Chapter 13: Logarithms 13 1. 2. 3. Logarithms 2x.3x+4 = 7x Taking log on both the sides, we get loge 2x + loge 3x+4 = loge 7x x loge 2 + (x + 4) loge 3 = x loge 7 x loge 2 + x loge 3 x loge 7 = 4 loge 3 x loge 6 x loge 7 = 4 loge 3 4log e 3 x= log e 7 log e 6 5. 1/ 2 log 7 log 5 ( x 2 5 x ) 0 1/2 0 log5(x + 5 + x) = 7 (x2 + 5 + x)1/2 = 51 (x2 + x + 5) = 25 x2 + x 20 = 0 (x 4)(x + 5) = 0 x = 4, 5 log 2 .log 3 ....log100 100 = log 2 log 3 ....log 99 99 1 ..2 98. = log 2 log 3 ....log 98 98 = log 2 2log 5 2log 2 = 2 25 log 10 = log y = log 2 y = 2 6. Since, c2 = a2 + b2 c2 b2 = a2 ….(i) log a log a log c b a log c b a log(c b) log(c b) = 2log a log a 2log c b a log c b a log(c b)log(c b) = = log100 100 log a log(c 2 b 2 ) 2log a log a log a.log a 2 2log a log a ….[From (i)] log 99 99 ….[ log100 100 = 1] log 2 2log5 2log 2 2 log5 log 2 .21 .. 98 99 1 ..2 98. 1/ 2 1/3 16 log 2.5 1/ 2 log 2.5 11/3 = (0.16) 100 1 1 16 log2.5 . log log y = 2 2 100 1 4 log2.5 2.log 2 25 log 2 .(log 4 log 25) = 2log (2.5) x = loga bc 1 + x = 1 + logabc 1 + x = loga a + loga bc = loga abc (1 + x)1 = logabc a Similarly, (1 + y)1 = logabc b and (1 + z)1 = logabc c (1 + x)1 + (1 + y)1 + (1 + z)1 = logabc a + logabc b + logabc c = logabc abc = 1 2 4. 1 1 1 1 log 2.5 2 3 .... 2 3 3 3 Let y = (0.16) =1 7. 1 = log2 log3 32 = log2 21 log3 3 = log2 2 = 1 Let y = 340 Taking log on both the sides, we get log y = log 340 log y = 40 log 3 log y = 19.08 Number of digits in y = 19 + 1 = 20 1 Std. XI : Triumph Maths 1 1 1 1 ....... log 2 n log 3 n log 4 n log1983 n 8. = log n 2 log n 3 log n 4 ...... log n 1983 = log n (2.3.4....1983) log n (1983!) log n n 1 log0.3 (x 1) < log0.09 (x 1) log ( x 1) log0.3 (x 1) < log (0.3) 2 9. 1 log0.3 (x 1) 2 1 log0.3 (x 1) log0.3 (x 1) < 0 2 log0.3 (x 1) < 0 (x 1) > (0.3)0 x>2 x (2, ) log0.3 (x 1) < 10. log 3 x log 3 x log 3 4 x log 3 8 x ... 4 1 1 1 log 3 x log 3 x log 3 x log 3 x ... 4 2 4 8 1 1 1 log 3 x 1 .... 4 2 4 8 1 log 3 x 4 11 / 2 log3 x = 2 x = 32 = 9 2
© Copyright 2026 Paperzz