THE CORRELATION OF TRUE BOILING POINT AND EQUILIBRIUM FLASH VAPORIZATION CURVES FOR SOME CANADIAN CRUDE OILS by WALTER HAYDUK A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE i n t h e Department of Chemical E n g i n e e r i n g We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o the standard r e q u i r e d from candidates f o r t h e degree o f MASTER OF APPLIED SCIENCE Members o f t h e Department o f Chemical E n g i n e e r i n g THE UNIVERSITY OF BRITISH COLUMBIA October, 1955. ABSTRACT An Ofchmer r e c i r c u l a t i n g s t i l l and a s t a n d a r d packed column f r a c t i o n a t i n g u n i t were us«d i n d e t e r m i n i n g t h e e q u i l i b r i u m f l a s h v a p o r i z a t i o n and t r u e b o i l i n g p o i n t c u r v e s r e s p e c t i v e l y , f o r e i g h t samples o f crude o i l s from p r o d u c i n g o i l - f i e l d s i n A l b e r t a . The EFV curves, a t 10 mm. a b s o l u t e p r e s s u r e were a l s o o b t a i n e d f o r t h e s e samples. Determinations a t atmospheric p r e s s u r e were used f o r m o d i f y i n g Okamoto and Van W i n k l e ' s correl- a t i o n , w h i c h a l l o w s t h e p r e d i c t i o n o f t h e EFV c u r v e s f r o m t h e TBP c u r v e s , f o r a p p l i c a t i o n t o crude oils. The c o r r e l a t i o n r e l a t e s t h e 50 p e r c e n t p o i n t s and the s l o p e s o f t h e two c u r v e s . I n s p i t e o f i t s s i m p l i c i t y , i t r e s u l t s i n p r e d i c t e d c u r v e s o f good a c c u r a c y . I t i s b e l i e v e d t h a t t h i s method i s s u i t a b l e f o r a l a r g e number o f crudes and can g i v e dependable phase equilibrium data. ACKNOWLEDGEMENTS A p p r e c i a t i o n i s expressed f o r t h e s u g g e s t i o n s and guidance g i v e n by Dr. L. W. S h e r a i l t under whose s u p e r v i s i o n t h i s r e s e a r c h was p e r f o r m e d . Acknowledgement i s a l s o made t o t h e I m p e r i a l O i l Company o f Canada and t h e S t a n d a r d O i l Company o f Canada who s u p p l i e d t h e samples. TABLE OF CONTENTS Page I, II. III. INTRODUCTION 1 # PREVIOUS CORRELATIONS 3. APPARATUS 5. (a) TBP Still (b) EFV S t i l l (c) Temperature Measurement IV. V. SAMPLES AND MATERIALS X PROCEDURE (a) TBP 6 # 20. Still (b) EFV S t i l l (c) C a l i b r a t i o n o f TBP column VI. •VII. VIII. RESULTS DISCUSSION OF RESULTS BIBLIOGRAPHY 29. 5 6 # 6 1 # TABLES Page T a b l e I N u m e r i c a l Data f o r TBP and EFT E x p e r i m e n t a l Points 51 T a b l e I I N u m e r i c a l Data f o r TBP and EFV C o r r e l a t i o n s 55 ILLUSTRATIONS 1. Diagram o f TBP S t i l l , F i g . 1. 6 2. Diagram o f EFV S t i l l , F i g . 2. 10 3. C a l i b r a t i o n c u r v e f o r thermometers, F i g . 3. 14 4. Cox c h a r t , F i g . 4. 23 5. McCabe-Thiele Method f o r TBP column E f f i c i e n c y , F i g . 5. 6. 28 C o r r e l a t i o n o f TBP and EFV 50 p e r c e n t points., Fig. 6. 30 7. C o r r e l a t i o n o f TBP and EFV s l o p e s , F i g . 7. 31 8. A t m o s p h e r i c and 10 mm. 32 9. Phase Diagrams f o r crude o i l samples, F i g . 9. 41 10. A t m o s p h e r i c TBP and EFV c u r v e s , F i g . l O a - l O h . 43 EFV c u r v e s , F i g . 8a-8h. 1. I . INTRODUCTION Such o p e r a t i o n s as t h e v a p o r i z a t i o n and c o n d e n s a t i o n of hydrocarbon m i x t u r e s a r e b a s i c i n t h e p r o d u c t i o n and r e f i n i n g of petroleum. I t i s o f t e n necessary t o p r e d i c t vapor- l i q u i d phase e q u i l i b r i u m c o n d i t i o n s i n p r o c e s s d e s i g n c a l c u t l a t i o n s and i n a n a l y z i n g commercial o p e r a t i o n s . The a b i l i t y t o p r e d i c t a c c u r a t e l y t h e p r o d u c t d i s t r i b u t i o n o f a new crude mixture, or the operating conditions t o give desired y i e l d s of c e r t a i n f r a c t i o n s , i s o f prime economic i m p o r t a n c e . For t h e s o l u t i o n o f problems concerned w i t h t h e phase e q u i l i b r i a of complex h y d r o c a r b o n m i x t u r e s , e m p i r i c a l methods based on t h e common l a b o r a t o r y , d i s t i l l a t i o n s , m u s t s t i l l be used. Petroleum d i s t i l l a t i o n processes i m v a r i a b l y the p r e h e a t i n g o f t h e s t o c k o r crude w i t h subsequent i n t h e d i s t i l l a t i o n column. entail flashing Calculations f o r the conditions of t e m p e r a t u r e and p r e s s u r e r e q u i r e d t o g i v e a p a r t i c u l a r residuum a r e s i m p l i f i e d by t h e use o f e q u i l i b r i u m flash£ v a p o r i z a t i o n (EFV) c u r v e s . These c o n s i s t o f p l o t s showing curves of percent v a p o r i z e d versus t h e v a p o r - l i q u i d temperature. isobaric equilibrium The s m a l l l a b o r a t o r y EFV s t i l l d e s i g n e d by Othmer (15) has proven t o be s u c c e s s f u l f o r o b t a i n i n g EFV c u r v e s at subatmospheric p r e s s u r e s . S i n c e subatmospheric p r e s s u r e s r are g e n e r a l i n p e t r o l e u m r e f i n i n g , t h e EFV c u r v e s a r e w i d e l y applicable. Because t h e s e s t i l l s a r e n o t as yfct s t a n d a r d l a b o r a t o r y equipment and because o f t h e e x p e r i e m e n t a l d i f f i c u l t i e s i n v o l v e d , EFV curves a r e u s u a l l y p r e d i c t e d from t h e more common t r u e b o i l i n g p o i n t curves. (TBP) and A.S.T.M. d i s t i l l a t i o n C o r r e l a t i o n s f o r p r e d i c t i n g EFV c u r v e s which can be a p p l i e d t o petroleum f r a c t i o n s are u n s a t i s f a c t o r y f o r crudes. A s u i t a b l e c o r r e l a t i o n f o r crudes was t h e s u b j e c t o f t h i s investigation. reproducible Because t h e A.S.T.M. d i s t i l l a t i o n i s n o t v e r y and i s d i f f i c u l t t o complete f o r c r u d e s , t h e TBP d i s t i l l a t i o n was chosen as b e i n g t h e more s u i t a b l e f o r correlating purposes. 3. I I . PREVIOUS CORRELATIONS Two t y p e s o f e m p i r i c a l c o r r e l a t i o n s a p p l y i n g g e n e r a l l y t o petroleum f r a c t i o n s are a v a i l a b l e i n the l i t e r a t u r e f o r p r e d i c t i n g t h e EFV curve a t a t m o s p h e r i c p r e s s u r e . One t y p e uses t h e i n t e r s e c t i o n p o i n t and t h e s l o p e s o f t h e f l a s h and A.S.T.M. o r TBP c u r v e s , and t h e o t h e r uses t h e 50 p e r c e n t b o i l i n g p o i n t s and s l o p e s . Beiswenger (17) I n t h e method proposed by Piroomov and t h e f l a s h c u r v e was assumed t o be a s t r a i g h t l i n e and was l o c a t e d by e s t i m a t i n g t h e p o i n t o f i n t e r s e c t i o n and i t s s l o p e from t h e smoothed A.S.T.M. o r TBP d i s t i l l a t i o n s . t h e method proposed by N e l s o n and Souders (11) In and m o d i f i e d by . K a t z and Brown (9) t h e EFV c u r v e was a l s o assumed t o be a s t r a i g h t l i n e and was p r e d i c t e d by e s t i m a t i n g i t s 50 p e r c e n t p o i n t and s l o p e from t h e 50 p e r c e n t p o i n t and 10-70 p e r c e n t s l o p e o f t h e A.S.T.M. o r TBP d i s t i l l a t i o n s . Experiment aLL EFV d a t a i n d i c a t e t h a t t h e l i n e s a r e not a c t u a l l y straight a l t h o u g h t h e c u r v a t u r e f o r a l a r g e p o r t i o n o f t h e curve i s s l i g h t (16). I n t h e method p r e s e n t e d by P a c k i e (16) and r e v i s e d by E d m i s t e r and P o l l o c k (4) t h i s d e p a r t u r e from a s t r a i g h t line was t a k e n i n t o c o n s i d e r a t i o n . None o f t h e e x i s t i n g methods o f . c o r r e l a t i o n a r e constructed t o apply s p e c i f i c a l l y f o r crudes. The E d m i s t e r and P o l l o c k c o r r e l a t i o n , f o r example, uses t h e TBP s l o p e s as parameters on a p l o t o f TBP 50 p e r c e n t v e r s u s t h e d i f f e r e n c e i n TBP and EFV 50 p e r c e n t p o i n t s . The s l o p e s , however, have t o o s m a l l a range t o account f o r t h e s t e e p s l o p e s o f TBP c u r v e s 4. f o r crudes. As a r e s u l t a s i m p l i f i e d c o r r e l a t i o n by Okamoto and Van W i n k l e (14)^which shows g e n e r a l relationships between TBP and EFV c u r v e s , has been chosen as a b a s i s f o r the present c o r r e l a t i o n . I n t h i s c o r r e l a t i o n the' EFV 50 p e r c e n t p o i n t i s determined from the TBP 50 p e r c e n t points, and t h e 10-70 p e r c e n t s l o p e i f r o m t h e TBP. 10-70 p e r c e n t s l o p e . The v a l u e s f o r t h e crude o i l s a r e compared d i r e c t l y w i t h t h e c o r r e l a t i o n of Okamoto and Van W i n k l e . 5 III. APPARATUS (a) True B o i l i n g P o i n t S t i l l The TBP apparatus c o n s i s t s of an a l l - g l a s s analytical d i s t i l l a t i o n u n i t w i t h an e f f i c i e n t f r a c t i o n a t i n g column s u i t a b l e f o r crude e v a l u a t i o n . Accessories include a l i q u i d - d i v i d i n g s t i l l - h e a d f o r convenient r e f l u x control, a vacuum u n i t w i t h a p r e s s u r e c o n t r o l l e r and d r y - i c e t r a p , a mercury manometer, and a m a n i f o l d p e r m i t t i n g s e p a r a t e e v a c u a t i o n o f t h e d i s t i l l a t e r e c e i v e r d u r i n g vacuum operation. F i g u r e 1 shows the arrangement o f t h e apparatus. A g l a s - c o l h e a t e r p r o v i d e s t h e n e c e s s a r y heat i n p u t t o t h e s t i l l - p o t ; f o r r e d u c i n g t h e l a r g e heat l o s s a t t h e h i g h temperatures used, a u x i l i a r y r i b b o n h e a t e r s covered w i t h i n s u l a t i o n e n c l o s e t h e column and s t i l l - h e a d . u n i t i s compact and simple i n o p e r a t i o n , d e s i g n e d The to o p e r a t e w i t h a minimum amount o f a t t e n t i o n . The column i s a s t a n d a r d type 1 - i n c h s i l v e r e d vacuum- j a c k e t e d column packed t o h e i g h t o f 22 i n c h e s w i t h inch glass helices. 1/8 Twelve e x p a n s i o n b e l l o w s a l o n g the outer j a c k e t permit the necessary expansion f o r the h i g h temperatures encountered i n crude d i s t i l l a t i o n . The performance o f t h e column when c a l c u l a t e d by t h e McCabie and T h i e l e method (10) u s i n g a benzene-carbon t e t r a c h l o r i d e t e s t m i x t u r e , i s 11.4 theoretical plates. corresponds t o o p e r a t i o n a t a t m o s p h e r i c T h i s performance pressure, at t o t a l r e f l u x , and a d i s t i l l a t i o n r a t e o f about 1500 ml. REFLUX TIMER V" s POTENTIOMETER 7. p e r hour, the r a t e n o r m a l l y used. The column i n c o n j u n c t i o n w i t h the r e f l u x c o n t r o l s t i l l - h e a d has an a v a i l a b l e f e e d c a p a c i t y c o n s i d e r a b l y h i g h e r than t h a t used i n t h e s e d e t e r m i n a t i o n s ; however, f o r convenience, (2 l i t r e s ) were d i s t i l l e d . r e l a t i v e l y s m a l l samples, At 10 mm. d i f f e r e n c e i n column o p e r a t i o n was p r e s s u r e no obsejrved. significant In a l l respects t h e column o p e r a t e d s u c c e s s f u l l y . An a u t o m a t i c l i q u i d - d i v i d i n g s t i l l - h e a d (manu- f a c t u r e d by t h e G l a s s E n g i n e e r i n g L a b o r a t o r i e s , San C a r l o s , C a l i f o r n i a ) (3) a c t i v a t e d by a s o l e n o i d , a l o n g w i t h a w a t e r c o o l e d condenser, p r o v i d e s any d e s i r e d r e f l u x r a t i o . The s t i l l - h e a d i s so c o n s t r u c t e d t h a t t h e vapor s t r e a m r i s i n g f r o m the column f l o w s p a s t a g r o u n d - j o i n t p a r t i a l - i m m e r s i o n thermometer, t h e n d i r e c t l y t o the condenser. f l o w s down t h r o u g h The condensate the s t i l l - h e a d by a d i f f e r e n t r o u t e , p a s s i n g t h r o u g h a s m a l l t i p p i n g f u n n e l which n o r m a l l y directs t h e l i q u i d stream t o the c e n t r e o f t h e column p a c k i n g . Contained i n t h e t i p p i n g f u n n e l i s a p i e c e of s o f t i r o n w h i c h can be a t t r a c t e d by a s o l e n o i d o u t s i d e the s t i l l - h e a d . When so a t t r a c t e d the f u n n e l d i r e c t s the l i q u i d s t r e a m t h r o u g h vapor t r a p t o the product r e c e i v e r . The a solenoid i s activated by an e l e c t r o n i c t i m e r w h i c h s u p p l i e s power f o r t h r e e seconds at a time. R e f l u x c o n t r o l i s e f f e c t e d by changing t h e on-off time r a t i o of the t i m e r and assuming t h a t t h i s corresponds the l i q u i d r e f l u x r a t i o o b t a i n e d . to T e s t s have i n d i c a t e d t h a t the r e f l u x r a t i o - c o n t r o l l e r g i v e s a somewhat h i g h e r r e f l u x 8. r a t i o t h a n i n d i c a t e d by t h e t i m e r ( 3 ) ; however, t h i s does n o t s i g n i f i c a n t l y e f f e c t t h e o p e r a t i o n o f t h e column. The vacuum u n i t i n c l u d e d an o i l - f i l l e d fore-pump- t y p e , vacuum pump, a surge t a n k , a C a r t e s i a n - t y p e manostat, and a d r y - i c e t r a p connected i n s e r i e s . equipped The surge t a n k was w i t h a needle v a l v e t o a l l o w an approximate p r e s s u r e adjustment t o a v a l u e somewhat l o w e r t h a n r e q u i r e d i n t h e u n i t ; t h e p r e s s u r e was m a i n t a i n e d p r e c i s e l y by t h e manostat. The d r y - i c e t r a p was used i n t h e main e v a c u a t i n g l i n e t o p r e v e n t t h e escape o f l i g h t f r a c t i o n s . The p r e s s u r e i n t h e u n i t was measured by a mercury manometer c o n n e c t e d t o t h e vacuum l i n e from t h e condenser. 9. (b)Equltibrium Flash:Vaporization Still The most s u c c e s s f u l l a b o r a t o r y v a p o r - l i q u i d e q u i l i b r i u m s t i l l s almost i n v a r i a b l y employ condensate r e circulation. is The vapor i n e q u i l i b r i u m w i t h t h e b o i l i n g liquid passed i n t o a condenser, and t h e condensate i s c o l l e c t e d i n a r e s e r v o i r from which i t i s r e c i r c u l a t e d back i n t o t h e b o i l i n g liquid. the When t h e e n t i r e s t i l l has r e a c h e d a s t e a d y s t a t e , s a t u r a t e d v a p o r r i s i n g from t h e b o i l i n g l i q u i d i s o f t h e same c o m p o s i t i o n as t h e r e c i r c u l a t i n g condensate, and i s a t the same t e m p e r a t u r e as t h e b o i l i n g l i q u i d . The v a p o r - l i q u i d still d e s i g n e d by Othmer.^(l$)) f o r t h e d e t e r m i n a t i o n o f EFV c u r v e s o f crudes and p e t r o l e u m f r a c t i o n s e n t a i l s two b a s i c m o d i f i c a t i o n s : a method o f v a r y i n g t h e volume o f condensate h e l d up i n t h e r e s e r v o i r , and o f a c c u r a t e l y d e t e r m i n i n g t h i s volume w i t h o u t interrupting the operation of the s t i l l . A graduated r e s e r v o i r w i t h a c a p i l l a r y stopcock i n the r e c y c l e l i n e e f f e c t i v e l y these problems. solve The Othmer s t i l l a l o n g w i t h a u x i l i a r y e q u i p - ment i n c l u d i n g a vacuum pump, surge t a n k , d r y - i c e t r a p and manometer, i s shown i n F i g u r e 2. The s t i l l ; c o n s i s t s of a complete.pyrex g l a s s u n i t : a 500 m l . s t i l l - p o t , vapor-arm, p r i m a r y condenser, g r a d u a t e d r e c e i v e r , and r e f l u x l i n e . Nichrome r e s i s t a n c e h e a t e r s p r o v i d e e x t e r n a l h e a t i n g t o t h e s t i l l - p o t , vapor-arm, and r e f l u x line; these s e c t i o n s are a l s o i n s u l a t e d w i t h asbestos l a g g i n g coated w i t h aluminum p a i n t t o p r e v e n t e x c e s s heat l o s s by r a d i a t i o n . 4 11. An i n t e r n a l nichrome r e s i s t a n c e h e a t e r e f f e c t s smooth b o i l i n g , w i t h o u t bumping o f o r s u p e r h e a t i n g o f even s m a l l liquid volumes. The bottom s e c t i o n of the s t i l l - p o t i s f a b r i c a t e d w i t h a s m a l l e r bubble so that the d e p t h of l i q u i d i s sufficient f o r h e a t i n g and a c c u r a t e l y measuring t h e t e m p e r a t u r e when most of t h e change i s i n the condensate r e s e r v o i r . The vapor- arm i s o f a s i z e determined by two r e q u i r e m e n t s : t h a t t h e p r e s s u r e drop o f t h e vapor p a s s i n g t o t h e r e s e r v o i r s h o u l d be n e g l i g i b l e , and t h a t t h e t o t a l volume o f t h e v a p o r i n t h e f r e e space o f t h e s t i l l - p o t and vapor-arm s h o u l d be s m a l l enough t o i n t r o d u c e n e g l i g i b l e e r r o r i n t h e l i q u i d volume measurement. The p r e s s u r e drop a c r o s s the vapor-arm depends on t h e v a p o r i z a t i o n r a t e w h i c h , a t low p r e s s u r e s (10 mm), can be c o n s i d e r a b l e ; f o r t h i s reason a uniform slow d i s t i l l a t i o n r a t e i s i m p e r a t i v e . The e r r o r i n t r o d u c e d by n e g l e c t i n g t h e amount of vapor i n t h e s t i l l i n measuring t h e condensate volume c o r r e s p o n d s t o l e s s t h a n 5 n i l . o f condensate d u r i n g adverse c o n d i t i o n s ( 1 5 ) . A c o r r e c t i o n can be a p p l i e d i n v e r y p r e c i s e work; however, t h i s i s u s u a l l y not n e c e s s a r y s i n c e i t i s d t h e o r d e r o f a c c u r a c y for r e a d i n g the volume i n t h e r e s e r v o i r . A t reduced p r e s s u r e s , t h i s e r r o r g r e a t l y d e c r e a s e s i n magnitude. The condenser i s c o n s t r u c t e d i n two p a r t s f o r h a n d l i n g crudes o r heavy f r a c t i o n s . The p r i m a r y condenser can be o p e r a t e d a t a temperature j u s t s u f f i c i e n t t o condense t h e h i g h e r b o i l i n g p o r t i o n o f the vapors and s t i l l a l l o w t h e condensate t o f l o w f r e e l y down the w a l l s w i t h o u t f r e e z i n g out t h e waxy .material. The more v o l a t i l e p o r t i o n i s condensed i n the secondary condenser c o o l e d t o a l o w e r t e m p e r a t u r e . Since a 'small p o r t i o n o f t h e crude o i l s c o n s i s t s o f a h i g h l y v o l a t i l e f r a c t i o n , t h e d r y - i c e t r a p s e r v e s as an a u x i l i a r y condenser; d u r i n g 10 mm. p r e s s u r e o p e r a t i o n w i t h l i g h t crudes as much as 25 m l . o f condensate was c o n s i s t e n t l y c o l l e c t e d i n t h e t r a p . The volume was c a r e f u l l y measured and added t o t h a t i n t h e r e s e r v o i r ; i t was i m p r a c t i c a l t o attempt t o keep t h i s volatile f r a c t i o n i n the r e s e r v o i r because i t b o i l e d a t t h e r e s e r v o i r temperature. The p r e s s u r e i n t h e u n i t was measured by an a b s o l u t e manometer and m a i n t a i n e d at a c o n s t a n t v a l u e by a C a r t e s i a n t y p e manostat. (c) Temperature Measurement Three d e v i c e s a r e commonly used f o r measuring t e m p e r a t u r e s , t h e mercury thermometer, t h e r m o c o u p l e , and r e s i s t a n c e thermometer. The mercury thermometer i s a v a i l a b l e f o r use e i t h e r as a t o t a l - i m m e r s i o n o r a p a r t i a l - i m m e r s i o n thermometer. I n b o t h cases s i m i l a r problems a r e p r e s e n t e d i f v e r y p r e c i s e t e m p e r a t u r e measurement of t h e v a p o r phase i n a vapor-liquid equilibrium determination i s required. It is d i f f i c u l t t o construct a s t i l l - h e a d or s t i l l - p o t that allows adequate c i r c u l a t i o n of t h e vapor o r l i q u i d around t h e s e c t i o n o f the thermometer s p e c i f i e d f o r immersion. The partial- immersion thermometer u s u a l l y c r e a t e s a vapor p o c k e t where 13. i t e n t e r s t h e s t i l l - h e a d ; t h e emergent stem i s a l s o exposed to v a r i a b l e temperatures. These problems l i m i t t h e use o f mercury thermometers i n v e r y p r e c i s e work. B o t h t h e thermocouple and r e s i s t a n c e thermometer can g i v e n h i g h l y a c c u r a t e t e m p e r a t u r e measurements. the r e s i s t a n c e thermometer o f f e r s t h e g r e a t e s t a c c u r a c y a s w e l l as maximum r e l i a b i l i t y Although and r e p r o d u c i b i l i t y , t h e t h e r m o c o u p l e i s o f more g e n e r a l use because i t i s l e s s b u l k y , has l i t t l e temperature l a g , and r e q u i r e s t h e use o f o n l y a p o t e n t i o m e t e r . The r e s i s t a n c e thermometer i s e s p e c i a l l y s u i t a b l e f o r c a l i b r a t i n g purposes. I n b o t h t h e TBP and EFV d e t e r m i n a t i o n s p a r t i a l immersion thermometers were used t o measure t h e v a p o r - l i q u i d e q u i l i b r i u m temperatures. The a c c u r a c y d e s i r e d , * 1.0°F, i n s p i t e o f t h e i n h e r e n t p o s s i b l e e r r o r , was r e a d i l y o b t a i n e d as shown when t h e s e thermometers were c a l i b r a t e d a g a i n s t t h e N a t i o n a l Bureau o f S t a n d a r d s No. 169314; r e s i s t a n c e thermometer. c a l i b r a t i o n c u r v e s appear i n F i g u r e 3. The The thermometers were used i n p r e f e r e n c e t o t h e r m o c o u p l e s because t h e o r i g i n a l d e s i g n s o f both u n i t s i n c l u d e d g r o u n d - j o i n t p a r t i a l - i m m e r s i o n thermometers. These were c o n v e n i e n t - because o f ease i n r e a d i n g t h r o u g h o u t t h e whole range o f t e m p e r a t u r e s e n c o u n t e r e d . I n t h e EFV a p p a r a t u s a s p e c i a l advantage o f t h e u s e of a p a r t i a l - i m m e r s i o n thermometer was t h a t t h e l i q u i d temper- ature i n the s t i l l c o u l d be watched and checked r e a d i l y w h i l e a d j u s t m e n t s were made t o t h e h e a t e r s . Other temperatures c o u l d be measured by t h e r m o c o u p l e s l o c a t e d a t v a r i o u s p o i n t s CALIBRATION OF THERMOMETERS 15. o f t h e s t i l l - p o t , vapor-arm and r e c y c l e l i n e a t t h e g l a s s insulation interface. By means o f a m u l t i p l e - s w i t c h and Leeds and N o r t h r u p t y p e K p o t e n t i o m e t e r , t h e t e m p e r a t u r e a t any p o i n t r e q u i r e d c o u l d be o b t a i n e d . An a u x i l i a r y thermometer was p l a c e d i n t h e vapor-arm thermometer w e l l by w h i c h a check on t h e e x t e n t o f s u p e r h e a t i n g c o u l d be made. The TBP u n i t r e q u i r e d a p a r t i a l - i m m e r s i o n thermometer s p e c i f i e d t o f i t the s t i l l - h e a d ; the s t i l l - h e a d i s designed t o reduce t h e thermometer The thermometer e r r o r due t o poor v a p o r c i r c u l a t i o n . i s centred i n t h e vapor-stream a l l o w i n g a maximum amount o f c o n t a c t . Another thermometer was used t o g i v e an approximate i n d i c a t i o n o f t h e t e m p e r a t u r e o f t h e ribbon heater surrounding the s t i l l - h e a d . The crude charge t e m p e r a t u r e was measured by means o f an i r o n - c o n s t a n t a n thermo- couple and p o t e n t i o m e t e r . T h i s thermocouple was used o n l y as an approximate check f o r k e e p i n g t h e charge temperature below 650°F and, t h e r e f o r e , was n o t c a l i b r a t e d . 16. IV. SAMPLES AND MATERIALS (a) Crude O i l Samples E i g h t samples o f A l b e r t a crude o i l were analyzed. Assurance was g i v e n t h a t t h e samples were drawn t o g i v e r e p r e s e n t a t i v e composite of t h e o i l - f i e l d o r p i p e l i n e . samples Storage i n a c o o l place avoided excessive vapor l o s s . m a t i o n about t h e samples i s l i s t e d Relevant i n f o r below: API G r a v i t y 1. Pembina crude - r e p r e s e n t a t i v e sample from Pembina P i p e l i n e s t r e a m d e l i v e r e d i n 10 g a l l o n drum August 16, 1955, by I m p e r i a l O i l Company 38.0 Limited. 2. W i z a r d Lake crude - r e p r e s e n t a t i v e sample from b a t t e r y r e c e i v i n g crude from s e v e r a l producing w e l l s i n the Wizard Lake f i e l d d e l i v e r e d i n 10 g a l l o n drum August 16, 1955, by I m p e r i a l O i l Company L i m i t e d . 37.5 3. Leduc-Woodbend crude - r e p r e s e n t a t i v e sample from I m p e r i a l P i p e L i n e Leduc g a t h e r i n g system d e l i v e r e d i n 10 g a l l o n drum August 16, 1955, Company L i m i t e d . by I m p e r i a l O i l 40.1 API G r a v i t y 4. Texaco P i p e l i n e crude - r e p r e s e n t a t i v e sample o f crude m i x t u r e from Texaco P i p e L i n e b a t t e r y as R e c e i v e d t h r o u g h Trans-Mountain P i p e L i n e , d e l i v e r e d i n 5 g a l l o n can J u l y , 1955, by S t a n d a r d O i l Company L i m i t e d . 40.6 5. Redwater crude - r e p r e s e n t a t i v e sample o f crude from I m p e r i a l P i p e L i n e Redwater system as r e c e i v e d t h r o u g h Trans M o u n t a i n P i p e l i n e , d e l i v e r e d i n 5 g a l l o n can J u l y , 1955, hy S t a n d a r d O i l Company L i m i t e d . 35»5 6« S t e t t l e r crude - r e p r e s e n t a t i v e sample o f crude from S t e t t l e r f i e l d d e l i v e r e d i n 5 g a l l o n can i n 1952, by I m p e r i a l O i l Company Limited. 7. Joseph Lake crude 28.8 - r e p r e s e n t a t i v e sample o f crude from Joseph Lake f i e l d d e l i v e r e d i n 5 g a l l o n c a n i n 1952 by I m p e r i a l O i l Company L i m i t e d . 8. Golden S p i k e crude - representative of crude from Golden S p i k e f i e l d 37*3 sample delivered i n 5 g a l l o n can i n 1952 by I m p e r i a l O i l Company L i m i t e d . 38.9 S i n c e b o t h t h e TBP and EFV curves were t o be d e t e r m i n e d on a volume p e r c e n t b a s i s , a c c u r a t e measurement o f t h e volume o f crude charge t o t h e s t i l l s was r e q u i r e d . The 18. charge p o r t i o n s t o t h e TBP s t i l l s were 2000 m l . and EFV and 500 m l . , r e s p e c t i v e l y . S i n c e the samples were a t an approximate t e m p e r a t u r e of 60°F and not v e r y v i s c o u s , t h e y were poured d i r e c t l y i n t o a g r a d u a t e d c y l i n d e r o f a p p r o p r i a t e s i z e t o a l e v e l somewhat h i g h e r t h a n the volume t o delivered. When the g r a d u a t e was emptied and o i l a l l o w e d t o d r a i n t o t h e bott©m'f the r e m a i n i n g volume c o u l d estimated. be be By p r a c t i c e t h e volume of charge r e q u i r e d c o u l d be r e a d i l y o b t a i n e d by t h i s method. (b) Benzene and Carbon T e t r a c h l o r i d e 'A. t e s t m i x t u r e was of benzene-carbon t e t r a c h l o r i d e used t o determine t h e e f f i c i e n c y o f the TBP column. P u r i f i c a t i o n was distillation required to obtain a r e f r a c t i v e i n d e x f o r the benzene w h i c h compared f a v o u r a b l y w i t h p u b l i s h e d results. A commercially pure grade o f benzene was by t h e N i c h o l s C h e m i c a l Company. shaking a mixture of benzene and i n a large separating funnel. w i t h new Thiophene was concentrated The supplied removed by sulfuric acid o p e r a t i o n was repeated p o r t i o n s of a c i d u n t i l no t h i o p h e n e d i s c o l o r a t i o n appeared. The w a t e r i f i t was concentrated present. a c i d would a l s o remove most o f t h e A f t e r c a r e f u l s e p a r a t i o n of the a c i d l a y e r the thiophene-free benzene was placed i n a clean 2 d i s t i l l a t i o n f l a s k o v e r sodium r i b b o n and a l l o w e d t o s t a n d f o r a day. The t o p of the f l a s k was closed with a drying funnel of c a l c i u m o x i d e a l l o w i n g f r e e e v o l u t i o n o f hydrogen. 1. 19, Distillation f o r f i n a l p u r i f i c a t i o n was performed i n a packed column o f 14 e q u i v a l e n t p l a t e s p r e v i o u s l y used f o r p u r i f i c a t i o n purposes (19). and d r i e d . The column was c a r e f u l l y Distillation cleaned w i t h acetone of the benzene was c a r r i e d sodium a t a r e f l u x r a t i o o f 30:1. out over The i n i t i a l 200 ml. p o r t i o n was d i s c a r d e d a f t e r which about 1 1. o f pure benzene o f b o i l i n g p o i n t 80.4 °C was o b t a i n e d f o r t e s t i n g The carbon t e t r a c h l o r i d e purposes. o b t a i n e d from the Baker and Adamson Company was p u r i f i e d by d i s t i l l a t i o n o n l y . at a r e f l u x r a t i o o f 30:1 gave carbon t e t r a c h l o r i d e refractive the Distillation of a index t h a t checked f a v o u r a b l y w i t h t h a t g i v e n i n literature. Refractive indices o b t a i n e d at 25°C were 1.4572 and 1.4980 f o r carbon t e t r a c h l o r i d e respectively, 1.49794 ( 8 ) . and benzene, compared w i t h l i t e r a t u r e v a l u e s o f 1.45734 and 20. PROCEDURE (a) TBP S t i l l The o p e r a t i o n o f t h e TBP s t i l l was e s s e n t i a l l y the same as t h a t o f any l a b o r a t o r y f r a c t i o n a t i n g u n i t . A b a s i c d i f f e r e n c e , however, was t h a t two p r e s s u r e s were used d u r i n g t h e d i s t i l l a t i o n o f c r u d e s : a t m o s p h e r i c d i s t i l l a t i o n u n t i l t h e charge r e a c h e d a t e m p e r a t u r e o f about 65O0F. a f t e r which t h e column was c o o l e d , t h e n 10 mm. p r e s s u r e u n t i l t h e t e m p e r a t u r e a g a i n r e a c h e d about 6$0°F. the Some comparable TBP s t i l l s f u r t h e r reduce p r e s s u r e t o 1 mm. b u t s i n c e t h i s p a r t i c u l a r a p p a r a t u s was n o t d e s i g n e d f o r such l o w p r e s s u r e s , t h e d i s t i l l a t i o n was t e r m i n a t e d a t 10 mm. To b e g i n o p e r a t i o n s a t a t m o s p h e r i c p r e s s u r e , a f t e r the s t i l l - p o t was charggd and a t t a c h e d t o t h e column, c o o l i n g w a t e r was passed t h r o u g h t h e condensers, powdered d r y - i c e p l a c e d i n t h e c o l d t r a p and t h e g l a s - c o l h e a t e r was t u r n e d on. A normal procedure i n t h e o p e r a t i o n of packed columns i s t o p r e f l o o d t h e column b e f o r e t h e a c t u a l d i s t i l l a t i o n b e g i n s ; t h e purpose o f t h i s i s t o c o m p l e t e l y wet t h e p a c k i n g s u r f a c e t o ensure maximum column e f f i c i e n c y . F o r two r e a s o n s t h i s p r o c e d u r e was not f o l l o w e d : t h e l i q u i d - d i v i d i n g s t i l l - h e a d has t o o s m a l l a c a p a c i t y t o cause column f l o o d i n g and i s i t s e l f flooded f i r s t . A l s o , i f f l o o d i n g was even approached 21. d u r i n g the i n i t i a l r e f l u x i n g o f a crude, too l a r g e a f r a c t i o n would be l o s t t o the cold trap. slow r a t e of r e f l u x i n g , 1500 p e r m i t t e d t h r o u g h o u t the As a r e s u l t , the normal t o 2000 ml. per h o u r , complete d i s t i l l a t i o n ; l o s s i n i n i t i a l column e f f i c i e n c y was was the possible c o n s i d e r e d to be not significant. A preliminary h o u r was equilibrium period a l l o w e d b e f o r e any receiver. o f about h a l f d i s t i l l a t e was drawn i n t o set t o g i v e a r e f l u x - r a t i o o f 10:1. d i s t i l l a t e volume and r e c e i v e r s t o p c o c k , and inlet t h e n d r a i n i n g the d i s t i l l a t e i n t o a ml. graduated c y l i n d e r . The still-pot temperature To o b t a i n the i n i t i a l c o r r e c t volume was The not i t s e l f added t o d i s t i l l a t e i n t h e graduate because of i t s h i g h discarded. collected added t o the g r a d u a t e d c y l i n d e r . l i g h t f r a c t i o n , as much as 40 ml., but was was distilled r e a d i n g , a volume of naphtha c o r r e s p o n d i n g t o t h a t i n the c o l d t r a p , was The c o r r e s p o n d i n g v a p o r t e m p e r a t u r e were o b t a i n e d by r e a d i n g t h e thermometer, c l o s i n g t h e a l s o noted. the A f t e r t h i s time a t the normal r e f l u x i n g r a t e , the r e f l u x - t i m e r was 250 an the volatility, Subsequent r e a d i n g s , t a k e n a t approximate volume i n t e r v a l s o f 100 ml. d i d not need f u r t h e r A f a l l i n g - o f f of the d i s t i l l a t i o n r a t e due f i c i e n t heat i n p u t t o the s t i l l - p o t was o b s e r v e d by the number o f drops f a l l i n g i n t o the d i s t i l l a t e during a receiving period. correction. The to insuf- counting receiver g l a s - c o l heater input was a c c o r d i n g l y a d j u s t e d . When the r e f l u x t e m p e r a t u r e r e a c h e d o about 250 F., the column and s t i l l - h e a d r i b b o n h e a t e r s were 22. t u r n e d on. The temperature o f t h e r i b b o n h e a t e r a t t h e s t i l l - h e a d was m a i n t a i n e d a t about 30°F. below t h e v a p o r temperature as i n d i c a t e d by a thermometer the heater. placed inside An i d e n t i c a l e l e c t r i c a l i n p u t was s u p p l i e d t o t h e column r i b b o n h e a t e r ; t h e e x t e r n a l temperature o f the column, a l t h o u g h undetermined, would be somewhat h i g h e r because o f t h e e x t r a i n s u l a t i o n c o v e r i n g t h e h e a t e r . There was l i t t l e danger o f d i s r u p t i n g t h e column o p e r a t i o n by s u p p l y i n g t o o much heat by means o f t h e r i b b o n h e a t e r s s i n c e b o t h t h e s t i l l - h e a d and column were vacuum-jacketed; moreover, at h i g h temperature o p e r a t i o n , t h e h e a t e r s and i n s u l a t i o n were e s s e n t i a l i n r e d u c i n g heat l o s s e s s u f f i c i e n t l y f o r normal d i s t i l l a t i o n . A f t e r t h e system was e v a c u a t e d t o 10 mm., and t h e manostat a d j u s t e d , d i s t i l l a t i o n a t t h e reduced p r e s s u r e was performed i n t h e same way as a t a t m o s p h e r i c pressure.. To measure d i s t i l l a t e volumes, however, was a problem. When a c o n v e n i e h t t volume, a g a i n about 100 m l . , was c o l l e c t e d i n t h e r e c e i v e r , t h e vapor and s t i l l - p o t t e m p e r a t u r e s were r e a d and t h e r e c e i v e r i n l e t and e v a c u a t i n g l i n e s t o p c o c k s were c l o s e d . The r e c e i v e r was t h u s i s o l a t e d f r o m t h e r e s t of t h e u n i t ; a i r c o u l d be v e n t e d i n t o i t , t h e d i s t i l l a t e d r a i n e d , and volume measured w i t h o u t d i s r u p t i n g t h e column operation. To a g a i n evacuate t h e c l o s e d and t h e r e c e i v e r e v a c u a t e d , a l s o w i t h o u t d i s r u p t i n g t h e column operation. T h i s method r e q u i r e d t h e r e a d j u s t m e n t o f t h e manostat time t h e d i s t i l l a t e volume was measured. each A n o t h e r method w h i c h e l i m i n a t e d t h e r e a d j u s t m e n t o f t h e manostat was t o evacuate COX CHART FOR TBP EXTRAPOLATION 24. the r e c e i v e r w i t h an a u x i l i a r y vacuum pump. To o b t a i n t h e complete TBP c u r v e a t a t m o s p h e r i c p r e s s u r e , t h e t e m p e r a t u r e s o f t h e 10 mm. d i s t i l l a t i o n were e x t r a p o l a t e d by means o f an e n l a r g e d Cox c h a r t (5) as shown i n reduced s i z e i n F i g u r e 4« T h i s c h a r t was c o n s t r u c t e d i n - t h e u s u a l way and the f o c a l p o i n t d e t e r m i n e d u s i n g v a p o r p r e s s u r e v a l u e s from t h e l i t e r a t u r e f o r s e v e r a l normal hydrocarbons ( 1 8 ) . E x t r a p o l a t i o n gave temperature v a l u e s c o n s i s t e n t w i t h the a t m o s p h e r i c d a t a when p l o t t e d on a g r a p h o f temperature v e r s u s volume p e r c e n t . F o r example, t e m p e r a t u r e s o f 350oF. and 400°F. a t 10 mm. gave c o r r e s ponding e x t r a p o l a t e d v a l u e s o f 6l5°F. and 670°F. a t 760 mm. pressure; (the p r e c i s i o n o f the e x t r a p o l a t e d temperatures d e c r e a s e d t o about £5°F. a t h i g h t e m p e r a t u r e s due t o t h e condensed t e m p e r a t u r e s c a l e o f t h e Cox c h a r t . ) I n t h i s way, d a t a f o r TBP c u r v e s , complete t o a t e m p e r a t u r e o f about 300°F., were computed. (b) EFV S t i l l The procedure f o l l o w e d f o r t h e EFV d e t e r m i n a t i o n s was e s s e n t i a l l y as p r e s c r i b e d by Othmer e t , a l . ( 1 5 ) • Both atmospheric and reduced p r e s s u r e d i s t i l l a t i o n s c a r r i e d out by t h e same method. were Preliminary preparations c o n s i s t e d o f p l a c i n g d r y - i c e i n t o t h e c o l d t r a p and s t a r t i n g the c o o l i n g - w a t e r through t h e condensers. The s t i l l was charged t h r o u g h t h e thermometer w e l l , a f t e r w h i c h t h e system was evacuated t o t h e d e s i r e d o p e r a t i n g p r e s s u r e . Heat was 25. s u p p l i e d t o t h e s t i l l - p o t and vapor-arm, the vapor-arm b e i n g kept a t a t e m p e r a t u r e about i n i t i a l boiling point. 30OF. h i g h e r than the expected The temperature o f t h e initial b o i l i n g p o i n t corresponded t o the f i f t h drop o f d i s t i l l a t e f a l l i n g i n t o the d i s t i l l a t e (as suggested by Othmer e t , a l . ) ; the c o r r e s p o n d i n g volume measurement wan not t a k e n as zero, but as t h e volume o f t h e l i g h t f r a c t i o n s c o l l e c t e d i n t h e cold trap. To h e l p i n making t h e r e c y c l e c o n t r o l e f f e c t i v e a p o i n t e r was a t t a c h e d t o the end of t h e s t o p c o c k so t h a t t h e p r o p e r p o s i t i o n c o u l d be r e a d i l y a t t a i n e d as shown by a c i r c u l a r scale. F u r t h e r m o r e , t h e r e c y c l e stream was vaporized partially by means o f t h e r e c y c l e h e a t e r so t h a t i n t e r m i t t e n t bubble's p a s s e d t h r o u g h the s t o p c o c k . The b u b b l e s a i d e d i n e s t i m a t i n g t h e r a t e o f r e c y c l e as w e l l as p r e v e n t e d s u p e r h e a t i n g o f t h e charge i n t h e s t i l l - p o t . The volume i n the r e s e r v o i r was i n c r e a s e d i n c r e a s i n g the s t i l l - p o t h e a t e r . E q u i l i b r i u m was by established when t h e d i s t i l l a t e was o f t h e same c o m p o s i t i o n as t h e vapor i n e q u i l i b r i u m w i t h the l i q u i d charge. To a c c o m p l i s h t h i s the l i q u i d temperature was kept c o n s t a n t r a t h e r than t h e d i s t i l l a t e volume as suggested by Othmer e t a l . I n t h i s s m a l l temperature changes c o u l d be n o t i c e d and heat way supplied a c c o r d i n g l y , whereas s m a l l volume changes c o u l d n o t be n o t i c e d soon enough t o p e r m i t easy c o r r e c t i v e a d j u s t m e n t . A f t e r normal d i s t i l l a t i o n and r e c y c l e r a t e s o f about 120 drops 26. p e r hour were e s t a b l i s h e d , t h e o n l y c o n t r o l n e c e s s a r y was the heat i n p u t t o t h e s t i l l ; t h e r e c y c l e s t o p c o c k was kept i n t h e same p o s i t i o n t h r o u g h o u t t h e d i s t i l l a t i o n . For o b t a i n i n g i n c r e a s e d volumes o f d i s t i l l a t e , t h e s t i l l temperature was s l o w l y i n c r e a s e d i n i n c r e m e n t s o f about 50°F., w i t h a c o r r e s p o n d i n g i n c r e a s e i n vapor-arm t e m p e r a t u r e . As t h e temperature i n c r e a s e d t h e d i s t i l l a t i o n increase r a t e would w i t h r e s u l t i n g h i g h e r volumes o f d i s t i l l a t e . Equilibrium was assumed when no volume change was observed o v e r a p e r i o d o f about i hour a t a c o n s t a n t s t i l l temperature, the complete t i m e f o r a s i n g l e measurement t a k i n g up t o 4 h o u r s . S i n c e t h e whole d e t e r m i n a t i o n c o u l d n o t be made i n one e i g h t hour day, t h e d i s t i l l a t i o n had t o be d i s c o n t i n u e d b e f o r e i t was completed. To p e r m i t easy s t a r t - u p n e x t day, the r e c y c l e s t o p c o c k was c l o s e d t r a p p i n g t h e d i s t i l l a t e i n t h e r e s e r v o i r . The vacuum l i n e a l s o was c l o s e d w i t h a p i n c h cock ( d u r i n g reduced p r e s s u r e d i s t i l l a t i o n ) . The f o l l o w i n g day t h e d i s t i l l a t i o n c o u l d be c o n v e n i e n t l y c o n t i n u e d a t a temperature a n o t h e r i n c r e m e n t above t h e one used p r e v i o u s l y . The volume i n t h e c o l d t r a p was checked f o r l o s s due t o evaporation. The f l a s h c u r v e s a t e i t h e r a t m o s p h e r i c o r 10 mm. pressure c o u l d be drawn d i r e c t l y from the d a t a f o r t h e l i q u i d t e m p e r a t u r e and t h e c o r r e c t e d volume o f d i s t i l l a t e . 27. ( c ) C a l i b r a t i o n o f Column The t h e o r e t i c a l p l a t e was e f f i c i e n c y o f t h e TBP column checked by r e f l u x i n g a t t o t a l r e f l u x a m i x t u r e of the p u r i f i e d benzene and c a r b o n t e t r a c h l o r i d e . A charge o f about 2 1. o f 20 mole p e r c e n t carbon t e t r a c h l o r i d e was f o r two h o u r s , t h e n s m a l l samples o f t h e overhead pot m i x t u r d s were t a k e n . These were a n a l y z e d by i n d e x a f t e r which r e f l u x i n g was refluxed and still- refractive continued f o r another three hours t o ensure t h a t e q u i l i b r i u m had been a t t a i n e d . Second samples drawn gave t h e same r e f r a c t i v e i n d e x v a l u e s as t h e first. The r e f r a c t i v e i n d e x v a l u e s a t 2 5 ° C f o r t h e still- pot c o m p o s i t i o n and overhead were 1.4916 and 1.4783, r e s pectively. The r e f r a c t i v e i n d e x - c o m p o s i t i o n r e l a t i o n s h i p was t h a t recommended by t h e U.S. Bureau o f Mines (20) and the benzene-carbon t e t r a c h l o r i d e vapor-liquid data were o b t a i n e d from t h e I n t e r n a t i o n a l equilibrium C r i t i c a l Tables ( 7 ) . The p l a t e e f f i c i e n c y o f t h e column was determined by u s u a l McCabe and T h i e l e method (10) u s i n g an e n l a r g e d l i q u i d equilibrium method was 11.4 diagram. the vapor- The v a l u e o b t a i n e d by t h i s equivalent theoretical plates f o r a column of 22 i n c h e s of p a c k i n g i n c l u d i n g t h e s t i l l i - p o t * and head as i l l u s t r a t e d i n F i g u r e $. still- 29. VI. RESULTS F o r each o f t h e crude o i l s t e s t e d , t h r e e c h a r a c t e r i s t i c c u r v e s were d e t e r m i n e d : t h e a t m o s p h e r i c TBP, ^ . a t m o s p h e r i c EFV, and t h e 10 mm. EFV c u r v e s . The c u r v e s are a l l p l o t t e d w i t h t h e volume p e r c e n t as a b s c i s s a and temperature as o r d i n a t e . F i g u r e s 8 a - 8h show t h e a t m o s p h e r i c TBP and EFV c u r v e s ; t h e n u m e r i c a l d a t a appear i n liable I . The EFV c u r v e s a t 10 mm. and a t m o s p h e r i c p r e s s u r e appear i n F i g u r e s l O a - l O h . The r e l a t i o n s h i p between t h e a t m o s p h e r i c TBP and EFV 50 p e r c e n t b o i l i n g p o i n t s can be approximated by a straight l i n e . The d a t a p o i n t s a r e g i v e n i n SEable I I and shown g r a p h i c a l l y i n F i g u r e 6 w i t h t h e b e s t s t r a i g h t f i t t e d by t h e method o f l e a s t s q u a r e s . line The d o t t e d l i n e c o r r e s p o n d s t o t h e c a l c u l a t e d r e s u l t s of Okamoto and Van W i n k l e (14) f o r m i x t u r e s o f pure hydrocarbons assuming i d e a l behaviour. I f t h e EFV curve i s assumed t o be n e a r l y a s t r a i g h t l i n e , t h e n a s l o p e and t h e 50 p e r c e n t p o i n t would c h a r a c t e r ize i t . An i n s p e c t i o n o f t h e TBP and EFV s l o p e s i n d i c a t e s t h a t an a p p r o x i m a t e l y c o n s t a n t s l o p e d i f f e r e n c e between the two c u r v e s e x i s t s . The average s l o p e d i f f e r e n c e i s c a l c u l a t e d t o be 3.511 -0.271 degrees p e r volume p e r c e n t where 0.271 i s t h e p r e c i s i o n . The v a l u e 3.511 i s s u b t r a c t e d f r o m t h e TBP s l o p e g i v i n g t h e s l o p e o f t h e p r e d i c t e d EFV curve. The c o n s t a n t s l o p e d i f f e r e n c e i s r e p r e s e n t e d by a 30. CORRELATION 450 OF T B P a 500 X =. EFV EFV 5 0 % BOILING 550 50 PERCENT FIG. 6 BOILING 600 POINT ° F. POINTS 650 COMPARISON OF SLOPE CORRELATIONS FIG. 7 32. LEDUC-WOODB'END CRUDE JOSEPH 0 I 0 1 1 20 VOLUME LAKE 1 CRUDE 1 40 PERCENT FIG. 8 b 1 1 60 1 1 80 J 100 34. TEXAS PIPELINE CRUDE 0 20 VOLUME 40 PERCENT FIG.8C 60 80 100 35 PEMBINA o» 0 i 1 20 V O L U M E CRUDE 1 1 40 P E R C E N T FIG.8d 1 1 60 1 1— 80 J 1 100 WIZARD LAKE CRUDE 37. REDWATER CRUDE 1 j A. F o r atmosj>heric p r e s s u r e f 800 1 \ i / 1 / 600 1 i 1 1 r ^ ^ ^ ^ 1 O 1 1 // • 400 ut or < CC / Ul Q. • / 1 i UJ 1 200 • — — • . 1 20 VOLUME 40 PERCENT FIG. 8f 60 80 i 100 STETTLER CRUDE GOLDEN SPIKE CRUDE 40. 45 degree l i n e on a p l o t o f EFV s l o p e as o r d i n a t e and TBP s l o p e as a b s c i s s a . T h i s p l o t i s g i v e n by Okamoto and Van W i n k l e as c a l c u l a t e d f o r t h e hydrocarbon i s reproduced mixtures. It i n F i g u r e 7 showing t h e d a t a p o i n t s , a l s o l i s t e d i n Table I I , f o r the crudes. I n c l u d e d on t h i s p l o t i s a c o r r e l a t i o n o f the TBP and EFV s l o p e s p r o p o s e d by N e l s o n and Harvey determined from d a t a on p e t r o l e u m fractions (12). The a p p l i c a t i o n o f t h e proposed c o r r e l a t i o n s i s i n d i c a t e d i n F i g u r e s 8a - 8h. The a t m o s p h e r i c TBP and EFV e x p e r i m e n t a l c u r v e s as w e l l as t h e p r e d i c t e d c u r v e s , t h e d o t t e d l i n e s , a r e shown f o r each c r u d e . The p r e d i c t e d curves show t h e b e s t a c c u r a c y i n t h e r e g i o n 10-60 volume percent. Phase d i a g r a m s , c o n s t r u c t e d f r o m t h e EFV d a t a a t atmospheric and 10 mm. p r e s s u r e s , a r e shown i n F i g u r e 9. The 20 and 60 p e r c e n t v a p o r i z e d v a l u e s were chosen as b e i n g most a c c u r a t e and c o n v e n i e n t f o r d e t e r m i n i n g t h e f o c a l p o i n t s of t h e v a r i o u s c r u d e s . No f u n c t i o n o f e i t h e r t h e TBP o r EFV c u r v e s was found t o c o r r e s p o n d t o t h e r e l a t i o n between t h e f o c a l p o i n t s and, as a r e s u l t , no c o r r e l a t i o n i s g i v e n f o r l o c a t i n g them. I t i s e v i d e n t t h a t i f some means were a v a i l a b l e f o r l o c a t i n g t h e f o c a l p o i n t s t h e n an EFV curve a t one p r e s s u r e would determine pressure. F o r comparison, i t f o r any o t h e r the f o c a l point f o r a petroleum s t o c k , s t o c k I , i s g i v e n as determined by Okamoto and Van PHASE DIAGRAM FIG. 9 10 A GOLDEN SPIKE 0 TEXACO PIPELINE V JOSEPH LAKE <D STETTLER • WIZARD 10' io LAKE "f PEMBINA ED REDWATER O W00DBEND-LEDUC UJ _J < o CO ® CD O - >-IO or STOCK I 5 O cr UJ UJ - m m - ® CO UJ or 10 • i r i—|—i I I i j i i i i j I i i i | i 111 j 1 200 400 600 TEMPERATURE F , RECIPROCAL SCALE 0 ]—p 1000 1500 42 Winkle (13). This f o c a l p o i n t i s only s l i g h t l y s h i f t e d f o r a s e r i e s of stocks of d i f f e r e n t weights. An attempt was made t o u t i l i z e t h e U.O.P. c h a r a c t e r i z a t i o n f a c t o r , K, fbr method (22) c o r r e l a t i n g purposes. Maxwell's was used i n d e t e r m i n i n g K from t h e 2 0 , 5 0 , and 80 p e r c e n t TBP t e m p e r a t u r e s , t h e TBP s l o p e , and t h e API g r a v i t y f o r each c r u d e . The K v a l u e s determined'ranged from 1 1 . 6 0 t o 31.90 w i t h no a p p a r e n t r e l a t i o n t o t h e o t h e r variables correlated. JOSEPH LAKE EFV PEMB INA EFV 47. WIZARD LAKE EFV 48. REDWATER EFV r 800 20 PERCENT 40 VAPORIZED FIG. lOf 60 80 100 STETTLER EFV 50. WOODBEND-LEDKC EFV 800 0 20' PERCENT 40 VAPORIZED FIG. lOh 60 80 100 51. TABLE i : WIZARD LAKE TBP Temp. OF 93 124 165 190 203 237 279 336 397 457 487 £ 586 650 719 760 EFV Vol. % 1.7 3.8 6.1 9.6 11.3 15.1 20.1 . 26.0 32.2 38.6 41.7 (ATM) Temp. °F V o l . 152 248 288 325 363 392 457 522 583 653 680 1.0 6.0 12.0 17.0 24.0 28.0 39.0 49.0 58.0 67.0 70.0 EFV 10 (MM) Temp. OF Vol. % 16.2 20.2 33.2 45.2 53.2 62.2 76.2 179 203 280 343 405 457 588 51.7 28.2 65.2 68.3 ± extrapolated TEXAS PIPELINE TBP Temp. °F EFV Vol. % 104 122 157 187 213 257 295 338 372 12.0 17.5 21.9 26.1 32.1 33.5 427 472 544 601 670 726 760 41.6 48.1 54.6 61.1 68.5 73.4 77.0 A 4.5 6.0 8.4 ft e x t r a p o l a t e d (ATM) Temp. °F 133 -216 244 261 279 313 .372 426 442 491 531 563 615 Vol. f 1.0 6.0 7.0 11.0 15.0 21.0 32.0 41.0 44.0 < '53.0 59.0 64.O 72.0 EFH 10 (MM) Temp. °F 172 183 . 205 215 270 327 387 442 447 Vol. % 15.0 18.0 22.0 24.0 34.0 45.0 55.0 63.0 67.0 52. JOSEPH LAKE TBP Temp. °F 108 124 183 200 225 EFV Vol. % 1.2 1.9 4.7 6.7 9.6 261 318 358 14.6 429 471 544 587 32.7 37.7 44.5 50.6 704 778 70.8 ft 644 20.9 26.6 (ATM) EFV •femp.oF' V o l . $ 0.2 4.0 5.6 6.6 208 286 293 302 10.6 322 14.6 22.6 31.6 42.6 53.6 63.6 72.6 340 385 437 498 558 615 673 Temp. OF 158 226 306 345 394 417 484 10 (MM) Vol. % 10.8 24.8 38.8 45.8 55.8 59.8 70.8 57.0 64.I 4 extrapolated PEMBINA TBP Temp. °F 93 122 .145 196 252 297 354 414 468 507 ft 566 628 691 772 EFV Vol. % 1.6 2.8 4.0 8.4 14.8 20.0 25.7 30.6 36.0 40.9 45.4 51.9 58.3 66.0 ft e x t r a p o l a t e d (ATM) Temp. °F 158 262 270 284 290 333 379 455 520 581 646 682 EFV V o l . $>. 0.6 6.0 8.0 10.0 12.0 18.0 25.0. 36.0 46.O 56.0 64.O 69.0 (10 MM) Temp. °F Vol. % 189 15.4 18.4 30.4 40.4 214 286 349 405 484 540 591 48.4 60.4 67.0 73.0 53. REDWATER TBP Temp, °F EFV Vol. $ 81 133 160 189 214 280 338 385 424 2.3 4.7 6.1 8.2 11.5 19.8 25.0 29.5 32.8 466 523 618 662 714 752 35.3 42.3 50.6 55.4 60.3 66.0 ft EFV Temp. °F Vol. $ 151 261 273 298 343 388 457 529 579 631 669 0.6 7.0 8.0 12.0 19.0 26.0 37.0 48.0 56.0 63.0 69.0 r' • (ATM)- Temp. °F (10 MM) Vol. % 22.0 27.0 36.0 43.0 47.0 52.0 60.0 65.0 66.0 72.0 215 243 293 334 359 381 429 477 489 554 o ft e x t r a p o l a t e d LEDUC-WOODBEND TBP Temp. °F EFV Vol. $ 97 HI 142 ^ 2.3 3.9 198 io.O & \l\ 263 307 2011 24.8 401 35.g 484 45.0 5?6 51.0 56.5 Ilk 711 711 ' 70.1 6 4 5 ft e x t r a p o l a t e d (ATM) Temp. °F Vol. % 153 230 246 279 300 0.6 4.0 6.2 12.2 17.2 23.2 31.2 40.2 52.4 61.6 68.6 77.6 ... 3 2 ? 370 423 487 554 603 669 EFV Temp. °F 185 216 250 325 392 482 572 (10 MM) Vol. % 11.6 19.6 26.6 42.6 53.6 66.0 77.0 54. SOLDEN SPIKE EFV (ATM) TBP Temp. °F 102 111 138 174 226 255 298 322 365 ft 441 492 520 576 651 696 744 Vol. % 2.2 3.3 4.7 8.1 13.8 19.1 24.0 26.8 31.6 39.9 44.9 48.3 54.6 63.1 68.3 73.3 EFV (10 MM) Temp. ° F Vol. $ Temp. ° F Vol. % 153 2.0 6.0 10.0 , 15.0 22.0 31.0 37.0 46.0 172 ° 190 11.0 14.0 30.0 30.0 41.0 50.0 57.0 63.0 235 264 290 329 378 414 459 502 541 574 617 646 680 52.0 223 273 336 392 442 487 58.0 64.O 70.0 73.0 76.0 . ft extrapolated STETTLER EFV (ATM! TBP Temp. ° F 127 162 , 225 252 332 392 3.3 6.2 10.4 13.7 19.5 24.6 487 538 570 598 658 712 752 800 31.7 36.1 39.5 43.2 48.1 53.5 58.6 62.7 ft Vol. % Vol. % ft extrapolated 192 III 351 425 498 563 629 680 1.0 5.0 7.0 12.0 22.0 33.0 42.0 51.0 57.0 EFV (10 MM) Temp. ° F 255 343 399 471 525 586 649 Vol. % 19.4 32.4 39.4 49.4 57.0 64.O 70.0 TABLE I I SAMPLE TBP 50% p o i n t ° F s l o p e T / V o l $ - f EFV P r e d i c t e d EFV 50% point°F slope'F/vol.^ 5<$ point °F s l o p e °F/Vol. % ft t Texas P i p e l i n e 503 8.93 477 5.70 464 5.42 Golden S p i k e 534 9.10 490 5.83 491 5.59 Woodbend-Leduc 527 8.83 475 5.63 485 5.32 Joseph Lake 584 9.10 540 5.63 535 5.59 Pembina 610 .10.33 546 6.67 557 6.82 W i z a r d Lake 571 9.77 531 6.47 523 6.26 Redwater 604 10.80 541 6.47 552 7.29 Stettler 678 10.80 621 7.17 616 7.29 ft average d e v i a t i o n o f 50 p e r c e n t p o i n t = 8.1°F 56. VII.DISCUSSION OF RESULTS E m p i r i c a l c o r r e l a t i o n s r e q u i r e a s u f f i c i e n t amount o f d a t a t o a d e q u a t e l y r e p r e s e n t t h e complete variables. range o f This i s d e f i n i t e l y a l i m i t a t i o n w i t h c o r r e l a t i o n s f o r A l b e r t a crude o i l s ; a l t h o u g h TBP d a t a a r e more e a s i l y a v a i l a b l e , both TBP and t h e c o r r e s p o n d i n g EFV d a t a i n a d d i t i o n t o t h o s e g i v e n here a r e almost n o n - e x i s t e n t . The c h a r t s r e s u l t i n g from t h e t e s t s on t h e e i g h t A l b e r t a crudes a r e , t h e r e f o r e , somewhat l i m i t e d i n t h e i r v a l u e as correlations. The c u r v e s o b t a i n e d f o r t h e i n d i v i d u a l samples, however, c o u l d be u s e f u l i n d e s i g n c a l c u l a t i o n s . The c o r r e l a t i o n o f t h e TBP and EFV 50 p e r c e n t boiling p o i n t s g i v e n here adds weight t o t h a t o f Okamoto and Van Winkle. I t s h o u l d be noted t h a t t h e i r 50 p e r c e n t p o i n t s a r e n o t e x p e r i m e n t a l l y determined b u t a r e c a l c u l a t e d f o r m i x t u r e s o f pure hydrocarbons s i m u l a t i n g petroleum fractions. P r o p e r t i e s o f t h e components a r e a v a i l a b l e f o r t h e s e c a l c u l a t i o n s , e s p e c i a l l y f o r t h e common hydrocarbons b o i l i n g range used by Okamoto and Van W i n k l e i n the (150 t o 350°F). When i t becomes e v i d e n t t h a t t h e TBP and EFV s l o p e p l o t i s a l s o c o r r o b o r a t e d by a s i m i l a r p l o t f o r t h e c r u d e s , t h e s i m i l a r i t y i s even more s i g n i f i c a n t . T h i s approach t o the c h a r a c t e r i z a t i o n curves o f crude o i l s may prove t o be more u s e f u l t h a n i the reference t o petroleum f r a c t i o n s , t h e u s u a l method adopted. The a c c u r a c y o f t h e EFV 50 p e r c e n t p o i n t determined 57. by t h e Okamoto and Van W i n k l e method i s good when compared w i t h t h a t o b t a i n e d f o r t h e b e s t A.S.T.M. - EFV c o r r e l a t i o n . The c o r r e l a t i o n o f E d r a i s t e r and P o l l o c k (4) g i v e s t h e s m a l l e s t mean d e v i a t i o n o f ±12.5°F. i n t h e p r e d i c t e d flash 50 p e r c e n t p o i n t f o r p e t r o l e u m f r a c t i o n s o f a l l t h e c u r r e n t a v a i l a b l e c o r r e l a t i o n s , as shown by Ghu and S t a f f e l ( 2 ) . The l o w e r v a l u e o f - 8.1°F. was o b t a i n e d f o r t h e c r u d e s . A l t h o u g h t h e A.S.T.M. d i s t i l l a t i o n s a r e somewhat l e s s r e p r o d u c i b l e t h a n t h e TBP d i s t i l l a t i o n s , t h e r e l a t i v e l y s m a l l mean d e v i a t i o n i s v e r y f a v o u r a b l e . I n t h e i r s l o p e c o r r e l a t i o n Okamoto and Van W i n k l e c a l c u l a t e d t h e 10-70 p e r c e n t s l o p e s f o r t h e h y d r o c a r b o n mixtures. T h i s i s a s l o p e commonly used i n s l o p e c o r r e l a t i o n s ; however, s i n c e b o t h t h e TBP and EFV curves f o r c r u d e s a r e s t r a i g h t o n l y f o r t h e 25-55 p e r c e n t range, t h e s e s l o p e s were used i n p r e f e r e n c e . Very l i t t l e change i n s l o p e would be observed i f t h e 10-30 p e r c e n t s l o p e was used as suggested by E d m i s t e r and P o l l o c k (4). s i n c e t h e v a r i a t i o n i n t h i s r e g i o n was o n l y s l i g h t . A l t h o u g h t h e TBP s l o p e s a r e a p p r o x i m a t e l y c o n s t a n t over the complete range o f 10-70 p e r c e n t , t h e EFV s l o p e s have a pronounced c u r v e upward i n t h e 55-70 p e r c e n t range. The 25-55 p e r c e n t s l o p e s , t h e r e f o r e , a r e most c h a r a c t e r i s t i c . The use o f a t m o s p h e r i c TBP and EFV d i s t i l l a t i o n s i n s t e a d o f a t p r e c i s e l y 760 mm. p r e s s u r e may be q u e s t i o n e d . V a r i a t i o n s i n a t m o s p h e r i c p r e s s u r e have been n o t e d from 58. 757 "to 760 mm. f o r t h e i n d i v i d u a l d e t e r m i n a t i o n s . The t e m p e r a t u r e adjustment c o r r e s p o n d i n g t o t h i s p r e s s u r e v a r i a t i o n i s no more t h a n 2°F. a s e s t i m a t e d from t h e Cox c h a r t and i s o f t h e o r d e r o f a c c u r a c y t h a t t h e Cox c h a r t can be r e a d . The u s u a l method i s t o n e g l e c t t h i s temperature discrepancy. small The C a l i f o r n i a R e s e a r c h C o r p o r a t i o n p u b l i c a t i o n (1) on t h e comprehensive a n a l y s i s o f Redwater urude showed t h e TBP curve as o b t a i n e d a t a t m o s p h e r i c p r e s s u r e (358 mm.) w i t h o u t c o r r e c t i o n . S i m i l a r adjustment o f t h e EFV d a t a w a s ' n e g l e c t e d f o r t h e same r e a s o n . Chu and S t a f f e l ( 2 ) , i n t h e i r r e c e n t s u r v e y o f t h e c o r r e l a t i o n s o f A.S.T.M. and EFV c u r v e s gave an i n t e r e s t i n g discussion on t h e use o f the'U.O.P. c h a r a c t e r i z a t i o n K, as a c o r r e l a t i n g v a r i a b l e . factor, The w r i t e r s agree t h a t the K f a c t o r c o r r e c t i o n i s a p p l i e d t o t h e 50 p e r c e n t p o i n t o f the p r e d i c t e d f l a s h curve w i t h some advantage i n such c o r r e l a t i o n s as t h a t by E d m i s t e r and P o l l o c k ( 4 ) ; however, t h e y doubt t h a t i t s use a c t u a l l y a c c o u n t s f o r t h e d i f f e r e n c e i n aromaticity of the f r a c t i o n s : " I t i s assumed that t h e c h a r a c t e r i z a t i o n f a c t o r would have a s much e f f e c t on any p o i n t on t h e f l a s h c u r v e as i t does on the 50 p e r c e n t p o i n t . As i t does n o t appear t o b e n e f i t t h e 10 and 70 p e r c e n t p o i n t s some doubt i s c a s t on t h e v a l i d i t y o f t h e c o r r e c t i o n by t h e c h a r a c t e r i z a t i o n f a c t o r a t t h e 50 p e r c e n t p o i n t " ( 2 ) The a p p l i c a t i o n o f a K f a c t o r c o r r e c t i o n t o t h e TBP-EFV c o r r e l a t i o n s would be l i k e w i s e c r i t i e i z e d . 59. Some a s p e c t s o f t h e i n i t i a l d e t e r m i n a t i o n s o f t h e TBP and EFV curves s h o u l d be f u r t h e r c o n s i d e r e d . One of t h e problems c o n c e r n i n g t h e TBP d i s t i l l a t i o n was t h e method o f e x t e n d i n g the. second p o r t i o n o f t h e curve o b t a i n e d at 10 mm. t o atmospheric p r e s s u r e . The s t a n d a r d method has heen t o f o l l o w t h e l i n e f o r t h e n - p a r a f f i n o f e q u a l b o i l i n g p o i n t on a Cox c h a r t t o determine atmospheric temperature. the corresponding A p o s s i b i l i t y f o r t e s t i n g the v a l i d i t y o f t h i s method o f e x t r a p o l a t i o n appeared t o be a complete TBP d i s t i l l a t i o n a t 10 mm. p r e s s u r e and t h e compari s o n w i t h one p a r t i a l l y completed a t atmospheric pressure. When.: t h i s was attempted t h e q u a n t i t y o f condensate removed by t h e d r y Q i c e t r a p was e x c e s s i v e making e v a c u a t i o n t o 10 mm. i m p o s s i b l e . Careful!,, r e f e r e n c e t o t h e Cox c h a r t i n d i c a t e d t h a t a l l t h e l i g h t e s t f r a c t i o n s , up t o about 20 p e r c e n t would be v a p o r i z e d a t 10 mm. and a t room The reduced p r e s s u r e d i s t i l l a t i o n was u s u a l l y begun a t about 35 volume p e r c e n t . was temperature. The o v e r l a p o f t h e two d i s t i l l a t i o n s c o n s i d e r e d t o o s m a l l t o be s i g n i f i c a n t ; as a r e s u l t , t h e complete 10 mm. d i s t i l l a t i o n was abandoned. No g r o s s e r r o r i n the TBP curve i s p o s s i b l e , however, s i n c e t h e e x t r a p o l a t e d p o r t i o n o f t h e curve f o l l o w s c o n s i s t e n t l y from t h e i n i t i a l p a r t o f t h e c u r v e . The a p p l i c a t i o n o f t h e Cox c h a r t f o r t h e e x t r a p o l a t i o n o f EFV curves has, q u i t e j u s t l y , r e c e i v e d more criticism. S i n c e t h e o i l f r a c t i o n s i n a TBP d i s t i l l a t i o n 60. are r e l a t i v e l y narrow - f r a c t i o n s , i t i s l i k e l y t h a t t h e assumption t h a t t h e y can be c h a r a c t e r i z e d by n - p a r a f f i n hydrocarbons i s v a l i d . I n t h e EFV d e t e r m i n a t i o n s t h e con- densate volume i n c l u d e s components o f a wide b o i l i n g range; the o b v i o u s p o s s i b l e e r r o r i s t h a t t h i s o i l f r a c t i o n does not have t h e same c h e m i c a l c h a r a c t e r i s t i c s as t h e n - p a r a f f i n o f t h e same b o i l i n g p o i n t . The Cox c h a r t method f o r e x t e n d i n g EFV d a t a t o h i g h p r e s s u r e s has been sh^mm t o be i n e r r o r by E d m i s t e r and P o l l o c k (4) who a l s o p r e s e n t a c o r r e l a t i o n s u i t a b l e f o r t h i s purpose. pressures, F o r subatmospheric however, t h e Cox c h a r t i s g e n e r a l l y a c c e p t e d as a c o n v e n i e n t and dependable means f o r e x t r a p o l a t i n g EFV d a t a a v a i l a b l e a t two p r e s s u r e s . S l i g h t l y l e s s dependable i s the p l o t o f t h e l o g a r i t h m of the pressure versus t h e r e c i p r o c a l t e m p e r a t u r e ( F i g u r e 9)5 however, i t a l s o i s q u i t e adequate i n t h e l o w p r e s s u r e r e g i o n . The f o c a l p o i n t s f o r t h e c r u d e s , as shown on t h e l a t t e r p l o t , a r e l o c a t e d a t p r e s s u r e s so f a r beyond t h e c r i t i c a l p r e s s u r e s o f petroleum f r a c t i o n s that the question significance. of t h e a b s o l u t e a r i s e s as t o t h e i r The l o c a t i o n o f a f o c a l p o i n t i s a f u n c t i o n v a l u e o f t h e 50 p e r c e n t p o i n t a t a t m o s p h e r i c p r e s s u r e and t h e temperature d i f f e r e n c e o f t h e two 50 p e r c e n t points. F o c a l p o i n t s o f o t h e r c r u d e s would have t o be com- p a r e d i n t h e l i g h t o f t h e s e two v a r i a b l e s b e f o r e any conclusions c o u l d be drawn. 61. \ VIII. BIBLIOGRAPHY 1 . C a l i f o r n i a R e s e a r c h C o r p o r a t i o , Richmond, C a l i f . , Report on Redwater Crude a n a l y s i s , F e b . 9 (1953)• 2. Chu, J . C , and S t a f f e l , E . J . , J , I n s t , o f P e t . , Ul 3 7 5 , 9,2 ( 1 9 5 5 ) . t 3 . C o l l i n s , F.C., and Vernon, L., I n d . E n g . Chem., 1 8 , 673 ( 1 9 4 6 ) . '' 4 . E d m i s t e r , W. C , and P o l l o c k , D.H.. Chem. fing. p r o g . , ^ 905 ( 1 9 4 8 ) . 5 . Cox, E.R., I n d Eng. Chem., 1£, 592 ( 1 9 2 3 ) . 6 . G i l m o n t , R., A n a l . Chem., 22, 157 ( 1 9 5 1 ) . ^ 7. International C r i t i c a l Tables, M c G r a w - H i l l Book Co., N.Y., 2> 3 0 9 ( 1 9 2 8 ) . 8. Ibid., 2, 2 8 7 , (1928). 9 . K a t z , O.L., and Brown, G.G., I n d . E n g . Chem., 2 £ , 1278 ( 1 9 3 3 ) . 1 0 . McCabe, W.L., and T h i e l e , E.W., I n d . Eng. Chem., 12, 605 ( 1 9 2 5 ) . 1 1 . N e l s o n , W.L., and Sonders, M., J . P e t . Engr., 2> 1. 1 3 1 ( 1 9 3 1 ) . 1 2 . N e l s o n , W.L., and Harvey, R . J . , O i l Gas J o u r n a l , 22, June 1 7 , (1948). 1 3 . Okamoto, K.K., and Van W i n k l e , M., P e t . R e f i n e r , 8, 113 (1949). 14. Ibid., 1, 729 (1950). 15. Othmer, D.F., Ten E y c k , E.H., and T o l i n , S., I n d . E n g . Chem., £2, 1607 ( 1 9 5 1 ) . 1 6 . P a c k i e , J.W., T r a n s . Am. I n s t . Chem. E n g r s . , 2Z>-51 ( 1 9 4 9 ) . 1 7 . PiroomoV, R.S., and Beiswenger, G.A., P r o c . Am. P e t . I n s t . , 1 0 , 2 , S e c . I I , 52 ( 1 9 2 9 ) . 62. 18. Rubber C h e m i c a l Company, Handbook o f P h y s i c a l a n d C h e m i s t r y , 2016; ( 1 9 5 3 ) . 19. W a l d i c h u k , M., M.A.Sc. T h e s i s , U.B.C., ( 1 9 5 0 ) . 20. Ward, A.L., U.S. B u r . Mines Tech. P a p e r s , 600 ( 1 9 3 9 ) . 21. Watson, K.M., and N e l s o n , W.L., I n d . Eng. Chem., 2£, 880 (1933). 22. M a x w e l l , J.B., Data Book on Hydrocarbons, v a n N o s t r a n d Co., N.Y.,(]9 50).
© Copyright 2026 Paperzz