(ก ก) . ( ) ก y (0, 1) %ก &' θ = 2nπ + π2 , n ∈ I θ = π2 , 5π , 9π , ... 2 2 S A (-1, 0) (1, 0) ..., 7π, 5π, 3π, π = θ %ก'( T θ = (2n + 1)π, n ∈ I x θ = 0, 2π, 4π, 6π, ... C %ก' θ = 2nπ, n ∈ I θ = 3π , 7π , 11π , ... 2 2 2 (0,-1) %ก &) θ = (2n + 1)π + π2 , n ∈ I %ก' θ = nπ, n ∈ I %ก & θ = nπ + π2 , n ∈ I กก (circular function) 1. *+%ก',-. fnTri [%ก' ± θ ] = fnTri [θ] 2. *+%ก &,-. fnTri [ %ก & ± θ ] = Co-fnTri [θ] :;&<=,= .> 2 *** 5 53o 71.5o 10 3 25 1 37o 24 18.5o 4 74o 3 7 63.5o 5 16o 50 82o 1 1 8o 26.5o 7 2 2 2 3 −1 sin 15 = cos 15 = tan 15 = 3 −1 cot 15 = 3 +1 2 2 3 +1 2 2 3 -1 15? 3 +1 3 +1 3 −1 sin 22.5 = 1 2 2− 2 tan 22.5 = 2 −1 cos 22.5 = 1 2 2+ 2 cot 22.5 = 2 +1 4 18? 10 + 2 5 5-1 4 5+1 54? 10 - 2 5 3 = 2− 3 = 2+ 3 FORMULAS +,ก (Compound Angle) 1. sin(A + B) = sin A cos B + cos A sin B , sin(A − B) = sin A cos B − cos A sin B 2. cos(A + B) = cos A cos B − sin A sin B , cos(A − B) = cos A cos B + sin A sin B 3. tan(A + B) = tan A+tan B 1−tan A tan B , tan(A − B) = tan A−tan B 1+tan A tan B 4. cot(A + B) = cot A cot B−1 cot B+cot A , cot(A − B) = cot A cot B+1 cot B−cot A 2 5 (DOUBLE ANGLE) 5. sin 2A = 2 sin A cos A 6. cos 2A = 2 tan A 1+tan 2 A = = = = cos 2 A − sin 2 A 2 cos 2 A − 1 1 − 2 sin 2 A 1−tan 2 A 1+tan 2 A 7. tan 2A = 2 tan A 1−tan 2 A 8. cot 2A = cot 2 A−1 2 cot A 4 3 5 (TRIPLE ANGLE) 9. sin 3A = 3 sin A − 4 sin 3 A 10. cos 3A = 4 cos 3 A − 3 cos A 11. tan 3A = 3 tan A−tan 3 A 1−3 tan 2 A 12. cot 3A = 3 cot A−cot 3 A 1−3 cot 2 A Cก , CE5 , F,C G (SUM , DIFFERENCE , AND PRODUCT) (A−B) 13. sin A + sin B = 2 sin (A+B) cos 2 2 14. sin A − sin B = 2 cos (A+B) (A−B) sin 2 2 15. cos A + cos B = 2 cos (A+B) (A−B) cos 2 2 * 16. cos A − cos B = −2 sin 17. 2 sin A cos B = sin(A + B) + sin(A − B) 18. 2 cos A sin B = sin(A + B) − sin(A − B) 19. 2 cos A cos B = cos(A + B) + cos(A − B) 2 sin A sin B = cos(A − B) − cos(A + B) * 20. (A+B) (A−B) sin 2 2 5 !ก ก y = arc sin x , − y −1 ≤ x ≤ 1 , −π2 ≤ y ≤ π2 π 2 ** K+ sin −1 x + sin −1 (−x) = 0 sin −1 (−x) = 0 (1, 0) − sin −1 x x − π2 y = arc cos x , ** K+ y −1 ≤ x ≤ 1 , 0 ≤ y ≤ π cos −1 x + cos −1 (−x) = π π cos −1 (−x) = π − cos −1 x y = arc tan x , x ∈ R , −π2 < y < π2 0 (1, 0) x y π 2 ** K+ tan −1 x + tan −1 (−x) = 0 tan −1 (−x) = − tan −1 x 0 (1, 0) − π2 6 x กLกK 1. sin (sin −1 x) sin −1 (sin x) 2. = x , x ∈ [−1, 1] = x , x ∈ [ −π2 , π2 ] cos (cos −1 x) = x , x ∈ [−1 , 1] cos −1 (cos x) = x , x ∈ [0, π] 3. tan (tan −1 x) = x , x ∈ R tan −1 (tan x) = x , x ∈ ( −π2 , π2 ) กLก arc x+y 1. arctan x + arctan y = arctan 1−xy ;&< xy < 1 2. arctan x + arctan y = arctan 1−xy + π x+y ;&< xy > 1 , x > 0 %) y>0 3. arctan x + arctan y = arctan 1−xy − π x+y ;&< xy > 1 , x < 0 %) y<0 4. arctan x − arctan y = arctan 1+xy x−y ;&< xy > 0 กLก+M arc 5 0 3 θ = arcsin 35 = arccos 45 = arctan 34 = arccot 43 = arcsec 54 = arccsc 53 4 KENONEN 1. arcsin x + arccosx = π2 4. arcsin x = arccsc 1x 2. arctan x + arccot x = π2 5. arccos x = arcsec 1x 3. arc sec x + arccsc x = π2 6. arctan x = arccot 1x , x > 0 7 ก" #ก$!" ,,F, K กL sine (LAW of sine) C a = b = c sin A sin B sin C a b A +,กE sin A = sin B = sin C a c b B c sin A : sin B : sin C = a : b : c กL cosine (LAW of cosine) a 2 = b 2 + c 2 − 2bc cos A C A b 2 = c 2 + a 2 − 2ca cos B a b B c c 2 = a 2 + b 2 − 2ab cos C กLR+ (LAW of Projection) C a b A c B A b c B b cos A + a cos B = c B a c cos B + b cos C = a 8 c a C C b a cos C + c cos A = b A กก 1. ก f(x) = sin x 1 − cos 2 x + cos x 1 − sin 2 x + tan x sec 2 x − 1 + cot x csc 2 x − 1 x ! ก"#ก $ !ก%&"'$( 1. −4 2. −2 3. 2 4. 4 2. ,& θ !$-."!$ 1 /01 3 cos θ − 4 sin θ 3 sin θ + 4 cos θ $-.""'$( 1. (1, 2] 2. (2, 3] 3. (3, 4] 9 = 2 /0& 4. (4, 5] 3. ก6"6& A, B, C /01 D " [0, π] #-!$ sin A + 7 sin B = 4(sin C + 2 sin D) cos A + 7 cos B = 4(cos C + 2 cos D) cos (A − D) cos (B − C) !ก%!" 4. "6& ABC .60$- #-!$ 1. 16 65 cos C sin A = 35 /01 !ก%&"'$( (PAT 1 $.. 54) 2. − 16 3. 48 65 65 10 5 cos B = 13 4. − 33 65 5. ,& cos 0 1cos 1 + cos 1 1cos 2 + cos 2 1cos 3 + ..... + cos 44 1cos 45 = sec A /01 0 < A < 180 /0& A $!ก%!" 6. ก6"6& 0 < θ < 45 /01"6& A = (sin θ) tan θ , B = (sin θ) cot θ , C = (cot θ) sin θ , D = (cot θ) cos θ &"'$( ก (PAT 1 $.. 55) 1. A < B < C < D 3. A < C < D < B 2. B < A < C < D 4. C < D < B < A 11 7. Given that (1 + tan 1 )(1 + tan 2 )...(1 + tan 45 ) = 2 n , find n. 8. log 2 (1 + tan 1 ) + log 2 (1 + tan 2 ) + ..... + log 2 (1 + tan 44 ) !ก%!" (PAT 1 $.. 54) 12 9. ,& x 1 − cot 20 = 1 − cot 25 /0& x $!" (PAT 1 .. 52) 10. ก6"6& (1 − cot 1 )(1 − cot 2 )(1 − cot 3 ).....(1 − cot 44 ) x 2 6&- 10 60NO!ก%!" 13 = x 11. ,& 1. cos θ − sin θ = 5 3 /0& 4 13 2. 9 13 sin 2θ $ก%&" (PAT 1 $.. 52) 3. 4 9 4. 13 9 12. ,& sin 15 /01 cos 15 %ก x 2 + ax + b = 0 /0& a 4 − b !ก%&"'$( (PAT 1 ก.. 53) 1. −1 2. 1 3. 2 4. 1 + 3 2 Suppose the roots of the quadratic equation x 2 + ax + b = 0 are sin 15 and cos 15 What is the value of a 4 − b ? 14 13. ก6"6&.60$- ABC $ A /01 B /60 ,& cos 2A + 3 cos 2B = −2 /01 cos A − 2 cos B = 0 /0& cos C $!ก%&"'$( (% .. 55) 1. 15 ( 3 − 2 ) 2. 15 ( 3 + 2 ) 3. 15 (2 3 − 2 ) 4. 5. 1 (2 5 2 − 3) 14. 6 lim (cot 3 x − 1) cosec 2 x 2 x → π 1 + cos 2x − 2 sin x (PAT 1 $.. 55) 4 15 1 ( 5 2 +2 3 ) 15. ก6"6& a /010&ก%ก 5(sin a + cos a) + 2 sin a cos a = 0.04 16. 125(sin 3 a + cos 3 a) + 75 sin a cos a !ก%!" (PAT 1 .. 53) 12 cot 9 (4 cos 2 9 − 3)(4 cos 2 27 − 3) 16 !ก%!" 17. 6 18. 2 sin 2 60 (tan 5 + tan 85 ) − 12 sin 70 cos 36 − cos 72 sin 36 tan 18 + cos 36 (PAT 1 $.. 55) !ก%!" (PAT 1 $.. 53) 17 19. tan 20 + 4 sin 20 sin 20 sin 40 sin 80 !ก%!" (PAT 1 .. 54) 20. Suppose that a and b is a non-zero real number for which sin x + sin y = a and cos x + cos y = b, What is the value of sin (x + y) ? 2ab a2 − b2 a2 + b2 1. a 22ab 2. 3. 4. 5. 2ab 2ab − b2 a2 + b2 18 a2 − b2 a2 + b2 21. ก6"6& cosec 10 A = sec 10 cos 2 70 sin 40 3 , B = 1 0 cos 2 50 cos 2 20 0 C = 2 sin 80 cos 10 det [A(B + C)] !ก%!" (PAT 1 $.. 54) 19 /01 22. c0$-0d 1. cot 1 2. 23. ,& 2 sin 2 , 4 sin 4 , 6 sin 6 , ....., 180 sin 180 csc 1 3. 3 tan A = tan (A + B) /0& cot 2 sin (2A + B) sin B 20 4. csc 2 $!" $!ก%&" 5. tan 1 24. "6& x /01 y ef arcsin(x + y) + arccos(x − y) = 3π2 ( arcsin y + arccos x $-.""'$( 1. [− π , 0) 2 2. [0, π ] 2 3. ( π , π] 2 4. (π, 3π ] 2 25. ,& arcsin 5x + arcsin x = π2 /0& tan(arcsin x) !ก%&"'$( (PAT 1 ก.. 52) 1. 15 2. 13 3. 13 4. 12 21 26. ,& (arctan 1 + arctan 2 + arctan 3) /0& K $!ก%&"'$( 1. 2 2. 3 27. = K(arctan 1 + arctan 12 + arctan 13 ) tan[arc cot 1 − arc cot 1 + arc tan 7 ] 5 3 9 5 12 sin arc sin + arc sin 13 13 3. 4 4. 5 !ก%!" (PAT 1 .. 53) 22 28. cot (arc cot 7 + arc cot 13 + arc cot 21 + arc cot 31) !ก%&"'$( (PAT 1 $.. 54) 1. 114 2. 134 3. 92 4. 252 29. tan (arc cot 3 + arc cot 7 + arc cot 13 + arc cot 21 + arc cot 31 + arc cot 43) !ก%!" 23 30. 10 cot Σ arctan 12 2n n = 1 !ก%!" 31. ก6"6& C = arcsin 35 + arc cot 53 − arctan 198 ,& A e%ก arc cot 2x1 + arc cot 3x1 = C /0&h0.dก"e A !ก%&"'$( (PAT 1 .. 54) 1. − 14 2. 14 3. − 16 4. 16 24 32. "6& A e%ก arccos (x) = arccos(x 3 ) + arccos( 1 − x 2 ) /01"6& B e%ก arccos (x) = arcsin (x) + arcsin (1 − x) กe P(A − B) !ก%!" P(S) /!iee S (PAT 1 $.. 55) 25 33. ,& A e%ก 2 3 arcsin 2x 2 − 4 arccos 1 − x 2 + 2 arctan 2x 2 = π3 1+x 1+x 1−x /0&กe A !ก%!" 34. ,& 0 < θ < π4 /01 tan 2 θ + 4 tan θ − 1 = 0 26 /0& tan [arccos (sin 4θ)] $!" 35. sec 2 (2 tan −1 2 ) $!ก%!" (% .. 55) 36. 60$- .6f $& - 2x + 3, x 2 + 3x + 3, x 2 + 2x 0% /0& !$" 6j!$ 60$- .$( $ ก$ N 27 37. "6& ABC .60$-#-$ a, b /01 c -&& A B /01 C 0% ,& C !ก% 60 b = 5 /01 a − c = 2 /0&-&%.60$- ABC !ก%&"'$( (PAT 1 $.. 55) 1. 25 2. 29 3. 37 4. 45 38. ก6"6& A, B /01 C .60$- #-!$ (sin A − sin B + sin C)(sin A + sin B + sin C) = 3 sin A sin C 6 3 sec 2 B + 3 cosec 2 B (PAT 1 .. 54) 28 39. .60$- ABC $-&& A, B /01 C a 6-, b 6/01 c 6- 0% ,& a 2 + b 2 = 49c 2 /0& cot Acot+ Ccot B !ก%!" 40. ก6"6& ABC .60$-"k $-& A, B /01 C a, b /01 c 6-0% ,& a 2 + b 2 = 31c 2 /0& 3 tan C(cot A + cot B) !ก%!" (PAT 1 $.. 54) 29 41. .60$- ABC $& a, b, c && A, B, C ef$- 3, 2.5, 1 0% b cos C + c cos B !ก%!" 42. ก660$- ABC $ A /01 B /60 ,& sin A = 3 , cos B = 5 & a - 13 6- & c -!ก%!" (TEXT BOOK) 30 5 13 43. "6& ABC .60$-#-$ a, b /01 c -&& A B /01 C 0% ,& c = 5 /0& (a − b) 2 cos 2 C2 + (a + b) 2 sin 2 C2 !ก%!" 44. .60$- ABC $-&& A, B /01 C a 6-, b 6/01 c 6- 0% ,& A, B /01 C 0%0d /01 b : c = 3 : 2 /0& tan A + cot A !ก%!" 31 45. ".60$- ABC "k ,& a, b /01 c -&& A B /01 C 0% /0& c cos Bcos+ Ab cos C + a cos Ccos+ cBcos A + b cos Acos+Ca cos B !ก%&"'$( 2 b2 + c2 1. a +2abc 2. (a + b + c) 2 abc 3. (a + b + c) 2 2abc 46. ก6"6& ABC 60$- #-!$ B = π2 + A /01 BC = x , AC = y ef0&' x y = y x /01 /0& cos 2A $!" 32 4. a2 + b2 + c2 abc y = x2 99. i$ & --.! !N1กfก606f 6o-fก - 45 ก $( i$ & '!N"&1-1 100 16o-fก (!$ /6) 30 .fก!ก%&"'$( (Ent) 1. 100 2. 50 2 3. 50 3 4. 1003 W A N B 45r 30r S C E 100 D 100.i$ p- -.! !N1กq%/66f /016o-q 60 N / '!!N61-1! x i$ p,6o -q -i$- 45 N ,&i$p/01q. 1.60 /01 37.60 0% /0& x 2 -.""'$( 1. (0, 250] 2. (250, 500] 3. (500, 750] 4. (750, 1000] 33
© Copyright 2026 Paperzz