Original Article Lasers in Medical Science August 2016, Volume 31, Issue 6, pp 1113-1121 First online: 16 May 2016 Evaluation of 660 nm LED light irradiation on the strategies for treating experimental periodontal intrabony defects Chih-Yun Tao , Ning Lee , Hao-Chieh Chang , Connie Yang , Xin-Hong Yu , Po-Chun Chang Abstract This study aims to investigate the therapeutic value of 660 nm light-emitting diode (LED) light irradiation on the strategies for treating experimental periodontal intrabony defects in vivo. Large-sized periodontal intrabony defects were created bilaterally on the mesial aspect of the maxillary second molars of 48 Sprague–Dawley rats, and the rats were equally divided into four treatment groups with primary wound intention (n = 6/treatment/time point), including open flap debridement alone (OD), barrier membrane alone (MB), xenograft alone (BG), and xenograft plus barrier membrane (MG). Each group received daily 0 or 10 J/cm2 LED light irradiation. The animals were sacrificed after 1 or 4 weeks. The treatment outcome was evaluated by gross observation of wound dehiscence and healing, micro-CT imaging for osteogenesis, and histological assessments for inflammatory cell infiltration and periodontal reattachment. With LED light irradiation, the extent of wound dehiscence was reduced, wound closure was accelerated, epithelial downgrowth was prevented, inflammation was reduced, and periodontal reattachment was promoted in all treatment strategies. Significant reduction of inflammation with LED light irradiation was noted at 1 week in the groups BG and MG (p < 0.05). Osteogenesis was significantly promoted only in the group OD at both time points (p < 0.05). Our study showed that 660 nm LED light accelerates mucoperiosteal flap healing and periodontal reattachment. However, the enhancement of osteogenesis appeared to be limited while simultaneously treating with a barrier membrane or xenograft. Keywords Low level laser therapy Guided tissue regeneration Wound healing Osteogenesis Electronic supplementary material The online version of this article (doi:10.1007/s10103-016-1958-z) contains supplementary material, which is available to authorized users. Concepts found in this article Periodontal Intrabony Defect Denude Root Surface Barrier Membrane What is this? Periodontal Soft Tissue Guide Tissue Regeneration Fiber Collagen Fibril Inflammatory Cell Infiltration Epithelial Downgrowth Light Irradiation Periodontal Therapy Bone Substitute Material Periodontal Ligament Human Periodontitis Related articles containing similar concepts (313 articles) Evaluation of simulated periodontal defects via various radiographic methods Zengin, A. · Sumer, P., et al. in Clinical Oral Investigations (2015) Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial Chen, F. · Gao, L., et al. in Stem Cell Research & Therapy (2016) Comparative study of DFDBA in combination with enamel matrix derivative versus DFDBA alone for treatment of periodontal intrabony defects at 12 months post-surgery Aspriello, S., et al. in Clinical Oral Investigations (2010) Clinical and microbiological changes after minimally invasive therapeutic approaches in intrabony defects: a 12-month follow-up Ribeiro, F. · Casarin, R., et al. in Clinical Oral Investigations (2012) Connective tissue graft as a biological barrier for guided tissue regeneration in intrabony defects: a histological study in dogs Ribeiro, F. · Pontes, A., et al. in Clinical Oral Investigations (2014) Page 1 of 14 blah10103_2016_1958_MOESM1_ESM.jpg (1654313) Fig. S1 The thickness of gingiva of the edentulous ridge is generally less than 1.0 mm. Scale bar: 200 µm. Magnification: 100× (JPG 1615 kb) References 1. Graziani F, Gennai S, Cei S et al (2012) Clinical performance of access flap surgery in the treatment of the intrabony defect. A systematic review and meta-analysis of randomized clinical trials. J Clin Periodontol 39:145–156 CrossRef (http://dx.doi.org/10.1111/j.1600-051X.2011.01815.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22117895) 2. Caton JG, Greenstein G (1993) Factors related to periodontal regeneration. Periodontol 1:9–15 CrossRef (http://dx.doi.org/10.1111/j.1600-0757.1993.tb00202.x) 3. Rosen PS, Reynolds MA, Bowers GM (2000) The treatment of intrabony defects with bone grafts. Periodontol 22:88–103 CrossRef (http://dx.doi.org/10.1034/j.1600-0757.2000.2220107.x) 4. Gottlow J, Nyman S, Karring T (1992) Maintenance of new attachment gained through guided tissue regeneration. J Clin Periodontol 19:315–317 CrossRef (http://dx.doi.org/10.1111/j.1600-051X.1992.tb00651.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1517475) 5. Kao RT, Nares S, Reynolds MA (2015) Periodontal regeneration—intrabony defects: a systematic review from the AAP regeneration workshop. J Periodontol 86:S77–S104. doi:10.1902/jop.2015.130685 (http://dx.doi.org/10.1902/jop.2015.130685) CrossRef (http://dx.doi.org/10.1902/jop.2015.130685) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25216204) 6. von Arx T, Broggini N, Jensen SS et al (2005) Membrane durability and tissue response of different bioresorbable barrier membranes: a histologic study in the rabbit calvarium. Int J Oral Maxillofac Implants 20:843–853 7. Nowzari H, MacDonald ES, Flynn J et al (1996) The dynamics of microbial colonization of barrier membranes for guided tissue regeneration. J Periodontol 67:694–702. doi:10.1902/jop.1996.67.7.694 (http://dx.doi.org/10.1902/jop.1996.67.7.694) CrossRef (http://dx.doi.org/10.1902/jop.1996.67.7.694) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8832481) 8. Machtei EE (2001) The effect of membrane exposure on the outcome of regenerative procedures in humans: a meta-analysis. J Periodontol 72:512–516. doi:10.1902/jop.2001.72.4.512 (http://dx.doi.org/10.1902/jop.2001.72.4.512) CrossRef (http://dx.doi.org/10.1902/jop.2001.72.4.512) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11338304) 9. Schindl A, Neumann R (1999) Low-intensity laser therapy is an effective treatment for recurrent herpes simplex infection. Results from a randomized double-blind placebo-controlled study. J Investig Dermatol 113:221–223 CrossRef (http://dx.doi.org/10.1046/j.1523-1747.1999.00684.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10469307) 10. Schindl A, Schindl M, Pernerstorfer-Schön H et al (2000) Low-intensity laser therapy: a review. J Investig Med 48:312–326 PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10979236) 11. Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation a review. J Clin Periodontol 23:492–496 CrossRef (http://dx.doi.org/10.1111/j.1600-051X.1996.tb00580.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8783057) 12. Desmet KD, Paz DA, Corry JJ et al (2006) Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg 24:121–128 CrossRef (http://dx.doi.org/10.1089/pho.2006.24.121) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16706690) 13. Chang PC, Chien LY, Ye Y et al (2013) Irradiation by light-emitting diode light as an adjunct to facilitate healing of experimental periodontitis in vivo. J Periodontal Res 48:135–143. doi:10.1111/j.1600-0765.2012.01511.x (http://dx.doi.org/10.1111/j.1600-0765.2012.01511.x) CrossRef (http://dx.doi.org/10.1111/j.1600-0765.2012.01511.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22845797) 14. Chang PC, Wang CY, Sheng-Chueh T (2014) Combination of LED light and platelet-derived growth factor to accelerate dentoalveolar osteogenesis. J Clin Periodontol 41:999–1006. doi:10.1111/jcpe.12301 (http://dx.doi.org/10.1111/jcpe.12301) CrossRef (http://dx.doi.org/10.1111/jcpe.12301) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25139309) 15. Wang CY, Tsai SC, Yu MC et al (2015) Light-emitting diode irradiation promotes donor site wound healing of the free gingival graft. J Periodontol 86:674–681. doi:10.1902/jop.2015.140580 (http://dx.doi.org/10.1902/jop.2015.140580) CrossRef (http://dx.doi.org/10.1902/jop.2015.140580) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25630628) 16. Chang P-C, Dovban AS, Lim LP et al (2013) Dual delivery of PDGF and simvastatin to accelerate periodontal regeneration in vivo. Biomaterials 34:9990–9997 CrossRef (http://dx.doi.org/10.1016/j.biomaterials.2013.09.030) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24079892) 17. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66 CrossRef (http://dx.doi.org/10.1109/TSMC.1979.4310076) 18. Chang PC, Tsai SC, Jheng YH et al (2014) Soft-tissue wound healing by anti-advanced glycation end-products agents. J Dent Res 93:388– 393. doi:10.1177/0022034514523785 (http://dx.doi.org/10.1177/0022034514523785) CrossRef (http://dx.doi.org/10.1177/0022034514523785) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24554538) 19. Susin C, Fiorini T, Lee J et al (2015) Wound healing following surgical and regenerative periodontal therapy. Periodontol 2000(68):83–98. doi:10.1111/prd.12057 (http://dx.doi.org/10.1111/prd.12057) CrossRef (http://dx.doi.org/10.1111/prd.12057) 20. Schupbach P, Gaberthuel T, Lutz F et al (1993) Periodontal repair or regeneration: structures of different types of new attachment. J Periodontal Res 28:281–293 CrossRef (http://dx.doi.org/10.1111/j.1600-0765.1993.tb02095.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8336247) 21. Renvert S, Garrett S, Nilveus R et al (1985) Healing after treatment of periodontal intraosseous defects. VI. Factors influencing the healing response. J Clin Periodontol 12:707–715 CrossRef (http://dx.doi.org/10.1111/j.1600-051X.1985.tb01396.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3863841) 22. Behdin S, Monje A, Lin GH et al (2015) Effectiveness of laser application for periodontal surgical therapy: systematic review and metaanalysis. J Periodontol 86:1352–1363. doi:10.1902/jop.2015.150212 (http://dx.doi.org/10.1902/jop.2015.150212) CrossRef (http://dx.doi.org/10.1902/jop.2015.150212) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26269936) 23. Newman MG, Takei H, Klokkevold PR et al (2011) Carranza’s clinical periodontology. Elsevier, Philadephia 24. Wang C, Tsai S, Yu M et al (2015) 660 nm LED light irradiation promotes the healing of the donor wound of free gingival graft. J Periodontol 86:674–681. doi:10.1902/jop.2015.140580 (http://dx.doi.org/10.1902/jop.2015.140580) CrossRef (http://dx.doi.org/10.1902/jop.2015.140580) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25630628) 25. Wu JY, Chen CH, Yeh LY et al (2013) Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate. Int J Oral Sci 5:85–91. doi:10.1038/ijos.2013.38 (http://dx.doi.org/10.1038/ijos.2013.38) CrossRef (http://dx.doi.org/10.1038/ijos.2013.38) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23788285) PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707076) 26. Park SH, Wang HL (2007) Clinical significance of incision location on guided bone regeneration: human study. J Periodontol 78:47–51. doi:10.1902/jop.2007.060125 (http://dx.doi.org/10.1902/jop.2007.060125) CrossRef (http://dx.doi.org/10.1902/jop.2007.060125) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17199538) 27. Pritlove-Carson S, Palmer RM, Floyd PD et al (1994) Immunohistochemical analysis of tissues regenerated from within periodontal defects treated with expanded polytetrafluoroethylene membranes. J Periodontol 65:134–138. doi:10.1902/jop.1994.65.2.134 (http://dx.doi.org/10.1902/jop.1994.65.2.134) CrossRef (http://dx.doi.org/10.1902/jop.1994.65.2.134) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7512647) 28. Basford JR (1995) Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 16:331–342 CrossRef (http://dx.doi.org/10.1002/lsm.1900160404) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7651054) 29. Polimeni G, Koo KT, Pringle GA et al (2008) Histopathological observations of a polylactic acid-based device intended for guided bone/tissue regeneration. Clin Implant Dent Relat Res 10:99–105. doi:10.1111/j.1708-8208 (http://dx.doi.org/10.1111/j.1708-8208) CrossRef (http://dx.doi.org/10.1111/j.1708-8208.2007.00067.x) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18462206) 30. Ghahroudi AAR, Rokn AR, Kalhori KA et al (2014) Effect of low-level laser therapy irradiation and Bio-Oss graft material on the osteogenesis process in rabbit calvarium defects: a double blind experimental study. Lasers Med Sci 29:925–932. doi:10.1007/s10103-013-14035 (http://dx.doi.org/10.1007/s10103-013-1403-5) CrossRef (http://dx.doi.org/10.1007/s10103-013-1403-5) 31. Cunha MJ, Esper LA, Sbrana MC et al (2014) Effect of low-level laser on bone defects treated with bovine or autogenous bone grafts: in vivo study in rat calvaria. Biomed Res Int 2014:104230. doi:10.1155/2014/104230 (http://dx.doi.org/10.1155/2014/104230) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24982858) PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058460) 32. Yu S-H, Chan H-L, Chong L-Y et al (2015) Evaluation of the osteogenic potential of growth factor–rich demineralized bone matrix in vivo. J Periodontol 86:36–43 CrossRef (http://dx.doi.org/10.1902/jop.2014.140333) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25272981) 33. Kim Y-D, Song W-W, Kim S-S et al (2009) Expression of receptor activator of nuclear factor-κB ligand, receptor activator of nuclear factorκB, and osteoprotegerin, following low-level laser treatment on deproteinized bovine bone graft in rats. Lasers Med Sci 24:577–584 CrossRef (http://dx.doi.org/10.1007/s10103-008-0614-7) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18825474) 34. Buser D, Dula K, Hess D et al (1999) Localized ridge augmentation with autografts and barrier membranes. Periodontol 19:151–163 CrossRef (http://dx.doi.org/10.1111/j.1600-0757.1999.tb00153.x) About this Article Title Evaluation of 660 nm LED light irradiation on the strategies for treating experimental periodontal intrabony defects Journal Lasers in Medical Science Volume 31, Issue 6 , pp 1113-1121 Cover Date 2016-08 DOI 10.1007/s10103-016-1958-z Print ISSN 0268-8921 Online ISSN 1435-604X Publisher Springer London Additional Links Register for Journal Updates Editorial Board About This Journal Manuscript Submission Topics Medicine/Public Health, general Dentistry Laser Technology, Photonics Quantum Optics Optics, Optoelectronics, Plasmonics and Optical Devices Keywords Low level laser therapy Guided tissue regeneration Wound healing Osteogenesis Industry Sectors Pharma Health & Hospitals Biotechnology Electronics IT & Software Telecommunications Consumer Packaged Goods Aerospace Authors Chih-Yun Tao (1) Ning Lee (2) Hao-Chieh Chang (1) (2) Connie Yang (2) Xin-Hong Yu (2) Po-Chun Chang (1) (2) Author Affiliations 1. Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan 2. Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1 Chang-Te St, Taipei, 100, Taiwan Support
© Copyright 2026 Paperzz