Mathematics 1G1. Autumn 2016 Theodore Voronov. MATH19731. Autumn semester 2016-2017 Exercise sheet 3 (Differentiation-1). Solutions. Below are the answers for the differentials dy; the answers for the derivatives dy/dx can be obtained by dividing by dx. It is advisable to calculate the differentials directly, for example: d(2x ) = d(ex ln 2 ) = (ln 2)2x dx. 1. dy = (2x ln(2) + 3x ln(3))dx, 2. dy = dx dx − x ln(2) x ln(5) 3. dy = (2x + 1) cos(x) + 2 sin(x) dx 4. dy = ex (sec2 (x) + ex tan(x)) dx dx cos(x) sin(x) x − dx 5. dy = = − (ln(x))2 ln(x) x(ln(x))2 (sin(x) + cos(x))(8x3 ) − (2x4 )(cos(x) − sin(x)) 6. dy = dx (sin(x) + cos(x))2 ln(x) · (− sin(x)dx) − cos(x) · 7. dy = d ((2x + 1)3 ) = 3(2x + 1)2 d(2x + 1) = 3(2x + 1)2 · 2dx = 6(2x + 1)2 dx √ −6xdx 3xdx d(4 − 3x2 ) = √ = −√ 8. dy = d 4 − 3x2 = √ 2 4 − 3x2 2 4 − 3x2 4 − 3x2 √ √ √ √ 9. dy = d sin(x + x) = cos(x2 + x) d(x2 + x) = cos(x2 + x) √ 1 2 dx cos(x + x) 2x + √ 2 x 2 2 2 dx 2xdx + √ = 2 x 2 10. dy = d(e−x ) = e−x d(−x2 ) = −2xe−x dx d(x2 + 2x) (2x + 2)dx (x + 1)dx 1 √ √ √ =− =− =− 11. dy = d √ 2 2 2 2 2 2 x + 2x 2(x + 2x) x + 2x 2(x + 2x) x + 2x (x + 2x) x2 + 2x 12. dy = d ln(cos(2x)) = d cos 2x −2 sin 2x dx = = −2 tan 2x dx cos 2x cos 2x 13. dy = d tan4 (5x) = 4 tan3 (5x) d tan(5x) = 4 tan3 (5x) 1 20 sin3 (5x)dx 5dx = cos2 5x cos5 (5x) Mathematics 1G1. Autumn 2016 Theodore Voronov. 14. ln(y) = x ln(x2 + 3); by differentiating both sides, dy 2xdx 2x2 2 2 = dx ln(x + 3) + x 2 = ln(x + 3) + 2 dx y x +3 x +3 2x2 2x2 2 2 2 x Hence, dy = y ln(x + 3) + 2 dx = (x + 3) ln(x + 3) + 2 dx . x +3 x +3 15. ln(y) = 3x ln(tan(x)); by differentiating both sides, dy 3xdx x = 3dx ln(tan(x)) + = 3 ln(tan(x)) + dx y tan(x) cos2 x sin(x) cos(x) x 3x dx . Hence dy = 3(tan(x)) ln(tan(x)) + sin(x) cos(x) 2
© Copyright 2026 Paperzz