FIVE MINUTE REVIEW FOR WEEK 2. Question 1. Factor 4x2 − 9. Answer 1. 4x2 − 9 = (2x + 3)(2x − 3) Question 2. Simplify 4(x2 − x + 2) − 5(x − 1)2 . Answer 2. 4(x2 − x + 2) − 5(x − 1)2 = 4x2 − 4x + 8 − 5(x2 − 2x + 1) = 4x2 − 4x + 8 − 5x2 + 10x − 5 = −x2 + 6x + 3 Question 3. Simplify 1 x+1 1 x−1 . + Answer 3. 1 x−1+x+1 2x 1 + = = 2 x+1 x−1 x2 − 1 x −1 3 Question 4. Simplify (x−5 y 3 z 10 )− 5 . Answer 4. 3 x3 9 (x−5 y 3 z 10 )− 5 = x3 y 5 z −6 = 9 y 5 z6 Question 5. Solve 10θ2 − eθ + 10 = 0. Answer 5. θ= Question 6. Calculate d dx ((x e± √ d dθ (log(cos θ)). d − sin θ (log(cos θ)) = = − tan θ dθ cos θ d dt Rt √ 2 2 esin(s ) ds. Answer 8. d dt Question 9. Calculate Z t √ 2 2 esin(s ) ds = esin(t ) 2 d 2 dx (arcsin(x )). Answer 9. Question 10. Calculate Answer 10. (e − 20)(e + 20) 20 d ((x − 2)3 ) = 3(x − 2)2 dx Answer 7. Question 8. Calculate p − 2)3 ). Answer 6. Question 7. Calculate e± e2 − 400 = 20 d 2x (arcsin(x2 )) = √ dx 1 − x4 d 2 dx (x log(x)). d 2 (x log(x)) = 2x log(x) + x dx Date: August 31, 2015. 1 2 FIVE MINUTE REVIEW FOR WEEK 2. Question 11. Calculate Rφ dθ . 0 cos2 θ Answer 11. φ Z 0 Question 12. Calculate Answer 12. R π 2 Z π 2 π 4 sin θ cos θe dθ. cos θesin θ dθ = π 4 dθ = tan φ cos2 θ π 2 Z π 4 1 π π d sin θ √ (e )dθ = esin 2 − esin 4 = e − e 2 dθ Question 13. State the Fundamental Theorem of Calculus. Answer 13. (a) Let f be integrable on [a, b], and define a function F on [a, b] by Z x F (x) = f (t)dt. a If f is continuous at c ∈ [a, b], then F is differentiable at c, and dF (c) = f (c). dx (b) If f is integrable on [a, b] and f (t) = dg dt for some function g(t), then Z b f (t)dt = g(b) − g(a). a Question 14. Calculate R8 du . 2 u+1 Answer 14. Z 8 2 Question 15. Calculate du 8 = [log(u + 1)]2 = log(9) − log(3) = log(3) u+1 R +√3 2 √ sin(x) e3x dx. − 3 x4 +1 Answer 15. The integrand is an odd function of x, so Z +√3 sin(x) 3x2 e dx = 0. √ 4+1 x − 3
© Copyright 2026 Paperzz