I A 9-2 I I A 9-2 I Name Date ;; Period _ '1.,3Worksheet - Properties of Logarithms Expand a~uch 11. 2 In 6 - In 3 as possible using the properties of logs. 1. 1092(15fx2) 2. 1093 \(\ ~= + 'n l~ ~ \O~ 1 14. -(2IogbM-logbN-~ 13. log A - 2 log B + 3 log C A-c.?> \ ~~ p- 3. logs (ley)2 3 H:l/~ ~ \°3 b _. lI_ 4. InVYi ..[i_ - ~ \c:js-=t J \~~- \00 15. log 1T+ 1 16. log22 + log2 6 - - log29 2 log r 2 2- \n) ~ \~"f 5. In (xe N Ib5;S-:X \D~"?,'j..-\O~~~ \DJ~lb +~\~~~ ~l~). t ~ kxj51 12. logM-3log - ~Jd-. -:0 - \0:;. tt ~ )- Jd- X \ 't"\ ) 6.I{i) Evaluate without using a calculator. \~\()y.. y.. -\- '" 17. In e2 18. In 7. 4 \t1j X - \tXj lx-J-) 8. ,Jx ..fX+1] L (x-2)2 3 \~ }(.t~09ext l)-~\~()(~J Write each expression as a rationas number or as a single logarithm. \~~'~.4 \~ ~L\- l6 I. , 22. 101Og3 + 1094 I Co 23. e1n.f2 ~ \bCJlo ~ 21. 102ioge 20. 10¥ 1 10. 210g.9+109.5 \~J>D5 , Fe f - , 3~ ,.. 24. 33iogs 2+iog38 I tl1 I;;L ~5. 10945 - log.60 I t 9. log 2 + log 3 + log 4 19. In e -\ ~ x· logx_2 ! ~Y t 1t::l4 U;; -=- -.:l... ., ~~ Name __ Date, _ Period EJ _ 25. 1og3(2~)= WORKSHEET 3. 10Q,M = N -1.\ 0;, = ~5 2. log _1_ =-4 10000 X -:::M 4. In e 'eN \ LD ~ 5. log168 = % <6 = 6. In 1 = 0 ll \~~,=-3 \0 <0 ~ -y.. 9. e"=8 l ~-J..'2.. 11. 10~=NDfj _, \0 I -= I/JDOCXJ \-J1o e"::-l\' 8. x"= e \~ 10. 81%= 3 ~ ~~ V'-l ~~-~ 1 12. 6-2 = 36 28. In(-10)=~ 29. In e4.5 13. log 100 = 16. log39= 1 19. 10925- 5 22. In e = ~ =~ Do not use a calculator. 14. log 10,000 = __L _j__ _1_ 15. log 0.01 = - 18. log338= 17.logI62=L _L ~ 27. 10021 = _D__ 20. log, ~ = =3. 21. log,V4 23. Ine2= ~ 24. InJe = ;;2.. ~ =_i_ ...L ~ =-±-S 30.logO= Y) )CL..- Evaluate each logarithm using the change of base formula. Round answers to three decimal Place~pO \ \00 31.10,,25 \~~,."J' 33. logs .35 \n q 02 ~-~~~g~ ~1:9 g ~ 32.10",00 \"Y\ '5 35. logs <-36)()D1- Evaluate each logarithm. 26. log~9 = - 7 e..:::e... e.0 -=-- I 1 Write in logarithmic form' 7. a3=64 3 - LOGARITHMS Write in exponential !2rm. 1.log.25=x - EJ ~s 'o\e.- 16 36. 109251200 ~ \(\\J--z... ~ ~ a· - ~ 15 LJ l:lDO _ 'XJ q \~~'O I :;to3 I I A 9-3 I NAME DATE WORKSHEET Solve. 1. 1092 (2x+1) =3 ir ~.A ~~-r\=g \ = 210g32 Y"2. \ fXj~'I. ~ =2 3 )("'\ ""2- 4- ~3 3109 2 (X - 1) + log .3 ;;l"~:/'J.-l)t \-=-9 tt( "j_-\) 4 i ~91J2(3X+1)113 ~.". 1'2 _A. 3-" 3'" C>: d~' =- L} x-\ -= t.3 ~~ 4 J -;)_ 4- ~.? 3:l -y "f..- \ -;: J- if -;0. 'j..."__ d.. 'I.. I La L\ ~'1_ \ A 9-3 J y;.-?\if' J _ '" +\ '5 ~ -:;:\ 00 'y..,-'2-{\OX.-\CO:;'u ('I- -\-ao'; ('f. -:S-y:_o .. ~~O~ :----::- +) -t '-t'l- - --- - ~-\ tv 'I.. J,;?:>.- ;f -.IOg.(X _ \ ( i.:::.L ')L+3 - ~~~C,p ~ =2 (x + 4 ) ~ \?- -::.-/ -+ ?-.'/. - 3;, ~'L.~C1 i =- 5.:A 'n )(. _ '-\ ~y..'f..-\ '#.- J o, ~ -e, ~¥.\- 11 . log • (x - 2) - log.(x + 3) = log. (1) x - 100 ~('l-t-,'5)-=- ~ leA ~ ~ CQ = In \() xCy.-;» -; ~ \~~~=\O~54 6. 109,X + log (x + 15 ) In x + In (x - 2) 10. '3~ -=- it; 3 "2- ::: t: (3)(115 =. ~ @ 2-5 =-l, 1 'J.-= ('/.. --\)~ ~6 ~ =2 L\- ~ 'f. 9 0'J. )It ~~ :! e (3 - 8. 1og3(X _1)2 L J:X f A 4. 2 logs)( = 310g5 4 C~~ Itcl 5. 2. Iog3( i + 1 ) 3A X::2.;- =2 3'#. t- \ (JV~=(Ur)2- \ EQUATIONS G~~~~ :l ~ 2"1093l' 7. log. 4 "I.. -= t. IS ~~l 3. - LOGARITHMIC -: PERIOD __ "J..~ -::. <6 "::; 1 _ ~t"4) t- y -=- 0 vi=«> I I A 9-31 Evaluate each logarithm. 12. log33 Do not use a calculator. ~ a\..- 13. Iog( - 1 ~.. ~ 64 I _ "; - ~ 15. 14. log (-0.01,) l\O-t- 210020.25 b ~'S<s\b\e. ;(5 Expand as much as possible using the properties of logs. 16. log~ 17. log \X2 + 1) \ OS to -lo:/'t."\\) ~2.;mr ' 81D3m + d- \~ \D \03 rY1 (Y'\ ( ~ I.> Write each expression as a rational number or as a single logarithm. 1 ' 19. -log8+I095 3 18. log 3 -log 12 + log 6 109 ~ 10:1 ~ 0 Ip I lo~ ~ CI:5 \03 10 1- J ~ I A9-4 I Name Date Period_ 7. 1.2" = (O.srx WORKSHEET - USING LOGS TO SOLVE EXPONENTIAL EQUATIONS 'f. 8. \n \.? ~ -'/.,.Vn O.S (\-X)~1l" -:::~\o e ){ \ cd 1'2. -t X \ t"\ 0, ~;:-D ~-~'\Y:=)(. 1. 22x+l= 4 ~ ...{~td: ~ I a~-+ \ :::d~~::; lOCj ~ '1. 7:. <, \ ~ y.._-=, E~\ 3. 2x= 10 X 2~3?': =: \~? ~S.3~ = '1Y LJ -'" \r\~ ~ \(\ \.'J- .; V_ \V\q; ,,_ !\.Ii - \n ct r-: • r(J U\) 11. ;:;t3')104 ~-Z})\~ e. (~r.,'-' 3_~~\'"~.,~\(\L\ t "0\(\ '\ :-J.l~ ~ -;.(\ ~'I.) IIXj " I\')":> - 2>\('1 '-\ -=- ~ \ ()L\ t d.'f..\'" 'J. \~ ~ "" \CIj"1 -)<. \~ '1 , 1"\ '0_3\(\ \-\<: )(01"1L\ +').\I')~ 'J.. \0<;)~k ').\t:C:J'l~I~ '1 \~?_3\""i -= 'f.. ~ ( \~.\- ~ I')::> \b~-' \VI "t\- ~I,,? 'f..;;. \00.-. ~ I _ • <t.5l\- ~X. ~ "3lst\ttS' ' '?;P \ 1'\ Q\ ~ 1- 'f.. =- \.s)?Jb.. 1'1. !)O ,02- NUl '7 I 13 ~ _'J... ~ ,) 3e"'"-::~~ ::T51) -"J.. .,., ,(//..;;,f() 12. -14 + 3eX = 11 \ \~e~= ~ \f\e 3\(\ ~ l ~oo S - 31- \n a= \n ~ 'X -::: \ n~ I?O 1\ cJ.- 400 =350 --.:x he \te~ =8 ., '3'1-_ B ~ tD~~ -=:. \() \(\L1-\1' \'1"2- 10. 5(2·X) 9.~'02x=~ .D'O~~ \ (\~ :::...J. ---s; ,t1l--' 12 -X-=" 1\ -::: ~ -\fr~ '\\" :;:-). (l+ W) ~ G::--±.?-\ 4. 8 -x \O<j \D 34 = eX ",1-. e'f.. _1 :A'f:> n X ..\... \ \0 4 "1...-:; - \'(1-\ i ~\, qL\:~ -\~ -=- ~:, \n ~ ~ ~,llO ANSWERS: 1. Y:. 2. 2, -2 3. 3.322 4. -.088 5. -.854 6. 1.356 7. 0 8.. 534 9. 20.273 10.. 226 11.1.946 12.2.120 13.9 14.2 15.2 16.8 17.4 18.,10 19.f(x)=lo93(-(X-4))-5 20.f(x)=4!<+'+1 >-. ~l [A 9=6] Name _ Date __ Period 3. The half-life of a certain radioactive substance is 14 days and there are 6.58 g present initially. When will there be 1 gram remaining? EXPONENTIAL AND LOGARITHMIC APPLICATIONS 1. The number of bacteria in a petri dish culture grows continuousty.and doubles every 3 hours. Initially there are 2500 bacteria present. a) Write an equation to model the continuous growth of the bac . :::: ~ 3 . ~lt)= ~5COe., ~~e0"'"' ~~\ >, t~3\t ~CD-::::'~5COe""?' 4. Find the principal needed to ha~e a balance of $1000 after 2 years at 6% compounded monthly. ~ -=- ~ w 5. When will an investment of $1000 be worth $1500 if the balance is compounded continuously at 5.25%? , 2. a) The population of a ~Rlall tow" In me year 1890 was 6250. Assuming it iQ.CLeasedat the rate of.3..ZS!'A>per year, what was the population in 1915? (Round to the nearest person.) t_ ~ -t A(-t:)~ (oa50(l +,01>15) ~t1-$)::: 1o£.6L) (\-t- ~, .o?:>1s1 z: b) In1940? V\(_:Sb)~ ~0l'tC) (\ \ - ~'~f 15lc~q ~~() \-,t)~1 ') z: E 313<g\ -l (\IO~tS)t t jlA-1.0375"" ~ ~:t :: __4 ~?~ • 7;> \<6.<6 I ~t \~qo ~,~ 4t (\r) \ 6. You will be buying a new car for $15,000 in 3 years. How much money should you,invest now at 5% compounded continuously, so that you will have enough to buy the car? c) What year would the population be expected to double according to the model? \z Sex,:)-=. lo~S-D(\ .03,5) ( () ,. ) '. ~, ~ ~ .. , Name f., " WORKSHEET "I- 1. ~= 1252~t~ 6=-6 'I.. -::- (0 \-~ _ Period )L C3\ 3. 21092(4x)-1 og2 x= 3 )_~ (4~f_ e yt "'Z. X:=\1?' ti" .1. z: 1'i-- \ ~ 2. log. x = 3 -log. (20 - x) ,-\X~'l )(CZ..o -)G) "4'?"""---;o. \ LX (w-~) -::. to4\ 'k"'l~&..\ g,o'7-..- X d--~. (o4 ')( ?..... 9D y.. -\-co- L\ 0 is. -\lQJCf-~ J -=- c) "C.- 1. '2.)£ - \ ~ - 2'1. ~ '2 i 7 ~-;.\ ~~ IrA~ ~ )(.·t 3:: )(.\(\~ ~-')l..\no~3 ~/\ \'1.\:: q ~ 2x 10 "z.i 3e' 62-x 6. -=15 7 :r'1- '\.-?"". 13",32-' \'" LO ::;Wb5" '" -4~ = 10 e-L_IO «: 3~) :JD:;')( 7'\ -:0 ~ ..~~~ (g - ~ (?'1t-.el'-':; e""'-::;.S )G ~ -,;- "'~ \0 5' • :i~-.i :~ ~: 'i~ I. {J:f( 12. ~e2x - e2x ,~ ~ \fI~-'-\\(\5~)_ \0'5 -\).\,,3 (p - _ \ (\ \D-::> ~ ~ ,;; )l e.-do f' ~'1;,.\;::.D 'Z.- \ JfuJ 14. xlnx=x G-~)\O~ ~ l'j.tl\)\n5 .. y.. \() 'i - x:;: 0 'A. (\(1 ~ - ,) ~o a \0 '3 - \ \"'~:: ~ \o':)t'-\ 1)(0 \(l~-\:O 0. \D5_ \nIO'S - J_ \n lo =0 e2~ (x=-t)::: (.) Cf:1.()14J \~-Qm2» \./ "/ ~ x~;;'_)L r-: 9-tb-~- Y-\~P;Q0-:f'f- ~ ~ \(\-1. 'X::: 1 <O~ 11.2e2x-7e'+3=0 \V\ 9-5 t'V. := ~<t 4~ )(~~~~ttl1. (~~- I) (e~- 3) ::: 0 ~e -::\ \(\e~ :::~3 \ \'Ae~ -:;~ "'J- -::;.\n '3 ~_ ',( -= A x... -y:, ::= .}...1:tJ .;! I;O-~_l~ v.(~ \n:>\-:- ~ I.. J ~.) ~ '(__jj 9~~ \CX(4;2, J,.~ 4. log31xl = 2 (?- X) \n lo ::-\n \05 ~ 60 log. 2 - X log. 2 -- x 8. \2~-1 \ / ll,q ). \~=!\ s(_Xj1C7 )~ 1 7. log~12x - ~ = 1 - MORE PRACTICE SOLVING LOG EQUATIONS ~ '" =--B _ \~t.f 'I.. -r lC~4l20-'A ~ 3 -~)L~.b t ~d-~?- )(. 1A 9-51 Date \?~-.~q7J 2 \1\ ~.-l\\() j =- ~l\~~\~ ~ \{) ~ -L\\f\S ~ 'f._ \ (\~\- \" ?:> - ~5lRlp~)<. \ () y.. -;:. \ e:- ..e:"1. 2Y:=-~J ~~ ~m ~~ m: 'm "'-CD ~; ..,-cn _0 CD CD ~.,..: NO~ (") , N .N ~..,.. 0 (J)e-> a:: . ~cn ~~ «.0 [A9-6! 7. StrontJum-90 is a radioactive material that decays according to the equation A Ao e-O·02441,where t is in terms of years. What is the half-life of strontium-90? = 8. The US population, in millions, is growing according to the formula P = 263eo.009I where t is years since 1995. In what year would the population be expected to reach 300 million? 9. A fossilized leaf is found to contain 10 micrograms of carbon-14 whereas a leaf of this type normally contains about 13.5 micrograms of carbon-14. Estimate the age of the fossilized leaf. (The half-life of carbon 14 is 5730 years. Round to the nearest year.) Answers: 1. a) A(t) = 25OOe·2311 b) 15.969 hours 2. a) 15,689 people b) 39,381 people c) 1908 3. 38.053 days 4. $887.19 5. 7.723 years 6. $12,910.62 7. 28.408 years 8. 2009 9. 2481 years
© Copyright 2025 Paperzz