-0614-7) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18825474)
34. Buser D, Dula K, Hess D et al (1999) Localized ridge augmentation with autografts and barrier membranes. Periodontol 19:151–163
CrossRef (http://dx.doi.org/10.1111/j.1600-0757.1999.tb00153.x)
About this Article
Title
Evaluation of 660 nm LED light irradiation on the strategies for treating experimental periodontal intrabony
defects
Journal
Lasers in Medical Science
Volume 31, Issue 6 , pp 1113-1121
Cover Date
2016-08
DOI
10.1007/s10103-016-1958-z
Print ISSN
0268-8921
Online ISSN
1435-604X
Publisher
Springer London
Additional Links
Register for Journal Updates
Editorial Board
About This Journal
Manuscript Submission
Topics
Medicine/Public Health, general
Dentistry
Laser Technology, Photonics
Quantum Optics
Optics, Optoelectronics, Plasmonics and Optical Devices
Keywords
Low level laser therapy
Guided tissue regeneration
Wound healing
Osteogenesis
Industry Sectors
Pharma
Health & Hospitals
Biotechnology
Electronics
IT & Software
Telecommunications
Consumer Packaged Goods
Aerospace
Authors
Chih-Yun Tao (1)
Ning Lee (2)
Hao-Chieh Chang (1) (2)
Connie Yang (2)
Xin-Hong Yu (2)
Po-Chun Chang (1) (2)
Author Affiliations
1. Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
2. Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1 Chang-Te St, Taipei,
100, Taiwan
Support