Appearances can be deceptive: different diversification

Molecular Ecology (2012) 21, 3776–3793
doi: 10.1111/j.1365-294X.2012.05648.x
Appearances can be deceptive: different diversification
patterns within a group of Mediterranean earthworms
(Oligochaeta, Hormogastridae)
M A R T A N O V O , * † A N A A L M O D Ó V A R , † R O S A F E R N Á N D E Z , † D O L O R E S T R I G O , † D A R Í O J .
D Í A Z - C O S Í N † and G O N Z A L O G I R I B E T *
*Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street,
Cambridge, MA 02138, USA, †Departamento de Zoologı́a y Antropologı́a Fı́sica, Facultad de Biologı́a, Universidad Complutense
de Madrid, C ⁄ José Antonio Nováis, 28040, Madrid, Spain
Abstract
Many recent studies on invertebrates have shown how morphology not always captures
the true diversity of taxa, with cryptic speciation often being discussed in this context.
Here, we show how diversification patterns can be very different in two clades of closely
related earthworms in the genus Hormogaster stressing the risk of using nonspecific
substitution rate values across taxa. On the one hand, the Hormogaster elisae species
complex, endemic to the central Iberian Peninsula, shows morphological stasis. On the
other hand, a clade of Hormogaster from the NE Iberian Peninsula shows an enormous
morphological variability, with 15 described morphospecies. The H. elisae complex,
however, evolves faster genetically, and this could be explained by the harsher
environmental conditions to which it is confined—as detected in this study, that is,
sandier and slightly poorer soils with lower pH values than those of the other species in
the family. These extreme conditions could be at the same time limiting morphological
evolution and thus be responsible for the observed morphological stasis in this clade.
Contrarily, Hormogaster species from the NE Iberian Peninsula, although still inhabiting
harsher milieu than other earthworm groups, have had the opportunity to evolve into a
greater morphological disparity. An attempt to delimit species within this group
following the recently proposed general mixed Yule-coalescent method showed a higher
number of entities than expected under the morphospecies concept, most probably due
to the low vagility of these animals, which considerably limits gene flow between distant
conspecific populations, but also because of the decoupling between morphological and
genetic evolution in the H. elisae complex.
Keywords: Annelida, environmental analyses, evolutionary rates, general mixed Yulecoalescent species delimitation
Received 17 October 2011; revision received 1 April 2012; accepted 4 April 2012
Introduction
Recent use of molecular techniques in taxonomy has
often led to the detection of unbalanced molecular and
morphological evolution, with the study of cryptic speciation becoming an important topic in evolutionary biology (e.g. McGuigan & Sgrò 2009). The discovery of
Correspondence: Marta Novo, Fax: +1 617 496 5854;
E-mail: [email protected]
species difficult to distinguish by morphological traits is
not uncommon, especially within invertebrate groups
(e.g. Müller 2000; Pfenninger et al. 2003; Stoks et al. 2005;
Hogg et al. 2006; Tully et al. 2006; Challis et al. 2007; Finston et al. 2007) and specifically in annelid worms such
as leeches (Bely & Weisblat 2006), freshwater oligochaetes (Gustafsson et al. 2009) and earthworms (e.g. Chang
et al. 2008; King et al. 2008; James et al. 2010). Mayr
(1948) was the first to discuss the difficulties in distinguishing certain species based solely on morphological
2012 Blackwell Publishing Ltd
D I V E R S I F I C A T I O N P A T T E R N S I N E A R T H W O R M S 3777
characters and he used this to argue against the morphological species concept (Mayr 1963). This is particularly
true in earthworms, whose taxonomy suffers from their
structural simplicity (Pop et al. 2003).
Earthworms are key organisms for the correct functioning of soil systems. They captured Darwin’s attention who stated that ‘It may be doubted whether there
are many other animals which have played so important a part in the history of the world, as have these
lowly organized creatures’ (Darwin 1881: 316). Earthworms have also been targeted in applied research for
a long time (e.g. Lavelle & Spain 2001; Edwards 2004).
More recently, molecular data on earthworms have
flourished, including DNA barcoding for understanding
taxonomy of these soil organisms (Rougerie et al. 2009),
but their evolutionary biology is still poorly known.
Several recent studies have shown large genetic diversity, suggesting some interesting cases of cryptic speciation, while others have questioned morphology-based
taxonomy (e.g. Briones et al. 2009; Fernández et al.
2011). Discordant patterns of morphological and molecular evolution can be common in the soil environment,
where chemical signalling may play a key role in sexual
selection (Lee & Frost 2002), perhaps more important
than morphology itself. In addition, it has been proposed that extreme subsurface conditions could constrain morphological evolution (e.g. Jones et al. 1992;
Caccone & Sbordoni 2001; Wiens et al. 2003).
Hormogastrid earthworms, endogeic and endemic to
the Mediterranean region (Cobolli-Sbordoni et al. 1992),
have shown to be challenging from a genetic perspective.
Specifically, a very high genetic diversity was found in
the central Iberian Peninsula for Hormogaster elisae (Novo
et al. 2009, 2010a), the only morphospecies described in
this area, but now thought to constitute a species complex. This contrasts with the much larger species number
of the genus in other areas of the Mediterranean. The
phylogenetic placement of this group within the family
indicates that H. elisae constitutes an independent lineage of the remaining species of Hormogaster, a genus
shown to be paraphyletic (Novo et al. 2011). The family
Hormogastridae currently comprises four genera and 22
species of large to middle-sized earthworms, most of
which inhabit the NE Iberian Peninsula (15 Hormogaster
species and some varieties or subspecies), whose phylogeny was studied in Novo et al. (2011).
In this work, we markedly increase the sampling for
hormogastrids since Novo et al. (2011) with the aim to
address an important ecological question—whether the
diversity of soil habitats is related to genetic and morphological variability—and its evolutionary consequences. We therefore wanted to test the hypothesis
that morphological change in earthworms is limited by
their environment (i.e. pH values, poor and sandy
2012 Blackwell Publishing Ltd
soils). This constraint of morphological change is exemplified by the H. elisae lineage. In addition, we wanted
to compare the substitution rates of the different clades
defined in the family Hormogastridae because their
morphological diversity and probably the characteristics
of the soil they inhabit vary. Finally, we investigated
the delimitation of hormogastrid species using a general
mixed Yule-coalescent (GMYC) model approach to test
whether the limited information provided by morphology could be complemented by this method.
Materials and methods
Sampling and morphological study
We collected 376 mature individuals representing 20 of
the 22 described species of Hormogastridae in 46 localities (Table 1, see a similar map in Novo et al. 2011)
from the Iberian Peninsula, France (including Corsica)
and Italy (Sardinia). Additional data from the study of
Novo et al. (2010a) in central Spain were included for
cytochrome ca. oxidase subunit I gene (COI) and 16StRNA genes and soil analyses.
All individuals were collected by hand, washed in
distilled water and preserved in ca. 96% EtOH at
)20 C for subsequent molecular work. A portion of the
integument (ca. 25 mg) was cleansed under a stereomicroscope to remove soil particles. Subsequently, integument samples were hydrated and preserved at )80 C
until DNA extraction. All specimens were dissected and
examined morphologically for their taxonomic identification following Qiu & Bouché (1998).
DNA extraction, gene amplification and sequencing
Total genomic DNA was extracted from the integument
tissue sample using the DNeasy Tissue Kit (QIAGEN)
eluting twice with 70 lL of buffer. Molecular markers
included mitochondrial regions of the COI, 16S rRNA
gene and tRNA Leu, Ala, and Ser (16S-tRNA) and two
nuclear protein-encoding genes (histone H3 and histone
H4). Primer sequences, polymerase chain reactions
(PCR) and sequencing reactions are the same as in
Novo et al. (2011).
Chromatograms were visualized in Sequencher v.4.7
(Gene Codes Corporation, Ann Arbor, MI, USA) to
assemble sequences. All amplicons were compared
against the GenBank database with the BLAST algorithm (Altschul et al. 1997) for potential contaminants.
Genetic diversity
Genetic variability estimates and mean genetic differentiation between and within studied populations were
Fresno del
Torote
Lozoyuela
Molar
H. elisae Sp1
H. elisae Sp1
Navas de
Buitrago
Paracuellos
del Jarama
H. elisae Sp1
H. elisae Sp1
H. elisae Sp1
Cubillo de
Uceda
H. elisae Sp1
Cabrera
VIL
Villamassargia
HE
HPA
Rı́o Ter
Hormogaster
pretiosa c.f.
hispanica*
Hormogaster
pretiosa
pretiosa
Hormogaster
elisae Sp1
JAR
NAV
MOL
LOZ
FRE
UCE
CAB
ORD
Ordal
Hormogaster
najaformis
HCL
Code
Locality
Species
Phylogenetic Clade
Madrid,
Spain
Madrid,
Spain
Madrid,
Spain
Madrid,
Spain
Madrid,
Spain
Guadalajara,
Spain
CarboniaIglesias,
Sardinia, Italy
Madrid,
Spain
Girona,
Spain
Barcelona,
Spain
Region, Country
GQ409665.1–
GQ409670.1
GQ409683.1–
GQ409688.1
EF653874.1–
EF653880.1
GQ409698.1–
GQ409699.1
EF653886.1–
EF653890.1,
GQ409690.1,
GQ409691.1
GQ409692.1–
GQ409697.1
HQ621998,
JN209576–
JN209578
GQ409689.1
HQ621985,
JN209571–
JN209575
—
COI: GenBank
Numbers
GQ409730.1–
GQ409731.1,
JN209303–
JN209308
GQ409745.1–
GQ409749.1,
JN209252–
JN209256
GQ409732.1–
GQ409736.1,
JN209294–
JN209295
GQ409720.1–
GQ409722.1,
JN209407–
JN209412
GQ409723.1–
GQ409724.1
GQ409725.1–
GQ409728.1,
JN209271–
JN209285
HQ621893,
JN209439–
JN209445
GQ409729.1,
JN209221–
JN209226
HQ621878,
JN209316–
JN209321
HQ621892
16S: GenBank
Numbers
HQ622013,
JN209625,
JN209628,
JN209640
HQ622009,
JN209637
HQ622016,
JN209650–
JN209652,
JN209656–
JN209658
HQ622019,
JN209626–
JN209627,
JN209629–
JN209633,
JN209636
HQ622021,
JN209653–
JN209655
HQ622045,
JN209698–
JN209700
HQ622007,
JN209648–
JN209649,
JN209659
HQ622039,
JN209660–
JN209662
HQ622023,
JN209695–
JN209697
HQ622044
H3: GenBank
Numbers
HQ622059,
JN209724–
JN209726
HQ622065,
JN209731–
JN209732,
JN209741–
JN209744,
JN209746
HQ622067,
JN209733–
JN209735
HQ622055,
JN209723
HQ622062,
JN209727–
JN209730,
JN209748
HQ622085,
JN209739–
JN209740
HQ622090,
JN209771–
JN209777
HQ622053,
JN209747,
JN209752
HQ622069,
JN209768–
JN209770
—
H4: GenBank
Numbers
N4030¢36.9¢¢
W0331¢59.1¢¢
N4056¢21.0¢¢
W0335¢38.1¢¢
W0333¢53.1¢¢
N4044¢22.9¢¢
N4035¢51.8¢¢
W0324¢42.0¢¢
N4056¢51.9¢¢
W0337¢16.2¢¢
674
994
753
1036
660
883
1029
N4051¢25.9¢¢
W0337¢18.2¢¢
N4049¢38.7¢¢
W0325¢19.5¢¢
290
—
391
Altitude
(m)
N3915¢29.7¢¢
E840¢17.3¢¢
—
N4123¢27.3¢¢
E00149¢39.3¢¢
GPS Coordinates
Table 1 Hormogastrid species (alphabetically ordered within the clades recovered by Novo et al. 2011), localities of collection and GenBank Accession numbers
3778 M . N O V O E T A L .
2012 Blackwell Publishing Ltd
Phylogenetic Clade
Table 1 Continued
2012 Blackwell Publishing Ltd
SIG
Venturada
Siguero
H. elisae Sp1
Soto del Real
Anchuelo
Boadilla del
Monte
Sevilla la
Nueva
Pardo
H. elisae Sp2
H. elisae Sp3
H. elisae Sp4
H. elisae Sp4
H. elisae Sp5
H. elisae Sp2
VEN
Tres Cantos
H. elisae Sp1
PAR
SEV
BOA
ANC
SOT
TRE
RED
Redueña
H. elisae Sp1
Code
Locality
Species
Madrid,
Spain
Madrid,
Spain
Madrid,
Spain
Madrid,
Spain
Madrid,
Spain
Segovia,
Spain
Madrid,
Spain
Madrid,
Spain
Madrid,
Spain
Region, Country
EF653898.1–
EF653902.1
EF653903.1–
EF653905.1
GQ409661.1–
GQ409664.1
EF653868.1–
EF653873.1
GQ409700.1–
GQ409702.1
EF653891.1–
EF653897.1
GQ409671.1,
GQ409672.1,
GQ409674.1
EF653881.1–
EF653885.1,
GQ409673.1,
GQ409675.1–
GQ409677.1
GQ409678.1–
GQ409682.1
COI: GenBank
Numbers
GQ409741.1–
GQ409744.1,
GQ409752.1,
JN209338–
JN209357
GQ409737.1–
GQ409740.1,
JN209401–
JN209406
GQ409750.1–
GQ409751.1,
GQ409753.1,
JN209420–
JN209425
GQ409710.1–
GQ409715.1,
JN209376–
JN209380
GQ409716.1–
GQ409719.1,
JN209381–
JN209386
GQ409754.1,
JN209205–
JN209207
GQ409704.1–
GQ409706.1,
JN209215JN209220
GQ409707.1–
GQ409708.1,
JN209365–
JN209370
GQ409709.1,
HQ621879,
JN209322–
JN209325
16S: GenBank
Numbers
HQ622024,
JN209672–
JN209673
HQ622031,
JN209669–
JN209671
HQ622001,
JN209663–
JN209665
HQ622004,
JN209666–
JN209668
HQ622034,
JN209645–
JN209647
HQ622033,
JN209642–
JN209644
HQ622038,
JN209622,
JN209639,
JN209641
HQ622041,
JN209623,
JN209635,
JN209638
HQ622029,
JN209624,
JN209634
H3: GenBank
Numbers
HQ622070, JN209759–
JN209761
HQ622077, JN209756–
JN209758
HQ622050, JN20975–
JN2097553
HQ622047,
JN209713–JN209715
HQ622080, JN209720–
JN209722
HQ622079, JN209716–
JN209719
HQ622087,
JN209749–
JN209751
HQ622084, JN209737–
JN209738, JN209745
HQ622075, JN209736
H4: GenBank
Numbers
N4031¢11.0¢¢
W0347¢42.7¢¢
N4020¢41.9¢¢
W0400¢48.9¢¢
N4025¢50.2¢¢
W0355¢30.9¢¢
N4028¢50.2¢¢
W0314¢33.5¢¢
N4046¢30.5¢¢
W0346¢42.6¢¢
N4111¢06.1¢¢
W0337¢07.4¢¢
N4048¢07.7¢¢
W0337¢19.6¢¢
N4036¢46.9¢¢
W0340¢41.1¢¢
N4048¢46.7¢¢
W0336¢06.2¢¢
GPS
Coordinates
662
644
667
780
985
1073
890
675
797
Altitude
(m)
D I V E R S I F I C A T I O N P A T T E R N S I N E A R T H W O R M S 3779
HNE
HM
HIS
VPJ
ALG
GHI
Alghero
Ghilarza
Code
Volpajola
Locality
Sassari,
Sardinia, Italy
Oristano,
Sardinia, Italy
Haute-Corse,
Corsica, France
Region, Country
HQ621996,
JN209565–
JN209570
HQ621971
Graus
Banyuls Sur
Mer
Loporzano
Torrecilla en
Cameros
Hormogaster
eserana
Hormogaster
gallica
Hormogaster
huescana
Hormogaster
ireguana
TOR
LOP
BSM
GRA
La Rioja, Spain
PyrénéesOrientales, France
Huesca, Spain
Huesca, Spain
HQ621994,
JN209486–
JN209492
HQ621980,
JN209523–
JN209529
HQ621977,
JN209530–
JN209536
HQ621974
HQ621888,
JN209394–
JN209400
HQ622037,
JN209593–
JN209595
HQ622015,
JN209614,
JN209621
HQ621873,
JN209264–
JN209270
HQ622028,
JN209602–
JN209604
HQ621883,
JN209331–
JN209337
HQ622011,
JN209608–
JN209610
HQ622006
HQ622010,
JN209674–
JN209676
HQ622012,
JN209677–
JN209679
HQ622036,
JN209680–
JN209682
HQ622014,
JN209689–
JN209691
HQ622018,
JN209692–
JN209694
HQ622003,
JN209596–
JN209598
HQ622005
HQ621869,
JN209234–
JN209237
HQ621871,
JN209245–
JN209251
HQ621887,
JN209389–
JN209393
HQ621872,
JN209257–
JN209263
HQ621875,
JN209287–
JN209293
HQ621865,
JN209208–
JN209214
HQ621866
HQ621870,
JN209238–
JN209244
HQ621867
HQ622042,
JN209683–
JN209685
HQ622000
HQ621890,
JN209426–
JN209431
HQ621863
HQ622061,
JN209788–
JN209789,
JN209829
HQ622083,
JN209765–
JN209767
HQ622074,
JN209793,
JN209795–
JN209796
HQ622057,
JN209785–
JN209787
HQ622052
HQ622056,
JN209804–
JN209806
HQ622058,
JN209807–
JN209809
HQ622082,
JN209810–
JN209812
HQ622060,
JN209823–
JN209825
HQ622064,
JN209826,
JN209828
HQ622049,
JN209820–
JN209822
HQ622051
HQ622088,
JN209813–
JN209815
—
710
N4429¢43.6¢¢
E00327¢41.9¢¢
N4213¢54.7¢¢
W00237¢35.2¢¢
N4228¢08.0¢¢
E00309¢08.2¢¢
N4207¢04.6¢¢
W00014¢54.6¢¢
N4210¢11.8¢¢
E00019¢53.2¢¢
789
558
105
454
N4151¢
454
04.6¢¢
E00119¢40.4¢¢
N4148¢04.9¢¢
1145
E00220¢51.6¢¢
N4033¢49.1¢¢
957
W00001¢03.5¢¢
210
54
N4128¢24.4¢¢
E00906¢08.6¢¢
N4418¢46.8¢¢
E00052¢45.0¢¢
276
247
0
401
Altitude
(m)
N3919¢23.8¢¢
E00831¢17.7¢¢
N4035¢59.9¢¢
E00817¢56.7¢¢
N4006¢58.9¢¢
E00851¢53.3¢¢
N4231¢18.6¢¢
E00921¢05.7¢¢
COI: GenBank 16S: GenBank H3: GenBank H4: GenBank GPS
Numbers
Numbers
Numbers
Numbers
Coordinates
HQ621976,
JN209453–
JN209457
Hormogaster
Iglesias
IGL
CarboniaHQ621978,
redii redii
Iglesias, Sardinia, Italy JN209458–
JN209464
Hormogaster
Col de la Testa TES
Corse-du-Sud,
HQ621993,
samnitica
Corsica, France
JN209465–
lirapora
JN209469
Hemigastrodrilus Cardayre
LAC Lot-et-Garonne, France HQ621979,
monicae
JN209579–
JN209585
Hemigastrodrilus Mende
MND Lozére, France
HQ621982,
monicae
JN209446–
JN209452
Hormogaster
Biosca
BIO
Lleida, Spain
HQ621972,
arenicola
JN209493–
JN209499
Hormogaster
El Brull
BRU Barcelona, Spain
HQ621973
catalaunensis
Hormogaster
Puerto
QUE Castellón, Spain
HQ621989,
castillana
Querol
JN209507–
JN209513
Hormogaster
redii
insularis
Hormogaster
redii redii
Hormogaster
redii redii
Phylogenetic Clade Species
Table 1 Continued
3780 M . N O V O E T A L .
2012 Blackwell Publishing Ltd
2012 Blackwell Publishing Ltd
Table 1 Continued
VG
Phylogenetic Clade
Table 1 Continued
QLL
PRB
MON
Vall d’Uixó
Quillan
Peralba
Monrepós
Hormogaster
pretiosa
arrufati*
Hormogaster
pretiosa
nigra*
Hormogaster
pretiosa var.*
Hormogaster
pretiosiformis
Sant Joan de
les Abadesses
Vignysa
vedovinii
SAN
Montmajor
Hormogaster
sylvestris
New species
(author’s
work in
progress)
Vignysa popi
Pignans
Saint- Gelydu-Fesc
MAJ
Cervera del
Maestre
Hormogaster sp.
PIG
SGF
CER
TAL
Talarn
Hormogaster sp.
ALE
Alesanco
Hormogaster
riojana
UIX
OEL
Peña Oroel
Hormogaster
oroeli
Code
Locality
Species
Var, France
Hérault, France
Girona, Spain
Barcelona, Spain
Castelló, Spain
Lleida, Spain
La Rioja, Spain
Huesca, Spain
Lleida, Spain
Aude, France
Castelló, Spain
Huesca, Spain
Region, Country
HQ621991,
JN209560–
JN209564
HQ621986,
JN209586–
JN209589
HQ621981,
JN209552
HQ621990,
JN209553–
JN209559
HQ621970,
JN209477–
JN209485
HQ621992,
JN209521–
JN209522
HQ621975,
JN209500–
JN209506
HQ621987,
JN209537
HQ621983,
JN209538–
JN209544
HQ621988
HQ621984,
JN209545–
JN209551
HQ621995,
JN209514–
JN209520
COI: GenBank
Numbers
HQ622017,
JN209706
HQ622030,
JN209707–
JN209709
HQ622032,
JN209704–
JN209705
HQ622025,
JN209701–
JN209703
HQ621885,
JN209371–
JN209375
HQ621880,
JN209326–
JN209329
HQ621999,
JN209590–
JN209592
HQ622035,
JN209611–
JN209612
HQ622008,
JN209599–
JN209601
HQ622026,
JN209613
HQ622020,
JN209615–
JN209617
HQ622027
HQ622022,
JN209618–
JN209620
HQ622040,
JN209605–
JN209607
H3: GenBank
Numbers
HQ621874,
JN209286
HQ621884,
JN209358–
JN209364
HQ621862,
JN209196–
JN209204
HQ621886,
JN209387–
JN209388
HQ621868,
JN209227–
JN209233
HQ621881,
JN209330
HQ621876,
JN209296–
JN209302
HQ621882
HQ621877,
JN209309–
JN209315
HQ621889,
JN209413–
JN209419
16S: GenBank
Numbers
HQ622072,
JN209792
HQ622066,
JN209791,
JN209797,
JN209801
HQ622046,
JN209762–
JN209764
HQ622081,
JN209779–
JN209780
HQ622054,
JN209783–
JN209784,
JN209827
HQ622063,
JN209790
HQ622076,
JN209781–
JN209782,
JN209794
HQ622078,
JN209816–
JN209817
HQ622071,
JN209710–
JN209712
HQ622068,
JN209798–
JN209800
HQ622086,
JN209778,
JN209802,
JN209803
HQ622073
H4: GenBank
Numbers
N4318¢04.6¢¢
E00612¢35.9¢¢
N4342¢19.0¢¢
E00348¢03.7¢¢
N4201¢43.3¢¢
E00142¢43.7¢¢
N4213¢30.0¢¢
E00214¢57.5¢¢
N4027¢23.1¢¢
E00016¢59.0¢¢
N4211¢05.5¢¢
E00054¢11.7¢¢
N4226¢21.7¢¢
W00250¢18.4¢¢
N4159¢22.7¢¢
E00054¢50.1¢¢
N4223¢26.0¢¢
W00022¢20.9¢¢
N4252¢48.8¢¢
E00210¢12.0¢¢
N3949¢39.4¢¢
W00015¢40.2¢¢
N4231¢20.1¢¢
W000º29́09.1́´
GPS
Coordinates
204
152
735
785
214
464
596
860
740
396
168
1090
Altitude
(m)
D I V E R S I F I C A T I O N P A T T E R N S I N E A R T H W O R M S 3781
HCL, Hormogaster clade used for calibration; HE, Hormogaster elisae species complex; HIS, Hormogaster from the islands (Corsica and Sardinia); HM, Hemigastrodrilus; HNE,
Hormogaster from the NE Iberian Peninsula; VG, Vignysa; XN, Xana; COI, cytochrome c oxidase subunit I gene.
Sequences in bold are additions for this study. The same species names as in Novo et al. (2011) are used although as indicated in that study, a systematic revision of the family
is overdue and some forms named Hormogaster pretiosa (with asterisk) may require a new name (M.N. work in progress). For a specimen donated by Pietro Omodeo, no exact
coordinates are available.
644
N4315¢20.9¢¢
W00505¢10.3¢¢
HQ622089,
JN209818–
JN209819
San Román
Xana omodeoi
XN
XAN
Asturias, Spain
HQ621997,
JN209470–
JN209476
HQ621891,
JN209432–
JN209438
HQ622043,
JN209686–
JN209688
GPS
Coordinates
Locality
Species
Phylogenetic Clade
Code
Region, Country
COI: GenBank
Numbers
16S: GenBank
Numbers
H3: GenBank
Numbers
H4: GenBank
Numbers
Altitude
(m)
3782 M . N O V O E T A L .
calculated using Arlequin v.3.5 (Excoffier & Lischer
2010) and DnaSP v. 5 (Librado & Rozas 2009) using a
Kimura 2-parameter correction, as in previous studies.
Haplotype networks were constructed for each gene
region. The statistical parsimony procedure (Templeton
et al. 1992; Crandall et al. 1994) with a 95% connection
threshold was used in TCS version 1.2.1 (Clement et al.
2000) for histones. Mitochondrial genes showed large
divergence, and thus, these sequences were analysed
using SplitsTree4 v.4.10 (Huson & Bryant 2006). Default
settings were used, thus constructing a Neighbour-net
with uncorrected p-distances.
Species boundaries based on GMYC approach
and molecular rates
Species boundaries were evaluated using a general
mixed Yule-coalescent (GMYC) model approach (Pons
et al. 2006; Fontaneto et al. 2007) based on a separate
analysis of the two mitochondrial genes. A Bayesian
analysis was performed in BEAST 1.6.1 for COI and 16StRNA (Drummond & Rambaut 2007) to reconstruct a
fully resolved topology with branch length estimates. A
relaxed lognormal clock was used with the Coalescence
prior. This prior has proven more conservative, thus
suggesting more accurate species boundaries, because
the GMYC uses a coalescent as the null model for
explaining branching patterns (Monaghan et al. 2009).
GTR+I+G, the best-fit model as indicated by jModeltest
(Posada 2008), was used.
The phylogenetic trees were calibrated using the separation between Hormogaster pretiosa pretiosa from Sardinia (VIL) and the continental species clustering in the
same clade (named HCL)—Hormogaster pretiosa cf. hispanica collected near the shore of the river Ter in Girona
(HPA) and Hormogaster najaformis (ORD)—assuming a
divergence time for these lineages at least dating back
to the separation of the Corso-Sardinian microplate
from continental Europe. As a calibration point, we use
the most current estimates for the separation of the
occidental Mediterranean microplates (33 Ma; Schettino
& Turco 2006).
Bayesian analyses were run from for 50 million generations, sampling from every 5000th generation,
always resulting in 10 000 trees. After checking for stationarity with Tracer v. 1.5 (Rambaut & Drummond
2007), 20% of the trees were discarded. A maximum
clade credibility tree was then built with the remaining
trees and analysed in the R package SPLITS (http://
r-forge.r-project.org/projects/splits),
following
the
GMYC approach for species delimitation with single
and multiple threshold optimizations.
Molecular rates (in terms of substitution rates) were
calculated for the four genes combined to compare the
2012 Blackwell Publishing Ltd
D I V E R S I F I C A T I O N P A T T E R N S I N E A R T H W O R M S 3783
evolution of the different clades. A similar approach as
for the GMYC was followed by constructing a fully
resolved topology with branch length estimates in BEAST
1.6.1. In this case, two priors were compared (Coalescence with constant size and Speciation-Yule) with the
aim to evaluate the credibility of the rates yielded by
the different analysis. We also calculated relative timings by calibrating the tree with a 1 in the root for Hormogastridae. Differences between the substitution rates
(recovered by BEAST 1.6.1 for each node) of distinct
clades within Hormogastridae (namely HCL, HE, HIS,
HM, HNE, VG, XN, see Table 1) were analysed by
means of a one-way ANOVA in STATISTICA v. 6.1 (StatSoft,
Inc. (2001), http://www.statsoft.com).
ables and sampling localities to reduce these variables to
Factors. This analysis was executed via a correlation
matrix after standardization (43 localities · 8 soil variables), which permits a visualization of the variations
among localities. Localities belonging to different phylogenetic clades (previously recovered by Novo et al. 2011;
i.e. HCL, HE, HIS, HM, HNE, VG, XN, see Table 1) were
represented with different colours in the PCA graph.
Afterwards, the mean values of factor scores and separate soil variables for these phylogenetic clades were
compared by an ANOVA (STATISTICA v. 6.1, StatSoft, Inc.
2001, http://www.statsoft.com). This is aimed to help
ascertain whether the type of soil has an influence on the
composition of the earthworms inhabiting each locality.
Geographical and environmental assessment
Results
A pattern of isolation-by-distance was tested for the big
clades HE and HNE by means of a Mantel (1967) test,
correlating the matrix of genetic distance between localities (FST with Kimura 2-parameter correction) based on
the most variable gene, COI, and geographical distance
(here, straight line between study sites). The test was performed in Arlequin v. 3.5 (Excoffier & Lischer 2010), and
the significance of matrices correlation was evaluated
comparing the Mantel test statistic Z, for which random
distributions were obtained with 10 000 permutations.
Some soil factors were measured in the sampled locations to explore the role of the environment in the
genetic diversification of this group of Mediterranean
earthworms. These were selected because they are
among the most important factors affecting earthworm
distribution (Edwards & Bohlen 1996; Hernández et al.
2003). Soil texture and pH were determined as
described by Guitián & Carballas (1976). Total nitrogen
content was determined by the Kjeldahl method as indicated in Page et al. (1982) and expressed as a percentage. Organic oxidable carbon analysis was based on
Anne’s (1945) method, adapted for a microplate reader
(Microplate Bio-Rad, 590 nm), employed using glucose
as a standard and expressed as a percentage.
A Mantel test with 10 000 permutations was implemented in Arlequin v.3.5 (Excoffier & Lischer 2010) to
correlate the genetic distances (FST with a Kimura 2parameter correction), based on all the genes separately,
with the differences between localities for soil factors (in
absolute values). This was performed to indentify the soil
factors that could be related to the earthworm genetic
diversity (i.e. do the most genetically distinct populations
live in the most unique soils? what soil characteristics
could be involved in the evolution of the group?)
As the Mantel test including the genetic sequence
information was not conclusive, a principal component
analysis (PCA) was performed only with the soil vari 2012 Blackwell Publishing Ltd
Characteristics of the used genes and genetic
variability
Genetic variability values for each gene region are shown
in Table 2 for the whole data set of Hormogastridae.
Detailed diversity descriptions by locality are shown in
Table S1 (Supporting information). Also the mean
genetic divergence between localities (Kimura 2-parameter corrected) can be found in Table S2 (mitochondrial
data) and Table S3 (nuclear data) (Supporting information). Mitochondrial regions showed to be more variable
than the nuclear genes, with a mean divergence in the
range of 13.6–16.4%. Histones were the least variable
markers, showing a mean divergence of ca. 3%. Indel
events were only detected in the 16S-tRNA fragment.
Haplotypic networks are shown in Fig. 1. A neighbour-net constructed with SplitsTree and based on
mitochondrial data shows how the HE clade presents
much deeper subdivisions than the HNE clade, despite
the former including a single morphospecies and the
latter many. Regarding the histone networks, both histones H3 and H4 presented unconnected networks for
each of the main clades. The histone H4 for those networks with more than two terminals is presented as an
example (Fig. 1), showing that the patterns of diversification for HE and HNE are similar for histones.
Species boundaries based on GMYC approach
and molecular rates
General mixed Yule-coalescent analyses exhibited a
higher subdivision for Hormogastridae than expected
under a morphospecies concept. Results from both
mitochondrial genes are similar, with 56 entities identified. The number of entities was artificially high in the
HE clade, separating individuals collected in the same
locale as different entities (24 entities in 16 populations).
3784 M . N O V O E T A L .
Table 2 Genetic diversity values of the gene fragments used for the study
N
NHAP
H
p
Positions
Substitutions
Indels
S
Ts
Tv
Dp (N)
Dp (%)
COI
16S-tRNA
H3
H4
375
170
0.99 (0.0001)
0.164 (0.078)
648
514
0
266
366
148
106.35 (45.77)
16.41 (7.06)
374
162
0.99 (0.001)
0.136 (0.065)
808
572
78
380
358
214
110.20 (47.41)
13.64 (5.87)
166 (332)
65
0.98 (0.002)
0.035 (0.018)
328
95
0
68
59
36
11.47 (5.21)
3.50 (1.59)
164 (328)
37
0.92 (0.01)
0.028 (0.015)
183
47
0
32
31
16
5.12 (2.49)
2.80 (1.36)
N, Number of individuals analysed (in the case of the histones, two alleles per individual were analysed, because of the presence of
ambiguities); NHAP, number of identified haplotypes; H, haplotypic diversity; p, nucleotidic diversity; S, number of polymorphic
sites; Ts, number of transitions; Tv, number of transversions, Dp, mean number of pairwise differences (N, total number, %,
percentage); COI, cytochrome c oxidase subunit I gene.
Standard deviation of the estimates is shown in parenteses.
The HM clade also exhibited unexpected subdivisions
(four entities in two populations). Regarding the
remaining clades, nearly all localities were identified as
a separate entity. The multiple threshold approach
resulted in an even higher number of entities (126 with
16S-tRNA and 118 with COI).
Molecular rates were suitable for ANOVA analyses after
the Log10 transformation. Only differences between the
rates of clades HE and HNE were statistically significant, as the remaining clades had few values and great
variability. Absolute molecular rates (after constructing
the trees with the calibration in HCL at 33 Ma) were
significantly higher (ANOVA: F1,36 = 6.6988, P = 0.01) in
the HE clade (Mean rate = 0.002941, SD = 0.000735)
than in the HNE clade (Mean rate = 0.002363,
SD = 0.000779) for the Coalescent prior. No significant
differences were found for the Speciation-Yule prior
(ANOVA: F1,35 = 1.3407, P = 0.254), although mean values
for HE (Mean rate = 0.00803, SD = 0.007611) were
higher
than
in
HNE
(Mean
rate = 0.005506,
SD = 0.005808). Similar results were obtained when
comparing the relative molecular rate values (obtained
without calibration, setting a value of 1 in the root of
Hormogastridae) showing significant differences with
the Coalescent prior (ANOVA Coalescence F1,35 = 13.499,
P = 0.0008) but not with the Speciation-Yule prior
(F1,33 = 2.9994, P = 0.092). Note that the absolute molecular rate values are difficult to compare between different priors as they are very different.
Geographical and environmental assessment
A pattern of isolation-by-distance was found for the HE
clade, as shown by the positive correlation of the Man-
tel test (r = 0.372, P = 0.003). No such pattern was
detected for the HNE clade (r = 0.077, P = 0.334).
Soil characteristics for each locality are shown in
Table 3. The results of the Mantel test between matrices
of genetic distance and absolute differences in soil
properties are shown in Table 4. All factors, except for
the percentage of fine sand, are significantly correlated
with each genetic fragment analysed.
Principal component analysis revealed three factors
(Table 5) that explained the 77.52% of the total variance in the soil characteristics between localities. The
first factor (36.35% of the total variance) was highly
and positively correlated to the level of nutrients (carbon and nitrogen) and clay, and negatively correlated
to the percentage of sand. pH and fine silt were positively related to the second factor (25.02% of the total
variance). The graphical representation of the localities
in the first two axes obtained is presented in Fig. 2,
where localities are coloured according to the phylogenetic clade recovered in previous analyses by Novo
et al. (2011). Localities included in the clade HE exhibit
a tendency towards the more acidic soils, with higher
content of coarse sand, and slightly poorer, whereas
clade HNE is found in soils with finer texture and
higher pH. Xana inhabits soils with higher content of
clay than the ones of other hormogastrids and soil characteristics in Corsica and Sardinia (clade HIS) resulted
very heterogeneous. These differences between the
main clades (HE and HNE) are confirmed by the ANOVA. Scores of Factor 1 showed significant differences
(F6,36 = 4.55, P = 0.002) only among XN and HE ⁄ HNE
according to post hoc comparisons (Tukey’s test). But
when excluding XN and HCL (Phylogenetic clades represented only by one locality) the differences among
2012 Blackwell Publishing Ltd
D I V E R S I F I C A T I O N P A T T E R N S I N E A R T H W O R M S 3785
Hormogaster CL
Xana
H. najaformis_ORD
H. pretiosa pretiosa_VIL
X. omodeoi_XAN
H. elisae_SOT
H. elisae_SIG
H. elisae_FRE
H. sylvestris_MAJ
0.01
H. sp nov._SAN
H. elisae_CAB
H. elisae_NAV
H. elisae_LOZ
H. arenicola_BIO
Hormogaster NE
H. elisae_TRE
H. elisae_MOL
H. eserana_GRA
H. elisae_TRE
H. pretiosa var_PRB
H. elisae_RED
H. oroeli_OEL
H. elisae_RED_VEN
H. elisae_JAR_VEN
H. pretiosiformis_MON
H. huescana_LOP
H. pretiosa arrufati_UIX
H. castillanaQUE
Hormogaster sp_CER
Hormogaster sp_TAL
H. elisae_UCE
H. ireguana_TOR
H. riojana_ALE
H. elisae_ANC
H pretiosa nigra_QLL
H. catalaunensis_BRU
H. gallica_BSM
V. popi_SGF
Vignysa
H. elisae_SEV
H. saminitica lirapora_TES
H. elisae_BOA
V. vedovinii_PIG
H. elisae_PAR
H. redii redii_IGL
H. redii redii_GHI
H. redii redii_ALG
He monicae_MND
Hormogaster IS
H. elisae species complex
H. redii insularis_VPJ
He. monicae_LAC
H. redii redii_GHI
H. redii redii_IGL
Hemigastrodrilus
H. saminitica lirapora_TES
N
ae_VE
H. elis
H. elisae_CAB
H. redii insularis_VPJ
H. castillana_QUE
Hormogaster sp_TAL
H. pretiosa arrufati_UIX
H. sylvestris_MAJ
H. elisae_TRE
H. elisae_JAR
H. elisae_RED
H. elisae_LOZ
H. ireguana_TOR
H. elisae_TRE
H. sp nov._SAN
H. eserana_GRA
H. elisae_NAV
Hormogaster sp_CER
H. elisae_TRE
H. elisae_MOL
H. castillana_QUE
H. pretiosiformis_MON
H. pretiosa var_PRB
H. elisae_UCE
H. elisae_MOL
H. elisae_CAB
H. riojana_ALE
H. elisae_FRE
H. huescana_LOP
H. pretiosiformis_MON
H. elisae_SIG
H. elisae_VEN
H. elisae_SOT
H. oroeli_OEL
H. arenicola_BIO
H. arenicola_BIO
H. elisae_ANC
H. catalaunensis_BRU
H. elisae_SEV
H. elisae_BOA
H pretiosa nigra_QLL
H. gallica_BSM
H. elisae_PAR
Fig. 1 Illustration of the genetic diversity within the different clades of Hormogastridae. In the upper part of the Figure, a network
recovered by SplitsTree4 and based on the mitochondrial data is shown. Branch length is proportional to the genetic distance. Different clades recovered by Novo et al. (2011) are indicated. TCS network for some of the clades is shown, based on histone H4 data. The
size of the circles reflects haplotype frequency. Circles with no names are intermediate inferred haplotypes. Each branch represents
one mutational step, branch lenght being meaningless.
2012 Blackwell Publishing Ltd
3786 M . N O V O E T A L .
Table 3 Soil properties of the sampled locations of hormogastrids
Clade
Code
%Coarse
sand
%Fine
Sand
%Total
Sand
%Coarse
Silt
%Fine
Silt
%Total
Silt
%Clay
Texture
classification
%C
%N
vC ⁄ N
pH
HCL
HE
ORD
CAB
UCE
FRE
LOZ
MOL
NAV
JAR
RED
TRE
VEN
SIG
SOT
ANC
BOA
SEV
PAR
VPJ
GHI
IGL
TES
LAC
MND
BIO
BRU
QUE
GRA
BSM
LOP
TOR
OEL
UIX
QLL
PRB
MON
ALE
TAL
CER
MAJ
SAN
SGF
PIG
XAN
19.24
65.46
22.94
45.34
50.37
52.47
51.76
36.01
38.15
56.29
40.69
44.99
45.11
11.69
59.67
66.19
65.51
30.61
11.32
30.54
69.76
23.67
38.47
7.53
47.50
34.18
25.03
25.21
33.99
19.78
12.90
33.24
11.04
15.37
10.21
9.24
11.28
20.41
11.71
13.57
16.68
20.21
9.01
9.73
9.28
16.53
18.24
20.21
19.91
18.22
11.48
21.36
13.16
16.85
10.9
25.74
17.48
11.93
8.22
8.65
17.82
10.15
14.40
12.69
8.26
23.95
14.10
12.61
26.25
20.86
8.33
12.37
25.04
28.49
16.93
11.09
15.83
15.17
25.12
16.33
14.22
6.50
9.62
23.62
11.09
5.67
28.97
74.75
39.47
63.58
70.58
72.38
69.97
47.49
59.51
69.45
57.54
55.89
70.84
29.16
71.6
74.41
74.16
48.43
21.47
44.94
82.45
31.92
62.42
21.62
60.11
60.43
45.89
33.55
46.36
44.82
41.38
50.17
22.13
31.20
25.38
34.36
27.61
34.64
18.22
23.18
40.30
31.31
14.68
9.35
4.3
26.2
12.41
10.23
2.92
10.1
12.36
8.63
6.08
7.95
10.74
6.5
14.58
2.32
2.93
3.16
7.57
12.49
19.20
2.23
5.45
5.95
4.36
5.25
4.65
13.08
7.11
4.50
15.87
12.32
4.57
3.46
6.85
5.61
55.38
8.81
9.24
6.88
6.27
13.19
7.78
1.84
32.72
11.62
20.14
12.28
10.76
9.61
10.5
13.69
19.83
10.97
18.07
18.13
13.97
36.49
7.61
6.58
7.49
34.68
39.85
5.34
7.92
43.64
27.61
69.01
17.72
32.83
32.31
36.49
30.10
17.87
21.80
21.41
72.08
59.30
66.64
1.86
61.27
40.34
69.02
32.37
28.82
33.55
22.00
42.07
15.92
46.34
24.69
21
12.53
20.6
26.06
28.46
17.05
26.03
28.88
20.46
51.08
9.93
9.52
10.65
42.25
52.34
24.54
10.16
49.09
33.55
73.37
22.97
37.47
45.39
43.60
34.60
33.74
34.12
25.98
75.54
66.15
72.25
57.24
70.08
49.58
75.90
38.64
42.00
41.33
23.84
28.97
9.34
14.19
11.74
8.43
15.1
9.42
26.45
12.03
13.5
16.44
15.23
8.69
19.76
18.47
16.08
15.19
9.31
26.19
30.52
7.40
18.99
4.03
5.01
16.92
2.09
8.72
22.85
19.05
21.44
24.50
23.85
2.33
2.66
2.37
8.40
2.31
15.78
5.88
38.18
17.70
27.36
61.48
Clay loam
Sandy loam
Loam
Sandy loam
Sandy loam
Sandy loam
Sandy loam
Sandy clay loam
Sandy loam
Sandy loam
Sandy loam
Sandy loam
Sandy loam
Clay
Sandy loam
Sandy loam
Sandy loam
Loam
Silt loam
Clay loam
Loamy Sand
Loam
Sandy loam
Silt loam
Sandy loam
Sandy loam
Loam
Loam
Loam
Loam
Loam
Sandy clay loam
Silt loam
Silt loam
Silt loam
Silt loam
Silt loam
Loam
Silt loam
Clay loam
Loam
Loam
Clay
3.72
2.15
2.3
0.86
2
0.96
1.88
1.82
1.77
1.86
2.08
2.14
1.87
1.78
1.18
1.28
1.5
2.59
5.81
1.83
1.21
4.44
2.15
3.86
4.76
3.79
2.20
3.88
1.59
2.32
2.76
3.19
1.81
3.44
1.78
1.63
2.23
2.70
2.98
4.48
2.34
4.26
3.34
0.76
0.514
0.476
0.179
0.424
0.16
0.452
0.343
0.399
0.41
0.543
0.606
0.326
0.391
0.237
0.199
0.263
0.29
1.37
0.51
0.37
0.93
0.52
1.20
1.32
0.84
0.68
0.94
0.37
0.53
0.53
0.39
0.52
0.71
0.35
0.30
1.41
0.54
0.83
1.32
0.67
0.85
1.25
4.91
4.18
4.83
4.79
4.72
5.92
4.16
5.31
4.45
4.55
3.83
3.54
5.74
4.55
4.98
6.46
5.69
8.93
4.24
3.56
3.31
4.79
4.14
3.21
3.61
4.49
3.23
4.13
4.36
4.37
5.16
8.18
3.52
4.87
5.15
5.33
1.58
5.01
3.60
3.39
3.48
5.02
2.68
7.38
5.68
5.57
7.45
5.49
6.4
5.35
7
7.62
6.24
7.41
5.05
5.43
7.9
6.42
5.93
6.19
5.73
5.6
7.26
5.78
7.44
7.6
7.19
4.76
7.47
7.49
5.51
7.79
7.45
7.3
7.56
7.62
7.42
7.59
7.33
7.57
7.5
7.39
7.09
7.55
7.4
5.26
HIS
HM
HNE
VG
XN
C, Carbon; N, Nitrogen.
ALG, HPA and VIL values are not included because specimens from those localities were not collected by the authors and soil
samples were not available for study. For complete names see Table 1.
HE and HNE were significant (F4,36 = 3.03, P = 0.03).
Scores of Factor 2 showed significant differences
(F6,36 = 6.11, P = 0.0002) among HE and HNE according
to post hoc comparisons. All the individually analysed
soil variables showed significant differences among
clades (P < 0.05) excepting fine sand and coarse silt
content. Post hoc comparisons showed that coarse sand
content was significantly higher in localities included in
the HE clade than in the HNE clade, whereas fine silt
content, Carbon, Nitrogen and pH were lower in the
HE than in the HNE clade (P < 0.05 in all the cases).
Locality XN showed a significantly higher content of
clay when compared to the rest (P < 0.01, except for
HCL).
2012 Blackwell Publishing Ltd
D I V E R S I F I C A T I O N P A T T E R N S I N E A R T H W O R M S 3787
Table 4 Results from the Mantel test of the correlation between FST based on different genes among localities, and the differences
(in absolute values) of their soil factors
COI
Coarse sand
Fine sand
Total sand
Coarse silt
Fine silt
Total silt
Clay
C
N
pH
16S-tRNA
H3
H4
P
r
P
r
P
r
P
r
0.023
0.630
0.076
0.003
0.014
0.011
0.052
0.118
0.040
0.034
0.125
)0.023
0.086
0.158
0.155
0.158
0.127
0.108
0.143
0.119
0.120
0.350
0.038
0.009
0.031
0.080
0.011
0.023
0.034
0.022
0.070
0.030
0.087
0.130
0.121
0.094
0.133
0.130
0.123
0.112
0.004
0.199
0.001
0.313
0.000
0.001
0.004
0.000
0.004
0.117
0.146
0.050
0.157
0.056
0.194
0.173
0.150
0.227
0.175
0.066
0.001
0.060
0.003
0.119
0.010
0.046
0.311
0.009
0.097
0.003
0.173
0.080
0.135
0.085
0.135
0.090
0.039
0.136
0.074
0.147
C, carbon; N, nitrogen; COI, cytochrome c oxidase subunit I gene.
Significant P values (<0.05) and the associated correlation coefficients (r) are shown in bold and italics.
Table 5 Correlation coefficients between soil variables and
principal component analysis factors
Variables
Factor 1
Factor 2
Factor 3
%Coarse sand
%Fine sand
%Coarse silt
%Fine silt
%Clay
%C
%N
pH
Explained variance (%)
)0.580
)0.423
0.032
0.277
0.688
0.843
0.837
)0.068
36.348
)0.666
0.196
)0.031
0.881
)0.477
0.200
0.256
0.721
25.024
0.373
)0.643
)0.886
0.303
)0.108
0.155
0.201
)0.321
16.147
C, carbon; N, nitrogen.
Values in bold and italics are significant (P < 0.05).
Discussion
Characteristics of the used genes and genetic
variability
The genetic variability found in these endogeic Mediterranean earthworms has proven to be high, when compared with other studied annelids at similar taxonomic
levels. However, the evolutionary pattern does not
seem constant along the different lineages in the family,
as we have detected important differences between
clades regarding genetic and morphological evolution.
On one hand, the Hormogaster elisae complex (HE),
whose distribution is limited to the central Iberian Peninsula, includes only one morphospecies showing a constancy in all morphological diagnostic characters, but
exhibiting great genetic variability and a deep genetic
subdivision. Other examples of large genetic divergence
2012 Blackwell Publishing Ltd
across short geographical distances (in the order of a
few kilometres or even in the same site) have been
reported for earthworms (James et al. 2010; Dupont
et al. 2011; Férnandez 2011), in which cryptic speciation
could be common.
On the other hand, the clade including Hormogaster
from the NE Iberian Peninsula (HNE), with a similar
sampling effort, includes 15 described species (in this
work, we include 13 described species and some varieties, as well as a possible new species, but H. multilamella and H. lleidana were not found). Qiu & Bouché
(1998) described the morphological diversity of this
clade that occupies a slightly larger area in the northeastern part of the Iberian Peninsula. The genetic variability of HNE is not as great as in the HE clade and it
does not present such deep subdivisions in mitochondrial data (see Splitstree in Fig. 1), despite showing
much larger morphological diversity and including
highly autapomorphic taxa, currently considered monotypic genera. Regarding the nuclear data, both clades
show a core of sequence diversity that seems to be the
origin of the remaining sequence types (see TCS networks for H4 in Fig. 1). All this evidence suggests that
these two clades are undergoing different evolutionary
processes and these could be attributed to the particular characteristics of the soil that they inhabit (see
below), or to some rarely documented evolutionary
processes.
For the remaining clades, no sound conclusions can
be drawn due to the lack of sufficient information available. It would be particularly interesting to explore the
hormogastrid fauna from Corsica and Sardinia to shed
light on the potential cryptic speciation processes occurring there, as indicated by the great genetic divergences
between sampled localities of Hormogaster redii and also
3788 M . N O V O E T A L .
2.5
MON
2.0
QLL
TAL
BIO
PRB
MAJ
1.5
QUE
Factor 2 (25.02%)
1.0
MND
0.5
GRA ANC CER
LOP
RED
VPJ
0.0
–0.5
–1.0
FRE
VEN
ALE
MOL SOT TRE
TES
BOA LOZ
PAR
–1.5
–2.0
–1.5
NAV
CAB
LAC
SGF
TOR OEL
PIG
ORD
SAN
UIX
GHI
BSM
UCE
JAR
IGL
BRU
SIG
SEV
XAN
–1.0
–0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
Factor 1 (36.35%)
1.0
0.8
pH
%Fine Silt
0.6
0.4
Factor 2
0.2
% Nitrogen
%Fine Sand
% Carbon
0.0
%Coarse Silt
–0.2
–0.4
% Clay
–0.6
%Coarse Sand
–0.8
–1.0
–1.0 –0.8 –0.6 –0.4 –0.2 0.0
0.2
0.4
0.6
0.8
1.0
Factor 1
Fig. 2 Plot of the factor scores for soil analyses on the first two principal components for hormogastrid localities. Graphical illustration of the localities, indicating the variance explained by each axis (above) and correlation circle representation of the soil variables
(below). Localities were coloured according to the clade in which they were included in previous phylogenetic analyses. Localities
included in the clade HE are represented in pink, HCL in yellow, HIS in red, HM in orange, HNE in green, VG in blue and XN in
brown. See codes for the localities and complete name of species and clades in Table 1. Barycentre coordinates of each clade are represented by a star of the corresponding colour. Note that the clades that include only one locality (HCL and XN) are only represented by this star.
by the GMYC results that identify each locality as a
putative entity.
Species boundaries
Recently, the use of coalescent-based models of species
delineation has flourished for studying difficult groups
based on morphology alone (Nekola et al. 2009), for
assigning immature specimens to their adult counterparts (Gattolliat & Monaghan 2010), to match spider
genders where males and females are often described
based on independent sets of character (M.A. Arnedo &
G. Hormiga, unpublished data), or to perform rapid
biodiversity estimates for taxonomic groups in areas
where little taxonomic information is available (Pons
et al. 2006; Kaya et al. 2009; Monaghan et al. 2009). The
GMYC method has proven to work well for many of
these examples, including arthropods and molluscs (e.g.
Monaghan et al. 2009; Nekola et al. 2009; Gattolliat &
Monaghan 2010), but almost no published account
exists for annelids or oligochaetes. Only a very recent
publication has explored the method in anecic earthworms
2012 Blackwell Publishing Ltd
D I V E R S I F I C A T I O N P A T T E R N S I N E A R T H W O R M S 3789
showing surprising results when compared to traditional taxonomy (Fernández et al. in press), and we
found interesting to further test this method with these
animals.
Papadopoulou et al. (2008) compared two groups of
beetles occupying different habitats and with different
dispersal habilities showing that in stable habitats
(expected to have lower dispersal rates) there tends to
be a higher subdivision of clades when applying the
GMYC model, and lineage branching occurred more
deeply in the tree. Also, the lineages from the more stable habitats had higher levels of nucleotide and haplotype diversity and greater geographical structure,
perhaps indicating that the populations had had more
time to diversify. This is indeed the case of hormogastrid earthworms. The soil is a very stable milieu, the
dispersal rates of earthworms are thought to be very
low (Ligthart & Peek 1997; Hale et al. 2005), and these
animals tend to stay put in the same place for long periods of time, following the fate of their habitat and geographical area (Omodeo & Rota 2008). Specifically, in
hormogastrid earthworms, this pattern is magnified
because their active dispersal capabilities and passive
dispersal opportunities are even lower (Novo et al.
2010b). Still, this is not an explanation for why the individuals from the same populations in clade HE are considered different entities by the GMYC model, but just
an indication that they indeed show deep genetic divergences. Following Wiens & Penkrot’s (2002) phylogenetic concept, these subdivisions make little sense. The
genetic variability in this complex of species exceeds
the predictable values and seems to be undergoing different evolutionary processes, as shown in some soil arthropods (Boyer et al. 2007). The HE clade already
shows extreme subdivision when constructing statistical
parsimony networks (with TCS, Novo et al. 2010a), also
separating individuals from the same populations.
Other authors stated that independent haplotype networks generally agree with named species or species
subgroups (Pons et al. 2006; Hart & Sunday 2007), but
again the HE clade may not follow this rule.
Lohse (2009) argued that incomplete sampling of demes involved in the coalescent process could artificially
overestimate species numbers by the GMYC method.
Papadopoulou et al. (2009) responded that indeed, if
populations (demes) with intermediate haplotype composition are left unsampled, these results are an overestimate of species (oversplitting). Nevertheless, they
argue that the problems raised by Lohse (2009) result
from the fact that the offspring is produced in the vicinity of the parents, which in turn produces greater similarity of genotypes at a site compared with other sites.
This is surely the case of hormogastrid earthworms
(Novo et al. 2010b) but it only could explain the subdi 2012 Blackwell Publishing Ltd
vision pattern found as one population corresponding
to one entity.
Species delimitation within earthworms is still an
open question because their morphology not always
captures the true diversity owing to their structural
simplicity and specific adaptations to the soil. Here, we
show that coalescent methods overestimate the number
of species, probably due to the marked genetic structure
and scarce dispersion capacity. Further research in this
important topic is therefore needed.
Molecular rates
The first conclusion regarding molecular rates is that a
unique value cannot be generalized for this particular
family. As shown in Fig. 2, these values not only vary
along the tree, but they also differ depending on the
prior used for the analyses. Thus, general statements
such as the one proposed by Omodeo (2000), who indicated (based on continental drift) the need of 180 MY
for an earthworm genus to differenciate, cannot be
accepted and the rates proposed by other authors (e.g.
Chang & Chen 2005; Chang et al. 2008; Buckley et al.
2011) working on megascolecids, should be taken with
a grain of salt and limited to the species studied and to
the concrete scenario of each particular case. They can
definitely not be extrapolated to hormogastrids in general or to any particular clade. Our data suggest that
the HE lineage has undergone quicker diversification
than HNE as it presents higher rates, as shown by the
ANOVA results. Conclusions about the remaining clades
should await further collecting effort.
These results confirm cryptic speciation within the
HE lineage in the central Iberian Peninsula, where a
mismatch between morphological and molecular evolution has been reported (Novo et al. 2009, 2010a). Here,
we propose that the characteristics of the soils where
the members of clade HE live limits their morphological
change, and thus, even molecular evolution is fast morphological changes do not have time to fixate. The
harsher soil conditions (i.e. dryer and with less organic
matter than other soil typically inhabited by earthworms) they inhabit could be implied also in this rate
acceleration.
Geographical and environmental assessment
Hormogastrid evolutionary history is largely shaped by
the geographical history of the landmasses they inhabit,
probably because of their low vagility. Although
confined to their particular areas, soil conditions could
also be shaping the genetic processes of these earthworms, as shown by the correlation between the genetic
divergences and the differences in soil characteristics
3790 M . N O V O E T A L .
among collection sites. However, no single soil property
is responsible for these differences, and instead, it is the
combined effect of these properties what shows a correlation. Novo et al. (2010a) found that some soil texture
characteristics have a larger influence in the differenciation between the H. elisae lineages. The higher diversity
of soils included in this work shows relevance of other
factors, such as carbon or nitrogen content, when taking
into account the whole family Hormogastridae, as
opposed to a single lineage.
The PCA permits a better understanding of the ecological scenario by combining the soil variables in factors. In general, hormogastrids are confined to poor
soils, with low nitrogen and organic matter content,
being relegated to the soils where other earthworms
cannot survive, sometimes by means of exclusive competition (Ramajo 2010). The percentages in organic matter found in the studied localities were low in
comparison with those observed by other authors
studying earthworms in other areas of the Iberian Peninsula (Mariño et al. 1985). The localities included in
the HE clade exhibit a tendency towards more acidic
soils, with higher content of coarse sand, and slightly
poorer, when compared to the localities included in the
HNE clade, whose members inhabit soils with finer texture and higher pH.
The characteristics of the soil may be the reason why
morphological adaptations are generally maintained in
earthworms, causing thus morphological stasis. This is
certainly the case of hormogastrids, as they are adapted
to harsh soil conditions, and magnified in the case of
H. elisae (HE), enduring very harsh soil conditions
among oligochaetes. This, together with the extreme climatic characteristics (cold winters and hot and dry
summers) in the central Iberian Peninsula makes the
habitat of HE unsuited for most species of earthworms
(Hernández et al. 2007). Other authors already proposed that extreme subsurface conditions could constrain morphological evolution and be responsible for
convergence over large periods of time (e.g. for amphipods, beetles and salamanders: Jones et al. 1992; Caccone & Sbordoni 2001; Wiens et al. 2003). The
morphological adaptations already evolved to inhabit
these harsh habitats are probably optimal and any
change could be nonadaptive. The specialized environment can impose stabilizing selection, thus minimizing
or eliminating the morphological change that can occur
during speciation (Bickford et al. 2007). Therefore, the
high genetic divergences found within HE could be
related to biochemical changes not detectable morphologically. We propose here, as observed for clade HE
that the harsh soil conditions these earthworms have to
endure contribute to accelerate genetic evolution
(i.e. higher molecular rates).
Principal component analysis detected that Xana
inhabits soils that differ from those of other hormogastrids, with a much higher clay content. Thus, the
hypothesis of Novo et al. (2011) suggesting the reduction from three to two gizzards as an adaptation to the
environment remains plausible. In that study, Xana and
Vignysa (the only hormogastrids presenting two gizzards, while the others have three) were not related
phylogenetically in most analyses (but they clustered in
the analyses based on nuclear genes).
The soil collected in Corsica and Sardinia (where the
clade HIS inhabits) is heterogeneous, as shown by the
PCA, where the samples from both islands appear
mixed without a clear tendency. This heterogeneity
could be explained by the geological origin of the
islands (Bacchetta et al. 2007; Omodeo & Rota 2008)
and could also be the cause of the unexpected genetic
diversity found within this clade. More populations of
H. redii should be collected to study the real scope of
this diversity.
A pattern of isolation-by-distance has been found in
the HE clade but not for the HNE clade. Nevertheless,
the relationships recovered within HNE show clusters
related to geographical location. As mentioned earlier,
hormogastrids show strong biogeographical patterns of
vicariance and a diffusive-like colonization is expected
via active dispersal (very slow) or via nonanthropogenic
passive dispersal (e.g. by birds, mammals, wind or
waterways) (Cameron et al. 2008). The fact that the isolation-by-distance pattern is significant in the case of
HE but not for HNE demonstrates that in the former
the great genetic diversity concentrated in a small geographical area has a deep genetic basis and that the animals show low vagility, as postulated for the members
of this family.
The geographical distribution of HE could also explain
its high diversity, as it is located in the westernmost limit
of the Hormogastridae distribution (Cobolli-Sbordoni
et al. 1992), exploiting and colonizing marginal habitats.
Among sampled populations of HE, the ones in the
mountainous area (Guadarrama Mountains, see Novo
et al. 2009, 2010a for a detailed map) exhibit higher diversity and were easier to locate, which could be a sign of
greater population densities and probably a more favourable area for hormogastrid development. Meanwhile, the
conditions in the southern area may be less optimal, as
reflected in the difficulties locating populations and their
lower diversity values. These populations seem to represent the vanguard of this evolutionary lineage, which is
the reason why the speciation and diversification is
increasing in this southern area (including the localities
PAR, SEV, BOA in the Tajo fluvial valley, see Novo et al.
2009, 2010a for a detailed map and more information).
These hypotheses are consistent with the pattern found
2012 Blackwell Publishing Ltd
D I V E R S I F I C A T I O N P A T T E R N S I N E A R T H W O R M S 3791
by Novo et al. (2010a) who showed expansion processes
in the southern populations and stability in mountainous
populations.
Conclusions
Morphological changes in such a restrictive milieu as the
soil are unlikely once the animals are adapted, and thus,
morphology-based studies could confound the evolutionary patterns in certain groups of invertebrates, such
as earthworms, showing sometimes high levels of homoplasy because of the convergence in morphological solutions to specific conditions. In this study, we found how
within hormogastrid earthworms, morphological and
molecular evolution can be decoupled in some clades.
The high genetic diversification and morphological constancy in the HE clade from the central Iberian Peninsula contrasts with the higher morphological diversity in
the HNE clade of NE Iberia, and these differences could
be attributed to several factors. Higher molecular rates
in HE could be the cause of this decoupling between the
rapid molecular evolution and the morphological stasis
found in this clade, and this could be accentuated by the
extreme conditions it is subjected to, which at the same
time could be forcing the higher evolutionary rates leading to changes only at the biochemical level. The GMYC
analyses yielded a higher number of entities than
expected under a morphospecies concept within Hormogastridae, generally showing each population as one different entity (i.e. species) probably due to the low
vagility of these earthworms. The method yielded particularly high numbers of entities for HE, probably because
of its high genetic diversity. Further studies for different
invertebrates inhabiting similarly uniform and isolated
environments would be necessary to shed light on these
interesting evolutionary processes.
Acknowledgements
We are indebted to Carlos Bayón, Pablo Cabo, Inés Garcı́a,
Noa Novo and Juan José Molina, for assisting with fieldwork,
Maigualida Ricoy and Pietro Omodeo for sharing additional
samples, Irene Parra, Carlos Granado, Miquel Arnedo and Joan
Pons for offering their suggestions in data analyses and Daniel
Ayllón and Sheila Leal for technical support. The members
from Giribet laboratory offered help for laboratory work and
data analyses, especially Sebastián Vélez, Sónia Andrade and
Prashant Sharma. The Editors and anonymous reviewers provided insightful comments that contributed to improve an earlier version of this work. M.N. was supported by a Grant from
Fundación Caja Madrid. This research was funded by projects
CGL2007-60715 ⁄ BOS and CGL2010 ⁄ 16032 from the Spanish
Government. Additional funding came from the Museum of
Comparative Zoology and from the US National Science Foundation (#EF-0531757: AToL: Collaborative Proposal: Assembling the Protostome Tree of Life).
2012 Blackwell Publishing Ltd
References
Anne P (1945) Sur le dosage rapide du carbone organique des
sols. Annales Agronomiques, 2, 162–172.
Altschul SF, Madden TL, Schaffer AA et al. (1997) Gapped
BLAST and PSIBLAST: a new generation of protein database
search programs. Nucleic Acids Research, 25, 3389–3402.
Bacchetta G, Mandis G, Pontecorvo C (2007) Contribution to
the knowledge of the endemic vascular flora of Sulcis (SW
Sardinia – Italy). Bocconea, 21, 155–166.
Bely AE, Weisblat DA (2006) Lessons from leeches: a call for
DNA barcoding in the lab. Evolution and Development, 8, 491–
501.
Bickford D, Lohman DJ, Sodhi NS et al. (2007) Cryptic species
as a window on diversity and conservation. Trends in Ecology
and Evolution, 22, 148–155.
Boyer SL, Baker JM, Giribet G (2007) Deep genetic divergences
in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi):
a widespread ‘mite harvestman’ defies DNA taxonomy.
Molecular Ecology, 16, 4999–5016.
Briones MJI, Morán P, Posada D (2009) Are the sexual, somatic
and genetic characters enough to solve nomenclatural
problems in lumbricid taxonomy? Soil Biology and
Biochemistry, 41, 2257–2271.
Buckley TR, James S, Allwood J, Bartlam S, Howitt R, Prada D
(2011) Phylogenetic analysis of New Zealand earthworms
(Oligochaeta: Megascolecidae) reveals ancient clades and
cryptic taxonomic Diversity. Molecular Phylogenetics and
Evolution, 58, 85–96.
Caccone A, Sbordoni V (2001) Molecular biogeography of cave
life: a study using mitochondrial DNA from bathysciine
beetles. Evolution, 55, 122–130.
Cameron EK, Bayne EM, Coltman DW (2008) Genetic structure
of invasive earthworms Dendrobaena octaedra in the boreal
forests of Alberta: insights into introduction mechanisms.
Molecular Ecology, 17, 1189–1197.
Challis RJ, Mutun S, Nieves-Aldrey JL et al. (2007)
Longitudinal range expansion and cryptic eastern species in
the western Palaearctic oak gallwasp, Andricus coriarius.
Molecular Ecology, 16, 2103–2114.
Chang CH, Chen JH (2005) Taxonomic status and intraspecific
phylogeography of two sibling species of Metaphire
(Oligochaeta: Megascolecidae) in Taiwan. Pedobiologia, 49,
591–600.
Chang CH, Lin SM, Chen JH (2008) Molecular systematics and
phylogeography of the gigantic earthworms of the Metaphire
formosae species group (Clitellata, Megascolecidae). Molecular
Phylogenetics and Evolution, 49, 958–968.
Clement M, Posada D, Crandall KA (2000) TCS: a computer
program to estimate gene genealogies. Molecular Ecology, 9,
1657–1659.
Cobolli-Sbordoni M, de Matthaeis E, Alonzi A, Matoccia M,
Omodeo P, Rota E (1992) Speciation, genetic divergence and
paleogeography in the Hormogastridae. Soil Biology and
Biochemistry, 24, 1213–1221.
Crandall KA, Templeton AR, Sing CF (1994) Intraspecific
cladogram estimation: problems and solutions. In: Models in
Phylogeny Reconstruction (eds Scotland RW, Siebert DJ and
Williams DM), pp. 273–297. Clarendon Press, Oxford.
Darwin C (1881) The Formation of Vegetable Mould through the
Actions of Worms. John Murray, London.
3792 M . N O V O E T A L .
Drummond AJ, Rambaut A (2007) BEAST: Bayesian
evolutionary analysis by sampling trees. BMC Evolutionary
Biology, 7, 214.
Dupont L, Lazrek F, Porco D et al. (2011) New insight into the
genetic structure of the Allolobophora chlorotica aggregate in
Europe using microsatellite and mitochondrial data.
Pedobiologia, 54, 217–224.
Edwards CA, Bohlen PJ (1996) Biology and Ecology of
Earthworms, 3rd edn. Chapman and Hall, London.
Edwards CA (ed.) (2004) Earthworm Ecology, 2nd edn. CRC
Press.
Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new
series of programs to perform population genetics analyses
under Linux and Windows. Molecular Ecology Resources, 10,
564–567.
Férnandez R (2011) Aporrectodea trapezoides (Dugés, 1828)
(Oligochaeta, Lumbicidae): Filogeografı́a, Filogenia y Biologı́a
reproductiva. PhD dissertation. Universidad Complutense de
Madrid, Spain. 251 pp.
Fernández R, Almodóvar A, Novo M, Gutiérrez M, Dı́az Cosı́n
DJ (2011) A vagrant clone in a peregrine species:
phylogeography, high clonal Diversity and geographical
distribution in the earthworm Aporrectodea trapezoides (Dugès,
1828). Soil Biology and Biochemistry, 43, 2085–2093.
Fernández R, Almodóvar A, Novo M, Simancas B, Dı́az Cosı́n
DJ (in press) Adding complexity to the complex: New
insights into the phylogeny, diversification and origin of
parthenogenesis in the Aporrectodea caliginosa species
complex (Oligochaeta, Lumbricidae). Molecular Phylogenetics
and Evolution, http://dx.doi.org/10.1016/j.ympev.2012.04.
011.
Finston TL, Johnson MS, Humphreys WF, Eberhard SM, Halse
SA (2007) Cryptic speciation in two widespread
subterranean amphipod genera reflects historical drainage
patterns in an ancient landscape. Molecular Ecology, 16, 355–
365.
Fontaneto D, Herniou EA, Boschetti C et al. (2007)
Independently evolving species in asexual bdelloid rotifers.
PLoS Biology, 5, 914–921.
Gattolliat JL, Monaghan MT (2010) DNA-based association of
adults and larvae in Baetidae (Ephemeroptera) with the
description of a new genus Adnoptilum in Madagascar.
Journal of the North American Benthological Society, 29, 1042–
1057.
Guitián F, Carballas T (1976) Técnicas de análisis de suelos, 2nd
edn. Editorial Pico Sacro, Santiago de Compostela.
Gustafsson DR, Price DA, Erseus C (2009) Genetic variation in
the popular lab worm Lumbriculus variegatus (Annelida:
Clitellata: Lumbriculidae) reveals cryptic speciation.
Molecular Phylogenetics and Evolution, 51, 182–189.
Hale CM, Frelich LE, Reich PB (2005) Exotic European
earthworm invasion dynamics in northern hardwood
forest of Minnesota, USA. Ecological Applications, 15, 848–
860.
Hart MW, Sunday J (2007) Things fall apart: biological species
form unconnected parsimony networks. Biology Letters, 3,
509–512.
Hernández P, Gutiérrez M, Ramajo M, Trigo D, Dı́az Cosı́n DJ
(2003) Horizontal distribution of an earthworm community
at El Molar, Madrid (Spain). Pedobiologia, 47, 568–573.
Hernández P, Fernández R, Novo M, Trigo D, Dı́az Cosı́n DJ
(2007) Geostatistical and multivariate analysis of the
horizontal distribution of an earthworm community in El
Molar (Madrid, Spain). Pedobiologia, 51, 13–21.
Hogg ID, Stevens MI, Schnabel KE, Chapman MA (2006)
Deeply divergent lineages of the widespread New Zealand
amphipod Paracalliope fluviatilis revealed using allozyme and
mitochondrial DNA analyses. Freshwater Biology, 51, 236–248.
Huson DH, Bryant D (2006) Application of Phylogenetic
Networks in Evolutionary Studies. Molecular Biology and
Evolution, 23, 254–267.
James S, Porco D, Decäens T, Richard B, Rougerie R, Erséus C
(2010) Barcoding reveals cryptic diversity in Lumbricus
terrestris L., 1758 (Clitellata): resurrection of L. herculeus
(Savigny, 1826). PLoS One, 5, e15629.
Jones R, Culver DC, Kane TC (1992) Are parallel morphologies
of cave organisms the result of similar selection pressure?
Evolution, 46, 353–365.
Kaya M, Herniou EA, Barraclough TG, Fontaneto D (2009)
Inconsistent estimates of diversity between traditional and
DNA taxonomy in bdelloid rotifers. Organisms Diversity and
Evolution, 9, 3–12.
King RA, Tibble AL, Symondson WOC (2008) Opening a can
of worms: unprecedented sympatric speciation within British
lumbricid earthworms. Molecular Ecology, 17, 4684–4698.
Lavelle P, Spain AV (2001) Soil Ecology. Kluwer Academic
Publishers, London, UK.
Lee CE, Frost BW (2002) Morphological stasis in the Eurytemora
affinis species complex (Copepoda: Temoridae). Hydrobiologia,
480, 111–128.
Librado P, Rozas J (2009) DnaSP v5: a software for
comprehensive analysis of DNA polymorphism data.
Bioinformatics, 25, 1451–1452.
Ligthart TN, Peek GJCW (1997) Evolution of earthworm
burrow systems alter inoculation of lumbricid earthworms in
a pasture in the Netherlands. Soil Biology and Biochemistry,
29, 453–462.
Lohse K (2009) Can mtDNA barcodes be used for delimit
species? A response to Pons et al. (2006). Systematic Biology,
58, 439–442.
Mantel N (1967) The detection of disease clustering and
generalized regression approach. Cancer Research, 27, 209–
220.
Mariño F, Trigo MD, Dı́az Cosı́n DJ, Calvin EB (1985)
Lombrices de tierra de Galicia. Relación con los factores del
suelo. Anales de Edafologı́a y Agrobiologı́a, 44, 1641–1649.
Mayr E (1948) The bearing of the new systematics on genetical
problems. The nature of species. Advances in Genetics, 2, 205–
237.
Mayr E (1963) Animal Species and Evolution. Harvard University
Press, Cambridge.
McGuigan K, Sgrò CM (2009) Evolutionary consequences of
cryptic genetic variation. Trends in Ecology and Evolution, 24,
305–311.
Monaghan MT, Wild R, Elliot M et al. (2009) Accelerated
species inventory on Madagascar using coalescent-based
models of species delineation. Systematic Biology, 58, 298–311.
Müller J (2000) Mitochondrial DNA variation and the
evolutionary history of cryptic Gammarus fossarum types.
Molecular Phylogenetics and Evolution, 15, 260–268.
2012 Blackwell Publishing Ltd
D I V E R S I F I C A T I O N P A T T E R N S I N E A R T H W O R M S 3793
Nekola JC, Coles BF, Bergthorssson U (2009) Evolutionary
pattern and process within the Vertigo gouldii (Mollusca:
Pulmonata, Pupillidae) group of minute North American
land snails. Molecular Phylogenetics and Evolution, 53, 1010–
1024.
Novo M, Almodóvar A, Dı́az-Cosı́n DJ (2009) High genetic
divergence of hormogastrid earthworms (Annelida,
Oligochaeta) in the central Iberian Peninsula: evolutionary
and demographic implications. Zoologica Scripta, 38, 537–552.
Novo M, Almodóvar A, Fernández R, Trigo D, Dı́az Cosı́n DJ
(2010a) Cryptic speciation of hormogastrid earthworms
revealed by mitochondrial and nuclear data. Molecular
Phylogenetics and Evolution, 56, 507–512.
Novo M, Almodóvar A, Fernández R, Gutiérrez M, Dı́az Cosı́n
DJ (2010b) Mate choice of an endogeic earthworm revealed
by microsatellite markers. Pedobiologia, 53, 375–379.
Novo M, Almodóvar A, Fernández R, Giribet G, Dı́az Cosı́n DJ
(2011) Understanding the biogeography of a group of
earthworms in the Mediterranean basin—The phylogenetic
puzzle of Hormogastridae (Clitellata: Oligochaeta). Molecular
Phylogenetics and Evolution, 61, 125–135.
Omodeo P (2000) Evolution and biogeography of megadriles
(Annelida, Clitellata). The Italian Journal of Zoology, 67, 179–201.
Omodeo P, Rota E (2008) Earthworm diversity and land
evolution in three mediterranean districts. Proceedings of the
California Academy of Sciences, Fourth Series, 59, 65–83.
Page AL, Miller RH, Keeney DR (1982) Methods in Soil Analysis.
Part 2: Chemical and Microbiological Properties. Agronomy 9,
ASA-SSSA, Madison, Wisconsin, USA.
Papadopoulou A, Bergsten J, Fujisawa T, Monaghan MT,
Barraclough TG, Vogler AP (2008) Speciation and DNA
barcotes: testing the effects of dispersal on the formation of
discrete sequence clusters. Philosophical transactions of the
Royal Society B. Biological Sciences, 363, 2987–2996.
Papadopoulou A, Monaghan MT, Barraclough TG, Vogler AP
(2009) Sampling error does not invalidate the YuleCoalescent model for species delimitation. A response to
Lohse (2009). Systematic Biology, 58, 442–444.
Pfenninger M, Staubach S, Albrecht C, Schwenk K (2003)
Ecological and morphological differentiation among cryptic
evolutionary lineages in freshwater limpets of the nominal
form-group Ancylus fluviatilis (O.F. Müller, 1774). Molecular
Ecology, 12, 2731–2745.
Pons J, Barraclough TG, Gómez-Zurita J et al. (2006) Sequence
based species delimitation for the DNA taxonomy of
undescribed insects. Systematic Biology, 55, 595–609.
Pop AA, Wink M, Pop VV (2003) Using of 18S, 16S rDNA and
cyctochrome c oxidase sequences in earthworm taxonomy
(Oligochaeta, Lumbricidae). Pedobiologia, 47, 428–433.
Posada D (2008) jModelTest: phylogenetic model averaging.
Molecular Biology and Evolution, 25, 1253–1256.
Qiu JP, Bouché MB (1998) Contribution to the taxonomy of
Hormogastridae (Annelida: Oligochaeta) with description of
new species from Spain. Documents Pedozoologiques et
Integrologiques, 4, 164–177.
Ramajo M (2010) Relaciones interespecı́ficas de lombrices de tierra
en una parcela de El Molar (Madrid). PhD dissertation.
Facultad de Biologı́a. Universidad Complutense de Madrid,
Spain, 301 pp.
Rambaut A, Drummond AJ (2007) Tracer v1.4. [Online].
Available from http://beast.bio.ed.ac.uk/Tracer.
2012 Blackwell Publishing Ltd
Rougerie R, Decaëns T, Deharveng L et al. (2009) DNA
barcodes for soil animal taxonomy. Pesquisa Agrpecuaria
Brasileira, 44, 789–801.
Schettino A, Turco E (2006) Plate kinematics of the western
Mediterranean region during the Oligocene and early
Miocene. Geophysical Journal International, 166, 1398–1423.
Stoks R, Nystrom JL, May ML, McPeek MA (2005) Parallel
evolution in ecological and reproductive traits to produce cryptic
damselfly species across the Holarctic. Evolution, 59, 1976–1988.
Templeton AR, Crandall KA, Sing CF (1992) A cladistic
analysis of phenotypic associations with haplotypes inferred
from restriction endonuclease mapping and DNA sequence
data III. Cladogram estimation. Genetics, 132, 619–633.
Tully T, D’Haese CA, Richard M, Ferriere R (2006) Two major
evolutionary lineages revealed by molecular phylogeny in
the parthenogenetic collembola species Folsomia candida.
Pedobiologia, 50, 95–104.
Wiens JJ, Penkrot TA (2002) Delimitig species using DNA and
morphological variation and discordant species limits in
spiny lizards (Sceloporus). Systematic Biology, 51, 69–91.
Wiens JJ, Chippindale PT, Hillis DM (2003) When are
phylogenetic analyses misled by convergence? A case study
in Texas cave salamanders. Systematic Biology, 52, 501–514.
M.N., R.F. and D.J.D.C. are interested in systematics, phylogeny, phylogeography and reproduction of earthworms. A.A. is
interested in molecular and evolutionary ecology of freshwater
fishes and phylogeography of invertebrate animals. D.T. is
interested in soil ecology and the role of earthworms in restoration. G.G. is interested in the origins and maintenance of animal diversity, using invertebrates as model organisms.
Data accessibility
DNA sequences: GenBank Accession nos: JN209196–JN209829.
See Table 1 for specific Accession nos on different loci and
samples.
Supporting information
Additional supporting information may be found in the online
version of this article.
Table S1 Intrapopulation diversity values for hormogastrids.
Table S2 Mean values of genetic divergence (K2P in percentage of changes) between pairs of populations within hormogastrids, based on mitochondrial data (COI below the
diagonal; 16S-tRNAs above the diagonal).
Table S3 Mean values of genetic divergence (K2P in percentage of changes) between pairs of populations within hormogastrids, based on nuclear data (H4 below the diagonal; H3
above the diagonal).
Please note: Wiley-Blackwell are not responsible for the content
or functionality of any supporting information supplied by the
authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.
COI
CLADE
HCL
HE
HIS
HM
HNE
VG
XN
Code
ORD
HPA
VIL
CAB
UCE
FRE
LOZ
MOL
NAV
JAR
RED
TRE
VEN
SIG
SOT
ANC
BOA
SEV
PAR
VPJ
ALG
GHI
IGL
TES
LAC
MND
BIO
BRU
QUE
GRA
BSM
LOP
TOR
OEL
UIX
QLL
PRB
MON
ALE
TAL
CER
MAJ
SAN
SGF
PIG
XAN
16S
H3
H4
N
NHAP
K2P
N
NHAP
K2P
N
NALL
K2P
N
NALL
K2P
6
4
12
12
2
22
12
12
12
26
12
12
11
12
9
12
12
12
7
1
6
8
6
8
8
8
1
8
8
1
8
8
8
8
1
2
8
10
3
8
2
8
6
5
8
2
1
1
6
2
7
7
6
6
9
5
3
7
3
6
4
3
5
5
1
5
5
4
6
5
3
1
2
7
1
3
2
2
5
1
2
4
1
1
7
2
3
3
3
3
0.10
0
0
0.99
3.67
1.60
1.03
0.22
1.45
3.90
4.77
2.08
0.92
0.32
0.27
0.10
0.17
0.25
0.67
0
0.76
0.32
0.79
3.68
7.06
0.10
0
1.18
0.47
0
0.10
0.33
0.88
0.86
0
0.62
0.47
0
0
1.14
0.47
0.10
0.14
0.12
0.37
7
1
8
12
12
2
22
12
12
11
26
12
12
11
12
9
12
12
7
7
1
5
8
6
8
8
8
1
8
8
1
8
8
8
8
1
2
8
10
3
8
2
8
6
5
8
5
1
6
3
7
2
6
5
5
7
6
5
4
9
7
1
4
2
2
4
1
4
4
4
5
4
3
1
2
7
1
2
2
1
3
1
2
5
3
1
4
2
2
2
3
3
0.18
0
0.29
0.06
0.44
1.03
0.60
0.24
0.04
0.99
1.14
1.17
0.64
0.30
0.53
0
0.12
0.05
6.03
0.28
0.00
0.18
0.31
0.21
1.92
2.14
0.11
0.00
0.41
0.21
0.00
0.61
0.00
0.00
0.28
0.00
0.13
0.83
0.03
0.00
0.28
0.25
0.05
0.00
0.10
0.17
4
1
4
4
4
2
7
9
4
4
3
4
4
4
4
4
4
4
3
4
1
4
4
4
4
4
4
1
4
4
1
3
4
4
4
1
2
4
4
3
4
2
4
3
4
4
2
1
1
3
2
2
3
6
1
7
3
3
4
3
3
2
1
1
4
1
1
1
2
1
1
3
2
1
1
1
1
2
1
1
1
1
1
2
1
1
1
1
1
1
1
1
0.13
0
0
0.25
0.26
0.20
0.42
0.35
0
0.60
0.51
0.31
0.51
0.47
0.29
0.16
0
0
0.43
0
0
0
0.16
0
0
0.53
0.16
0
0
0
0
0.33
0
0
0
0
0
0.08
0
0
0
0
0
0
0
0
4
8
3
3
2
6
8
4
4
2
4
4
5
4
4
4
4
4
4
1
2
3
1
1
2
3
1
1
1
3
2
2
2
2
1
1
1
2
1
1
1
1
2
3
1
2
1
1
1
1
1
3
1
1
2
1
1
1
1
1
1
2
1
0
0.27
0.85
0
0
0.09
0.36
0
0
0
0.55
0.14
0.11
0.31
0.14
0
0
0
0.29
0
0
0
0
1.18
0.61
0
0.29
0
0
0
0
0
0.27
0
0
0.29
0
0
0
0
0
0
0.14
0
4
4
4
4
3
4
1
4
4
1
4
4
4
4
1
2
4
4
4
4
2
4
3
4
3
Table S1. Intrapopulation diversity values for hormogastrids. N: Number of individuals analyzed (two alleles per
individual were analyzed for histones due to the presence of ambiguities); NHAP: Number of identified
haplotypes; NALL: Number of identified alleles; K2P: Mean number of pairwise differences in percentage
corrected with Kimura 2-parameter model. See Table 1 for complete names of localities and species.
Mean values of genetic divergence (K2P in percentage of changes) between pairs of populations within hormogastrids, based on mitochondrial data (COI below the diagonal; 16S-tRNAs above the diagonal).
See complete names of localities and species in Table 1.
CLADE
HCL
HE
CODE ORD HPA VIL
ORD x
5.73 9.78
HCL HPA
x
8.94
VIL 19.89
x
CAB
UCE FRE
LOZ MOL NAV JAR
HIS
RED TRE VEN SIG
SOT ANC BOA SEV
PAR VPJ
HM
ALG GHI IGL TES
HNE
LAC MND BIO
BRU QUE GRA BSM LOP TOR OEL UIX
VG
QLL PRB MON ALE TAL
CER MAJ SAN
SGF PIG
XN
XAN
18.51 18.44 19.33 18.98 19.01 18.30 19.00 18.66 18.49 18.51 19.75 19.68 18.50 18.28 18.86 17.89 14.87 16.36 15.37 15.79 15.26 17.51 14.91 14.24 14.18 12.94 13.77 13.07 13.48 15.58 13.76 14.13 15.15 14.16 13.57 14.70 14.49 13.61 14.97 15.71 16.50 15.91 13.79
19.05 19.46 19.49 19.53 18.71 19.01 18.50 19.03 18.93 18.57 18.97 18.90 18.34 18.32 19.06 17.46 14.11 15.08 14.11 14.35 13.90 16.20 14.69 13.73 14.47 13.88 14.36 13.68 14.07 16.02 14.19 14.25 14.59 14.59 14.08 15.21 14.77 14.52 15.02 15.89 14.91 14.09 12.01
17.66 18.43 18.08 18.12 17.61 18.27 17.42 17.57 17.31 17.32 16.79 16.91 17.20 17.33 18.68 15.46 14.44 14.64 14.12 15.64 14.54 16.49 13.26 12.93 14.19 13.14 13.47 13.70 12.94 13.95 13.31 13.08 13.71 13.70 12.54 14.12 14.12 13.76 13.86 14.94 14.34 14.14 10.75
CAB
UCE
FRE
LOZ
MOL
NAV
JAR
HE RED
TRE
VEN
SIG
SOT
ANC
BOA
SEV
PAR
22.25
24.97
21.44
20.80
23.75
21.76
21.36
21.26
20.73
22.04
20.42
21.16
21.10
22.17
22.31
21.46
22.94
25.78
20.57
21.53
24.62
21.15
23.33
22.99
22.45
23.01
23.23
22.26
23.66
22.34
23.08
21.87
x
17.95
15.33
5.00
12.38
4.00
10.81
9.64
10.79
10.49
17.70
18.45
16.29
18.99
20.07
20.27
7.92
x
16.41
17.67
16.39
17.15
14.35
12.75
14.15
13.52
19.19
19.64
18.75
22.06
21.04
19.94
6.20
7.13
x
14.95
12.65
14.18
12.15
11.57
12.04
11.94
15.51
15.37
16.37
20.15
17.95
19.86
1.36
7.44
6.37
x
13.11
4.73
11.53
10.83
10.86
11.34
17.28
17.59
17.22
18.88
18.46
19.57
5.08
7.19
6.02
5.08
x
11.19
6.08
5.84
3.45
5.69
15.19
15.88
16.93
19.99
20.19
18.97
1.65
7.30
5.91
1.76
4.88
x
11.46
10.15
10.09
10.60
17.82
17.92
16.96
19.30
19.36
19.31
5.16
6.89
5.48
4.84
1.96
4.97
x
3.50
5.69
1.45
14.48
15.48
15.23
18.96
17.83
19.89
4.81
6.21
5.27
4.46
1.43
4.50
0.90
x
4.37
2.05
12.85
14.05
14.91
17.52
16.58
17.72
4.63
6.58
5.16
4.74
1.15
4.51
1.21
0.87
x
4.55
12.71
13.31
14.89
16.72
17.28
16.05
4.85
6.62
5.53
4.71
1.64
4.91
0.46
0.62
0.98
x
14.54
15.19
15.34
18.46
17.59
18.88
8.11
7.51
9.07
8.11
7.70
8.03
7.58
7.07
7.52
7.48
x
2.03
15.22
19.71
18.30
17.97
8.06
7.37
8.86
8.02
7.69
7.94
7.46
7.11
7.36
7.36
0.44
x
15.73
18.95
18.57
18.73
10.47
10.35
9.31
11.14
9.71
11.35
9.43
9.36
9.64
9.47
10.33
10.32
x
17.81
17.06
18.31
13.37
12.52
12.93
13.36
12.22
13.48
12.24
12.11
12.18
11.98
13.64
13.79
12.50
x
6.55
10.99
12.84
11.57
12.37
12.82
12.03
12.82
12.04
12.17
12.36
11.93
12.94
12.93
12.09
2.86
x
11.41
12.06
11.56
12.22
12.49
11.28
11.96
11.03
10.79
11.29
11.11
11.08
11.20
11.53
8.16
7.81
x
19.50
18.43
18.10
19.28
18.06
19.13
18.69
18.65
18.63
18.76
17.99
17.56
18.65
17.01
17.40
18.28
18.57
18.06
17.75
17.74
17.67
18.21
17.35
17.39
17.56
17.44
16.99
17.27
17.89
17.58
18.77
17.49
18.36
19.36
18.41
17.87
17.99
17.83
18.23
18.08
18.37
18.60
16.69
16.73
18.74
18.47
19.69
17.63
18.27
17.27
16.91
17.53
17.35
17.75
17.36
17.08
17.33
17.40
16.34
16.12
18.12
16.85
18.04
17.45
18.09
17.63
16.79
17.32
17.69
17.09
17.23
17.25
17.31
17.61
16.78
16.72
18.39
17.49
18.56
16.98
17.09
17.97
16.87
16.72
17.82
17.00
17.02
17.00
17.26
17.27
16.92
17.11
18.87
18.77
19.39
17.00
16.29
16.41
15.16
15.96
16.12
16.28
16.11
15.82
15.87
16.25
16.16
16.41
15.86
17.16
17.69
15.95
18.37
18.37
17.15
18.62
18.27
18.66
17.65
17.98
17.45
17.73
17.72
17.46
16.86
17.24
18.11
16.89
18.37
19.48
18.24
18.73
18.04
18.65
18.09
18.24
17.99
17.96
17.75
17.56
18.49
16.56
17.26
16.74
17.62
18.04
16.91
17.84
17.65
17.72
17.57
17.32
17.15
17.45
17.76
17.79
16.23
17.27
18.29
16.23
19.13
18.32
17.68
19.08
18.99
19.15
18.69
18.70
18.66
18.90
18.58
18.68
16.96
18.28
18.89
17.51
18.19
18.64
18.37
18.54
18.19
18.29
18.20
18.07
17.95
18.08
17.31
17.38
17.35
16.54
17.24
15.94
17.14
17.47
16.84
17.38
17.13
17.25
17.17
16.85
16.65
16.96
17.56
17.58
16.51
17.27
18.69
16.31
19.51
20.30
18.90
19.52
19.02
19.61
18.90
18.83
18.84
19.04
18.62
18.95
18.31
17.97
19.49
18.09
18.28
18.05
17.75
18.68
18.31
18.55
18.08
18.23
17.81
18.19
18.17
18.35
16.92
17.86
18.57
17.14
18.46
18.74
17.12
18.45
18.47
18.55
18.24
18.14
18.03
18.11
18.35
18.45
17.05
18.17
18.91
17.07
19.17
18.85
19.53
19.39
18.61
19.13
18.84
18.77
18.85
18.89
18.01
18.32
17.51
16.41
17.10
16.25
19.05
18.65
17.69
19.12
19.08
18.99
19.08
18.71
18.69
18.97
18.58
18.68
17.81
18.93
19.65
17.71
17.98
17.78
17.16
18.36
17.60
18.09
17.80
17.71
17.33
17.70
17.64
17.65
16.78
17.60
18.41
16.63
17.80
19.74
18.70
17.78
18.29
18.04
18.52
18.40
18.41
18.69
19.05
19.09
17.56
18.36
19.72
17.62
17.91
18.01
17.69
17.94
17.45
18.02
17.54
17.44
17.17
17.42
17.96
18.15
17.04
17.49
18.51
16.82
17.11
17.98
16.92
17.30
17.60
17.37
17.21
16.92
16.79
17.10
17.79
17.95
16.81
17.63
18.65
16.53
19.49
19.10
19.03
19.85
19.85
19.90
19.81
19.57
19.62
20.08
18.65
19.04
17.15
17.73
19.58
16.29
19.66
18.94
19.35
19.65
20.17
19.90
20.00
19.73
19.72
20.42
18.97
19.23
17.63
18.02
19.17
16.64
16.62
17.36
18.58
16.88
16.87
17.05
16.71
17.03
16.78
16.89
16.63
16.80
16.94
16.40
17.44
15.36
17.53
18.40
17.47
17.74
18.01
17.63
17.84
18.15
18.09
18.14
16.52
16.72
18.11
17.57
18.47
16.72
16.71
15.96
16.07
16.33
16.05
16.81
16.04
15.99
15.60
15.99
16.39
16.48
15.78
16.66
17.44
16.57
VPJ
ALG
HIS GHI
IGL
TES
22.10
20.94
21.96
23.07
23.23
24.72
22.06
22.82
20.38
20.68
20.54
20.01
18.87
22.06
18.65
24.21
21.04
20.70
22.34
21.04
20.18
18.37
18.71
17.84
17.32
22.06
18.90
18.23
21.28
19.17
22.09
18.88
19.13
21.93
19.93
21.93
19.55
18.26
20.87
19.25
21.47
16.92
17.41
22.06
19.38
20.93
15.23
15.44
19.49
17.84
21.56
15.93
17.14
19.17
17.62
21.96
16.32
16.29
21.06
18.57
25.28
18.24
18.06
20.64
17.44
26.00
18.92
17.78
21.04
17.44
21.76
21.50
20.94
21.38
19.82
22.79
21.57
21.68
21.31
18.78
23.21
20.78
20.72
20.54
17.94
23.18
20.87
18.43
18.15
17.41
x
19.87
19.09
23.02
23.09
10.25
x
12.64
16.56
19.74
9.70
5.73
x
16.07
18.50
11.26
8.13
8.47
x
18.79
9.53
10.14
9.60
10.35
x
17.28
14.71
14.84
15.89
15.18
14.54
14.13
13.73
14.71
13.04
13.59
14.37
14.91
14.37
13.33
13.00
14.63
12.95
14.67
13.78
13.93
14.52
13.85
14.95
12.78
13.86
15.07
14.20
15.51
12.88
14.05
14.31
12.78
14.58
13.29
14.10
15.17
13.91
15.58
13.08
16.83
16.32
15.11
17.54
14.30
13.96
15.67
14.14
16.61
13.84
13.75
15.01
14.07
15.61
13.28
13.28
14.94
14.02
15.60
13.29
14.03
15.58
14.47
16.47
13.14
14.03
15.17
14.01
16.13
13.23
17.36
16.20
15.78
16.50
14.33
14.55
15.01
14.77
15.62
13.97
14.45
14.64
14.12
15.05
13.37
15.39
14.66
14.96
16.45
12.98
16.42
15.03
15.29
16.04
12.28
13.84
14.47
14.04
16.83
13.06
13.94
12.92
12.54
15.66
12.20
13.50
14.18
14.57
15.82
12.68
HM LAC 21.49
MND 18.39
21.22 19.93 21.30 19.02 18.88 21.06 18.61 20.03 18.65 17.85 19.50 22.03 21.47 19.44 19.74 19.60 17.64 19.37 22.24 18.93 21.00 20.52 x
7.17
18.86 16.53 19.30 15.90 17.06 16.75 16.71 16.10 15.01 13.59 16.11 16.43 16.69 17.26 15.85 14.41 14.71 19.28 17.01 15.41 17.33 17.52 15.10 x
15.01 14.72 15.05 15.32 14.55 13.66 15.20 15.04 14.52 16.17 15.77 14.41 15.66 14.88 14.54 16.14 16.18 16.00 16.78 15.29
12.73 12.86 13.17 13.16 13.07 12.56 13.83 12.90 12.73 13.96 13.95 12.64 13.83 12.81 13.09 12.34 14.22 15.64 15.97 13.00
BIO
BRU
QUE
GRA
BSM
LOP
TOR
OEL
HNE UIX
QLL
PRB
MON
ALE
TAL
CER
MAJ
SAN
20.89
24.35
19.53
20.99
21.88
19.20
21.35
21.26
19.34
21.52
20.42
20.79
21.59
19.30
19.58
24.14
20.58
x
22.42
16.68
16.18
20.39
18.38
19.96
18.04
18.03
21.58
15.96
17.80
19.04
18.81
17.96
22.10
18.26
22.38
24.66
21.15
23.43
22.72
21.42
23.88
23.91
22.69
24.09
21.09
22.30
23.63
22.39
22.09
24.72
21.43
VG SGF 24.00
PIG 23.84
XN XAN 23.22
24.58
20.94
20.81
19.54
20.86
19.04
21.40
20.93
21.43
23.89
20.31
20.52
20.07
19.76
20.50
20.72
20.21
24.41
23.86
22.03
21.81
21.95
20.80
22.59
22.06
23.45
21.91
21.62
21.42
23.21
21.66
24.06
22.72
21.67
23.87
21.58
20.83
19.00
20.63
17.25
19.93
21.38
20.60
20.31
18.04
22.23
21.41
19.61
21.11
21.81
19.53
23.95
20.42
20.92
20.19
20.30
18.71
21.57
21.98
22.04
21.74
19.87
20.12
22.04
21.21
20.83
20.40
18.94
25.63
20.71
21.39
20.92
19.48
19.14
20.70
22.12
21.85
21.42
20.00
21.59
20.87
20.18
21.36
21.00
21.66
23.64
19.92
19.82
19.10
20.94
17.63
20.62
21.16
20.74
22.42
18.51
20.40
21.07
20.20
19.55
19.94
19.84
24.07
20.93
20.31
19.16
20.18
18.23
19.56
20.83
20.08
21.30
19.32
20.64
20.23
18.77
20.88
21.53
20.55
23.63
19.42
18.97
18.82
17.85
17.82
18.44
19.57
19.04
19.93
18.61
18.43
19.60
18.68
20.01
20.26
18.61
21.63
18.94
19.44
18.29
17.55
17.00
18.34
19.59
19.75
20.06
18.12
18.74
18.36
19.24
19.40
19.33
18.74
23.81
19.88
19.95
19.22
19.09
17.99
19.80
20.34
19.68
20.56
18.75
19.84
20.06
18.83
20.50
21.05
19.66
23.15
23.64
20.94
21.18
20.76
20.86
21.78
22.26
22.33
23.73
19.95
21.34
20.94
22.00
22.58
22.01
20.90
24.37
23.93
21.53
21.21
20.70
21.33
21.39
22.93
22.10
23.06
20.32
22.23
21.34
22.21
22.68
23.02
20.11
23.20
22.86
19.89
19.38
21.73
18.15
21.26
18.67
19.07
22.49
18.04
18.15
19.73
20.20
21.09
20.70
19.93
26.71
23.94
20.29
21.77
23.23
21.26
20.86
21.26
22.58
24.96
22.57
20.78
18.64
22.74
21.98
22.02
22.21
25.24
21.65
19.90
22.48
22.47
20.35
20.69
22.39
21.10
23.04
21.74
20.77
18.82
22.54
22.48
19.82
21.14
20.16
21.88
18.80
19.72
20.53
19.11
19.76
18.79
21.81
25.04
18.58
18.19
17.45
21.10
20.64
20.27
18.33
24.04
21.33
21.31
22.57
24.33
20.81
23.12
23.17
22.32
23.11
21.68
22.72
26.01
22.24
21.74
21.40
23.29
21.43
22.63
19.45
20.39
22.06
18.24
18.60
20.50
20.14
19.48
19.30
18.70
19.34
19.74
20.80
22.02
22.99
20.65
20.06
17.63
18.54
19.87
17.28
17.54
17.93
17.22
20.64
18.52
17.27
17.72
19.07
19.20
22.35
18.57
20.63
21.00
20.62
20.85
18.96
20.41
21.14
19.81
22.42
21.03
20.34
18.58
18.95
21.47
21.93
20.20
20.83
19.88
20.59
16.55
16.45
19.01
18.28
17.92
17.32
17.28
20.48
15.58
17.07
17.32
17.61
17.65
20.59
19.98
20.22
22.38
18.80
18.78
20.91
19.14
19.12
19.93
17.83
22.10
18.52
18.45
22.44
20.39
19.37
21.06
19.60
18.16
16.72
16.97
17.56
16.95
16.41
17.89
16.86
16.65
18.66
17.87
16.70
17.38
17.21
16.96
19.13
17.50
9.55
x
18.70
19.48
11.49
16.79
21.71
16.76
17.81
13.87
17.87
17.78
20.40
20.60
19.14
20.55
22.11
5.34
9.01
x
13.49
19.44
8.13
16.17
13.01
6.72
18.00
12.64
11.48
16.12
7.79
5.19
16.14
17.02
5.38
9.39
3.03
x
17.17
11.35
17.19
12.16
13.79
17.77
6.05
12.35
16.21
13.96
12.07
19.25
17.20
9.38
2.85
8.27
8.94
x
17.32
19.70
20.16
19.86
15.07
17.89
18.92
19.99
21.06
19.16
20.50
18.49
5.41
8.30
1.87
2.95
7.91
x
16.58
11.08
9.61
16.31
9.53
9.96
17.15
10.12
8.45
16.34
16.79
8.96
11.46
7.42
7.84
10.85
7.15
x
15.74
16.18
20.11
16.40
17.19
10.15
15.55
15.80
21.19
18.02
5.86
8.89
3.36
2.81
8.88
2.36
8.20
x
13.10
15.97
11.05
6.29
15.50
12.17
12.51
17.65
18.04
4.99
8.89
2.08
2.67
8.48
2.01
7.66
3.64
x
16.65
11.63
12.28
16.15
7.70
7.50
17.69
18.41
9.02
5.97
8.81
8.96
5.28
8.36
12.34
8.72
8.95
x
17.34
17.84
21.32
18.41
18.54
22.85
21.19
5.16
9.39
3.20
1.49
8.94
2.77
7.83
2.80
2.90
9.08
x
10.40
15.74
12.04
10.70
16.99
15.64
5.10
7.62
2.37
2.32
7.55
1.30
6.89
1.16
2.47
8.10
2.06
x
15.48
11.57
11.22
15.98
18.23
8.98
11.62
7.29
8.57
10.86
7.00
4.05
7.91
8.33
11.46
8.41
6.68
x
15.25
15.26
19.70
20.46
5.49
9.45
2.27
3.63
8.71
2.41
8.31
4.20
2.70
8.85
3.59
3.20
8.03
x
6.61
18.35
18.89
5.66
9.13
1.12
3.58
8.40
1.83
7.21
3.50
2.75
8.83
3.43
2.50
6.69
2.25
x
17.66
16.76
11.59
12.05
11.04
10.28
11.57
9.92
12.77
10.07
10.67
12.19
10.60
10.09
11.82
10.92
11.30
x
12.67
12.10
12.12
11.31
10.75
11.19
9.80
13.12
10.35
11.10
12.25
11.17
10.15
12.10
11.50
11.31
4.07
x
14.89
13.85
14.94
15.30
14.13
14.75
17.07
14.68
14.93
14.80
15.71
14.36
16.63
15.29
15.10
15.14
14.99
14.49
13.04
14.38
13.66
13.93
13.99
16.66
14.10
13.92
15.22
13.86
13.39
15.50
15.03
14.66
12.76
14.18
13.81
14.10
12.35
12.66
13.77
12.40
13.96
12.71
13.05
13.90
12.93
12.07
14.69
12.73
12.35
14.18
13.33
22.19 21.47 21.66 20.17 20.64 21.64 21.70 20.09 18.52 20.67 19.71 21.57 22.24 23.01 23.05 20.67 22.29 22.51 21.37 19.56 21.70 19.21 19.73 18.38 23.42 21.45 21.99 22.51 21.53 22.81 20.23 19.88 21.74 21.19 22.66 20.96 19.21 21.67 22.25 21.62 20.72 x
12.37 15.03
23.76 23.79 21.33 21.83 23.09 20.71 21.71 20.69 20.92 18.57 20.95 22.78 22.77 24.66 23.46 24.80 21.34 25.07 23.67 21.97 25.44 21.80 19.57 20.64 21.07 23.36 19.41 21.15 23.19 21.39 23.99 23.06 20.02 23.53 19.57 23.45 23.36 19.62 21.86 24.66 22.35 24.21 x
15.10
20.25 21.25 22.37 20.85 20.99 21.02 20.42 19.86 18.19 18.31 19.39 21.89 20.85 20.77 21.26 20.92 19.13 21.46 17.52 18.85 19.34 17.85 22.06 17.50 20.78 23.35 19.22 18.93 21.96 18.83 19.89 21.05 20.30 22.58 18.18 18.70 20.74 20.13 19.15 22.49 22.19 21.12 21.85 x
Mean values of genetic divergence (K2P in percentage of changes) between pairs of populations within hormogastrids, based on nuclear data (H4 below the diagonal; H3 above the diagonal).
See complete names of localities and species in Table 1.
CLADE
HCL
HE
HIS
HM
HNE
VG
XN
CODE ORD HPA VIL CAB UCE FRE LOZ MOL NAV JAR RED TRE VEN SIG SOT ANC BOA SEV PAR VPJ ALG GHI IGL TES LAC MND BIO BRU QUE GRA BSM LOP TOR OEL UIX QLL PRB MON ALE TAL CER MAJ SAN SGF PIG XAN
ORD x
HCL HPA
0.01 0.62 3.97 4.78 4.64 3.95 4.92 4.09
4.49 4.77 4.68 4.61 4.22 3.67
4.54 4.42 3.77 4.36 4.41
4.74 4.42 5.11 4.42 4.75 4.32
3.81 4.74
3.45 3.13
4.10 3.07 3.77 2.81 3.77
4.43 3.45 2.81 3.77 3.13 3.45 3.45 3.77 3.13
3.45 4.42
x
4.47 4.75 4.66 4.60 4.21 3.65
3.82 4.10 4.01 4.03 3.56 3.01
4.52 4.40 3.75 4.35 4.40
3.87 3.76 3.11 3.70 3.75
4.73 4.40 5.09 4.40 4.73 4.30
4.08 3.76 4.77 3.76 4.08 3.66
3.79 4.73
3.15 4.08
3.44 3.11
2.80 2.48
4.08 3.06 3.75 2.80 3.76
3.44 2.42 3.11 2.17 3.12
4.41 3.44 2.80 3.75 3.11 3.44 3.44 3.76 3.12
3.76 2.80 2.17 3.11 2.48 2.80 2.80 3.12 2.48
3.44 4.40
2.80 3.76
0.42 0.99 0.60 0.62 0.33 0.19
1.26 2.99 2.67 2.62 4.60
4.93 5.25 5.95 4.60 4.96 4.54
3.38 4.64
3.03 2.71
3.99 2.86 2.71 3.03 3.35
4.32 3.03 3.03 2.71 2.71 3.03 3.35 3.03 3.99
4.32 4.64
1.63 2.21 1.81 1.83 1.53 1.38
2.31 3.79 3.47 3.42 5.42
5.75 6.08 6.79 5.42 5.49 5.06
4.15 5.42
3.79 3.46
4.77 3.62 3.46 3.79 4.11
5.10 3.79 3.79 3.46 3.46 3.79 3.87 3.54 4.76
5.09 5.08
0.17 0.36 0.36 0.10 0.78 0.63
1.87 3.66 3.34 3.18 5.28
5.61 5.94 6.65 5.29 4.95 4.52
4.01 5.28
3.65 3.33
4.63 3.49 3.33 3.65 3.98
4.96 3.65 3.66 3.33 3.33 3.65 3.98 3.65 4.63
4.96 4.78
0.63 1.14 0.75 0.82 0.60 0.50
1.43 2.97 2.65 2.60 4.58
4.91 5.23 5.94 4.58 5.14 4.71
3.56 4.82
3.20 2.88
4.17 3.04 2.88 3.20 3.52
4.50 3.20 3.20 2.88 2.88 3.20 3.52 3.20 4.17
4.49 4.81
0.13 0.21 0.18 0.10 0.94 0.89
2.13 3.93 3.60 3.45 5.56
5.90 6.22 6.94 5.57 5.22 4.79
4.28 5.56
3.92 3.60
4.91 3.76 3.60 3.92 4.25
5.24 3.92 3.93 3.60 3.60 3.92 4.25 3.92 4.90
5.23 4.93
VIL
1.18
0.61 3.95 4.76 4.63 3.93 4.90 4.07
x
3.31 4.11 3.98 3.29 4.25 3.43
CAB
3.31
4.55 x
1.17 0.58 0.13 0.83 0.07
UCE 3.93
5.17 0.22 x
1.78 1.34 2.05 1.26
FRE
3.93
5.17 0.22 0.00 x
LOZ
3.83
5.08 0.22 0.00 0.00 x
0.90 0.22 0.82
1.04 0.07
MOL 4.04
5.29 0.32 0.10 0.10 0.10 x
1.07
NAV 3.93
5.17 0.22 0.00 0.00 0.00 0.10 x
0.66 1.24 0.85 0.86 0.57 0.43
1.35 3.11 2.80 2.74 4.72
5.05 5.38 6.08 4.73 5.05 4.62
3.47 4.72
3.11 2.80
4.08 2.95 2.80 3.11 3.43
4.40 3.11 3.11 2.80 2.80 3.11 3.43 3.11 4.07
4.40 4.72
JAR
3.93
5.17 0.22 0.00 0.00 0.00 0.10 0.00
x
1.71 3.50 3.18 3.05 4.96
5.29 5.62 6.33 4.97 4.95 4.53
3.86 5.13
3.50 3.18
4.48 3.33 3.17 3.50 3.82
4.81 3.50 3.50 3.17 3.18 3.50 3.82 3.50 4.47
4.80 4.79
HE RED
TRE
3.93
5.17 0.22 0.00 0.00 0.00 0.10 0.00
0.00 x
2.30 4.10 3.78 3.62 5.41
5.74 6.07 6.78 5.41 5.07 4.64
4.13 5.41
3.77 3.45
4.76 3.61 3.77 3.77 4.10
5.09 3.77 3.77 3.77 3.45 3.77 4.10 4.10 4.75
5.08 4.85
4.09
5.35 0.36 0.14 0.14 0.14 -0.01 0.14
0.14 0.14 x
1.90 3.69 3.37 3.24 5.32
5.65 5.98 6.69 5.32 5.14 4.72
4.05 5.32
3.69 3.36
4.67 3.52 3.36 3.69 4.01
5.00 3.69 3.69 3.36 3.36 3.69 4.01 3.69 4.66
4.99 4.98
VEN
3.36
4.60 0.63 0.41 0.41 0.33 0.51 0.41
0.41 0.41 0.55 x
1.91 3.71 3.38 3.23 5.33
5.67 6.00 6.54 5.34 5.00 4.57
4.06 5.33
3.70 3.38
4.68 3.54 3.38 3.70 4.03
5.02 3.70 3.70 3.38 3.38 3.70 4.03 3.70 4.68
5.01 4.91
SIG
3.93
5.19 1.33 1.10 1.10 1.01 1.20 1.10
1.10 1.10 1.25 0.55 x
1.46 3.41 2.92 2.71 4.86
5.19 5.52 6.22 4.87 4.90 4.47
3.60 4.86
3.24 2.92
4.21 3.08 2.92 3.24 3.56
4.54 3.24 3.24 2.92 2.92 3.24 3.56 3.24 3.64
3.96 4.85
SOT
3.48
4.73 0.89 0.67 0.67 0.58 0.77 0.67
0.67 0.67 0.81 0.12 0.12 x
1.47 2.85 2.53 2.48 4.30
4.62 4.95 5.65 4.30 4.62 4.19
3.44 4.49
3.09 2.77
3.85 2.92 2.93 3.09 3.41
4.18 3.09 3.09 2.93 2.77 3.09 3.21 3.05 3.65
3.97 4.29
ANC 4.38
5.65 2.46 2.22 2.22 2.13 2.33 2.22
2.22 2.22 2.37 1.66 1.10 1.23
x
5.17 5.50 6.20 4.85 4.84 5.07
3.71 4.32
3.35 3.03
3.67 2.76 3.03 3.35 3.67
4.00 3.35 3.27 3.03 3.03 3.35 3.67 3.35 3.87
4.19 5.17
BOA 3.35
4.59 2.27 2.78 2.78 2.69 2.89 2.78
2.78 2.78 2.94 2.22 1.66 1.78
2.79 x
0.92 1.59 5.71
5.71 6.03 6.42 5.71 6.71 6.27
5.42 6.36
5.38 5.05
5.71 5.21 4.72 5.38 5.05
6.04 5.38 5.38 4.72 5.05 5.38 5.38 5.05 5.71
6.05 6.03
SEV
PAR
3.35
3.93
4.59 2.27 2.78 2.78 2.69 2.89 2.78
5.18 2.84 3.35 3.35 3.26 3.47 3.35
2.78 2.78 2.94 2.22 1.66 1.78
3.35 3.35 3.51 2.79 2.22 2.35
2.79 0.00 x
0.66 5.05
3.36 0.55 0.55 x
5.00
5.05 5.37 5.75 5.05 6.03 5.60
5.00 5.33 6.03 5.00 5.88 5.45
4.76 5.70
4.71 5.65
4.72 4.39
4.67 4.34
5.05 4.56 4.07 4.72 4.39
5.00 4.51 4.02 4.67 4.34
5.38 4.72 4.72 4.07 4.39 4.72 4.72 4.39 5.05
5.33 4.67 4.67 4.02 4.34 4.67 4.67 4.34 5.00
5.38 5.37
5.34 5.33
VPJ
2.43
3.64 3.53 4.14 4.14 4.05 4.25 4.14
4.14 4.14 4.30 3.57 4.15 3.70
5.17 3.56 3.56 4.14 x
1.23 1.54 2.20 0.92 5.38 5.28
4.96 5.04
4.72 4.40
4.40 4.34 5.05 4.72 5.05
4.72 4.72 4.68 5.05 4.40 4.72 4.72 5.05 4.73
5.05 5.05
x
0.31 1.58 0.92 5.71 5.61
4.96 5.37
5.05 4.72
4.72 4.67 5.05 5.05 5.38
5.05 5.05 5.01 5.05 4.72 5.05 4.40 4.73 5.05
5.39 4.73
0.17 0.01 0.01 0.52 0.47
0.13 0.11 1.04 0.97
0.05 0.65 0.66
0.72 0.67
0.39
4.20 3.23 3.18 4.84
ALG
HIS GHI
1.66
2.86 2.74 3.35 3.35 3.26 3.46 3.35
3.35 3.35 3.51 2.79 3.36 2.91
4.37 2.78 2.78 3.35 0.75
x
1.89 1.23 5.38 5.28
4.64 5.05
4.73 4.40
4.40 4.34 4.72 4.73 5.05
4.73 4.73 4.69 4.72 4.40 4.73 4.08 4.41 4.73
5.06 4.40
IGL
TES
1.66
1.66
2.86 2.74 3.35 3.35 3.26 3.46 3.35
2.86 2.74 3.35 3.35 3.26 3.46 3.35
3.35 3.35 3.51 2.79 3.36 2.91
3.35 3.35 3.51 2.79 3.36 2.91
4.37 2.78 2.78 3.35 0.75
4.37 2.78 2.78 3.35 0.75
0.00 x
1.89 6.41 6.31
0.00 0.00 x
5.38 5.28
5.99 6.40
4.97 5.05
6.08 5.74
4.73 4.40
5.74 5.69 6.07 6.08 6.41
4.40 4.34 5.05 4.73 5.05
6.08 6.08 6.04 6.07 5.74 6.08 6.08 6.41 6.08
4.73 4.73 4.69 5.05 4.40 4.73 4.73 5.05 4.73
6.42 5.75
5.06 5.06
HM LAC 5.11
MND 5.09
6.41 6.17 6.90 6.90 6.86 7.03 6.90
6.31 6.16 6.89 6.89 6.80 6.98 6.89
6.90 6.90 7.09 6.86 7.56 7.08
6.89 6.89 7.08 6.30 6.91 6.44
8.00 6.31 6.31 6.93 5.34
7.99 5.69 5.69 6.29 3.56
5.13 5.13 5.13 x
0.66
3.35 3.35 3.35 3.92 x
4.64 4.72
4.13 4.95
4.40 4.07
3.89 3.57
4.07 3.80 4.72 4.40 4.73
4.30 3.73 4.21 3.89 4.22
4.40 4.07 4.32 4.72 4.07 4.40 3.75 4.07 3.75
4.14 3.57 3.89 4.21 3.57 3.89 3.33 3.65 3.98
4.08 5.38
4.30 4.95
BIO
1.84
3.06 2.84 3.55 3.55 3.46 3.65 3.55
3.55 3.55 3.72 2.99 3.57 3.12
4.58 2.98 2.98 3.56 2.05
1.28 1.28 1.28 5.37 3.92
x
0.95 0.65
3.04 0.79 0.65 0.95 1.27
2.72 0.95 0.96 0.65 0.65 0.95 2.52 2.84 3.79
4.12 3.47
BRU 2.79
4.03 3.70 4.52 4.52 4.42 4.64 4.52
4.52 4.52 4.69 3.95 3.37 3.50
4.38 2.79 2.79 3.36 3.00
2.22 2.22 2.22 5.15 5.12
1.29 x
3.44 3.12
0.61 2.85 3.76 3.44 3.76
1.54 3.44 3.36 3.76 3.12 3.44 3.12 3.44 4.07
3.75 5.05
QUE 1.72
2.93 2.81 3.42 3.42 3.33 3.53 3.42
3.42 3.42 3.58 2.85 2.85 2.69
3.86 2.28 2.28 2.85 1.93
1.16 1.16 1.16 5.21 4.58
1.35 1.72
x
2.81 0.45 0.92 0.61 0.31
2.49 0.61 0.61 0.92 0.31 0.00 2.17 2.49 3.44
3.76 4.07
GRA 1.66
2.86 2.74 3.35 3.35 3.26 3.46 3.35
3.35 3.35 3.51 2.79 2.79 2.63
3.79 2.22 2.22 2.78 1.86
1.10 1.10 1.10 5.13 4.51
1.28 1.66
0.06 x
2.49 0.14 0.61 0.31 0.61
2.17 0.31 0.31 0.61 0.00 0.31 1.85 2.17 3.11
3.44 3.75
BSM 3.36
4.62 4.29 5.11 5.11 5.02 5.23 5.11
5.11 5.11 5.28 4.54 3.95 4.08
4.97 3.36 3.36 3.94 3.00
2.80 2.80 2.80 4.55 4.52
1.86 0.55
2.29 2.22
x
0.92 2.81 2.73 3.12 2.49 2.81 2.49 2.81 3.44
3.11 4.73
LOP
1.66
2.86 2.74 3.35 3.35 3.26 3.46 3.35
3.35 3.35 3.51 2.79 2.79 2.63
3.79 2.22 2.22 2.78 1.86
1.10 1.10 1.10 5.13 4.51
1.28 1.66
0.06 0.00
2.22 x
1.90 0.45 0.19 0.76 0.14 0.45 2.01 2.32 2.63
2.95 3.91
TOR 1.10
2.30 3.31 3.93 3.93 3.83 4.04 3.93
3.93 3.93 4.09 3.36 3.36 3.20
4.36 2.78 2.78 3.35 2.43
1.66 1.66 1.66 5.71 5.09
1.84 2.22
0.61 0.55
2.79 0.55 x
2.80 0.92 0.92 0.00 0.61 0.92 2.48 2.17 3.75
4.08 4.07
OEL
2.22
3.43 3.31 3.93 3.93 3.83 4.04 3.93
3.93 3.93 4.09 3.36 3.36 3.20
4.36 2.78 2.78 3.35 2.43
1.66 1.66 1.66 5.71 5.09
1.84 2.22
0.61 0.55
2.79 0.55 1.10 x
2.49 0.61 0.00 0.92 0.31 0.61 2.17 2.49 2.80
3.11 4.07
HNE UIX
1.66
2.87 2.65 3.29 3.29 3.19 3.40 3.29
3.29 3.29 3.45 2.72 2.72 2.56
3.72 2.15 2.15 2.72 1.87
1.10 1.10 1.10 5.14 4.44
1.22 1.59
0.06 0.00
2.16 0.00 0.55 0.55 x
2.81 0.92 0.92 1.23 0.61 0.31 2.49 2.81 3.76
4.08 4.40
QLL
3.35
4.60 4.28 5.10 5.10 5.00 5.22 5.10
5.10 5.10 5.27 4.52 3.94 4.07
4.95 3.35 3.35 3.93 3.57
2.79 2.79 2.79 5.73 5.70
1.85 0.55
2.29 2.22
1.10 2.22 2.78 1.66 2.15
x
4.08 5.05
PRB
1.66
2.86 2.74 3.35 3.35 3.26 3.46 3.35
3.35 3.35 3.51 2.79 2.79 2.63
3.79 2.22 2.22 2.78 1.86
1.10 1.10 1.10 5.13 4.51
1.28 1.66
0.06 0.00
2.22 0.00 0.55 0.55 0.00
2.22 x
MON 1.72
2.93 2.81 3.42 3.42 3.33 3.53 3.42
3.42 3.42 3.58 2.85 2.85 2.69
3.86 2.28 2.28 2.85 1.93
1.16 1.16 1.16 5.20 4.58
1.35 1.72
0.12 0.06
2.29 0.06 0.61 0.20 0.06
1.86 0.06 x
ALE
1.10
2.30 3.31 3.93 3.93 3.83 4.04 3.93
3.93 3.93 4.09 3.36 3.36 3.20
4.36 2.78 2.78 3.35 2.43
1.66 1.66 1.66 5.71 5.09
1.84 2.22
0.61 0.55
2.79 0.55 0.00 1.10 0.55
2.78 0.55 0.61 x
TAL
1.66
2.86 2.74 3.35 3.35 3.26 3.46 3.35
3.35 3.35 3.51 2.79 2.79 2.63
3.79 2.22 2.22 2.78 1.86
1.10 1.10 1.10 5.13 4.51
1.28 1.66
0.06 0.00
2.22 0.00 0.55 0.55 0.00
2.22 0.00 0.06 0.55 x
CER
1.66
2.86 2.74 3.35 3.35 3.26 3.46 3.35
3.35 3.35 3.51 2.79 2.79 2.63
3.79 2.22 2.22 2.78 1.86
1.10 1.10 1.10 5.13 4.51
1.28 1.66
0.06 0.00
2.22 0.00 0.55 0.55 0.00
2.22 0.00 0.06 0.55 0.00 x
2.17 2.49 3.44
3.76 4.07
MAJ 1.66
SAN 1.66
2.86 2.74 3.35 3.35 3.26 3.46 3.35
2.86 2.74 3.35 3.35 3.26 3.46 3.35
3.35 3.35 3.51 2.79 2.79 2.63
3.35 3.35 3.51 2.79 2.79 2.63
3.79 2.22 2.22 2.78 1.86
3.79 2.22 2.22 2.78 1.86
1.10 1.10 1.10 5.13 4.51
1.10 1.10 1.10 5.13 4.51
1.28 1.66
1.28 1.66
0.06 0.00
0.06 0.00
2.22 0.00 0.55 0.55 0.00
2.22 0.00 0.55 0.55 0.00
2.22 0.00 0.06 0.55 0.00 0.00 x
0.31 3.44
2.22 0.00 0.06 0.55 0.00 0.00 0.00 x
3.76
3.76 4.07
4.08 4.40
1.10
4.44
2.30 2.17 2.78 2.78 2.69 2.89 2.78
5.71 4.89 5.61 5.61 5.52 5.70 5.61
2.78 2.78 2.94 2.22 2.79 2.35
5.61 5.61 5.79 5.03 5.63 5.17
3.79 2.22 2.22 2.79 1.30
6.67 5.03 5.03 5.62 4.66
0.55 0.55 0.55 4.55 3.93
3.86 3.86 3.86 6.92 5.33
0.73 1.67
2.68 3.87
0.61 0.55
3.94 3.86
2.24 0.55 1.10 1.10 0.55
4.46 3.86 4.44 3.86 3.73
2.22 0.55 0.61 1.10 0.55 0.55 0.55 0.55 x
3.86 3.86 3.72 4.44 3.86 3.86 3.86 3.86 3.29
1.54 4.40
x
4.42
1.10
2.30 2.17 2.78 2.78 2.69 2.89 2.78
2.78 2.78 2.94 2.22 2.79 2.35
3.79 2.22 2.22 2.79 1.30
0.55 0.55 0.55 4.55 3.93
0.73 1.67
0.61 0.55
2.24 0.55 1.10 1.10 0.55
2.22 0.55 0.61 1.10 0.55 0.55 0.55 0.55 0.00
3.29 x
VG SGF
PIG
XN XAN
3.67
0.31
2.22 3.12 2.81 3.13
0.76 0.25 0.76
0.92 1.23
0.92
2.49 2.41 2.80 2.17 2.49 2.81 3.13 3.76
0.61 0.92 0.31 0.61 2.17 2.49 3.44
0.92 0.31 0.61 2.17 2.49 2.72
0.61 0.92 2.48 2.17 3.75
0.31 1.85 2.17 3.11
3.76 4.07
3.04 4.08
4.08 4.07
3.44 3.75