LATE QUATERNARY ENVIRONMENTS IN THE EASTERN GRAND

LATE QUATERNARY ENVIRONMENTS IN
THE EASTERN GRAND CANYON:
VEGETATIONAL
GRADIENTS OVER THE LAST 25,000 YEARS
by
Kenneth Lee Cole
A D is s e rta tio n Submitted to the F a cu lty o f the
DEPARTMENT OF GEOSCIENCES
In P a rtia l F u lfillm e n t o f the Requirements
For the Degree o f
DOCTOR OF PHILOSOPHY
In the Graduate College
THE UNIVERSITY OF ARIZONA
19 8 1
THE UNIVERSITY OF ARIZONA
GRADUATE COLLEGE
As members of the Final Examination Committee, we certify that we have read
the dissertation prepared by ____ Kenneth Lee Cole___________________________
entitled
Late Quaternary environments in the eastern Grand Canyon:
v e g e ta tio n a l g ra d ie n ts over the l a s t 25,000 ye a rs.
and recommend that it be accepted as fulfilling the dissertation requirement
for the Degree of
Doctor o f Philosophy___________________________________.
Date
Date
Final approval and acceptance of this dissertation is contingent upon the
candidate's submission of the final copy of the dissertation to the Graduate
College.
I hereby certify that I have read this dissertation prepared under my
direction and recommend that it be accepted as fulfilling the dissertation
requirement.
Cy^tu:_____
Dissertation Director
/ C Ap^tj
Date
*
/
STATEMENT BY AUTHOR
T h is
re q u ire m e n ts
i s d e p o s ite d
rowers under
d i s s e r t a t i o n has been su b m itte d in p a r t i a l f u l f i l l m e n t o f
f o r an advanced degree a t The U n i v e r s i t y o f A rizon a and
in the U n i v e r s i t y L i b r a r y to be made a v a i l a b l e to b o r ­
r u le s o f th e L i b r a r y .
B r i e f q u o ta tio n s from t h i s d i s s e r t a t i o n a re a llo w a b le w it h o u t
s p e c ia l p e r m is s io n , p ro v id e d t h a t a c c u ra te acknowledgment o f source
is made.
Requests f o r p e rm is s io n f o r extended q u o t a tio n from o r r e ­
p r o d u c tio n o f t h i s m a n u s c r ip t in whole o r in p a r t may be g ra n te d by
the head o f th e m a jo r d epartm ent o r th e Dean o f th e Graduate C o lle g e
when in h is judgment th e proposed use o f the m a t e r ia l i s i n th e i n ­
t e r e s t s o f s c h o la r s h ip .
In a l l o th e r in s t a n c e s , however, p e rm issio n
must be o b ta in e d from th e a u th o r .
SIGNED:
FRONTISPIECE
View o f the study area lo o k in g northward from Hance Canyon.
The p ic tu re is o f a crayon drawing made by Jules Baumann in 1891
as he decended the Hance T r a i l , the f i r s t t o u r is t t r a i l in to the
canyon.
Photo is cou rtesy o f the A rizona H is to r ic a l S o c ie ty .
DEDICATION
I dedicate t h is work to John Hance, B u rt Loper, Harvey Bouchert,
Jim Qhlman, Wayne Rayney, and th e o th ers who l i v e to explore the canyon.
They r a r e ly p u b lis h books o r d is s e r ta tio n s , but the y are th e re now, d is ­
covering a new ro u te .
ACKNOWLEDGMENTS
I would l i k e to thank Paul S. M a rtin fo r in v a lu a b le d is c u s s io n ,
suggestions, guidance, and freedom w h ile working on th is p r o je c t.
Tom
Van Devender u n s e lfis h ly c o n trib u te d h is tim e and knowledge in many d is ­
cussions on the a n a ly s is and in te r p r e ta tio n o f pa ckrat middens and in
the id e n t if ic a t io n o f m a c ro fo s s ils .
H e lp fu l d iscu ssio n s and suggestions were c o n trib u te d by W illa rd
Van A s d a ll, J u lio B eta ncou rt, James Brown, Tony Burgess, Robert
B rakenridge, Melinda Cole, Robert E u le r, Bonnie F ine, Karl Flessa,
A u stin Long, Vera M a rk g ra f, Jim Mead, Karen R ic h h a rd t, A lle n Solomon,
Gurdip Singh, G eo ffre y S paulding, Robert Thompson, Raynond T u rn e r, Peter
Warren, and Richard F. W ilson.
P a tr ic ia F a ll provided the p a ly n o lo g ic a l a n a ly s is o f Nankoweap
No. 9c.
8.
Dave Steadman and Ten* Cl eel and sorted Hance Canyon Nos. 1 and
Jim Mead provided the analyses o f the v e rte b ra te f o s s ils .
M iksicek provided an a n a ly s is o f th e fo s s il corn cobs.
Charles
A u stin Long and
The U n iv e rs ity o f A rizona Radiocarbon Laboratory provided the bulk o f the
d a te s, in c lu d in g rush dates on v e ry small samples.
C atherine B re s lin
and The U n iv e rs ity o f A rizona Herbarium helped w ith the id e n t if ic a t io n
o f many p la n t species.
G eoffrey S paulding, Wayne Rayne, Jim Ohlman,
Todd H o rst, Richard Casey, Robert Beecher, Don M o rris , Jim Mead, John
Thomas, George P ric e , and B rian Brown a s s is te d in the f i e l d .
Chuck Sternberg a s s is te d w ith the i l l u s t r a t i o n s .
Debbie G ains,
E lle n Douthat, and C he rri Wachter typed the ta b le s and m a nuscrip t.
iii
IV
F in a n cia l support was received from N ational Science Foundation
Grants D.E.B. 75-13944 and D.E.B. 79-23840 to Paul S. M a rtin ; a N ational
Science Foundation d is s e r ta tio n improvement g ra n t; a Research A s s is ta n tship from the Department o f Geosciences, U n iv e rs ity o f A rizo n a ; and f e l ­
low ships from the Museum o f N orthern Arizona and the Cave Research
Foundation.
Above a l l , I would l i k e to thank my w ife , M elinda, fo r her sup­
p o rt and understanding throughout t h is p r o je c t.
TABLE OF CONTENTS
Page
LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . .
ABSTRACT
. . . . . .
.......................................................
. . . . . . . . . . . . . . . . .
INTRODUCTION
.........................................
. . . . .
.........................................
.....................................
The "Ic e Age" .....................................................................................................
F o ssil Packrat Middens .................................................
E le v a tio n a l Zonation o r I n d iv id u a lis t ic Gradients?
The Study Area ..................................................................
Modern Clim ates in th e Study Area .............................
The Interm o un tain Plateau ......................................................................
METHODS................................................................. .................................................
The Recovery and A n a lysis o f Middens ..................................... .... .
Rock Type and Midden P rese rvatio n .............................................
F ie ld Aging o f Middens. ..................................................................
D isse ctio n and A nalysis o f Middens .........................................
Q u a n tific a tio n o f P lant M a cro fo ssils
. . . .........................
D is tr ib u tio n o f Modern P lants ...................................................................
xi
1
1
oo in w o j
LIST OF TABLES
v ii
10
13
13
13
17
18
20
21
RESULTS........................................................................................................................
,
Modern V egetation ............................................................................................
F ir F o r e s t ..........................................................................................
P in y o n -ju n ip e r Woodland ..................................................................
Desert Communities ..........................................................................
Radiocarbon D a t i n g ............................
Sampling R e l i a b i li t y as In d ic a te d by Modern Middens .........................
F o ssil Middens ................................................................................................
Nankoweap Middens ..............................................................................
Chuar M id d e n s ......................................................................•. . . .
C lear C r e e k ..........................................................................................
Tse'an Bida C a v e ..............................................................................
Horseshoe M e s a ........................................
Hance C a n y o n ......................................................................................
Grapevine C a n y o n ........................
Cottonwood Canyon .......................................................... . . . . .
Grandview P o i n t .............................................................................. .
. Supai ......................................................................................
Bass C an yon................................
v
24
24
24
27
29
31
36
41
41
45
53
56
61
63
67
67
68
71
72
vi
TABLE OF CONTENTS— Continued
Page
Species Abundant in the P leistoce ne but Rare o r
Absent Today ..............................................................................
Species Present throughout the Record .....................................
Species Not Recorded u n t il the Holocene .....................
F o ssil Assemblages and C o m m u n itie s ..................... . .....................
Late P leistoce ne Assemblages ..........................................................
E a rly Holocene A s s e m b la g e s ................................
F o ssil V e r t e b r a t e s ............................................................................. .
DISCUSSION AND CONCLUSIONS
. ......................................................................
119
Chronology o f V ege tatio nal Change .....................................................
P r e - fu ll G la c ia l Middens .............................................................
F u ll G la c ia l M id d e n s .....................................................
Late G la c ia l M id d e n s ..........................................................................
E a rly Holocene M id d e n s .......................................................
Mid-Holocene Middens . . . . . . .
..............................................
Late Holocene (Modern) Middens ......................................................
V ege tatio nal In e r tia
....................................................................
Biogeography and In fe rre d P aleo clim ate s . .....................................
F u ll G la c ia l P la n t Geography and Clim ate .............................
Early. Holocene C lim a te s ......................................................................
Mid-Holocene C lim ates . . ... ................................................... .
Zonation o f V egetation d u rin g the Last 25,000 Years .................
APPENDIX
REFERENCES
.........................................
. . ........................................................................................
86
92
104
Ill
113
114
115
.
119
119
1
121
122
124
125
125
127
127
138
140
142
146
164
L IS T OF ILLUSTRATIONS
F ig u r e
Page
1.
Map o f the Study Area ..........................................................................
6
2.
View o f the Study A r e a .....................................................................
7
3.
View o f Tapeats Sandstone (T) and Redwall Limestone
(R) from Chuar No. 1 ..................................................................
14
S im ila r it y In d ice s Comparing the Midden Assemblages and
the V ege tatio nal Relevd Surrounding each S ite o f
C o l l e c t i o n ......................................................................................
39
5.
Chuar Midden Nos. 8 and 9 ................. ................................................
50
6.
View o f Tse'an Bida Cave- ..................................................................
59
7.
View o f Bida Cave Midden No. 8
62
8.
D is tr ib u tio n o f Modern P la n t Communities and Modern
P la n t S it e s ’ . .................................................
74
D is tr ib u tio n o f F ossil Packrat Middens
74
4.
9.
10.
11.
12.
13.
14.
................... ................. ....
. . . .
......................
The Modern and F ossil D is tr ib u tio n s o f W hite F ir ( Abies
c o n c o lo r) . . . .................................................
74
The Modern and F ossil D is trib u tio n s o f Douglas F ir
( Pseudotsuqa m e n z ie s ii) ................................. . .....................
75
The Modern and F ossil D is tr ib u tio n s o f Juniper
( Juniperus c f . osteosperma) .....................................................
75
The Modern D is tr ib u tio n and C oncentration o f Douglas
F ir ( Pseudotsuqa m e n z ie s ii) F o s s ils in Late Holocene,
E a rly Holocene, and Late P leistocene Middens . . . . .
76
The F o ssil D is tr ib u tio n o f Spruce ( Picea engelmanni
and £ . p u n q e n s )..............................................................................
77
15.
The F ossil D is tr ib u tio n o f Limber Pine ( Pinus f l e x i l i s ) . .
16.
The F o ssil D is tr ib u tio n o f Rosa c f .s t e l l a t a .............................
77
17.
The F o s s il D is tr ib u tio n o f Shadscale (A t r ip i ex
c o n fe r ti f o l i a ) ..............................................................................
77
v ii
77
v iii
L IS T OF ILLUSTRATIONS— C o n tin u e d
F ig u r e
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
Page
The Modern and F o ssil D is tr ib u tio n s o f Know!ton Hop
Hornbeam (O strya k n o w lto n i) .................................................
78
The Modern and F o ssil D is trib u tio n s o f Snowberry
(Symphoricarpos s p .) . . . .....................................................
78
The Modern D is tr ib u tio n s o f Gambe! Oak ( Quercus qamb e l i i ) , Wavy Leaf Oak (£. u n d u la ta ) , and Scrub Live
Oak (3.. t u r b in e lla ) and F o ssil D is tr ib u tio n s o f
Oak S p e c i e s ..............................................................................'.
79
The Modern and F o ssil D is trib u tio n s o f Hop Tree
(P tele a t r i f o l i a t a v a r. p a llid a ) ................. .....................
80
The Modern and F o ssil D is trib u tio n s o f S in g le Leaf
Ash (F raxinus anomala) .............................................................
80
The Modern and F o ssil D is trib u tio n s o f Big Sagebrush
(A rte m is ia c f . t r i d e n t a t a ) .....................................................
81
The Modern and F o ssil D is tr ib u tio n s o f Utah Agave
(Agave u ta h e n sis) ..................................... . . . . . . . .
81
The Modern D is tr ib u tio n o f Squawbush ( Rhus t r ilo b a t a
v a r. s i m p ! ic i f o l i a ) and F o s s il D is tr ib u tio n o f
Sumac ( Rhus s p .) 1" ......................................................................
82
The Modern and F o ssil D is trib u tio n s o f F o rs e lle s ia
nevadensis Greene ......................................................................
82
The Modern and F o s s il D is tr ib u tio n s o f Pinyon Pine
(Pinus e d u lis ) ..............................................................................
83
The Modern and F o ssil D is trib u tio n s o f L i t t l e Leaf
Mountain Mahogany ( Cercocarpus in t r ic a t u s ) .....................
83
The Modern and F o ssil D is tr ib u tio n s o f Catclaw
Acacia (Acacia g r e q g ii)
............................. . .....................
84
The Modern and F o s s il D is tr ib u tio n s o f Blackbrush
( Coleogyne ramosissima) ..........................................................
84
The Modern and F o ssil D is tr ib u tio n s o f B r ic k e llia
a t r a c t y l o i d e s ......................................................................
85
ix
L IS T OF ILLUSTRATIONS— C o n tin u e d
Figure
32.
33.
34.
35.
36.
37.
38.
Page
The Modern and F o ssil D is trib u tio n s o f E ncelia
fru te sce n s ......................................................................................
85
The Content o f F u ll G la c ia l Middens vs. E le va tio n
and the Modern Percentage Cover fo r Dominant
Species vs. E l e v a t i o n ................................................
128
S im ila r it y o f F u ll G la c ia l Flora in the Grand Canyon
above 1500 m w ith Utah Mountain Ranges ...............................
131
Contents o f Neotoma Middens Dating between 12,100
and 21 ,000 B.P......................
134
Contents o f Neotoma Middens D ating between 10,700
and 8500 B .P ..................................................
139
Contents o f Neotoma Middens Dating between 8400
and 5500 B.P...........................................................................
141
Zonation o f Dominant Species during the Last 24,000
Years in the Eastern GrandC a n y o n ........................................
143
L IS T OF TABLES
T a b le
1.
Page
The D is tr ib u tio n o f Modern P lants w ith Respect
to Modern P la n t Communities . . • .............................................
25
2.
Packrat Middens Analyzed in T h is S t u d y .........................
33
3.
Comparison o f Modern Relevds and F ossil C oncentrations
in Four Middens under 1300 Years o f A g e .............................
37
Contents o f Middens from Nankoweap Drainage (Macro­
f o s s ils /k g ) ............................................. .... . . .........................
42
5.
Contents o f H ig h -e le v a tio n Middens in ChuarV a lle y
46
6.
Contents o f Low -elevation Middens from Chuar V a lle y
(M a c ro fo s s ils /k g ) .....................................................
48
Contents o f Middens from Horseshoe Mesa and C lear
Creek ( M a c r o f o s s ils /k g ) ...................... .......................................
54
Contents o f Middens from Tse'an Bida Cave (Macro­
fo s s ils /k g ) .........................................
57
Contents o f Middens from Tonto P latfo rm S ite s (Macro­
f o s s il s /k g ) ......................................................................................
64
Contents o f Middens from Grandview P oint and Bass
Canyon .........................................
69
4.
7.
8.
9.
10.
. . . .
11.
F o ssil Assemblages (S elected Character Species) ..........................
112
12.
V e rte b ra te Remains Id e n tifie d from Packrat Deposits in
the Eastern Grand Canyon
.......................................................
116
D is tr ib u tio n and E le v a tio n a l Depression
o f Major
S p e c ie s ...............................................................................................
130
13.
x
ABSTRACT
P la n t remains from 53 f o s s il p a c k ra t ( Neotoma s p .) middens, re p ­
re se n tin g an e le v a tio n a l g ra d ie n t from 950 to 2200 m (3100-7220 f t ) ,
were analyzed to re c o n s tru c t the v e g e ta tio n a l h is to r y o f the eastern
Grand Canyon.
1170 B.P.
The radiocarbon ages o f the d e p o sits range from 34,300 to
A network o f 131 v e g e ta tio n re le vd s determined modern c o ve r­
age o f p la n t species w ith re sp e c t to e le v a tio n , in s o la tio n , and sub­
s tr a te .
Former p la n t d is tr ib u tio n s were compared to t h e ir modern
d is t r ib u t io n s .
Ten middens d a tin g between 21,000 and 15,800 B.P. document f u l l
g la c ia l depressions o f 500-760 m f o r spruce ( Picea engelmannii and _P.
punqens) , 850-1000 m f o r lim b e r pine ( Pinus f l e x i l i s ) , and 760 m fo r
Douglas f i r
( Pseudotsuqa m e n z ie s ii) and w hite f i r
( Abies c o n c o lo r).
Utah
ju n ip e r ( Juniperus c f . osteosperma) was depressed 750 m to the canyon
bottom.
Shadscale (A tr ip !e x c o n f e r t if o l i a ) became more abundant, but
was not d isp la ce d from i t s present range.
The presence o f these species
and th e absence o f many modern dominants support a model f o r a c o ld e r,
more c o n tin e n ta l c lim a te than e x is ts in the area today.
Mean annual
p r e c ip ita tio n approximated modern v a lu e s , but was m o s tly w in te r
p r e c ip ita tio n .
C lim a tic extremes were reduced in th e la te g la c ia l (15,00011,000 B .P .), and by the e a rly Holocene (11,000-8500 B .P .) many modern
dominants began to invade th e area.
Some species remained s ig n if ic a n t ly
depressed below t h e ir modern l i m i t s .
xi
The e a rly Holocene assemblages
xn
suggest a more equable c lim a te w ith e ith e r c o o le r summers o r more summer
r a in f a l l than a t p resen t.
Five mid-Holocene middens (8470-6800 B .P .) suggest hot and/or
dry c o n d itio n s .
Nine middens younger than 2300 B.P. re cord assemblages
which re pre sent the modern p la n t communities surrounding them, both
q u a lit a t iv e ly and q u a n t it a tiv e ly .
A sim ple model o f depression o f modern v e g e ta tio n zones is i n ­
s u f f ic ie n t in e x p la in in g P le isto ce n e z o n a tio n .
These re s u lts fa v o r an
in te r p r e ta tio n th a t each p la n t species has responded independently to
past c lim a tic changes.
Given past v a r i a b i l i t y in the co-occurrence o f
p la n t species along e le v a tio n a l and in s o la tio n a l g ra d ie n ts , past commu­
n it ie s were u n lik e those now found in the Grand Canyon, although modern
analogs may be found elsewhere in the western U nited S ta te s .
INTRODUCTION
The "Ic e Age"
F ifte e n thousand years ago t h is c o n tin e n t was p ro fo u n d ly d i f f e r ­
ent from today.
ic e .
Most o f Canada was covered w ith thousands o f fe e t o f
Boreal pine fo re s ts covered much o f the eastern h a lf o f t h is coun­
t r y , w h ile the west was la r g e ly covered w ith those fo r e s t types now con­
fin e d to th e high mountainous areas.
The ocean le v e l was 300 f t lower
than tod ay, d r a s t ic a lly a lte r in g c o a s tlin e s .
E xtensive p lu v ia l lakes
occurred in what are now in h o s p ita b le expanses o f d e s e rt.
mastodons,
Mammoths,
horses, asses, camels, g ia n t beaver, saber to o th c a ts , and
several types o f ground s lo th s , a l l now e x tin c t, were li v i n g w ith in the
U nited S ta te s.
F ifte e n thousand years is not beyond man's memory.
The w r itte n
record o f western c i v i l i z a t i o n extends back to o n e -th ird o f th is age
(Kramer 1957).
C u ltiv a tio n o f g ra in had alre a d y begun in the Old World
by 15,000 years ago (Wendorf e t a l . 1979).
This tim e , the Late Wiscon­
s in , was th e la s t tim e before man's in v a s io n and in flu e n c e throughout
the North American c o n tin e n t.
The d if f e r e n t v e g e ta tio n a l c o n d itio n s e x is tin g d u rin g t h is Late
W isconsin period were c e r ta in ly due to m ajor d iffe re n c e s in c lim a te be­
tween th a t tim e and what we perceive as "norm al" c lim a te from our s h o rt
period o f s c i e n t i f i c o b s e rv a tio n s .
In f a c t , f o r the la s t m illio n years
in g e n e ra l, we are probably now experie ncing "abnorm al" c lim a te .
1
2
Presumably we w i l l re tu rn again to the Ice Age s e ttin g (Shackleton and
Opdyke 1973).
Throughout the la s t 100 y e a rs , s c ie n tis ts have begun to gain
understanding o f these b io t ic and c lim a tic flu c tu a tio n s .
The v a s t geo-
morphic changes caused by c o n tin e n ta l g la c ia tio n were f i r s t a ttr ib u te d
to the e ffe c ts o f an exte nsive ic e cap by Berhardi (1832).
Louis
Agassiz (1840) f i r s t po pula rized the idea o f a g lo bal "Ic e Age" which
was re sp o n sib le f o r th e d e p o s itio n o f e r r a t ic boulders m ile s from t h e ir
s it e o f o r ig in .
The b io t ic changes associated w ith the Ice Ages f i r s t began to
be understood w ith the c o rin g o f European peat bogs (Von Post 1916).
P ollen contained w ith in the sediment revealed a record o f successive
v e g e ta tio n a l changes through tim e .
The method was fu r th e r improved w ith
the use o f radiocarbon d a tin g (L ib b y 1955), the study o f modern p o lle n
d e p o s itio n (Tauber 1965), and p o lle n in f lu x diagrams (Davis 1966).
In eastern North America the study o f f o s s il p o lle n revealed
va st v e g e ta tio n a l changes w ith in the la s t 15,000 y e a rs , although the
idea th a t some o f these changes may have been a r e s u lt o f d if f e r e n t ia l
p la n t m ig ra tio n ra te s from Ice Age re fu g ia com plicates the c lim a tic con­
c lu s io n s drawn from past flo r a s (Davis 1969).
The Ice Age v e g e ta tio n o f western North America remained p o o rly
known u n t il f a i r l y re c e n tly .
W ith some exceptions (W right e t a l . 1973),
few lakes o r bogs e x is t in a r id areas th a t m ight co n ta in in fo rm a tiv e de­
p o s its o f Ice Age p o lle n .
However, i t was e v e n tu a lly discovered th a t
the d ry playas (fo rm e rly " p lu v ia l" la k e s ) o fte n co n ta in abundant p o lle n
(C lis b y and Sears 1956; M a rtin and M ehringer 1965).
3
F o ssil Packrat Middens
The d is c o v e ry o f P leistoce ne pa ckrat ( Neotoma sp p .) middens p re ­
served in d ry caves and cre vic e s was a m ajor advance in the study o f
past environments o f the southw est.
F o ssil p a ckrat ( Neotoma s p .) m id­
dens, sometimes known as "am berat" d e p o s its , are la id down as a waste
p ile near the den o f a p a c k ra t.
These middens c o n s is t o f v a rio u s d e b ris
c o lle c te d by the r a t (le a v e s , tw ig s , seeds, s p in e s , te e th , and bones)
and packrat fe c a l p e lle t s , a l l sealed in to a mass by s o lid if ie d packrat
u rin e (F in le y 1958).
The study o f these f o s s il middens, pioneered by P h ilip V. W e lls,
a llow s us to o b ta in f o s s il samples unique in t h e ir p re s e rv a tio n and com­
pleteness (W ells and Jorgensen 1964, W ells 1976).
The method has a lso
been expanded by o th e r workers (Van Devender 1973, 1977a; P h illip s 1977;
Van Devender and Spaulding 1979).
A f o s s il midden w i l l u s u a lly provide
10 to 30 p la n t species as w e ll as many animal taxa (Van Devender,
P h illip s , and Mead 1977).
The e n tir e assemblage can then be radiocarbon
dated to p rovide a species l i s t w ith, some in fo rm a tio n on r e la t iv e abun­
dance from a p a r tic u la r s it e and tim e .
E le v a tio n a l Zonation or
I n d iv id u a lis t ic G radients?
The e le v a tio n a l zonation o f v e g e ta tio n in the mountains o f the
western U nited S tates was f i r s t demonstrated by C. H art M erriam 's l i f e
zone study o f the San Francisco Peaks and ad jacen t p a rts o f the Grand
Canyon (Merriam 1890).
He concluded th a t the v e g e ta tio n was d is tr ib u te d
along a lt it u d in a l zones c o n tro lle d by tem perature.
L a te r authors
4
developed the concepts o f p la n t communities (Clements 1905) and in d iv id ­
u a l is t ic p la n t a s s o c ia tio n s (Gleason 1926).
The in d iv id u a lis t ic , concept
e v e n tu a lly developed in to an a n a ly s is o f environm ental g ra d ie n ts and the
d is t r ib u t io n o f p la n ts along them (W h itta k e r 1967, W h itta k e r and N ie rin g
1973).
Two problems com plicate the use o f palynology in the determ ina­
tio n o f past v e g e ta tio n a l z o n a tio n .
F ir s t , p o lle n g ra in s are o fte n not
id e n t if ia b le beyond genus o r fa m ily .
This presents in te r p r e ta t iv e prob­
lems, as many dominants ( i . e . , p in e s , oaks, grasses, com posites) c o n ta in
a m u ltitu d e o f spe cies, making s p e c ific conclusions d i f f i c u l t .
A ls o ,
the p o lle n c o lle c te d from a basin does not re p re se n t ju s t th e lo c a l
area, but also the surrounding mountainous masses.
As a r e s u lt , any
p o lle n record may blend p o lle n from several communities ra th e r than ju s t
one.
The r e s u lt o f these c o m p lic a tio n s is th a t p a le o e co lo g ica l records
have been d i f f i c u l t to in t e r p r e t , e s p e c ia lly w ith re spect to the e le v a tio n a l zon ation o f p la n t com munities.
The development o f the " in d iv id u a lis t ic " model fo r v e g e ta tio n a l
d is t r ib u t io n along a g ra d ie n t a ls o imposes some lim it a t io n s on paleo­
e c o lo g ic a l models.
I f species respond in d iv id u a lly to environm ental
changes, then th e re is l i t t l e
reason to expect th a t communities remained
s ta b le over tens o f thousands o f y e a rs , and f o s s il communities become
more d i f f i c u l t to in te r p r e t w ith tim e .
I t is d i f f i c u l t to in te r p r e t the
p a ly n o lo g ic a l "s ig n a tu re " o f a community th a t has no modern analog.
In c o n tra s t, the m a c ro fo s s il a n a ly s is o f packrat ( Neotoma s p .)
middens provides d e ta ile d in fo rm a tio n on P le isto ce n e lo c a l community
5
com position.
While these f o s s il records la c k the s tr a tig r a p h ic c o n tin u ­
i t y o f a p o lle n p r o f i l e , they can p rovide a more complete fo s s il f lo r a
from a lo c a l area.
F o ssil Neotoma middens seem id e a lly s u ite d to a p p ly
to the fo llo w in g two q u e s tio n s :
1)
Were a l l v e g e ta tio n a l zones (o r in d iv id u a l species) depressed
equal amounts in the P leistocene?
2)
To what degree do h is t o r ic communities resemble those o f the
Late P leistocene?
These questions are e s s e n tia l to our understanding o f P leistoce ne c l i ­
mates and the development o f modern p la n t communities.
In t h is s tu d y , I w i l l analyze f o s s il packrat middens over a
la rg e e le v a tio n a l g ra d ie n t in an attem pt to examine the e le v a tio n a l zonatio n o f p la n t species and the s t a b i l i t y o f p la n t a s s o c ia tio n s d u rin g the
la s t 30,000 years in the Grand Canyon.
The Study Area
The Grand Canyon, A riz o n a , is an id e a l s it e f o r the study o f
Late P leistoce ne v e g e ta tio n a l d is t r ib u t io n s .
The steep canyon w a lls
serve w e ll in the p re s e rv a tio n o f f o s s il middens.
In the area o f t h is
study (F igure s 1 and 2 ) , the eastern Grand Canyon, i t has been p o s s ib le
to c o lle c t over 70 Neotoma middens along an e le v a tio n a l g ra d ie n t o f
1250 m (4100 f t ) .
F ifty - tw o o f these middens were analyzed and da te d ;
23 are Holocene and 29 are Late P leistoce ne in age.
One hundred and seventy k ilo m e te rs to the west o f th is study
area, in the western Grand Canyon, P h illip s
(1977) has completed a study
Figure 1,
Map o f the Study Area. —
Midden c o lle c tio n lo c a lit ie s are numbered:
1 = south Nankoweap drainage, 2 = high e le v a tio n middens in Chuar V a lle y ,
3 = m id -e le va tio n middens in Chuar V a lle y , 4 = low e le v a tio n middens in
Chuar V a lle y , 5 = high e le v a tio n middens in C lear Creek Canyon, 6 = low
e le v a tio n midden from C lear Creek Canyon, 7 = Hance Canyon and Bida Cave,
8 = Horseshoe Mesa, 9 = Cottonwood Canyon, 10 = Grandview P o in t, 11 =
Grapevine Canyon, 12 = high e le v a tio n middens in Bass Canyon, 13 = low
e le v a tio n midden in Bass Canyon.
WESTERN UNITED STATES
:■>
j.
200
below 1500m
KAIBAB
PLATEAU
rm
SONORAN;)
-PACIFIC
OCEAN
Figure 1,
C OCONI NO
DESERT
Map o f the Study Area
PLATEAU
GRAND CANYON
______ kilometers_____ _
7
Figure 2 .
View o f the Study Area. —
Grandview P o in t (2250 m, 7 4 0 0 ') .
The view is northward from
Horseshoe Mesa (HM) is in
the foreground a t 1525 m ( 5 0 0 0 ') , and Cape Royal (CR) is in
the background a t 2560 m ( 8 4 0 0 ') .
The Colorado r i v e r is a t
850 m (2 8 0 0 ') w it h i n the in n e r gorge ( IG ) .
8
o f 37 la te P leistoce ne and e a rly Holocene middens.
These middens, from
a r e la t iv e ly small e le v a tio n a l range (250 m ), provide an e x c e lle n t tim e
sequence fo r Late Wisconsinan changes a t low e le v a tio n s .
I w i l l examine
the v a ria b le s o f e le v a tio n and exposure as w e ll as tim e , extending the
f o s s il record
to hig her e le v a tio n s than were p re v io u s ly tre a te d in the
Grand Canyon.
A wide v a r ie ty o f p la n t communities from spruce fo r e s t to de se rt
are d is tr ib u te d over the 2010 m (6600 f t ) e le v a tio n a l g ra d ie n t w ith in
the study area.
These d is tr ib u tio n s are summarized in Figure 8 (p. 7 4 ).
Mos.t p la n t species found w ith in the area are lis t e d in McDougall (1964),
although every season new p la n t species are added to the l i s t o f those
o c c u rrin g in the lit t le - e x p lo r e d back co u n try areas.
Modern Clim ates in
the Study Area
Three lon g -te rm weather
o f the study a re a :
s ta tio n s are m aintained w ith in 10 km
B rig h t Angel Ranger S ta tio n on the North Rim (2560
m ). Grand Canyon N ational Park Headquarters on the South Rim (2125 m),
and Phantom Ranch Ranger S ta tio n a t the canyon bottom (783 m).
mate o f
The c l i ­
the study area is probably v e ry s im ila r to th a t recorded a t
these s ta tio n s .
P r e c ip ita tio n records v a ry from an average o f 59 cm /yr on the
North Rim to 21 cm/yr a t Phantom Ranch (S e lle rs and H i l l 1974).
Record
minima range from 38 cm on th e North Rim to under 10 cm a t Phantom
Ranch.
Summer r a i n f a l l is more dependable than w in te r r a in f a l l in the
canyon, although the North Rim re ce ive s s l i g h t ly more w in te r than summer
9
r a in fa ll.
W inter p r e c ip ita tio n is a r e s u lt o f eastward-moving m iddle
la t it u d e storms coming from the P a c ific Ocean.
Summer p r e c ip ita tio n oc­
curs when m o ist tr o p ic a l a ir from e ith e r the P a c ific Ocean or the G u lf
o f Mexico moves northward in to the area.
Summer ra in is most fre q u e n t
in August.
Temperatures a lso va ry co n s id e ra b ly in the study area.
Mean
January minimum tem peratures range from -6.7°C on the North Rim to 2.2°C
a t Phantom Ranch.
Mean J u ly maxima range from 25°C to over 41°C.
The
h ig h e st and low est recorded tem peratures on the North Rim are 33°C and
-32°C.
The h ig h e st and low est recorded tem peratures a t Phantom Ranch
are 49°C and -23°C.
Measurements taken on the South Rim are in te rm e d ia te between
these o th e r va lu e s.
P r e c ip ita tio n averages 36 cm/yr on the South Rim.
The mean January minimum is 6.7°C , and the mean J u ly maximum is 29°C.
Canyon a i r seldom mixes w ith th e o u ts id e atmosphere (Malm 1974).
This fa c to r has been used to e x p la in the r e te n tio n o f heat d u rin g the
summer.
I expect th a t th is e ff e c t is the most im p o rta n t a t enclosed
lo c a tio n s such as Phantom Ranch and the low er Grand Canyon around Rampart
Cave, w h ile i t is le ss o f a fa c to r in wide p o rtio n s o f the canyon such as
Chuar V a lle y .
Temperatures and p r e c ip ita tio n are probably g r e a tly a ffe c te d by
the tendency o f clouds to form over the rim s , w h ile the c e n tra l canyon
is u s u a lly c le a r.
Side canyons c lo s e to the rims are o fte n in the shad­
ow o f c lo u d s , w h ile the in n e r gorge is exposed to the sun.
The e ffe c t
is s im ila r to the cloud cover which p ro te c ts the bottom slopes o f a
10
d e se rt mountain range, w h ile a t the same e le v a tio n but away from the
mountain mass, the v e g e ta tio n must endure the f u l l heat o f the sun.
The Interm ountain Plateau
The Grand Canyon is s itu a te d a t the southern edge o f a physio­
gra p h ic province which I have termed the in te rm o u n ta in plateau (F ig u re
1 ).
The in te rm o u n ta in plateau c o n s is ts o f the Basin and Range, the
no rth e rn Colorado P latea u, and p o rtio n s o f the M iddle Rocky Mountain
provinces as illu s t r a t e d in the N ational A tla s .
This area ro u g h ly c o in ­
cides w ith the boundaries o f the Interm o un tain Region as o u tlin e d by
C ronquist e t a l.
(1972, p. 2 ).
This term is necessary to avoid co n fu ­
sion w ith o th e r geographical te rm in o lo g y .
The term Great Basin is m is­
lea ding in th a t the area is a c tu a lly a plateau between the S ie rra Nevada
and the Wasatch M ountains.
The C entral Rocky Mountain Province is m is­
lea ding because the low er plateau o f the U inta Basin is in c lu d e d .
A sharp boundary e x is ts between the in te rm o u n ta in plateau vege­
ta t io n o f Nevada and Utah and the Mohave and Sonoran Deserts o f southern
C a lifo r n ia and A rizo n a .
These areas are separated by th re e geographic
fe a tu re s :
1)
L a titu d e .
The in te rm o u n ta in plateau is to the n o rth o f the
Mohave and Sonoran D eserts.
2)
E le v a tio n .
The Sonoran and Mohave Deserts are m o s tly below
1300 m, w h ile th e in te rm o u n ta in plateau is above 1500 m.
The
o n ly in tru s io n s o f landscape below 1500 m in to th is plateau are
along the Colorado and Green R ivers in to eastern Utah and along
th e V ir g in R ive r in to southwest Utah (F ig u re 1 ).
11
3)
The S ie rra Nevadan r a in shadow.
Between 36 and 39°N la t it u d e ,
the over 3000 m c re s t o f the S ie rra Nevada lim it s m o istu re from
the P a c ific Ocean.
This e ff e c t is most pronounced a t the western
edge o f the in te rm o u n ta in p la te a u .
V
The e le v a tio n a l d iffe re n c e between the d e se rt and plateau prov­
inces accentuates the la t it u d in a l c lin e low ering both summer and w in te r
tem peratures on the in te rm o u n ta in p la te a u .
This e le v a tio n a l fa c to r r e ­
s t r i c t s the northward d is tr ib u tio n s o f c o ld -s e n s itiv e p la n ts which o th e r­
wise could extend fu r th e r in to the in te rm o u n ta in plateau i f lo w -e le v a tio n
h a b ita ts were a v a ila b le .
The atmosphere, d rie d by i t s
t r i p over the S i­
e rra s , can reach both hig her and low er tem peratures than humid a i r , thus
in c re a s in g th e c o n tin e n ta lity o f the in te rm o u n ta in plateau re g io n .
The
d iffe re n c e between summer maxima and w in te r minima is g re a te r on the in ­
term ountain plateau than in the Mohave or Sonoran D eserts.
Canyon is an anomaly between the d e s e rts and the p la te a u .
The Grand
I t is a lo w -
e le v a tio n pathway along which Mohave Desert species extend in to the i n ­
term ountain p la te a u .
Because o f i t s unique p o s itio n in the geography o f the w est,
unique a s s o c ia tio n s are found w ith in the Grand Canyon.
When f o s s il as­
s o c ia tio n s o f ju n ip e r , b a rre l cactus ( Echinocactus p o ly c e p h a lu s ), E ncelia
fru te sce n s and B r ic k e llia a tr a c ty lo id e s were f i r s t found in the low er
Grand Canyon, they were thought to be anomalous, th a t i s , not in e x is ­
tence today.
area.
A ll fo u r o f these p la n ts are associated w ith in my study
I b rin g up t h is p o in t o n ly to emphasize th a t the l i t t l e - s t u d i e d
12
v e g e ta tio n in s id e the Grand Canyon may y ie ld s u rp ris e s .
As any mountain
range o r v a lle y w i l l y ie ld p la n t a s s o c ia tio n s found nowhere e ls e , the
Grand Canyon re veals a s s o c ia tio n s o f Mohave Desert and in te rm o u n ta in
plateau species found nowhere e ls e .
METHODS
The Recovery and A n a lysis o f Middens
Rock Type and Midden P re se rva tio n
W ith in th is study area, middens o f P leistoce ne age were found
preserved in o n ly two s u b s tra te s :
Sandstone (F ig u re 3 ) .
the Redwall Limestone and the Tapeats
In some cases, o th e r s u b s tra te s were capable o f
p ro te c tin g Holocene middens.
By the com pletion o f t h is fo u r-y e a r search,
I had learned what types o f areas were most l i k e l y to preserve P le is to ­
cene middens; thus s u ita b le areas could be lo ca te d using topographic and
g e o lo g ic maps, e lim in a tin g the need fo r random searches.
The Tapeats Sandstone, a t the l i p o f the in n e r g ra n ite gorge,
probably co n ta in s the g re a te s t d e n s ity o f P leistoce ne middens.
The te n ­
dency fo r t h is su b stra te to weather in to s h e lf - lik e ta b u la r surfaces
seems to a llo w Neotoma de p o sits g re a t p ro te c tio n from r a in f a l l and, be­
cause th is s u b s tra te i s u n d e rla in by the s o lid Vishnu s c h is t, i t is not
q u ic k ly undercut.
The s u i t a b i l i t y o f t h is s u b s tra te fo r p re s e rv a tio n is
illu s t r a t e d by the fa c t th a t each tim e I had gained access to "The Great
U nconform ity" along i t s c o n ta c t w ith Precambrian gneiss or s c h is t, i t
r a r e ly too k lo n g e r than 30 m inutes to lo c a te an Ice Age Neotoma d e p o s it.
In c o n tra s t, no P leistoce ne d e p o sits were found in h ig h -e le v a tio n o u t­
crops o f Tapeats Sandstone in Chuar and Nankoweap V a lle y s .
eats outcrops are u n d e rla in by the Precambrian Chuar Group.
These Tap­
The Chuar
Group is an a rg illa c e o u s sediment which probably weathers q u ic k ly and
undercuts the Tapeats Sandstone a t such a ra te th a t no P leistoce ne
13
14
Figure 3.
View o f Tapeats Sandstone (T) and Redwall Limestone (R)
from Chuar No. 1.
15
d e p o sits are preserved.
T his r e la t iv e ly ra p id u n d e rc u ttin g o f the Tap-
eats Sandstone is evidenced by the la c k o f the "sh e lve s" which predomi­
nate along the edge o f th e in n e r gorge.
In s te a d , t h is sandstone u s u a lly
presents a v e r tic a l w a ll formed when la rg e blocks s lid e d o w n h ill.
Blocks can be seen in the process o f moving d o w n h ill tod ay.
As a r e s u lt o f these o b s e rv a tio n s , I conclude th a t Neotoma de­
p o s its are best preserved a t the edge o f the G ranite Gorge, p re fe ra b ly
a t a "c o rn e r" where the r iv e r bends o r a side canyon cuts in to the gorge.
The o ld e s t middens c o lle c te d from the Tapeats, Cottonwood Canyon Nos. 2
and 3 (34,300 ± 3570 and 29,400 ± 1800), occurred w ith in t h is c o n te x t.
F o ssil Neotoma middens were more d i f f i c u l t to lo c a te a t hig h e r
e le v a tio n s and h ig h e r up the g e o lo g ic s e c tio n .
One obvious fa c to r is
the increase in r a in f a l l a t h ig h e r e le v a tio n s .
Another im p o rta n t fa c to r
is the a d d itiv e w eathering ra te s o f each s u b s tra te .
As one moves up the
s e c tio n , each successive la y e r undercuts the la y e r above.
The B rig h t
Angel S hale, form ing the f l a t Tonto P la tfo rm , probably is a p o te n t fa c ­
t o r in u n d e rc u ttin g the fo rm a tio n s above i t .
I t s u n co n so lid a te d , a r g i l ­
laceous nature is ju s t as re s p o n s ib le f o r the stee p, o fte n overhung
outcrops o f Redwall Lim estone, as is the slow w eathering ra te o f the
Redwall i t s e l f .
I b e lie ve th a t I would not have lo c a te d any P leistoce ne amberat
above 1300 m i f i t were not fo r th e cave-form ing nature o f the Redwall
Limestone.
ered caves.
W ith in my study area a lo n e , th e re are probably 100 undiscov­
Most o f the known caves in the Grand Canyon happen to be
close to h ik in g t r a i l s
(o r r o u te s ) .
The caves are probably r e a lly more
16
u n ifo rm ly spread throughout the a re a , and most are sim ply in a c c e s s ib le .
During the course o f th is s tu d y , I entered 14 caves, seven o f which may
not be known to o th e r cave rs.
I fe e l th a t i t is p o s s ib le to fin d a t
le a s t one small cave per day once one reaches the Redwall Limestone.
W ith in the caves o f the Redwall Limestone, one fu r th e r re q u ire ­
ment seems to be necessary to ensure p re s e rv a tio n o f P leistoce ne middens.
The cave must be d ry o r have co n sta n t low h u m id ity .
ta in e d no amberat.
Very wet caves con­
A h ig h -h u m id ity ca ve . Cave o f the Domes, contained
some o ld amberat ( i . e . , Horseshoe Mesa 4, 13,830 ± 790), but these de­
p o s its appeared decayed and had a low number o f species preserved.
Caves
w ith d rip p in g w ater and fre e a i r movement ( i . e . , the cave c o n ta in in g
Nankoweap Nos. 6, 7, and 10) contained P leistoce ne amberat on d ry
she lves.
Because o f these r e s u lts , I began to s e le c t buttes o f Redwall
Limestone which were c u t o f f from the main sources o f groundwater.
W ith in these appendages o f lim estone extending in to the canyon, fa u lte d
areas produced the best r e s u lts .
Although n o t a l l the h ig h -e le v a tio n
middens came from caves, o th e r middens (such as Chuar No. 8) came from
overhung pockets which probably were caves a t the tim e the d e posits
o r ig in a te d .
S ubstrates o th e r than the Tapeats Sandstone and Redwall Lime­
stone d id c o n ta in some Holocene d e p o s its .
cemented to a v e r t ic a l w a ll above where i t s
had broken away.
overhang.
Supai No. 1 (2300 ± 90) was
o r ig in a l h o riz o n ta l s h e lf
The e n tir e mass was p ro te cte d from m o istu re by an
The Supai Group, l i k e the B rig h t Angel Shale, probably under­
cuts those form atio ns above, in c re a s in g t h e ir w eathering ra te s .
17
Grandview P o in t No. 4 (5510 ± 70) demonstrates th a t the Kaibab
Limestone is capable o f p re se rvin g o ld middens.
However, because i t is
undercut by a l l o f the fo rm a tio n s below and many o f i t s
ledges have a
tendency to weather by breaking o f f b its from the top ra th e r than the
bottom (thus d is lo d g in g am berat), no P leistoce ne amberat was found de­
s p ite exte nsive searches.
In a d d itio n , the high r a in f a l l present a t the
rim and the fa c t th a t t h is lim esto ne does not produce the exte nsive
caves found in the R edwall, probably are im p o rta n t lim it a t io n s .
Holocene middens (Bass Canyon Nos. 2 and 3 , 8590 ± 110 and 8900
/
± 340) were found in a h o riz o n ta l c re v ic e in the Coconino Sandstone.
However, these types o f c re v ic e s are ra re in t h is s u b s tra te which usu­
a l l y produces v e r tic a l c re v ic e s .
P le isto ce n e d e p o sits can probably be preserved in ju s t about any
s u b s tra te in the proper geomorphologic and h y d ro lo g ic s e ttin g s .
How­
e ve r, as a r e s u lt o f t h is s tu d y , I am c o n fid e n t th a t P leistoce ne depos­
i t s can be lo ca te d w ith in a few days in any area o f the Grand Canyon.
The o n ly p re re q u is ite s are outcrops o f Tapeats Sandstone o r Redwall
Limestone, a h e lic o p te r , and the w illin g n e s s to conduct d i f f i c u l t f i e l d
searches.
F ie ld Aging o f Middens
Once middens are lo ca te d w ith in the f i e l d , a rough idea o f t h e ir
age can be gained by q u ick in s p e c tio n .
Harder d e p o sits covered w ith a
th ic k rin d o f amberat tend to be o ld e r than s o f t , mealy d e p o s its .
A ls o ,
o ld e r de posits have a m ild re sinous s m e ll, w h ile younger de p o sits tend
to smell as one m ight expect f o r a d e p o s it o f feces imbedded in
18
c r y s ta lliz e d u rin e .
Deposits o ld e r than 9000 years c o n ta in f o s s il d e b ris
o f p la n t species no lo n g e r o c c u rrin g a t the s it e .
Using these charac­
te rs , i t has always been p o s s ib le to gain a rough idea o f the tim e range
o f the d e p o s it.
One r e s u lt o f th is has been the abundant c o lle c tio n and
a n a ly s is o f P leistoce ne middens, w h ile com paratively few o f the much
more common Holocene middens have been s tu d ie d .
D isse ctio n and A n a lysis o f Middens
P ossible contam ination o f assemblages and radiocarbon samples
has been the focus o f some disagreement in packrat midden research
(W ells 1976, 1977; Van Devender 1977b).
I t has become in c re a s in g ly e v i­
dent th a t f o s s il packrat middens are o fte n s t r a t ig r a p h ic a lly complex
(King 1976).
Thousands o f years a f t e r an i n i t i a l d e p o s it, a second de­
p o s it can be placed on top o f o r to the side o f the o r ig in a l d e p o s it.
Often a c re v ic e w i l l weather from the bottom , a llo w in g a subsequent de­
p o s it to be placed underneath the i n i t i a l one, r e s u ltin g in a "re ve rse
s tr a tig r a p h y ."
I t is also p o s s ib le fo r a r a t to form a passage through
a much o ld e r,d e p o s it; thus i t is conceivable th a t a young d e p o s it could
fill
a passage through an o ld one.
A ls o , a n c ie n t m a te ria ls can be c o l­
le c te d from the f lo o r o f a cave and in c o rp o ra te d in to a midden a t any
subsequent d a te , as was the case o f a well-documented s lo th dung b a ll in
Rampart Cave ( P h illip s 1977, R.C. S t. 5 0 ).
As a r e s u lt o f these c o m p li­
c a tio n s , any record can be reasonably doubted i f i t is not w e ll docu­
mented.
Unusual records should be documented by a w e l l - s t r a t i f i e d ,
m u ltip le -d a te d d e p o s it o r shown in numerous d e p o s its .
No one d a tin g
method is s u p e rio r to a l l o th e rs , because every d e p o s it is unique.
19
The middens used in th is study were sampled w ith an emphasis on
m in im izin g th e chances o f in t e r - s t r a t ig r a p h ic co n ta m in a tio n .
Tabular
middens w ith stro ng h o riz o n ta l laminae were p re fe rre d , and were d is s e c t­
ed using a hammer and c h is e l.
moved.
A ll e x te rn a l weathering rin d s were r e ­
A pproxim ately o n e -te n th o f the de p o sits encountered were analyzed
and dated.
Large fragments (one to several kilogram s) were fu r th e r d is ­
sected in the la b o ra to ry .
Although the samples v a rie d , the optimum s iz e
was considered to be about 500 gm amberat from a fo s s ilife r o u s la y e r
w ith no d is c o n tin u itie s .
I f s u f f ic ie n t m a te ria l was a v a ila b le , a mono-
s p e c ific radiocarbon sample was subm itted using an e x tra lo c a l species
(a species no lo n g e r present near the s i t e ) .
Middens w ith low concen­
tr a tio n s o f p la n t m a te ria l were dated using e ith e r s o lid amberat o r packr a t fe c a l p e lle ts .
In fo u r in s ta n c e s , im p o rta n t middens were each dated
tw ice on d if f e r e n t m a te ria ls .
Samples were washed in water f o r 1 to 2
weeks, and then the s o lid m a c ro fo s s ils were removed from the liq u id u rin e
using a 20 mesh screen (.850 mm o p enin g).
Samples were then d rie d and
sorted (see Van Devender, 1973 f o r more on methods used in a n a ly s is ).
This method o f washing each la y e r o f the midden g r e a tly improves the de­
t a i l o f the s tu d y , a llo w in g a much more complete species l i s t from any
s tr a ta , voucher specimens o f id e n t if ie d s p e cie s, q u a n tific a tio n o f mac­
r o fo s s il d a ta , and, most im p o rta n tly , m a te ria l f o r several
da tes.
The id e n t if ic a t io n o f f o s s il m a te ria l was accomplished through
c o n s u lta tio n w ith co -w o rke rs, exam ination o f the c o lle c tio n s in The Uni­
v e r s it y o f A rizona Herbarium and a t the La borato ry o f Paleoenvironmental
20
S tu d ie s, and w ith the a id o f i l l u s t r a t i o n s in several p u b lic a tio n s
(M a rtin and B arkley 1961, D e lo r it 1970, Schopmeyer 1974, Elmore 1976).
Some f o s s il and modern species were id e n t if ie d through the use
o f several flo r a s (Kearney and Peebles 1960, McDougall 1973, Munz 1974).
Because o f my background and th a t o f my co-w o rkers, a southwestern bias
e x is ts w ith in the id e n t if ic a t io n s .
A species lo ca te d today w e ll beyond
the e x te n t o f the modern southwest ( i . e . , Montana) could have been o v e r­
looked in the f o s s il m a te r ia l.
D i f f i c u l t genera e ith e r are not id e n t i­
fie d to the s p e c ific le v e l o r are id e n t if ie d o n ly as compares fa v o ra b ly
(c f.).
I t is im possible to v e r if y th a t the species which I have id e n t i­
fie d from these f o s s il d e p o s its have the same c lim a tic lim it s as t h e ir
modern c o u n te rp a rts .
the same.
I have assumed th a t the species are e s s e n tia lly
A ll o f the species id e n t if ie d to a generic le v e l are w ith in
the range o f v a r ia tio n o f modern species w ith in the genus.
Q u a n tific a tio n o f P la n t M a c ro fo s s ils
The number o f m a c ro fo s s ils re p re s e n tin g each taxon was counted
and d iv id e d by th e w eight o f the sample.
This f ig u r e , th e n , represents
the c o n c e n tra tio n o f th a t taxon per kilogram o f amberat.
This method o f
re p o rtin g is marred by the fa c t th a t middens are v a ria b le in t h e ir con­
c e n tra tio n s o f p la n t fragm ents.
Other authors have re p o rte d re s u lts in
terms o f r e la t iv e numbers o f p la n t: p a rts (Van Devender and Mead 1976) o r
in terms o f r e la t iv e w eight o f p la n t p a rts (W ells 1976).
However, I
p re fe r to re p o rt my data in terms o f ab solute numbers o f p la n t p a rts so
21
th a t an over-abundance o f one p la n t, i . e . , J u n ip e n is , probably o v e r­
represented because i t is a packrat food (Hansen 1971), w i l l have le s s
e ff e c t on th e fig u re s fo r o th e r p la n ts .
R e la tiv e o r percentage abun­
dances may e a s ily be computed from t h is raw d a ta .
R e la tiv e w eight v a l­
ues can be poor s t a t i s t i c s , as one Agave le a f may outweigh thousands o f
seeds.
While no method o f q u a n tific a tio n is p e rfe c t, a l l are p re fe ra b le
to simple presence-absence l i s t s .
D is tr ib u tio n o f Modern Plants
The P leistoce ne d is tr ib u tio n s o f p la n ts are meaningless w ith o u t
a d e ta ile d knowledge o f modern p la n t d is t r ib u t io n s .
A unique f o s s il as­
semblage cannot be recognized u n t il the modern a s s o c ia tio n s are under­
stood.
In o rder to re s o lv e t h is problem, 131 v e g e ta tio n a l re!eves were
spread throughout the study area.
A re le v d is a small sample stand o f
v e g e ta tio n (M ueller-Dombois and E lle nb erg 1974).
Each re le v d con sisted
o f a species l i s t from an area o f 30 m dia m e te r, along w ith an estim ate
o f the to t a l coverage o f each species w ith in the a re a .
T his area was
designed to approximate the area in which a packrat would be e f f e c t iv e ly
c o lle c t in g .
Most re le vd s and f o s s il middens were lo c a te d on slopes o f
over 20° and away from r ip a r ia n a reas.
In o rd e r to " c a lib r a te " my p e r­
centage cover e stim a te s , 50 m v e g e ta tio n tra n s e c ts were run in the i n i ­
t i a l re le v d s .
The percentage cover estim ates fo r species were next o rd in a te d
on a v e g e ta tio n a l g ra d ie n t by p lo t t in g the s ite s w ith re spect to e le v a ­
tio n and exposure.
Slope aspect alone w i l l not serve as a s u f f ic ie n t
22
measure o f exposure; w ith in the rugged topography o f the Grand Canyon,
an exposed aspect ( i . e . , southw est) can be p ro te cte d from d ir e c t sun­
l i g h t by a rock w a ll 600 m (2000 f t )
h ig h .
In o rder to accommodate the
e ffe c ts o f shading, an estim ate o f p ro te c tio n from in s o la tio n was made.
T otal exposure was then c a lc u la te d as the sum o f an aspect fa c to r (0 -5 )
and a p ro te c tio n fa c to r ( 0 -5 ).
This value r e fle c ts t o t a l in s o la tio n and
hence p o te n tia l e v a p o tra n s p ira ti on.
This tre a tm e n t achieves much the
same e ff e c t as W h itta k e r's (1973) g ra d ie n t a n a ly s is which re s u lts in the
placement o f canyons and ra vin e s on the mesic sid e o f a g ra d ie n t w ith
rid g e s on the x e r ic .
The 131 re le vd s cover the mesic to x e r ic scale
over an e le v a tio n a l g ra d ie n t o f 2060 m (6750 f t ) and examine the e ff e c t
o f s u b s tra te type a t d if f e r e n t e le v a tio n s .
I b e lie v e th a t these semi q u a n tita tiv e methods were p re fe ra b le to
the o th e r a lte rn a tiv e s f o r o rd in a tin g the v e g e ta tio n w ith in t h is b o ta n ic a l l y unexplored area.
A more thorough, q u a n tita tiv e g ra d ie n t a n a ly s is
would have been a study in i t s e l f re q u irin g years o f f i e l d and computer
work.
Another semi q u a n tita tiv e method was employed in d e s c rib in g com­
m unity typ e s.
The Braun-Blanquet f l o r i s t i c a s s o c ia tio n system (M u e lle r-
Dombois and E lle nb erg 1974) c lu s te rs s im ila r p la n t re le v e s .
In th is
method, species are id e n t if ie d which occur o n ly in a small number o f re leves from one type o f community.
These are termed "c h a ra c te r s p e c ie s ."
Species o c c u rrin g in a la r g e r number o f re le vd s are termed "c o n s ta n t
s p e c ie s ."
For example, in a p in y o n -ju n ip e r woodland ju n ip e r is a
23
constant species.
W ith in my study area, manzanita is a ch a ra c te r spe­
cie s w ith in the p in y o n -ju n ip e r woodland.
In o rder to c lu s te r s im ila r re le v d s in to an a s s o c ia tio n ty p e , the
a u tho r must fin d c h a ra c te r species which are associated in most o f t h e ir
re le vd s but r a r e ly occur in o th e r re le v d s .
T his is done through the
c o n s tru c tio n o f "constancy ta b le s " in each broad ly d e fined v e g e ta tio n
ty p e .
These ta b le s are then o rd in a te d in to " D iffe r e n tia te d T a b le s ."
N ext, the re s u lts o f a l l o f the ta b le s are lis t e d in a "Summary Table"
(M ueller-Dombois and E lle nb erg 1974, Chapter 9 ).
The f in a l re s u lts o f
these ta b u la r comparisons are the se p a ra tio n o f p la n t a s s o c ia tio n s and
the id e n t if ic a t io n o f those species (c h a ra c te r species) which c h a ra c te r­
iz e the a s s o c ia tio n s .
In o th e r words, the c h a ra c te r species should be
present in the m a jo r ity o f the re le vd s in i t s a s s o c ia tio n but in fre q u e n t
in o th e r a s s o c ia tio n s .
RESULTS
Modern V egetation
The d is t r ib u t io n o f modern v e g e ta tio n w ith in the canyon is com­
p le x .
Many v a ria b le s such as e le v a tio n , s u b s tra te , slope a n g le , a s p e c t,
and exposure combine to form a d i f f i c u l t pu zzle.
Steep, rocky slopes
o fte n c o n ta in f l a t "window boxes" ho lding deep s o il pockets im m ediately
ad jacen t to bare rock s u rfa c e s .
This o fte n re s u lts in two very d i f f e r ­
ent communities recorded w ith in the same re!eve'.
Because o f these com­
p le x it ie s , p la n t communities are not always e a s ily d e fin e d .
The re s u lts o f the v e g e ta tio n a l re le vd s taken in th is study are
contained in Tables A -l through A-12 in the Appendix.
These ta b le s are
arranged w ith re spect to s u b s tra te ty p e , e le v a tio n , and exposure.
Taxo­
nomic nomenclature is c o n s is te n t w ith Lehr (1978).
In o rder to condense my o b s e rv a tio n s , species l i s t s
from re le ve s
were arranged in syn th e sis ta b le s using the Braun-Blanquet flo n * S tic as­
s o c ia tio n system (Mueller-Dornbois and E lle nb erg 1974).
The summary
ta b le l i s t s those species which c h a ra c te riz e a p a r tic u la r community.
Im portant species which are abundant in several communities are lis t e d
a t the end o f Table 1.
Three main p la n t communities are apparent:
fo r e s t, p in y o n -ju n ip e r woodland, and d e s e rt.
fir
The lo c a tio n s o f these
communities in r e la tio n to e le v a tio n and exposure are shown in Figure 8.
F ir Forest
The f i r fo r e s t is dominated by Douglas f i r
z i e s i i ) and w h ite f i r
(Abies c o n c o lo r) .
24
( Pseudotsuga men-
Both o f these species occur as
25
Table 1,
The d is tr ib u tio n o f modern p la n ts w ith re spect to modern
p la n t communities.
Table l a . Modern a sso cia tio n s (c h a ra c te r sp e c ie s ).
AC = Average
percent cover in 6 to 12 releveV , Co = constancy in 6 to 12 re 1eves.
Pinyon - Juniper
Fir-Forest
Oak
Desert
Chaparral
PteleaEphedra
AC
Co
AC
Co
AC
Co
AC
Co
Pseudotsuga menziesil
14
100
1.1
57
R
8
Abies concolor
21
100
1.1
29
R
8
Robinea neomexicana
5.0
67
R
14
Symphoriocarpos sp.
.7
50
Acer grandidentatum
5.0
33
Plnus ponderosa
.13
33
Plnus edulls
2.0
50
13
100
9.1
100
1.2
57
Juniperus osteosperma
R
17
6.3
100
7.3
92
9.2
71
Quercus qambeUI
3.0
83
13
71
Amelanchter utahensis
2.0
33
2.2
86
1.1
42
1.0
14
Ostrya knowltoni
.2
17
1.6
57
Fenderella utahensis
.3
33
.7
43
.9
29
6.3
50
R
14
3.1
25
1.2
58
.8
14
Cesnothus greggii
2.1
33
R
14
Fallugia paradoxa
.8
33
R
High
Desert
AC
Co
R
27
29
R
9
Low
Desert
AC
Co
R
11
FIR FOREST
PINYON-JUNIPER
Oak
Chaparral
Quercus turbinella
Arctostaphylos pungens
Cowania mexicana
R
17
.3
29
Ptelea-Ephedra
Ptelea tr ifo lia ta ssp. pallida
Ephedra virid is
Artemisia bigelovii
3.0
33
1.1
57
.4
25
2.2
86
R
18
1.0
71
i L2
67
4.0
86
1.9
55
3.0
43
R
18
26
Table la , continued.
AC
Co
Desert
Pinyon - Juniper
Pi r-Forest
Oak
AC Co
High
Desert
Low
Desert
Chaparral
PteleaEphedra
AC
AC
Co
AC
Co
AC
Co
1.0
14
4.7
36
R
11
.7
36
.2
45
.2
33
1.2
36
1.3
22
5.7
78
Co
HIGH DESERT
Coleogyne ramoslssima
Atrlplex canescens
Echinocactus polycephalus var.
xeranthemoides
R
8
Bernard!a incana
R
29
LOW DESERT
Encella farinosa
Encelia frutescens
R
14
Aloysia wriqhtll
R
18
.3
44
.1
27
.7
44
, .2
22
Opuntia basllaris
Ephedra fasclculata
.3
14
3.1
33
Table l b . Im portant species w ith more generalized d is tr ib u tio n s .
Fendlera rupicola
17
1.1
29
.2
17
.2
43
R
9
1.0
43
.8
33
1.0
14
R
18
3.0
43
3.6
67
1.6
14
R
9
Artemisia tridentata
R
43
2.5
42
2.9
18
Forsellesia nevadensis Greene
.3
14
1.4
33
.9
43
R
9
Gutierrezia so.
R
14
.8
67
1.4
40
4.5
73
2.2
78
Opuntia erinacea
.1
14
.2
25
1.0
60
.7
36
R
11
R
17
R
20
.5
27
Fraxinus anomala
Cercocarpus intricatus
•V
R
17
0. phaeacantha
Artemisia ludoviciana
R
17
R
29
R
25
R
40
.2
27
.1
22
Agave utahensis
R
29
.4
83
.2
80
.2
36
.2
22
Rhus trilobata var. sim plicifolia
.3
14
1.8
58
.6
29
.8
42
.1
22
R
14 : -2
36
.4
44
Brickelia atractyloides
Acacia qreqqii
1.0
45
.9
67
Ephedra torreyana
.8
36
1.6
44
Prunus fasciculata
R
9
.9
33
27
low as 1800 m on very p ro te c te d slop es.
Although the y do not seem to
show any s u b s tra te p re fe re n c e , the y are found on those su b stra te s which
develop the steepest slo p e s, a llo w in g p ro te c tio n from in s o la tio n on
shaded aspects.
As a r e s u lt , the f i r fo r e s t is b e tte r developed on the
Kaibab and Redwall Limestones and the Coconino Sandstone, w h ile the gen­
t l e slopes o f the Supai Group r a r e ly support f i r .
Dense stands o f w hite
f i r are present on the le v e l p o rtio n s o f Cape Royal on the North Rim.
Big to o th maple ( Acer qrandidentatum ) and New Mexican lo c u s t
( Robinia neomexicana) are w e ll-re p re s e n te d in the f i r
North Rim.
fo r e s t below the
Ponderosa pine ( Pinus ponderosa) is r a r e ly present in the
f i r fo r e s t but is abundant on the f l a t areas on both rim s .
Gambel oak
( Quercus q a m b e lii) is abundant in the low er p o rtio n s o f f i r fo r e s t.
Coverage o f arboreal species u s u a lly exceeds 50% in the f i r
e s t.
fo r­
Shrubs such as snowberry ( Symphoricarpos s p .) , creeping b a rb e rry
( B erb eris repens) , and gooseberry ( Ribes s p .) are present in the
u n d e rs to ry .
The f l a t plateaus o u ts id e the Grand Canyon support exte nsive
Ponderosa pine ( Pinus ponderosa) and spruce ( Picea pungens and P_. e n g e lm a n n ii) com m unities.
These were not considered in t h is a n a ly s is because
these communities dominate on f l a t areas and are not found w ith in the
canyon.
P in y o n -ju n ip e r Woodland
I have d iv id e d the p in y o n -ju n ip e r woodland in to th re e subclasses
oak, c h a p a rra l, and P telea-E phedra.
28
The oak subclass o f the p in y o n -ju n ip e r woodland is named fo r i t s
c o n c e n tra tio n o f Gambel's oak ( Quercus g a m b e lii).
This species is arbo­
re a l in the f i r fo r e s t and upper p in y o n -ju n ip e r woodland, but is reduced
to a shrubby h a b it a t low er e le v a tio n s in the woodland.
I t reaches i t s
g re a te s t d e n s ity in canyon drainages between 1500 and 1800 m such as
along B rig h t Angel Creek and in Natchi Canyon.
Stands o f Knowlton hop hornbeam ( Ostrya know!torn') are present
on shaded slopes o f Redwall Limestone in t h is community.
This species
seems to be r e s tr ic te d to h ig h -e le v a tio n outcrops o f th is lim e s to n e , a l l
o f which occur on the n o rth side o f the canyon.
Coverage o f arboreal species is u s u a lly g re a te r than 35% in the
oak subclass o f the p in y o n -ju n ip e r woodland.
F e n d le re lla utahensis and
Fend!era ru p ic o la are o fte n present in the u n d e rs to ry .
S ervice b e rry
(Amelanchier u ta h e n s is ) reaches i t s g re a te s t d e n s ity in th is community.
The chaparral subclass o f the p in y o n -ju n ip e r woodland occurs on
exposed slopes between 1500 and 2100 m in e le v a tio n .
Many species o f
s c le ro p h y llo u s shrubs are present in t h is community, although these
shrubs are o fte n present as monoclimax stands ra th e r than d iv e rs e
com munities.
Pinyon ( Pinus e d u lis ) and Utah ju n ip e r ( Juniperus osteosperma)
are the dominant species and u s u a lly the o n ly a rboreal taxa p re se n t.
T h e ir coverage is u s u a lly below 20%.
The densest coverage o f shrub spe­
c ie s occurs on the n o rth sid e o f the canyon where th ic k e ts o f manzanita
(A rcto sta p h ylo s punqens) , s i l k ta s s e l ( Garrya w r i q h t i i ) , and shrub li v e
oak (Quercus t u r b in e lla ) o ccu r.
L i t t l e le a f mountain mahogany ( Cerco-
carpus in t r ic a t u s ) , c l i f f rose ( Cowania mexicana) , and Apache plume
29
( F a llu g ia paradoxa) are w e ll d is tr ib u te d throughout th is community.
Utah agave (Agave u ta h e n sis) reaches i t s g re a te s t d e n s ity in t h is
community.
The Ptelea-Ephedra subclass o f the p in y o n -ju n ip e r woodland oc­
curs on shaded aspects between 1200 and 1500 m.
t h e i r maximum d e n s itie s in t h is community, but i t
Several species reach
is not s tro n g ly c h a r­
a c te riz e d by any spe cies.
Juniper is the dominant arb o re a l species in t h is community, a l ­
though i t s h a b it is o fte n shrubby.
Pinyon occurs c o n s is te n tly but a t
much low er d e n s itie s than in the o th e r p in y o n -ju n ip e r c la s s e s .
Often
these pinyon tre e s w i l l c o n ta in a m ix tu re o f one- and tw o-needle f a s c i­
c le s suggesting h y b rid iz a tio n w ith s in g le -le a v e d pinyon ( Pinus monophyll a ) (banner 1974).
S h a d e -to le ra n t species, such as hop tre e ( Ptelea t r i f o l i a t a
v a r.
p a llid a ) and s in g le le a f ash ( Fraxinus anomala) , reach t h e ir g re a te s t
c o n c e n tra tio n s in th is community.
A ls o , Mormon tea ( Ephedra v i r i d i s ) is
abundant on rocky slop es.
Desert Communities
The d e s e rt communities have been d iv id e d in to two subclasses:
the high d e s e rt and the low d e s e rt.
The high d e s e rt co n ta in s species which are more ty p ic a l o f the
in te rm o u n ta in p la te a u .
Blackbrush ( Coleogyne ram osissim a) forms mono­
clim ax stands on f l a t , s ta b le s ite s between 1000 and 1700 m in e le v a tio n .
A tr ip !e x canescens is abundant on sandy a llu v iu m , w h ile Bernardia incana
30
and b a rre l cactus ( Echinocactus polycephalus v a r. xeranthemoides) are
abundant on rocky slopes o f Tapeats Sandstone.
Big sagebrush ( A rte m isia
t r id e n t a t a ) is abundant on a rg illa c e o u s s u b s tra te s such as the Chuar
Group.
Because many d e se rt species extend in to the low er p in y o n -ju n ip e r
woodland and is o la te d ju n ip e rs are present in the d e s e rt community, I
have d e fin e d the boundary between these two communities as the low er lim ­
i t o f pinyon and ju n ip e r d is tr ib u tio n s
c ie s drops below 1%).
(where the coverage o f these spe­
This boundary does not in flu e n c e the d is t r ib u ­
tio n s o f blackbrush,. F o rs e lle s ia nevadensis, G u tie rre z ia m icro ceph ala,
squaw bush ( Rhus t r ilo b a t a v a r. s i m p ! ic i f o l i a ) , big sagebrush, o r Utah
agave, a l l o f which are w e ll represented in both the p in y o n -ju n ip e r wood­
land and the high d e s e rt.
The low d e s e rt co n ta in s species which are ty p ic a l o f the Mohave
D esert.
B ritt!e b u s h ( E ncelia fa r in o s a ) is abundant a t e le v a tio n s below
1000 m.
E ncelia fru te sce n s is never as abundant but extends i t s range
up to 1500 m.
B e a v e rta il cactus ( Opuntia b a s ila r is ) is r e s tr ic te d to
t h is community.
Rocky slopes in s id e the in n e r gorge o fte n have a low coverage o f
species (le s s than 20%).
B r itt!e b u s h , c a tc la w acacia (Acacia q r e q q ii) ,
and A co u rtia w r iq h t ii are w e ll represented on these steep slopes w ith in
the in n e r gorge.
Many lo w -d e s e rt species do not occur w ith in the study area but
are present downstream in th e western Grand Canyon.
Creosote bush ( L a r-
rea t r id e n t a t a ) reaches i t s upstream l i m i t 135 km downstream from the
31
stu d y a r e a .
O c o tillo
( F o u q u ie ria
112 km d o w n stream fro m t h e
s p le n d e n s ) reach es i t s
s tu d y a re a
u p s tre a m l i m i t
( M a r t in u n p u b lis h e d )
The m a jo rity o f species observed d u rin g t h is p ro je c t do not c o r­
respond w ith any w e ll-d e fin e d community.
d e n tly o f community boundaries.
random s ite s e le c tio n .
They are d is tr ib u te d indepen­
I suspect th a t t h is was the r e s u lt o f
I d id not t r y to s e le c t re !e ve s ite s w ith prede­
term ined ideas o f community ty p e s .
Relevd s ite s were chosen in ord e r to
sample as many s u b s tra te s , e le v a tio n s , and in s o la tio n a l types as p o ssib ­
le .
My goal was not to d e scribe communities but to document the d i s t r i ­
b u tio n a l p a tte rn s o f in d iv id u a l" s p e c ie s .
These in d iv id u a lis t ic d is t r ib u ­
tio n s are described la t e r in t h is s e c tio n and on Figures 10 through 32.
Radiocarbon Dating
F ifty -tw o radiocarbon dates were obtained on 48 packrat middens
(o r la y e rs w ith in m iddens).
The ages o f middens sampled range from
1170 ± 80 B.P. to 34,300 ± 3570 B.P.
T h irty -tw o o f these dates were
P leistoce ne in age w ith ten dates d is tr ib u te d in the f u l l g la c ia l p e rio d .
Nineteen dates were Holocene in age.
A ll o f these radiocarbon ages are
shown along w ith the m ajor components o f the middens in Table 2.
Four comparisons were made o f s in g le , e x tra lo c a l species dates
w ith o th e r dates from small p o rtio n s o f the same middens.
These r e p l i ­
cate dates were obtained on im p o rta n t middens o f la rg e s iz e and u n cle a r
s tra tig ra p h y (Nankoweap No. 6, Bida Cave Nos. 1 and 2, Bass Canyon No.
2 ).
The m u ltip le dates were necessary in o rd e r to demonstrate th a t ex­
tr a lo c a l species were not contam inants but were contemporaneous w ith the
o th e r species.
In a l l fo u r in s ta n c e s , the r e p lic a te dates were in
32
reasonable s t a t is t ic a l agreement w ith the o r ig in a l d a te .
Because o f the
la rg e standard d e v ia tio n s on some dates from small samples ( i . e . , Bida
Cave No. 1c, 12,600 ± 540, on 1.1 gm Douglas f i r n e e d le s ), I w i l l be r e ­
p o rtin g my re s u lts using the date w ith the low est standard d e v ia tio n .
The progress o f my work has impressed me w ith the p o s s ib le con­
s tr u c tio n a l co m p le xity o f middens.
As a r e s u lt , I have moved in the d i ­
re c tio n o f s m a lle r samples and more d e ta ile d d is s e c tio n in t h e ir a n a ly s is .
During the i n i t i a l two years o f th is s tu d y , my samples were c a rrie d
3000 f t up and ou t o f the Grand Canyon.
T h is ph ysical b a r r ie r was r e ­
sp o n sib le fo r my s e le c tio n o f s m a ll, w e ll- s t r a t i f i e d samples.
The a n a ly ­
s is o f several ve ry la rg e middens (>3 m high) revealed a wide d is p a r ity
in dates fo r d if f e r e n t la y e rs ( i . e . , Nankoweap No. 9 ).
These middens
co n siste d o f many d if f e r e n t u n its w ith w eathering rin d s marking the in ­
te rfa c e between u n its .
Packrat midden s tra tig ra p h y is p o te n tia lly complex; th e r e fo r ,
middens should be c a r e fu lly disse cted in the la b o ra to ry .
Once a stratum
has been id e n t if ie d , i t is c e r ta in ly more m eaningful to o b ta in a monos p e c ific date from th a t stratum i f p o s s ib le .
The m onospecific date w i l l
remove a l l doubt about the age o f occurrence o f th a t species.
A date on
" u r in ife r o u s m a te ria l" should be the la s t r e s o r t when a stratum cannot
be dated by any o th e r method.
One stratum may be several c e n tim e te rs
th ic k and weigh several kilo g ra m s .
I th in k i t unwise to t r y to extend
any sample beyond 30 cm h o r iz o n ta lly o r 5 cm v e r t i c a l l y .
Many s tr a ta
are le ss than 2 cm t h ic k .
Each stratum should be separated and washed, as a s u r f ic ia l
a n a ly s is w i l l o n ly reveal few o f the t o t a l species p re s e n t.
T his method
Table 2.
Packrat Middens Analyzed in This Study. —
d u ring s ix time p e rio d s .
Middens are arranged by e le v a tio n
The abundance o f p r in c ip le m a c ro fo s s ils are compared to
t h e ir modern coverage a t the c o lle c tio n s ite o f each midden.
LEGEND:
Fossil concentrations:
7 - >2000/kg.
Modem abundance:
R - 1 or 2/kg; 1 - 3 to 5 / k g ; 2 - 6 to 12/kg; 3 • 13 to 30/kg; 4 - 31 to 100/kg; 5 - 101 to 500/kg; 6
R ■ rare at s ite (<IX cover); C ■ common at s ite (<1% cover); 1 - 1% cover; 2 - 2 to 3X cover; 3 - 4
4 - 7 to 10% cover; 5 ■ 11 to 25% cover; 6 ■ 26 to 50% cover; 7 - >50% cover.
Midden Sites:
501 to 2000/kg;
to 6% cover;
BC - Bass Canyon 36°10'N, 112°22'M; B1 - Blda Cave
36°00'M, 111°57, M; CC ■ Cottonwood Canyon 36o03'Nt 112032'W; Ch ■ Chuar Valley 3 6 ° ir N , 111°55'M; Cl ■ Clear Creek 36°08'N, 112°00'W; GC * Grapevine
Canyon 36°03'N, 112°02'W; GP • Grandview Point 36°00, M, 111059‘M; HC - Hance Canyon 36°02'N, 111058'M; HH • Horseshoe
Canyon 36 15'N, 111 57'H; Su * Supal Group 36°01' N, 111058'W.
Abbreviations:
Mesa 36o02'N, 111059'M; Na » Nankoweap
/V>co * Abies concolor; Acgr * Acacia greggil; Agut * Agave utahensls; Alwr ■
AJoysja w H ghtlJ; Arlu ■ Artemisia ludovlclana; Arte ■ Artemisia trldentata: Atco • Atrlplex confertl fo lia ; Serb ■ Berber Is sp .; Cegr * Ceanothus greggil; Ccpa •
Cdltls p a llid a ; Cetn ■ Cercocarpus in tricatu s; Ceoc - CereIs occldentalla; Come - Cowania mexicana; Cora ■ Coleogyne ramoslsslma; Chmi - Chamaebatiaria
m illefolium ; Enfa « Encella Urlnosa; Enfr • Encelia frutescens; Ephd - Ephedra sp.; Eqhl - Egulsetum hiemale; Peru » Fendlera ruplcola; Feut - Fend!ere 11 a
utahensls; Fone ■ Forsellesla nevadensls; Fran ■ Fraxlnus anomala; Gutr ■ Gutierrezia sp.; Hodu - Holodlscus dumosus; Juco • Junlperus communis; Jumo *
Junlperus monosperma; Juos ■ Junlperus osteosperma; Opba • Opuntla b a s ila ris ; Open » Opuntla erlnaceat Oppa - Opuntia phaeacantha; Opun - Qpuntla sp .;
Oskn ■ Ostrya knadtonl; Pamy » Pachystlma myrslnltes; Pica - Pi cea sp.; Pled « Plnus edulls; P lfl ■ Pinus f l e x llis ; Plpo ■ Pinus ponderosa; Prfa ■ Prunus
fa scl culat a; Prju - Prosopls .lull flo ra ; Psme ■ Pseudotsuga penziesH; Ptpo - Ptclea tr lfo lla t a var. p a llid a; Qucr - Huereus sp.; Qutr - Quercus tu rb ln e lla;
Rhus " Rhus sp.; Ribe ■ Rlbes sp.; Roar » Rosa arizonlca; Rost - Rosa s te lla ta ; Rone • Roblnea neomexicana; Rubu • Rubus sp.; Sado - Salvia d o r ii;
Symp ■ Symphorlcarpos s p .; Thmo - Thamnosma montana; Yuan ■ Yucca angustlsslma;
Elevation
(m)
HI dden
Principal macrofossils (concentration In midden/abundance in modem
community at fossil s ite )
Radiocarbon Date
Material Dated
Pre*Full Glacial Middens >23.000 B.P.
2020
Na9d
Psme 7 /-* P lfl 6 / - , Abco 6 / - , Pica 4 / - , Juos 3/R, Juco 3 /-
23,385 ♦ 772 (A-196S)
P lfl needles
1770
Ch9
Psoe 7 /- , Abco 5 / - , P lfl 5 / - . Juos 3/2 , Rubu 2 /- , Hodu 2 /-
23. 350 ♦ 1110 (A-2026)
Fsme needles
1770
Ch8Cl
Psme X /-, Juso X/-
1100
CC2
Juno 7 /- , Opun 6 / - , Juos 5 / - , Arte 1/1, Agut 1/R, Prfa 1 /-
34,300 ♦ 3570 (HK-181)
Jumo twigs
1100
CC3
Jumo 7 /- , Opun 5 / - , Juos 5 / - , Prfa 3 /- , Rost 1 /- . Atco 1 /-
29,400 ♦ 1800 (A-2185)
Jumo twigs
>27,700 (Rl-1179)
Urlnlferous matrix
CO
CO
T a b le 2 , c o n tin u e d
Elevation
(m)
Hidden
Principal macro fossils (concentration In midden/abundance in modern
community at fossil site)
Radiocarbon Date
Material Dated
Full Glacial Middens 15,000 to 21,000 B.P.
2020
Na9b
P lfl 7 /- , Pica 6 / - , Psme 6 / - , Abco 4 / - , Juco 2 /- , Pamy 2 /-
17,950 ♦ 600 (Rl-1180)
P lfl needles
2020
Na9C
P lfl 7 /- , Psme 5 / - . Pica 5 / - , Abco 5/-, Juco 3 /- , Hodu 2 /-
18,130 ♦ 350 (A-1964)
P lfl needles
1770
CH8b
P lfl 7 /- , Psme 7 /- , Abco 5 / - , Arte 3/C, Hodu 2 /- , Juos 2/2
18,800 ♦ 800 (RL-1178)
Heotoma pellets
1770
Ch8c2
P lfl 7 /- . Psme 7 A , Abco 6 / - , Rubu 4/-, Hodu 4 /- , Juos 2/2
18,490 ♦ 660 (A-2023)
Neotoma pellets
1600
C12
Psme 7 /- , Abco 6 / - , Juos 6 /3 , pin 5/-. Ribe 4 / - , Rost 3 /-
15,840 ♦ 310 (WK-176)
Psme needles
1450
CH2
Psme 7 /- , Abco 7 /- , Arte 5 / - , Juos 4/5, Symp 3 /- , Ribe 2 /-
16,165 ♦ 615 (GX-6302)
Psme needles
1450
HM6
Juos 7/C, Rost 6 / - , Ribe 4 / - , Berb 1 /- , Psme R /-, Atco R/-
18,630 ♦ 310 (A-1798)
Juos twigs
1450
Hill 1b
Juos 7/C, Agut 5/R, Ribe 4 / - , Atco 4/., Rost 4 /- , Opun 3/R
20,630 ♦ 470 (A-2337)
Juos twigs
1100
HC4
Juos 7 /- , Atco 5 /- , Oper 5 /- , Arte R/-
17,400 ♦ 450 (WK-179)
Juos twigs
1100
GC1
Juos 7 /- , Eqhl 5 /- , Opun 5 / - , Atco 4/-, Quer 3 /- , Rost 2 /-
16,400 ♦ 190 (UK-165)
Juos wood
Heotoma pellets
la te Glacial Middens 11 ,500 to* 15,000 B.P.
2050
Na6
Psme 6 /4 , P lfl 6 / - , Pica 5 / - , Abco 5/R, Juco 4 / - , Pamy 2 /-
12,660 ♦ 230 (A-2044)
13,110 ♦ 240 (A-1992)
P lfl needles
2050
Na7a
Psme 6 /4 , Abco 6/R, P lfl 6 / - . Pica 5 / - , Juco 4/-. Pamy 4 /-
12,170 _ 210 (A-1993)
Urinlferous matrix
1630
Cl 3
Psme 6 / - , Abco 5 /- , Juos 5 /3 , Opun 3/R, Chmr 2 / - , Oskn 1 /-
14,050 ♦ 500 (A -1996)
Psme needles
1450
Bile
Juos 5/4 , Rost 5 /- , Opun 5 /1 , Fone 4 /3 , Psme 4 / - , Oskn 3 /-
13,340 ♦ 150 (A-1806)
Heotoma pellets
12,630 ♦ 540 (A -1794)
Psme needles
B12c
Opun 5 /1 , Psme 4 / - , Abco 4 / - , tost 4 / - . Fone 3/3, Ribe 2 /-
13,780 ♦ 240 (A-1790)
Urinlferous matrix
14,170 ♦ 470 (A-1789)
Psme needles
13,470 ♦ 420 (RL-1176)
Heotoma pellets
11,530 ♦ 290 (GX-6305)'
Heotoma pellets
1450
1450
BIBb
Opun 5 /1 , Psme 4 / - , tost 3 /- , Ribe 3 / - , Abco 2 / - , P lfl 1 /-
1450
B18a
Opun 6 /1 , Psme 5 / - , Fran 5/R, Juos 5 /4 , P lfl 3 / - , tost 3 /-
1450
HM7
Juos 7/C, Opun 5 /1 , tost 4 / - , Psme 3 /- , Abco 1 / - , Fran 1/1
13,540 ♦ 170 (A -1805)
Juos twigs
* tost thorns
1460
HIM
Juos 7/R, Rost 5 / - , Opun 4/R, Ribe 3 / - . Ephed 1/3, Atco R/<
13,830 ♦ 790 (A-1780)
1100
HC3
Juos 7 /- , Opun 6/C, Atco 4 / - . Agut 2/R
13,800 ♦ 330 (WK-180)
Juos twigs
12,030 ♦ 220 (A-21M)
Juos seeds
Juos twigs
1100
HC8a
Juos 7 /- , Opun 4/C, Agut 3/C, Fran R /-, Psme R/-
1100
CC1
Juos 7 /- , Opun 6/C, Fran 5 / - , Enfr 3 /- , Rhus 3/R, Acgr 2/1
12,900 1 200 (A-1793)
Ch3
Juos 7 /- , Oper 5/R, Atco 4 / - . A rtr 2 /- , Thmo 1 /- , Cora 1 /-
12,380 ♦ 370 (RL-1177)
Juos twigs
Juos 7 /- , Oper 4/R, Agut 1 /- , Thmo 1 /- , Sado 1 / - , Cora R/-
12,015 ♦ 365 (GX-6303)
Juos twigs
970
970
Ch4
la)
42 *
T a b le 2 ,
Elevation
(m)
c o n t in u e d
HIdden
Principal macro fossils (concentration In midden/abundance In modern
community at fossil s ite )
Radiocarbon Date
Material Dated
Early Holocene Middens 8500 to 11,000 B.P.
1900
BC3
Juos 6/R, Psme 5 / - , Pled 4 /4 , Plpo 3 / - , Qutu 3/C, Rone 1 /-
1900
BC2
duos 6/R, Psme 5 / - , Pled 5 /4 , Qutu 2/C, Ptpa 2 / - , Plpo 1 /-
8900 ♦ 340 (WK-150)
duos twigs
8590 ♦ 110 (WK-147)
duos twigs
8430 ♦ 400 (WK-149)
Psme needles
Psme 6 / - . Pled 5 /4 , duos 3 /2 , Fran 2 /3 , Quer 1 /2 , Plpo 1 /-
9070 ♦ 350 (A-2024)
Neotoma pellets
1770
CH7
1460
B13
duos 6 /4 , Oper 5/1 , Pled 5 /4 , Fran 4/R, Agut 2/C, Ceoc 2/R
10,290 ♦ 150 (A-1808)
duos twigs
1220
C11
Opun 7/1 , xluos 6 / - , Agut 4/C, Fran 2 / - , Rhus R /-, Fone R/-
9400 ♦ 270 (WK-177)
duos twigs
1200
HC2a
duos 6 / - , Ephd 5 /3 , Arbu 3/C, Rhus 3 /3 , Opph 2 / - . Ptpa 1 /-
10.110 ♦ 100 (A-1779)
duos twigs
1100
HC1
duos 6 / - , Ephd 5 /4 , Fran 4 / - , Oper 1 / - , Prfa 1 /- , Rhus 1/R
10,150 ♦ 120 (WK-146)
duos twigs
1100
HM1
duos*6 / - , Fran 5 / - , Ptpa 4 /- , Rhus 2 / - , Roar 1 /- , Oper 1/R
8957 ♦ 96 (A-1765)
duos twigs
950
BC1
duos 5 / - , Ptpa 5 / - , Feru 5 / - , Fran 5 / - , Ephd 3 /4 , Opun 3/R
10,760 ♦ 260 (WK-150)
duos twigs
duos twigs
Mid-Holocene Middens !5500 to 8500 B.P.
2200
GP4
duos 7/2, Psme 5 /3 , Fran 5 / - , Oper 5/C, Pled 3/4 , Plpo 3/R
5510 ♦ 80 (A-1807)
2020
Na9a
duos 6/R, Agut 4 /2 , Qutu 4 /3 , Pled 4 /5 , Opph 3 /- , Celn 2/5
7870 ♦ 140 (A-1994)
Agut le a f
1770
Ch8a
Agut 5/C. duos 5 /2 . Qutu 4 /4 , Cegr 3 /2 . Celn 3/5, Ephd 3/2
7110 ♦ 180 (A-2025)
Agut leaf
1460
B14
Oper 7/1 , Ephd 5 /3 , duos 5 /4 , Agut 5/C, Fran 4/R, Celn 2/R
8470 ♦ 100 (WK-145)
Agut lea f
1430
Chi
duos 7/5, Fran 5/R, Opun 4 / - , Ephd 3 /2 , Agut 2/R, Ptpa 1/3
6830 + 175 (GX-6391)
duos twigs
Late Holocene Middens <2500 B.P.
2170
GPSa
Pled 7/5 , duos 7/5, Come 5 /3 , Arte 5 /2 , Celn 4 /2 , Yuan 4/C
appears young and was not protected
2170
GP9
duos 6 /2 , Pled 6 /2 , Feut 5/R, Ephd 4 /2 , Oper 3/R, Agut 3/1
contains Tea mays
2070
Na4
Pied 7/5, duos 6 /3 , Quer 4 /5 , Agut 3/C. Celn 2 /3 , Rhus R/2
1220 ♦ 70 (A-2336)
Pled needles
2050
NalO
Pled 6 /4 , Psme 5 /4 , Ptpa 5 /3 , duos 4/R , Oskn 4 /5 , Quer 2/4
1170 > 80 (A-1995)
Pied needles
1620
Sul
duos 5 /4 , Pled 5 /4 , Fran 5 /2 , Come 4 /2 , Ptpa 4 /2 , Cegr 4/5
2300 ♦ 90 (A -1799)
Fran twigs
1400
ChlO
duos 6 /5 , Qutu 5 /5 , Prju 5/3 , Ephd 4 /2 , Agut 4/C, Qrbu 3/2
contains Zea mays
1200
HC2b
Oper 7/C, Ephd 5 /3 , Rhus 5/R. Agut 5/R, Arlu 5/C, Yuan 5/C
modern debris pile
1100
Hfllb
Ephd 7/R, Enfr 7/C, Alwr 5/C, Oper 5/R, Prfa 5/R, Fone 4 /-
modern debris p ile
970
Ch5
Oper 6/R, Prju 4/R, Gutr 3/3, Opba 3 / - . Enfa 2 /4 , Ephd 2/R
1345 ♦ 135 (GX-6304)
Neotoma pellets
36
a lso provides m a te ria l fo r te s tin g a qu estion able date as w e ll as vouch­
er specimens o f each species id e n t if ie d .
Sampling R e l i a b i li t y as
In d ic a te d by Modern Middens
E ig h t middens le s s than 1400 years o ld were analyzed in o rd e r to
te s t the p a c k ra ts 1 s e le c t iv it y in re p re se n tin g p la n t com munities.
These
f iv e young, in d u ra te d middens and th re e modern, unindurated d e b ris p ile s
d isp la ye d accurate re p re s e n ta tio n s o f the modern p la n t communities s u r­
rounding them.
The th re e d e b ris p ile s and one o f the ind ura ted middens
were assumed to be young, because the y were e n t ir e ly exposed.
None o f
these middens was in a p ro te cte d s itu a tio n .
Table 3 shows the estim ated coverage o f dominant species in fo u r
modern re le ve s and the c o n c e n tra tio n o f m a c ro fo s s ils from young middens
from those fo u r s ite s .
Coverage fig u re s were estim ated p r io r to a n a ly ­
s is o f the midden c o n te n ts .
Most spe cies, e s p e c ia lly tre e s , are re p re ­
sented w ell in the middens.
While th e data are v a r ia b le , i t is apparent
th a t the g re a te r the modern coverage o f a sp e cie s, the more abundant the
species is in th e midden.
t io n .
Note th a t species d i f f e r in t h e ir re p re se n ta ­
Jun iper and pinyon are v e ry w e ll represented in the midden, w h ile
s im ila r coverages o f Ostrya and oak are represented by fewer f o s s ils .
Future work should enable the c a lc u la tio n o f a tra n s fe r fu n c tio n fo r
each species th a t would e stim ate past coverages from fo s s il
c o n c e n tra tio n s .
Cave d e b ris p ile s cannot be used as modern c o lle c t io n s , as modern­
lo o kin g d e b ris p ile s were seen w ith P leistoce ne d e b ris (Douglas f i r cones
Table 3.
Comparison o f Modern Relevds
1300 Years o f Age. — R e l. =
ra d iu s o f s i t e ) . R = ra re .
__________ 60 m). M id. = c o n c e n tra tio n
Grandview
P t. No. 6
P la n t Species
R el. Mid.
Trees
6%
2580
Juniperus osteosperma
Ostrya know!torn*
R
Pinus e d u lis
22%
4000
Pseudotsuqa m e n zie sii
H
9.3*
P telea t r i f o l i a t a v a r.
p a llid a
Shrubs
Agave utahensis
A rte m isia tr id e n ta ta
Cercocarpus in t r ic a t u s
Cowanea mexicana
Ephedra v i r i d i s
Rhus t r ilo b a t a v a r.
s im p ! ic if o lia
Quercus t u r b in e lla
C
3%
3%
4%
-
C
34
121
74
406
-
3.5
and F o s s il C oncentrations in Four Middens under
re le v d (estim ated percentage cover w ith in a 15 m
C = common (<130. N = present near s ite (w ith in
o f p la n t p a rts in midden (m a c ro fo s s ils /k g )._____
Nankoweap
Grandview
Nankoweap
No. 10
P t. No. 9
No. 4
R el. Mid.
R el. M id.
R el. M id.
4%
-
15%
500
-
3020
2%
2
3%
421
-
283
-
-
-
-
-
-
-
-
C
14
-
-
4%
11
1%
1%
4%
_
-
-
-
-
2%
27
2%
3%
15%
R
35
N
14
6.2
6.2
1.5
-
N . 44
15%
38
10% 1660
150
10%
4%
100
N
2.2
-
-
2%
-
-
-
-
-
N
-
6.7
-
.
38
and H a rrin g to n 's Mountain goat bones) fa r w ith in the Bida Cave.
This
should serve as a warning th a t not o n ly can Holocene m a te ria l contam i­
nate a P leistoce ne d e p o s it, but a lso P leistoce ne m a te ria l can contam i­
nate a Holocene d e p o s it i f th e re are fo s s ils w ith in the p a c k ra t's reach.
Figure 4a shows the values f o r Sorensen's index (Sdrensen 1948)
o f the s i m i l a r it y o f species l i s t s
surrounding the midden s it e s .
from the middens and the re le vd s
Only perennial species were co n sidered,
because the re le vd s could not a l l be completed when annuals were bloom­
in g .
The average value fo r the s ix assemblages under 1200 years o ld is
77% s im ila r it y .
Another index o f t h e ir s i m i l a r it y is Jacca rd's community c o e f f i ­
c ie n t as m o d ifie d by E lle nb erg (1956).
In t h is s t a t i s t i c , the abundance
o f each common and unique species is considered.
For example, in order
to get the value fo r a common sp e cie s, the percent o f fo s s il p a rts w ith ­
in the midden was added to the percent t o t a l coverage o f th a t species
w ith in the r e le v i.
Because those species which are unique to e ith e r the
midden or the r e le v ^ were u s u a lly very small c o n trib u to rs to the t o t a l ,
these values are much higher than those obtained w ith Sorensen's in d e x.
In o th e r words, dominant p la n ts in the modern community are always re p ­
resented in the midden, and the f o s s ils which dominate th e midden are
always present in the modern community w ith in a 15 m ra d iu s o f the m id­
den.
The values f o r the s ix young middens averaged 93% w ith th is index
(F ig u re 4 b ).
The values f o r both Sorensen's Index and Ja cca rd's Community
C o e ffic ie n t are le s s in o ld e r middens..
Figure 4 demonstrates the
Figure 4 ,
S im ila r ity Indices Comparing the Midden Assemblages
and the V egetational Re1eve Surrounding each s ite o f
C o lle c tio n .
39
100-
SORENSEN'S INDEX
A * Number of perenniols ol site todoy
B 8 Number of perennial fossil species in midden
C * Number of perennial species in common
*#
*# #
# #
\
#
#"•
0
5000
10,000
•
•
15,000
.
•
20,000
• 25,000
3QOOO
35,000
YEARS BP
JACCARD’S COMMUNITY
COEFFICIENT
c/2
b+b+c/2
70-
h-
a * % total coverage of perennials at site not
represented in midden
b * % total of fossils not represented o* modern site
c 8 % total coverage of common species+
% total fossils of common species
60- •
z
UJ
O 50<r
LU
•
£L
•
40-
30-
20-
10
0-
i
-
0
5000
10,000
15000
20,000
YEARS BP
________ •_________
25,000
30000
35 0 0 0
40
decrease o f these s i m ila r it y in d ic e s through tim e .
M iddle Holocene m id­
dens average 68% s im ila r it y w ith t h e ir modern s ite s w ith the Sorensen
index.
E a rly Holocene middens average 36% s im i l a r it y , and Late P le is to ­
cene middens average 22% s i m i l a r it y w ith Sorensen's ind ex.
A ll P le is to ­
cene samples are less than 40% s im ila r to t h e ir modern s ite s w ith
Sorensen's ind ex.
The use o f these s t a t is t ic s n a tu r a lly gives r is e to the question
o f c a lib r a tio n o f t h e ir v a lu e s .
two s im ila r p lo ts ?
How high a value should be expected fo r
In o rder to study th is q u e s tio n , fiv e re!eves in
Hanee Canyon were s tu d ie d .
A ll f iv e s ite s are a t s im ila r e le v a tio n s
(± 40 m ), on the same s u b s tra te , on s im ila r slop es, on moderate to in s u ­
la te d exposures and a l l w ith in a 1.5 km ra d iu s .
For these f iv e s it e s ,
the ten com parative values o f Sorensen's index averaged 53%.
The ten
values f o r Ja cca rd 's index averaged 47%.
As a r e s u lt o f these comparisons i t becomes e v id e n t th a t a packr a t midden w i l l g ive a b e tte r re p re s e n ta tio n o f the v e g e ta tio n a t a l o ­
cal s it e than i f a b o ta n is t were sent in to survey the general area.
Two re le vds o n ly 30 m a p a rt, but on d if f e r e n t a sp e cts, gave values o f
35% (SOrensen's) and 15% ( J a c c a rd 's ).
As a r e s u lt o f these s tu d ie s o f modern middens, i t can be con­
cluded th a t the midden a c c u ra te ly r e fle c ts the dominant species w ith in
a 15 m ra d iu s o f the s i t e ; however, in a t le a s t one in sta n ce the r a t
probably c o lle c te d m a te ria l from as f a r as 30 m from the s it e .
No. 5, dated a t 1345
±
Chuar
135 B .P ., co n ta in s a good re cord o f mesquite
le a ve s, tw ig s , and pods.
The o n ly place l i k e l y to have supported
41
m e s q u ite i s
q u ite
is
a wash 3 0 m down t h e r o c k y c l i f f
fro m t h e f o s s i l
s ite .
Mes­
p r e s e n t w i t h i n t h e wash t o d a y .
F o ssil Middens
Below is a b r ie f d e s c rip tio n o f each dated midden arranged by
area.
Nankoweap Middens
The h ig h e st e le v a tio n P leistoce ne middens (co n te n ts on Table 4)
y e t found in Arizona were found in one o f the h ig h e st e le v a tio n o u t­
crops o f Redwall Limestone a t 2050 m.
Nankoweap d ra in a g e .
These outcrops occur w ith in the
Seven o f the p la n t assemblages dated from the Nanko­
weap area f o r t h is re p o rt are from two caves, one on e ith e r sid e o f the
saddle between Novinger and Alsap B uttes (36°15l , m 05 7 ') .
Other caves
w ith in the area were e ith e r too humid to preserve org a n ic m a te ria l or
contained o n ly middens judged to be Holocene (Nankoweap Nos. 1 through
5 ).
Nankoweap middens 6, 7 , 8 , and 10 were recovered from a medium­
sized cave 50 m from the n o rth e a s t corner o f the sad dle.
Midden Nos. 6
and 7 were excavated from a broad s h e lf along the e a st side o f the main
room.
f lo o r .
Access was v e ry d i f f i c u l t , because the s h e lf is 5 m above the
Except f o r the continuous presence o f Douglas f i r near i t s low ­
e s t l i m i t a t the s ite tod ay, the f o s s il species w ith in these middens
c o n tra s t s h a rp ly w ith the modern flo r a recorded on the n o rth e a s t slope
below the cave (S ite 99, Table A - l ) .
13,110 ± 240 and 12,170 ± 210 B.P.
These middens were dated a t
Five species which do not.grow
42
Table 4.
Contents o f middens from Nankoweap drainage (m a c ro fo s s ils /k g ).
M idden Number
110
#4
#9a
#7a
#6
#9b
#9c
#9c
#9d
14C Date
1170
+80
1220
+70
7870
+140
1 2 ,1 7 0
+210
1 3 ,1 1 0
+240
1 7 ,9 5 0
+600
p o lle n
p e rc e n ­
ta g e s
1 8 ,1 3 0
+350
2 3 ,3 8 5
+772
E le v a tio n
2050
2070
2020
2050
2050
2020
2020
2020
M idden Mass (k g )
1 .5
a.e>
1 .3
2 .0
2 .4
1 .9
1 .3
2 .1
A b ie s c o n c o lo r
3 .4
—
--
1200
140
67
4.5%
105
640
A c e r sp .
—
—
—
4 .0
R
—
--
—
—
Agave u ta h e n s ls
2 .2
14
95
—
—
—
- *
R
R
c f . A g ro p y ro n s p .
—
—
--
—
—
8 .8
--
--
--
—
—
PLANT SPECIES
A m e lla n c h le r u ta h e n s ls
—
R
1 .5
A r c to s t a p h y lo s pungens
—
R
—
—
—
--
—
—
—
A r te m is ia s p .
—
—
—
—
—
—
22%
--
—
A s tra g a lu s s p .
—
—
—
--
—
2.1
—
—
--
C e rco ca rp o s I n t r l c a t u s
—
11
9 .2
—
—
—
--
—
--
2 .2
—
--
—
--
--
--
—
—
—
—
—
--
--
--
--
36
C lrs lu m sp .
—
4 .1
--
—
--
1 .6
—
--
--
C om posltae s p .
( I n v o lu c r e s )
R
X
11
2 .5
R
Cowanla m e xica na
—
—
3 .1
—
—
--
--
—
C ry p ta n th a s p .
—
—
—
—
—
R
--
—
C. m ontanus
C h a m a e b a tla rla m il 11 f o liu m
E c h ln o c e re u s s p .
Ephedra s p .
—
—
—
—
-—
—
R
—
—
—
—
9 .0
-—
—
--
—
—
R
—
5 .1 5
--
—
—
--
F e n d le ra r u p lc o la
3 .4
—
--
—
—
—
—
F o r s e lle s la n e v a d e n s ls
—
—
--
—
—
1 .6
--
—
R
F ra x ln u s s p .
3 .4
R
6 .9
—
—
—
--
--
—
G llla
—
—
—
—
—
R
—
--
—
—
—
4 .5
—
4 .1
—
6 .8
sp.
H o lo d ls c u s dumosus
17
43
T a b le 4 ,
c o n tin u e d
M idden Number
#10
#4
#9a
17a
#6
#9b
#9c
#9c
#9d
14C Date
1170
480
1220
+70
7870
4140
1 2 ,1 7 0
4210
1 3 ,1 1 0
4240
1 7 ,9 5 0
4600
p o lle n
p e rc e n ­
ta g e s
1 8 ,1 3 0
4350
2 3 ,3 8 5
4772
• W
98
30
7 .7
W—
27
16
500
900
43
5 .4
1 .6
—
6 .8
20
—
—
—
—
—
- -
—
—
R
L e p id iu m s p .
—
—
—
—
—
- -
- -
- -
R
Lln u m s p .
—
—
—
—
—
1.1
—
1 .5
R
L ith o sp e rm u ra s p .
—
—
—
—
—
—
—
R
- -
—
—
21
—
—
—
—
—
- -
- -
—
7 .6
—
3 .6
—
3 .8
6 .2
O s try a k n o lt o n i
38
—
—
—
R
—
—
—
—
P a ch ystim a m y r s in it e s
—
—
—
50
11
7 .2
—
—
R
P in u s e d u lis
1720
3020
36
- -
—
—
?
—
—
—
J u n ip e ru s communis
• •
J . c f . o ste o sp e rm a
44
ta p p u la s p .
O p u n tia p h a e o c a n th a /
c h lo r o tlc a
c f.
O r iz o p s is hym enoides
P. f l e x i l i s
—
- -
790
660
1 1 ,0 0 0
19%
9400
1800
- -
- -
- -
440
380
980
7.7%
no
43
150
- -
1 .5
1900
1800
640
3.2%
320
P te le a p a l l i d a
100
—
- -
—
- -
—
—
—
Rhus s p .
6 .7
R
R
—
—
- -
—
—
—
R ibes s p .
—
—
—
2.0
2 .5
2 .1
- -
R
8 .1
Rubus s p .
—
—
—
5 .5
—
—
—
- -
17
S h e p e rd ia c a n a d e n s is
—
—
—
1 .0
R
- -
—
R
—
S ym p h o ric a rp o s s p .
—
- -
R
- -
R
R
—
2 .3
R
Q uercus g a m b e lii
10
—
- -
- -
- -
—
- -
- -
—
Q. t u r b i n e l l a
—
35
—
- -
—
- -
- -
—
- -
O', c f . u n d u la ta
—
—
38
- -
- -
—
—
- -
—
13
11
14
14
13
18
15
18
P ic e a c f . pungens
e n q e lm a n n i1
&
P seud otsug a m e n z ie s ii
N
*
Cheno-Am
H ig h S p in e Comp.
.
4.5%
11.5%
Low S p in e Comp.
4.5%
Graminae
6.4%
Legume
4.5%
Cyperaceae
3.2%
"
3000
- -
44
w ith in the canyon today (Lim ber p in e , Pinus f l e x i l i s ; spruce, Picea engelm annii and
pungens; common ju n ip e r , Juniperus communis; and moun­
ta in lo v e r , Pachystima m y r s in ite s ) are common in these middens.
Nankoweap midden Nos. 8 and 10 were removed from the western
w a ll o f the cave.
Midden No. 8 appeared to be Holocene, d id not e x h ib it
c le a r s tra tig ra p h y , and was not dated.
Midden No. 10 was dated a t 1170t
80 B.P. and e s ta b lis h e s a "minimum" age fo r the modern dominants a t the
s it e .
Nankoweap midden Nos. 9a, 9b, 9c, and 9d were excavated from a
la rg e amberat mass 30 m west o f the saddle.
This 3m high amberat mass
coats the back w a ll o f a w e ll-p ro te c te d c re v ic e .
This c re v ic e is prob­
a b ly the remnant o f a branch o f one o f the caves w ith in t h is a re a .
As
many as 20 separate la y e rs e x is t w ith in Nankoweap No. 9, although o n ly
fo u r were sampled.
The youngest o f these was obtained a t the to p o f the
s e c tio n and o ld e s t a t the bottom .
Nankoweap Nos. 9b, 9c, and 9d (17,950
± 600; 18,130 ± 350; and 23,385 ± 772 B .P ., re s p e c tiv e ly ) c o n ta in a good
record o f the P leistoce ne f lo r a o f th is area.
by lim b e r p in e , Douglas f i r ,
These la y e rs are dominated
spruce, and w h ite f i r , a l l o f which are ab­
sent today from t h is s o u th -fa c in g s lo p e .
In c o n tra s t, Nankoweap No. 9a,
d a tin g a t 7870 ± 140 B .P ., seems to re p re se n t a f lo r a much more x e ro p h y tic than th a t o f the modern surrounding re le v e 123 (Table A - l ) .
While pinyon c le a r ly dominates the s ite to d a y , ju n ip e r fo s s ils dominate
th is mid-Holocene f o s s il assemblage.
In a d d itio n , Opuntia sp. is abun­
dant in the fo s s il assemblage but is not recorded modern re le v d .
Pinyon
and shrub liv e oak (Quercus t u r b in e lla ) are abundant a t th e . s it e to d a y ,
45
but pinyon is represented by o n ly 36 needles/kg and shrub liv e oak is
not recorded.
Nankoweap No. 4 was c o lle c te d from a s m a ll, d ry cave in the top
member o f the Redwall Limestone a t the southern edge o f A!sap B u tte .
The midden was dated a t 1220 ± 70 B.P. and co n ta in s a good re p re se n ta ­
tio n o f the surrounding flo r a a t t h is exposed so u th w e st-fa cin g s it e
( s it e 98, Table A - l ) .
T his midden and Nankoweap No. 10 demonstrate th a t
Pinyon needles w i l l dominate a young assemblage a t a s it e where pinyon
is abundant in the modern v e g e ta tio n .
In view o f these r e s u lts , I r e ­
gard the low c o n c e n tra tio n o f pinyon needles in the mid-Holocene Nanko­
weap No. 9a as a s ig n if ic a n t d e v ia tio n from the modern c o n d itio n s .
Chuar Middens
Twelve assemblages were dated from the Chuar drainage east o f
the W alhalla Plateau (co n te n ts on Tables 5 and 6 ).
tio n a l range o f 800 m.
They span an e le v a -
Chuar midden Nos. 8 and 9 were lo c a te d on the
southwestern side o f the saddle between Poston B u tte and C h ia v ria P o in t
(36°10'N , m ° 5 5 ' W ) in an overhung c re v ic e which seems to be th e la s t
remnant o f a form er cave (F ig u re 5 ).
round t h is c re v ic e .
E xtensive tr a v e r tin e d e p o sits s u r­
These two middens provided la y e rs d a tin g from
>27,700 to 7110 ± 180 B.P.
The s it e is a t 1770 m e le v a tio n .
The so u th w e st-fa cin g slope below Chuar Nos. 8 and 9 is dominated
today by l i t t l e
le a f mountain mahogany ( Cercocarpus i n t r ic a t u s ) , shrub
l i v e oak, and pinyon (re le v d 130, Table A -2 ).
None o f these species are
present in the P le isto ce n e middens from t h is s it e .
The f u l l g la c ia l
la y e rs , 8b and 8c2 (18,490 ± 660 and 18,800 ± 800 B .P .) , c o n ta in high
46
Table 5,
Contents o f H igh-E le vation Middens in Chuar V a lle y .
Midden Number
#8a
#7a
#8c2
#8b
#9
ro d
14C Date
modern vegeta tio n a t
s ite
7110
+180
9070
+350
18,490
+660
18,800
+800
23,350
+1110
>27,700
Midden Mass (kg)
J130
1.8
0.68
0.40
0.51
1.5
0.77
S ite Number
(% cover)
130
128
130
130
130
130
Abies concolor
--
--
—
605
210
310
—
Agave utahensis
c
360
--
—
- -
—
—
c f. Aqropyron sp.
- -
—
—
27
—
3.2
--
PLANT SPECIES
Artemisia c f.
trid e n ta ta
c
C eltis re tic u la ta
--
R
—
--
—
--
—
Ceanothus greggii
2%
24
--
--
--
--
—
Cercocarpus
in t r i catus
20%
23
* mm
mm 9
wee
14
Chamaebatiaria
mil 11 folium
Cirsium sp.
R
3.9.
13
—
5.1
17
2.0
2.6
• •
—
Compositae sp.
(involucres)
--
—
2.2
mm mm
- -
Cryptantha sp.
c
--
--
R
R
—
—
Ephedra v ir id is
2%
15
--
--
--
—
- -
Fraxinus sp.
—
- -
8.9
- -
- -
—
- -
2 %
8.9
Galium sp.
—
—
- -
- -
- -
. 1.3
C ilia sp.
—
—
—
- -
- -
3.9
- -
Holodiscus dumosa
- -
- -
- -
37
6 .0
8.4
- -
3%
131
21
10
6 .0
24
X
Forsellesia
nevadensis
Juniperus c f.
osteospenna
—
47
Table 5,
continued.
Hidden Nunfcer
14C
Date
modern vege­
ta tio n
#8a
#7a
#8c2
#8b
#9
#8cl
7110
+180
9070
+350
18,490
+660
18,800
+800
23,350
>27,700
Lappula sp.
- -
——
- -
R
Leoldium sp.
--
—
--
--
Linum sp.
--
—
- -
Lithospermum sp.
c
1 .1
Opuntia chlorotica
c
Opuntia erinacea
+111 0
R
—-
—
R
—
- -
—
1.9
--
R
R
--
1.3
- -
1.7
--
—
—
—
--
—
1 .1
--
—
--
- -
--
c f. Orlzoosis
hymenoides
■ w
3.3
30
4 .0
9.7
mm•
Pinus edulis
6%
2.3
320
—
—
--
—
Pinus f l e x i l i s
—
4.4
--
8350
19,000
190
--
Pinus ponderosa
—
--
3.0
--
—
—
—
Pseudtosuqa
menziesn
——
8.3
750
3050
4300
2200
X
Ptelea t r i f o l i a t a
var. p a llid a
* ##
w mm
• w
• •
- -
—
- -
- -
- -
- -
—
- -
3.0
Quercus c f. gambelii
—
—
4.4
Q. tu rb in e !la
8%
75
- -
Ribes sp.
- -
—
- -
10
- •
- -
- -
Rosa c f. s te lla ta
—
—
—
—
- -
4.5
- -
Rubus sp.
—
—
- -
50
- -
9.7
—
Sheperdia canadensis
- -
- -
- -
- -
R
1.9
—
Symphoricarpos sp.
- -
—
- -
R
- -
1.3
- -
16
8
15
11
20
2
N
=
•
48
Table 6.
Contents o f
low e le v a tio n .middens from Chuar V a lle y
(m a e ro fo s s ils /k g ).
Hidden Number
m
#1
#2
#5
#4
#3
14C Date
<1000
6830
+175
1 6 ,1 6 5
jj5 1 3
1345
+135
1 2 ,0 1 5
+365
1 2 ,3 8 0
+370
Elevation
1400
1430
1450
970
970
970
Mass (kg)
.6 9
.77
1 .4
1 .2
2 .7
.9 9
Abies concolor
--
—
2140
—
—
—
Acacia gregqli
5 .7
—
--
—
--
—
Agave utahensls
38
7 .8
—
3 .2
4 .5
R
PLANT SPECIES
Arqemonae sp.
—
2 .6
R
—
—
--
Artemisia ludovlclana
26
—
R
—
—
—
A. cf. trldentata
—
—
120
—
1.1
10
Atriplex confertlfolla
—
--
--
--
R
31
Brlckellla atractyloldes
--
—
—
R
—
—
Bromus sp.
12
--
—
--
—
—
Ceanothus qreqgll
R
—
—
--
—
—
Cercocarous Intrlcatus
--
—
--
--
R
--
Chamaebatlarla rail!1foilwn —
--
7 .3
--
—
—
Coleogyne ramoslsslma
—
—
--
6 .4
1 .9
4
Compositae sp.
(Involucres)
••
17
Echlnocactus sp.
—
--
—
R
—
—
Echlnocereus sp.
5 .7
—
--
—
1.1
--
Encella farlnosa
—
—
—
8 .0
—
—
Ephedra sp.
3 .5
1 5 .7
—
8 .0
—
--
Fendlerella utahensls
—
—
R
--
--
--
Fraxlnus anomala
—
110
--
—
—
--
Gutlerrezla sp.
—
—
1 .5
16
—
--
Junl penis conmunl s
--
—
2 .9
—
—
—
J. cf. osteospema
1180
2880
92
--
2700
3450
Lappula sp.
—
—
—
—
—
R
Llnum sp.
—
--
R
—
--
—
Opuntla sp. (spines)
566
65
22
1515
96
273
.
2 .8
0.
basllarls (seeds)
—
—
—
24
—
--
0.
chlorotlca (seeds)
17
—
--
--
—
--
17
6.5
8 .7
86
1 .5
R
9 .6
--
—
R
••
--
0.
erinacea (seeds)
0.
phaeocantha (seeds)
--
3 .9
—
0.
whlpplel (seeds)
—
--
—-
49
Table 6, continued.
Hidden Number
#10
#1
#2
#5
#4
#3
14C Date
<1000
6830
+175
16,165
+613
1345
+135
12,015
+365
12,380
+370
Elevation
1400
1430
1450
970
970
970
Mass (kg)
.69
.77
1.4
1.2
2.7
.99
cf. Orlzopsls hymenoldes
--
--
—
--
8.7
—
—
R
—
—
—
Pensterran sp.
—
--
—
—
R
—
Peucephyllum schottll
—
—
—
6.4
—
--
Phoradendron bolleanum
—
—
2.9
—
—
—
Plnus edulls
R
—
—
--
—
--
P. flexllls
—
—
R
—
—
--
Prosopls ju llflo ra
111
—
—
62
—
—
Prunus faclculata
—
—
—
R
--
--
Pseudotsuqa menzlesil
—
R
4390
—
Ptelea trlfo lla ta var.
pallida
••
5.2
■•
Quercus cf. qambelll
—
--
4.4
Q. turblnella
350
5.2
Rhus sp.
R
Rlbes sp.
Salvia dorr11
Ostrya knoltonl
.
—
--
—
——
--
—
--
—
—
--
—
—
R
--
—
—
—
—
—
12
--
—
--
—
--
—
--
2.6
5
Sambucus cf. neomexlcana
—
R
—
--
--
—
Sheperdla canadensis
—
—
2.9
—
—
—
Sphaeralcea sp.
—
--
—
R
—
--
Svmphorlcarpos sp.
—
--
20
--
—
—
Thamnosma montana
—
—
--
R
3.7
5
Yucca baccata
14
--
—
—
--
—
Zea mays
R
--
—
—
--
--
16
15
20
16
12
10
N
-
50
Figure 5.
Chuar middens Nos. 8 and 9. —
Man i s h o ld in g sampled
p o r tio n o f Chuar No. 9 which i s v i s i b l e behind him.
8 i s v i s i b l e a t the r i g h t .
Chuar No.
51
co n ce n tra tio n s o f lim b e r pine as w e ll as abundant Douglas f i r and w h ite
fir
(Abies c o n c o lo r).
Chuar No. 9 (23,350 ± 1110 B .P .) a lso con tains
lim b e r pine but was dominated by Douglas f i r , a lso an e x tra lo c a l species
a t t h is s it e .
These middens are s im ila r to the la y e rs sampled from Nan-
koweap No. 9 (250 m h ig h e r in e le v a tio n ) except th a t they do not c o n ta in
f o s s ils o f common ju n ip e r o r spruce.
Chuar No. 8 cl (>27,700 B .P .) was o n ly recognized as a separate
u n it from No. 8c2 upon d is s e c tio n in the la b o ra to ry .
la y side by side in one ta b u la r chunk o f amberat.
These two u n its
Although i t co n ta in s
few m a c ro fo s s ils , Chuar No. Bel was dated because o f a mountain goat
( Oreamnos s p .) m e tata rsal imbedded w ith in i t .
This o ld e s t u n it in the
s e rie s contained re cogn izable fo s s ils o n ly o f Douglas f i r and Utah j u n i ­
per.
Most o f the d e p o s it was decayed.
Chuar No. 8a (7110 ± 180 B .P .) was s im ila r to the x e r ic vegeta­
tio n present a t the s it e today w ith the exce ption o f e ig h t lim b e r pine
needles and 15 Douglas f i r needles, both e x tr a lo c a ls , and the presence
o f o n ly f iv e pinyon needles, a p la n t abundant a t the s it e to d a y.
I con­
s id e r the e x tra lo c a l fo s s ils to be contam inants probably c o lle c te d by
the packrat from surrounding f o s s il middens.
Many thousands o f needles
protrude from o th e r middens in t h is s e rie s , a l l w ith in 2 m o f each o th e r.
The midden Chuar No. 7a (9070 ± 350 B .P .) was c o lle c te d on the
op posite (n o rth e a s t) sid e o f the same saddle.
This midden co n ta in s re c ­
ords o f not o n ly e le v a tio n a lly depressed e x tra lo c a l species (Douglas f i r )
but a lso the e a r lie s t record o f the in va sio n o f Ponderosa pine and pinyon
in to th is draina ge.
52
Chuar Nos. 1, 2, and 10 were c o lle c te d a t low er e le v a tio n s
(1400-1450 m) in the Tapeats Sandstone between Poston B utte and Cape
Final (N atchi Canyon) (F ig u re 3
).
Chuar No. 2 (16,165 ± 615 B .P .) is
dominated by Douglas f i r , w h ite f i r , Utah ju n ip e r , and sagebrush (A rte ­
m isia
c f . t r id e n t a t a ) .
This midden is the best in d ic a tio n o f the f u l l
g la c ia l v e g e ta tio n on noncalcareous su b stra te s a t these m id -e le v a tio n s .
I t co n ta in s the low est e le v a tio n a l record o f common ju n ip e r and the
g re a te s t c o n c e n tra tio n o f sagebrush lea ves.
The modern v e g e ta tio n a t
th is s ite is in d ic a te d by re !e v e 116 (Table A -7 ).
Chuar No. 1 (6830 ± 175 B .P .) con tains a record o f f o s s il vege­
ta tio n s im ila r to the present v e g e ta tio n ( s it e #117, Table A -7 ), a l ­
though pinyon p in e , present today ju s t beyond the 15 m re !e v e boundary,
is not represented.
Chuar No. 10 is a c o lle c t io n o f non-indurated packrat d e b ris from
an a rch a e o lo g ica l s it e .
The d e b ris postdates the a rc h a e o lo g ic a l s it e
which is t e n ta tiv e ly dated a t 1050-1150 A.D. (R. C. E u le r, w r itte n com­
m u n ica tio n , 1979).
In a d d itio n , the midden co n ta in s a rc h a e o lo g ica l rem­
nants such as Zea mays.
The r a t d e b ris p ile represented the modern
flo r a both q u a lit a t iv e ly and q u a n t it a tiv e ly ( s it e #131, Table A -7 ).
Only two o f 15 p la n ts recorded in the d e b ris were not present in the
re le v d (a lthou gh they are present near the a r e a ).
pinyon and c l i f f r o s e
W ith the exce ption o f
( Cowania m exicana), both u n d e r-re p re s e n te d , the de­
b r is a lso gave an accurate q u a n tita tiv e account o f the community
dominants.
53
Chuar midden Nos. 3 , 4, and 5 were c o lle c te d a t 970 m e le v a tio n
from the n o rth w all o f Carbon Creek (36o9'20"N, m ° 4 9 l 30"W) low er in the
the Chuar drainage where the Tapeats Sandstone has been downdropped on
the east sid e o f th e B utte F a u lt.
Midden Nos. 3.(12,380 ± 370 B .P .) and
4 (12,015 ± 365 B .P .) are v e ry s im ila r , as the y are dominated by Utah
ju n ip e r and Opuntia sp.
However, No. 3 co n ta in s many shadscale (A t r i -
plex c o n f e r t if o l i a ) f r u i t s , w h ile No. 4 co n ta in s o n ly one shadscale
fr u it.
The midden Chuar No. 5 (1345 ± 135 B .P .) co n ta in s a good re p re ­
s e n ta tio n o f the p la n ts present a t the s it e today (re le v d 120, Table
A -8 ).
Clear Creek
Three middens were c o lle c te d from C lear Creek Canyon (36°08, N,
112°00'W) on the n o rth side o f the r iv e r (Table 7 ) .
Nos. 2 and 3 were
c o lle c te d from the la rg e amberat mass on the south w a ll o f Luka Cave.
C lear Creek No. 2, dated a t 15,840 ± 310 B .P ., is the low est midden
(1600 m) w ith an ample record o f lim b e r p in e .
The presence o f lim b e r
pine and the dominance o f the e x tr a lo c a ls , Douglas f i r and w hite f i r ,
is
in sharp c o n tra s t to the modern f lo r a o f b ig sagebrush, Utah ju n ip e r ,
and shrub l i v e oak present on th is n o rth e a s t-fa c in g slope today (re le v d
81, Table A -2 ).
C lear Creek No. 3 (dated a t 14,050 ± 500 B .P .) is a ls o
dominated by Douglas f i r and w h ite f i r
but co n ta in s no lim b e r p in e .
C lear Creek No. 1 (dated a t 9400 ± 270 B .P .) was c o lle c te d from
a d ry wash in the Tapeats Sandstone 400 m n o rth o f the C lear Creek fo rk
e n te rin g from Cape R oyal.
J u n ip e r, ash, and Rhus sp. are the o n ly
54
Iftb le 7.
Contents o f middens from Horseshoe Mesa and Clear Creek
(m a crofossil s /k g ).
Su = Supai (near Horsehoe Mesa); HM = Horseshoe
Mesa; Cl = C lear Creek.
HM7a
HM
Cl 3
Cl 2
HM6
HHlIb
13,540
+170
13,830
+790
14,050
+500
15,840
+310
18,600
+310
20,630
+470 ^
1450
1460
1460
1600
1600
1450
1450
1.0
0.6
1.1
.44
2.6
.94
.47
—
3.3
—
285
1600
—
—
--
2
--
—
—
—
—
--
--
194
—
—
4.5
—
--
110
Site Number
Su 1
14C Date
2300
+90
Elevation
1620
Mass (kg)
1.4
Abies concolor
—
Acacia qreqil
Agave utahensis
HMB
TSurface
debris
PLANT SPECIES
Araemonae sp.
--
—
3.3
--
R
—
--
—
Artemisia cf. trldentata
R
—
3.3
—
--
R
—
--
Atriplex confertlfolla
—
—
--
R
--
—
R
34
Berberls sp.
—
--
3.3
R
--
—
4.3
—
Ceanothus qregqil
39
—
--
—
--
—
--
—
Cercocarpus intrlcatus
22
--
—
—
—
—
—
—
Chamaebatlaria ml111fol1um —
--
—
1.9
9.1
R
—
—
Cirslum sp.
—
--
—
1.9
--
--
—
—
Composltae sp.
(Involucres)
R
R
8.3
1.9
«•
2.1
4.3
Cowanla mexlcana
65
—
—
—
—
--
—
—
Echinocactus polyaphalus
--
122
—
—
—
—
—
—
Echlnocereus sp.
—
—
R
--
R
—
3.2
—
Ephedra sp.
2.1
51
--
2.8
—
--
R
--
Fendlera rupicola
1.4
—
—
—
—
--
—
—
Fendlerella utahensis
44
--
--
—
--
—
R
—
Forsellesia nevadensls
—
—
--
2 .8
—
--
1.1
--
Fraxinus anoma1a
131
18
5.0
R
--
--
—
—
Galium sp.
—
--
--
—
—
—
4.2
—
Holodlscus dumosus
--
—
—
—
—
--
1.1
—
Juniperus cf. osteosperroa
350
41
2530
3700
213
670
4260
2580
Lappula sp.
--
—
—
--
—
—
2.1
—
Lepidium sp.
—
--
—
--
--
—
2.1
R
——
••
——
——
--
R
--
LIthospermum sp.
55
Table 7, continued.
Site Number
Su 1
14C Date
2300
+90
Elevation
1620
Mass (kg)
HH7a
HM4
Cl 3
Cl 2
HM6
HMllb
13,540
+170
13,830
+790
14,050
+500
15,840
+310
18,600
+310
20,630
+470
1450
1460
1460
1600
1600
1450
1450
1.4
1.0
0.6
1.1
.44
2.6
.94
.47
Opuntla sp. (spines)
R
?
165
70
18
--
53
19
0. cf. basllarls (seeds)
—
22
—
—
—
--
—
—
0. cf. erlnacea
—
—
—
R
—
—
—
R
0. cf. phaeocantha
—
—
—
1.9
—
—
--
—
cf. Oryzopsls hyroenoldes
—
—
--
—
4.5
17
—
—
Ostrya knoltonl
—
—
—
—
4.5
—
—
—
Penstemon sp.
—
—
R
—
—
—
— .
—
—
—
—
—
HHS
?Surface
debris
Phacella sp.
—
—
—
1.9
Phoradendron bolleanum
R
—
—
—
—
—
—
—
Plnus edulls
325
—
—
—
—
—
—
—
P. fle x llls
—
—
—
—
—
170
—
R
Pseudotsuga menzlesll
—
--
17
—
1470
7300
2 .1
—
Ptelea trlfo lla ta var.
pallida
44
--
—
--
—
—
—
—
Rhus sp.
—
11
--
--
—
—
--
--
Ribes sp.
--
—
—
13
—
33
32
38
Rosa cf. stellate
—
2
66
360
R
17
510
32
Symphoricarpos sp.
—
—
—
1.9
—
—
—
R
14
10
13
16
11
9
17
10
N =
56
e x tra lo c a ls recorded in the midden from th is sou th w e st-fa cin g s it e a t
1220 m e le v a tio n (re le v d 80, Table A -8 ).
C lear Creek No. 1 midden was c o lle c te d from a small overhang
near the ce n te r o f a wash d ra in in g from the Tonto P latform down in to
Clear Creek.
I t seemed u n lik e ly th a t the d e p o s it could be o f g re a t age
because o f i t s exposed p o s itio n .
The date on the midden demonstrates
th a t t h is small drainage has not received s ig n if ic a n t drainage (o r e ro ­
s io n ) since a t le a s t the P le is to c e n e , o r e ls e t h is d e p o s it would have
been destroyed.
Tse'an Bida Cave
Seven assemblages (Table 8) were dated from de posits c o lle c te d
in Bida Cave (36°N, 112°W) (F ig u re 6 ) .
The cave is la rg e and has a t
le a s t two entrances between 1430 and 1470 m in e le v a tio n .
Midden No. 2
was c o lle c te d 60 m in s id e the cave from a small crawl way o f f the south
side o f the la rg e low er entrance room.
e s t c o lle c te d in t h is stu d y .
This 3.4 kg sample was the la r g ­
The la rg e siz e made p o s s ib le a date on f i r
(14,170
± 470 B .P .), d e s p ite the
r e la t iv e ly low c o n c e n tra tio n o f Douglas
f i r and
w h ite f i r needle s.
date matches w e ll w ith a 13,780 ± 240
This
B.P. date on a s o lid mass o f u r in ife r o u s m a trix from the midden.
Bida No. 1 was c o lle c te d from the f lo o r o f a low dead
l e f t as
one approaches (on one's
end to the
b e lly ) the second la rg e room (J u n c tio n
Room) from the bottom entrance (180 m in s id e the c a v e ).
Like Bida No.
2, th is midden was dated tw ic e —on f i r needles (12,600 ± 540 B .P .) and
on Neotoma p e lle ts from a small p o rtio n o f the midden (13,340 ± 150
B .P .).
The dates are reasonably c o n s is te n t, although I accept the o ld e r
57
T a b le 8 .
C o n t e n t s o f m iddens fro m T se an B id a Cave ( m a c r o f o s s i l s / k g . )
Hidden Number
14C Date
Modem
X cover
at site
(releve*
140)
Hass (kq)
#6b
#4
13
#8a
*8b
lie
#2
6800
♦220
8470
♦100
10.290
♦150
11,530
♦290
13,470
♦420
13.340
♦150
13.780
♦240
1.2
1.2
2.2
.21
.62
2.3
3.4
PLANT SPECIES
Abies concolor
—
—
—
--
14
8
4.6
34
Agave utaiwnsls
C
260
138
11
--
—
—
2.1
Amelanchier utahensts
—
—
--
—
--
R
3.5
—
Arqemone sp.
—
—
—
—
--
--
24
6.8
Atrlplex confertlfolla
—
--
—
—
--
—
—
R
Cercls occidental Is
R
—
—
5.4
--
—
—
--
Cercocarpus Intricatus
R
—
6.8
—
—
—
--
—
cf. Cercocarpus (seed)
R
--
—
—
—
--
--
R
R
R
Chamaebatlarla
mil 11 folium
Clrslun so.
--
--
—
--
—
Compositae sp.
(Involucres)
--
2.3
R
40
R
62
Cowan1a mexlcana
5%
4.3
R
—
—
--
—
—
Cryptantha sp.
—
--
—
—
—
—
—
R
Echlnocereus sp.
C
7.8
--
—
--
--
3.5
R
Ephedra sp.
55
50
142
—
—
—
—
—
Forsellesli nevadensls
4%
—
—
--
R
R
55
16
Fraxlnus anomala
R
69
73
34
178
—
13
R
Juntperus cf. osteosperma
10%
157
142
1090
113
—
299
R
lepldlum sp.
—
--
—
—
--
—
4.6
1.3
Llnum sp.
-*
--
--
--
—
—
R
—
Llthospemum so.
—
—
—
—
—
—
4.6
2.5
Opuntla sp. (spines)
—
916
3000
236
800
330
143
161
0. chlorotlca (seeds)
R
2.6
—
—
—
—
—
—
—
0. erlnacea (seeds)
15
384
483
2.7
—
--
—
0. phaeocantha (seeds)
—
1.7
—
—
—
•-
—
--
0. whlpplel (joints)
—
R
—
—
—
--
--
--
Ostrya knoltoni
—
—
—
--
—
--
16
2.1
Penstemon sp.
C
--
—
1.4
--
--
-•
——
Phacelia sp.
—
—
—
••
--
•»
—
—
R
Plnus edults
105
—
R
100
--
--
--
--
P. fle x llts
—
—
—
R
28
4.8
2.3
2.1
Pseudtosuqa menzlesll
—
—
—
R
291
39
36
63
Rhamnus cf. betulaefolla
--
--
5.1
—
—
--
Rhus sp.
R
10
R
—
—
--
--
R
Rites sp.
—
—•
—
—
R
14
17
8
Rosa cf. stellate
—
—
—
R
19
21
143
35
Symphortcarpos so.
—
--
—
—
—
—
13
5.5
11
10
10
9
9
20
25
H
-
R
'
58
date as more r e lia b le because i t s la r g e r sample enabled a low er standard
d e v ia tio n .
Bida Nos. 5 and 8 are lo c a te d along a walkway to the n o rth e a s t
o f the Ju n ctio n Room.
These middens are probably w ith in 5 m o f Bida No.
1, although i t is im po ssible to get to them w ith o u t moving back through
the la rg e Ju n ctio n Room.
Bida No. 8 is a cone-shaped p ile o f amberat
resem bling a volcano (F ig u re 7 ) .
around a hole in th e f l o o r .
E v id e n tly the packrats deposited i t
The f l u i d accum ulations o f r a t u rin e must
have b u i l t i t up much the same as la va flow s b u ild a v o lc a n ic cone.
In
o rder to determ ine the ra te o f t h is b u ild -u p , two se ctio n s o f the midden
were dated.
S ection 8b, from the bottom o f the p ile , was dated a t
13,470 ± 420 B .P ., w h ile s e c tio n S a l, 5 cm above i t , was dated a t 11,530
± 290 B.P.
These re s u lts in d ic a te a b u ild -u p a t a ra te o f 1 cm/388 y r s .
However, the layered nature o f the midden suggests a p e rio d ic
c o n s tru c tio n .
Bida No. 5 is a ta b u la r s h e lf o f am berat, a c c e s s ib le through a
hole in the f lo o r near No. 8.
sembles modern r a t d e b ris .
I t o v e rlie s a la rg e d e b ris p ile which re ­
However, on to p o f the p ile are Douglas f i r
cones which are alm ost c e r ta in ly P le isto ce n e in age, because Douglas f i r
occurs 700 m h ig h e r than the s it e to d a y.
A rat-gnawed horn sheath o f a
H a rrin g to n 's e x tin c t mountain goat ( Oreamnos h a r r in q to n i) was a ls o c o l­
le c te d from the surface o f th e p ile .
T his d e b ris , along w ith o th e r
. P leistoce ne fo s s ils on the modern surface o f the cave, provide a strong
argument f o r m onospecific d a tin g o f im p o rta n t spe cies.
These f o s s ils
could e a s ily be picked up by some fu tu re packrat and in c o rp o ra te d in to a
59
Figure 6.
View o f Tse' an Bida Cave. —
Entrance is 60 m wide.
60
midden.
Bida Nos. 5 and 8 c o n ta in m o stly packrat p e lle ts w ith a low
c o n c e n tra tio n o f f o s s ils o th e r than Opuntia spin es.
Because o f t h i s ,
Bida No. 5 was not dated and I am not f u l l y c o n fid e n t o f the v e g e ta tiv e
re s u lts from No. 8.
Both la y e rs co n ta in records o f Douglas f i r and lim ­
ber p in e , but u n t il these few needles can be radiocarbon dated to te s t
f o r co n ta m in a tio n , I am h e s ita n t to accept the presence o f those spe­
c ie s near the cave a t 11,530 B.P.
The most remarkable aspect o f Bida Nos. 5 and 8 is th a t they are
240 m from e ith e r cave en tran ce.
However, we do not n e c e s s a rily have to
invoke a super-spelu nking p a c k ra t, because the room a d jo in in g these pas­
sages c o n ta in s numerous crawl ways and is f i l l e d w ith breakdown.
The
abundance o f f o s s il m a te ria l in th is room suggests th a t another entrance
fo rm e rly e x is te d (o r s t i l l does e x i s t ) .
Bida Nos. 3, 4 , and 6 were c o lle c te d from the upper room (= 40 m
in s id e the upper e n tra n c e ). - These th re e middens p rovide a s e rie s o f
Holocene d a te s.
The o ld e s t midden. No. 3 (10,290 ± 150 B .P .) , co n ta in s
the e a r lie s t record o f pinyon pine ( Pinus e d u lis ) w ith in the study area.
Bida No. 4 (8470 ± 1 0 0 B .P .) presents a m arkedly d if f e r e n t assemblage
w ith on e -te n th the c o n c e n tra tio n o f ju n ip e r and o n ly one needle o f p in ­
yon.
Bida No. 6 (6800 ± 220 B .P .) is very s im ila r to No. 4 but co n ta in s
no pinyon.
The absence o f pinyon in these mid-Holocene samples is i n ­
tr ig u in g in l i g h t o f the abundant pinyon a t the s it e today ( s it e 40,
Tab!e A -3 ).
The dates on these th re e middens support the o b s e rv a tio n th a t
th is upper room has been sub jected to co m p a ra tive ly re c e n t flo o d in g
61
from the wash above the upper cave e n tran ce, probably d e s tro y in g (o r
b u ryin g ) any P leistoce ne remnants.
Horseshoe Mesa
Four middens (Table 7) were c o lle c te d from th re e caves in the
west side o f Horseshoe Mesa (36°02, N, m
059'W).
Horseshoe Mesa Nos. 6
and 7 were c o lle c te d from Babylon Cave a t 1450 m e le v a tio n (re le v d 35,
Table A -3 ).
No. 6 (18,600 ± 310 B .P .) is p a rt o f the complex amberat
mass 4 m e a st o f the e n tra n ce , w h ile No. 7 (13,540 ± 170 B .P .) was c o l­
le c te d fu r th e r in s id e the cave.
Both middens are dominated by ju n ip e r
tw igs ( Juniperus c f . osteosperma) and rose tho rns ( Rosa c f . s t e l l a t a ) .
Both middens a lso c o n ta in several needles o f Douglas f i r and w h ite f i r .
This exposed slope on the west s id e o f Horseshoe Mesa probably supported
the low est P le isto ce n e exte nsion o f these f i r s on a x e r ic s lo p e , ju s t as
i t supports one modern ju n ip e r a t the low er edge o f to d a y 's woodland.
Horseshoe Mesa No. 4 was c o lle c te d from the Cave o f th e Doves
on another x e r ic slope on the western side o f Horseshoe Mesa a t 1460 m
e le v a tio n .
This midden (dated a t 13,830 ± 790 B .P .) is a lso dominated
by ju n ip e r tw igs and rose th o rn s but w ith o u t any f i r needles.
Horseshoe Mesa Nos. la and lb were c o lle c te d from the Tapeats
Sandstone d ir e c t ly n o rth o f Horseshoe Mesa a t 1100 m e le v a tio n .
No. la
con sisted o f an ind u ra te d mass dated a t 8957 ± 86 B .P ., w h ile No. lb is
a modern d e b ris p ile .
Midden No. la is dominated by Utah ju n ip e r , s in ­
g le le a f ash ( Fraxinus anomala) , and hop tre e ( Ptelea t r i f o l i a t a
p a llid a ) - - a l l absent from the s it e today.
ssp.
Midden No. lb is dominated by
lo c a l species such as Mormon tea (Ephedra v i r i d i s ) and E ncelia fru te s c e n s .
t>7-
F igure 7 .
w ide.
View o f Bida Cave Midden No. 8. - -
Notebook is 18 cm
The bottom la y e r o f t h i s d e p o s it was dated a t 13,470
+ 420 B .P ., w h ile the top l a y e r was dated a t 11,530 + 290 B.P.
63
Fourteen o f the 17 taxa present in No. lb are lo c a te d in re le v d 8 (Table
A-8) a t the s it e .
Horseshoe Mesa No. 8 is a c o lle c tio n o f pa ckra t d e b ris from the
cave f lo o r near No. 6.
little
Although the m a te ria l was on the s u rfa c e , I have
confidence th a t i t is a l l contemporaneous.
Although i t was not
dated, i t s contents are presented in the ta b le .
Horseshoe Mesa No. 11 was c o lle c te d from a small cave a c c e s s ib le
along a narrow ledge 50 m n o rth o f Babylon and B e lfre y Caves.
den was dated a t 20,630 ± 470 B.P.
This m id­
I t co n ta in s an assemblage s im ila r to
Horseshoe Mesa No. 6, except fo r an absence o f Douglas f i r and an abun­
dance o f shadscale.
These re s u lts are e n t ir e ly c o n s is te n t w ith the
s l i g h t ly more x e r ic exposure o f the modern s it e .
No P leistoce ne age de­
p o s its were lo ca te d in nearby C rysta l Forest Cave.
Hance Canyon
Six middens (Table 9) were c o lle c te d from the Tapeats Sandstone
in low er Hance Canyon between 1100 and 1200 m e le v a tio n (36°02'N , 1110
58'W ).
These middens, ad jacen t to the Tonto P la tfo rm , record an i n t e r ­
e s t in g t r a n s it io n from P leistoce ne to e a rly Holocene.
dens are dominated by Utah ju n ip e r .
A ll o f th e m id­
P leistoce ne midden Nos. 4 and 3
(17,400 i 450 and 13,800 ± 330 B.P., re s p e c tiv e ly ) a ls o c o n ta in abundant
shadscale (A tr ip le x c o n f e r t i f o l i a ) . which is absent from the younger
middens.
The e a rly Holocene midden Nos. 2a and 1 (10,150 ± 120 and
10,110 ± 100 B .P .) c o n ta in abundant Mormon tea ( Ephedra s p .) and s in g le
le a f ash, n e ith e r o f which is present in the o ld e r middens.
Hance No.
8, dated a t 12,030 ± 220, seems to document a t r a n s it io n period a f t e r
T a b le 9
Contents o f middens from Tonto P la tfo rm s ite s (m a c ro fo s s ils /k g ). " HM = Horseshoe
Mesa; H = Hance Canyon; CC = Cottonwood Canyon; CL = C lear Creek; GC = Grapevive
Canyon.
Site and Hidden
HHIb
HC2b
HMla
CU
14C Date
modern
debris
modern
debris
8957
+96
9400
+270.
10.100
+1(X)
10,150
+120
12,030
+220
12,900
+200
13,800
+330
16,400
+190
17,400 29.400
+450
+1800
Mass (kn)
.04
.05
1.0
1.6
1.4
.77
.61
.51
.84
1.1
1.0
1.2
2.2
Elevation (m)
1100
1200
1100
1220
1200
1100
1100
1100
1100
1100
1100
1100
1100
--
—
—
--
—
—
--
7.9
—
—
—
—
—
Agave utahensls
—
195
--
56
1.4
—
16
R
9.5
R
—
--
2.7
Aloysla wrlnhtll
400
—
—
—
—
R
—
—
—
—
—
—
—
Artemisia ludovlclana
—
175
3
—
21
—
—
5.9
—
--
—
—
—
A. cf. trtdentata
--
--
—
—
—
—
—
—
—
2.8
R
--
36
Astragalus sp.
400
—
--
—
-
--
—
—
--
—
--
—
--
—
12
—
--
—
—
--
63
350
2.5
1.0
HC2a
MCI
HC8a
CCIa
MC3
GCIa
HC4
CC3b
CC2
34,300
+3570
PLANT SPECIES
Acacia qregqli
Argemone sp.
Atrlplex canescens
—
--
—
--
-
—
A. confertlfolia
—
—
—
—
-
—
—
—
69
Bernardla Incana
--
R
--
—
-
--
—
—
—
--
—
—
—
Bromus rubens
R
—
—
--
—
—
—
—
—
—
—
—
—
Castllleja sp.
—
—
—
--
R
—
—
—
--
--
—
--
--
cf. Cercocarpus sp.
--
R
—
--
--
—
--
Chamaebatlarla
mil 1Ifollum
Clrslum sp.
• w
—
--
--
—
R
—
--
—
--
--
—
--
—
■*
•
15
wee
wm
eew
36
--
3.7
--
—
--
5
T a b le 9 ,
c o n tin u e d
Site and Hidden
HHIb
HC2b
HMla
cn
HC2a
HC1
HC8a
CCIa
HC3
GCla
HC4
14C Date
modem
debris
modem
debris
8957
9400
♦270.
10.100
♦100
10,150
♦120
12,030
♦220
12,900
♦200
13,800
♦330
16,400
♦190
17,400 29,400
♦450
+1800
Compositae sp.
(involucres)
Cryptantha sp.
♦96
R
450
Echinocactus
polycephalus
—
R
__
..
5.9
7.1
15
4.9
CC3b
CC2
34,300
♦3570
—
--
—
2.6
—
—
—
--
--
--
—
--
--
—
R
--
--
--
--
--
--
—
--
--
24
--
--
--
--
--
5.9
—
—
--
—
—
--
R
Echlnocereus sp.
—
Encella frutoscens
4050
—
—
—
R
Ephedra sp.
5880
370
6
—
114
213
—
E. torreyana
--
273
--
--
--
—
—
—
—
--
—
--
Erlogonum sp.
--
39
--
--
—
--
—
--
--
—
--
—
—
Equisetum cf. hyraale
--
—
--
--
—
--
—
--
--
167
•-
—
--
Fallugia paradoxa
--
A
--
R
—
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
—
—
Forsellesia nevadensis
75
156
—
R
—
Fraxinus anoma1a
—
—
140
7.0
71
71
R
267
--
--
--
--
--
Galium sp.
--
--
--
--
--
R
--
--
--
--
--
--
--
Gutierrezla sp.
250
R
--
--
—
—
—
--
—
--
--
--
—
Juniperus cf. monosperma - -
—
--
--
—
—
—
—
--
--
—
3570
2670
J. cf. osteosperma
—
—
1930
1290
1380
1038
1600
17.200
15.800
3000
7680
258
200
—
—
--
2.6
—
--
--
—
—
—
—
Lappula sp.
—
--
Lepidium sp.
6250
—
—
--
--
R
--
--
4.8
30 .
—
--
--
HlrabllIs sp.
—
R
--
—
—
—
--
3,9
--
--
--
--
--
Opuntia sp. (spines)
130
14,700
—
2220
12
—
57
590
1220
113
500
297
813
0. erlnacea (seeds)
200
—
5
16
-—
5 .2
—•
——
«-
-—
3.0
1.7
••
cn
T a b le 9 ,
c o n t in u e d
S ite end Hidden
HHlb
HC2b
HMIa
C ll
HC2a
HC1
HC8a
CGI a
HC3
GCIa
HC4 •
CC3b
, 4 C Date
modem
debris
modem
8957
+96
9400
4270
10,100
4100
10,150
debris
4120
12,030
4220
12,900
4200
13,800
+330
16,400
+190
17,400
+450
2 9,400
+1800
0. phaeecanthg (seeds)
153
—
0. whipplel
—
—
Orlzopsts sp.
—
R
Phacella sp.
75
--
Phlox sp.
42
—
—
--
--
—
--
—
R
R
..
—
—
--
—
--
—
--
--
—
—
—
—
--
--
--
—
—
R
—
--
—
—
—
—
—
—
■
—
—
--
3.3
2 .8
--
--
—
--
—
-
--
--
--
3.9
—
--
--
Phorattendron bolleaniwi
—
125
Pseudotsuqa menzlesll
—
--
--
—
R
—
R
—
*“
Ptelea trlfo lla ta var.
pal Hda
—
—
57
--
3.6
--
—
-
—
Quercus cf. gambeli1
—
—
—
—
—
—
--
—
Rhamnus cf. betulaefolla - -
--
--
—
15
—
R
—
1 .9
16
2.6
--
Rhus sp.
R.
34,300
+3570
--
Prunus facleulata
Rosa arlzonlca
CC2
R
2.3
370
8
--
5
--
--
--
5.6
—
22
--
—
-
--
--
--
--
--
--
14
--
--
R
—
-
—
—
—
—
—
—
—
Rosa cf. stellata
--
—
--
--
--
—
--
—
7.4
--
3.3
--
Rubus sp.
—
--
—
—
--
--
•-
—
3.7
—
--
--
Salvia dorril
—
—
--
—
--
—
--
3.9
--
2.0
Sphaeralcea sp.
100
39
--
—
--
2.6
—
—
--
2.0
Symphoricarpos sp.
--
--
--
--
—
—
—
—
--
--
—
---
--
3.3
—
Thysanocarpus sp.
--
—
R
--
—
—
—
--
--
--
—
Yucca angustlssima
--
156
—
—
—
—
—
R
--
--
--
N -
15
16
10
8
14
13
8
15
7
15
7
9
7
67
the lo ss o f shadscale y e t be fore the invasion o f Mormon tea and s in g le
le a f ash.
Hanee Canyon No. 2b is a modern d e b ris p ile c o lle c te d w ith in 1 m
o f the in d u ra te d No. 2a.
I t is assumed to be re cent because i t was not
p ro te cte d from r a in , and green p la n t fragments were on the p ile .
Grapevine Canyon
One midden (Table 9) was c o lle c te d from among numerous d e posits
in the Tapeats Sandstone on the west side o f Grapevine Canyon a t 1100 m
e le v a tio n (36o03'N , 112°02'W ).
The midden (dated a t 16,400 ± 190 B .P .)
is very s im ila r to the P leistoce ne middens from Hance Canyon.
I t has an
abundance o f shadscale and no Mormon tea o r s in g le le a f ash.
The midden is loca ted 30 m up a steep c l i f f from an a c tiv e cre ek.
The r ip a r ia n area was probably the source o f the abundant f o s s il horse­
t a i l stems ( Equisetum c f . hiemale) .
This midden is the o n ly P le isto ce n e
record o f hop tre e ( P telea t r i f o l i a t e v a r. p a llid a ) and one o f the two
P leistoce ne records f o r Gambe1 oak ( Quercus g a m b e lii) , and is the low est
(1100 m) record fo r fernbush ( Chamaebataria m i l l i f o l i a ) .
•
Cottonwood Canyon
Three middens (Table 9) were dated from the Tapeats Sandstone a t
the western t i p o f Cottonwood Canyon a t 1100 m e le v a tio n (36°03I N, 112°
0 0 'W).
Two o f these middens (Nos. 2 and 3) produced the o ld e s t f i n i t e
dates (29,400 ± 1800 and 34,300 ± 3570 B .P .).
Each o f these middens is
dominated by a sm all-seeded ju n ip e r id e n t if ie d as Juniperus c f . monosperma, unique to these middens, and seeds o f d e s e rt almond ( Prunus
fa s c ic u la ta ) not recorded again u n t il the e a rly Holocene.
68
Cottonwood Canyon No. 1, dated a t 12,900 ± 200 B .P ., co n ta in s
the o n ly P le isto ce n e f o s s il records o f some d e s e rt species such as EnceK a -fru te sce n s and ca tcla w ( Acacia g r e g g ii).
in the date on th is midden.
I do not have confidence
The s tra tig ra p h y was complex and i t s con­
te n t is not s im ila r to o th e r middens o f th a t age.
However, i t is pos­
s ib le th a t t h is s i t e , on a n o rth e a s te rn slope w ith in the in n e r gorge o f
the canyon, could have supported d if f e r e n t species than the o th e r P le is ­
tocene Tapeats Sandstone middens in Hance Canyon and Grapevine Canyon.
Grandview P oint
Nine middens (Table 10) were c o lle c te d from the Kaibab Limestone
in the v i c i n i t y o f Grandview P o in t between 2170 and 2200 m e le v a tio n
(36°00I N,
in°59'W).
None o f these middens co n ta in e x tra lo c a l s p e c ie s .
Grandview P o in t No. 4, dated a t 5510 ± 70 B .P ., c o n ta in s a f o s s il assem­
blage ve ry s im ila r to the modern v e g e ta tio n ( s it e 43, Table A - 4 ) .
How­
e ve r, th is s i t e , lo ca te d along the Grandview T r a i l , is on a p o in t between
an exposed western slope and a p ro te c te d n o rth e rn s lo p e .
The d iv e r s it y
o f exposures close to th e s it e cre ates a d iv e r s it y o f p la n t species a t
the s it e .
As a r e s u lt , the s it e is not s e n s itiv e to s m a ll-s c a le changes.
Grandview P o in t No. 6a was c o lle c te d from a w e s t-fa c in g slope
n o rth o f Hearst Tanks.
A lthough the midden was p a r t i a l l y in d u ra te d and
underneath a ro c k , no overhang p ro te c te d the d e p o s it.
Because o f the
la c k o f p ro te c tio n and the fre s h appearance o f th e d e p o s it, i t is as­
sumed to be younger than 1000 ye a rs.
The co n te n ts o f th is midden r e ­
f l e c t the modern f lo r a o f th e s it e both q u a lit a t iv e ly and q u a n t it a tiv e ly
69
T a b le
10,
C o n te n ts
o f M id d e n s
fro m G ra n d v ie w
P o i n t and B ass
Canyon.
Hidden Number
GP 6a
GP 9
GP 4
BC 2
BC 3a
BC 1
14C date
<2500
<1000
5510
+ 70
8590
+ no
8900
+ 340
10,760
+ 260
Elevation (m)
2170
2170
2200
1900
1900
950
Mass (kg)
.86
.64
.89
2.4
2.0
.70
Abies concolor
—
--
9
--
1.5
--
Aqave utahensis
34
14
—
1.6
1 .0
--
Amelanchier
utahensis
—
7.8
--
--
--
--
Argemonae
--
—
--
--
R
--
—
--
*--
—
w mm
2.4
—
--
--
--
--
6.1
2.0
--
PLANT SPECIES
Artemisia
ludoviciana
A. c f . trid e n ta ta
R
121
6 .2
A tri pi ex
c o n fe r tifo lia
Berber!s sp.
—
R
C e ltis re tic u la ta
--
--
Cercocarpus
in tric a tu s
74
6 .2
12
Chamaebatiaria
mil 11 folium
--
—
—
R
--
--
Cirsium sp.
4 .7
--
—
—
--
--
Compositae sp.
(involucres)
400
67
R
Cowania mexicana
486
—
—
—
--
--
Encelia frutescens
--
--
—
--
R
--
Ephedra sp.
--
27
7.9
—
--
24
Fend! era rupicola
--
--
2.3
--
--
120
Fendlerella
utahensis
33
Forsellesia
nevadensis
13
.
3.5
3.0
_ _
. .
Fraxinus anomala
--
--
113
R
mm *
101
Juniperus c f.
osteosperma
2530
421
4560
1030
625
AQQ
70
T a b le 1 0 ,
c o n tin u e d .
Midden Number
GP 6a
GP 9
GP 4
BC 2
BC 3a
BC 1
14C date
<2500
<1000
5510
+ 70
8590
+ no
8900
+ 340
10,760
+ 260
R
«• w
R
mm ^
——
Opuntia sp. (spines) —
17
90
21
R
26
0. c f . erinacea
(seeds)
9.3
25
—
—
--
w mm
5.5
•••
4 .5
——
- -
—
--
w ■
■ *
mm mm
Lepidiun sp.
•
0. c f. phaecantha
(seeds)
c f. Orizoosis
hymenoides
——
Ostrya knoltoni
R
—
Phoradendron
bolleanum
112
• —
Pinus edulis
4000
283
23
121
31
- -
P. ponderosa
--
27
3.6
14
—
Prunus fac icu lata
—
--
1.2
—
—
Pseudocymopteris sp. —
--
--
--
—
10
Pseudotsuga
menziesu
——
129
146
311
* w
mm mm
7.3
4.5
122
—
—
--
—
--
Q. tu rb in e lla
—
--
7.3
15
—
Rhamnus sp.
--
—-
—
1 .0
- -
Rhus sp.
R
2.3
Ribes sp.
—
2.3
1.2
1.0
—
- -
- -
R
2.0
- -
Sambucus sp.
—
—
—
2.0
--
Symphori carpos sp.
—
- -
1.6
—
—
—
- -
—
—
--
11
- -
- -
—
- -
15
16
16
19
7
9.3
Ptelea t r i f o l i a t a
var. p allid a
Quercus gambelii
Robinea neomexicana
Yucca anqustissima
3.5
—
72
Zea mays
Number =
14
- -
71
(s ite
3 4 , T a b le s
A - 4 and
3
10 m t r a n s e c t s w e re p r e s e n t .
).
A ll
p e re n n ia l
The f o s s i l
s p e c i e s m easu red i n
c o n c e n tra tio n s
re fle c te d
fiv e
th e
modern p e r c e n t a g e c o v e r .
Grandview P o in t No. 9 was c o lle c te d from the eastern sid e o f the
S inking Ship.
T h is in d u ra te d midden is assumed to be younger than 1000
years because o f th e in c lu s io n o f corn cobs ( Zea mays) and o th e r archae­
o lo g ic a l a r t i f a c t s .
The corn cobs are ty p ic a l o f those ra is e d by the
Anasazi from 800 to 1200 A.D. (C. M ik s ic e k , personal com m unication,
1980).
A ll modern p e re n n ia ls ( s it e 47, Table A-4 and
3 ) except a ra re
X
Echinocereus are represented in the midden.
Several species which are
in the midden but not a t the modern s it e are found a t o th e r s ite s in
the area.
Supai
One midden (Table 8) was c o lle c te d from the Supai Group near the
Grandview T r a il a t 1620 m e le v a tio n .
No P le isto ce n e middens were lo c a te d
on th is s u b s tra te , p o s s ib ly because o f i t s ra p id w eathering as in d ic a te d
by the fre q u e n t la n d s !id in g in th is u n it along most o f the t r a i l s .
The
one midden dated from t h is group was cemented to a v e r t ic a l w a ll w ith a
2 m overhang above i t .
The ledge which had p re v io u s ly supported the
midden was gone, le a v in g o n ly a f a in t o u tlin e where i t had attached be­
low the midden.
P le isto ce n e middens are o fte n found in t h is c o n te x t on
more r e s is ta n t s u b stra te s ( i . e . , th e Tapeats Sandstone).
This midden
dated o n ly to 2300 ± 90 B.P. and co n ta in s an accurate re p re s e n ta tio n o f
the modern f lo r a .
72
Bass Canyon
Three middens (Table 10) were c o lle c te d from Bass Canyon 28 km
west o f the main study area.
These re s u lts are includ ed in th is s tu d y ,
alth oug h the f o s s ils are out o f the study area.
Bass Canyon Nos. 2 and 3 were c o lle c te d near the Bass T r a il in
the Coconino Sandstone a t 1900 m e le v a tio n .
o f s ig n if ic a n t age found w ith in t h is u n it .
These were the o n ly middens
Both o f these e a rly Holocene
middens are s ig n if ic a n t , as they demonstrate the depression o f e x tr a ­
lo c a l species w e ll below t h e ir modern li m i t s .
The e a rly Holocene m ix tu re o f ju n ip e r , pinyon, Douglas f i r , and
Ponderosa pine ( Pinus ponderosa) is q u ite u n lik e the modern community
dominated by pinyon ( s it e 67, Table A -1 2 ).
The p o s s ib ilit y o f s t r a t i ­
graph ic contam ination c re a tin g these m ixtu res is e lim in a te d by the two
m onospecific dates on Bass No. 2 a t 8590 ± 110 and 8430 ± 400 B.P. on
ju n ip e r tw igs and Douglas f i r needles.
These fo s s ils s tro n g ly resemble
Chuar No. 7 (from a s im ila r e le v a tio n and d a te ).
The presence o f Douglas f i r , w h ite f i r , and Ponderosa pine in
these middens is remarkable c o n s id e rin g th a t these species do not grow
upslope from the f o s s il s it e to d a y .
In ste a d , th e y are lo c a te d several
k ilo m e te rs east o f the f o s s il s i t e .
These middens c o n ta in the e a r lie s t record o f shrub liv e oak
( Quercus t u r b in e lla ) . New Mexican lo c u s t ( Robinia neomexicana) , and n e tle a f hackberry ( C e ltis p a llid a ) f o r the area.
In a d d itio n , Bass No. 2
co n ta in s the o n ly Holocene re cord o f shadscale.
Bass No. 2 , c o lle c te d from the Tapeats Sandstone a t 950 m, is
the low est midden in clu d e d in t h is stud y.
The ju n ip e r-a s h -h o p tr e e -
73
ephedra contents o f t h is 10,760 ± 260 B.P..midden seen to in d ic a te the
e a r lie s t presence o f t h is e a rly Holocene-type assemblage; however, th is
midden is a t a low er e le v a tio n and s ig n if ic a n t ly downstream from others
in t h is stu d y.
No evidence o f a m ix tu re o f d e s e rt and woodland elements
was found in t h is midden, as has been claimed fo r a midden d ir e c t ly
across the r iv e r but a t a low er e le v a tio n (Shinumo Creek No. 1 a t 735 m;
Van Devender and Mead 1976).
F o ssil Species
Before past a s s o c ia tio n s can be re c o n s tru c te d , the modern and
fo s s il d is tr ib u tio n s o f each m ajor species must be considered.
Each
species forms i t s own complex d is t r ib u t io n a l p a tte rn through tim e , e le ­
v a tio n , and exposure.
The past d is tr ib u tio n s o f species w ith in the
study area are as complex as a study o f modern p la n t geography; although
species can be grouped to g e th e r, each one has i t s own p e c u lia r exce ption
to the group d is t r ib u t io n .
The fo llo w in g s e c tio n is an o u tlin e o f the
records o f the more im p o rta n t species w ith in t h is f o s s il re c o rd .
species are lis t e d w ith in th re e groups:
The
species ra re o r absent to d a y ,
species present today and in the P le is to c e n e , and species present o n ly
in the Holocene.
Species are arranged in o rd e r o f decreasing e le v a tio n
w ith in each s e c tio n .
The modern and f o s s il d is tr ib u tio n s o f im p o rta n t
species are shown on Figures 10 to 32.
Figure 8 ,
D is tr ib u tio n o f Modern P la n t Communities and Modem
P lant S ite s . — Each data p o in t represents 2 to 4 re 1eve
values averaged.
Figure 9 ,
D is tr ib u tio n o f F o ssil Packrat Middens. — The number
represents the radiocarbon date o f each d e p o sit rounded o f f
to the nearest 1000 years B.P.
Figure 10, The Modern and F o s s il D is tr ib u tio n o f White F ir ( Abies
c o n c o lo r). —
Figure 10a shows the modern d is tr ib u tio n o f
w h ite f i r in modern coverage classe s.
o f h ig h e s t modern coverage.
d is tr ib u tio n o f w hite f i r .
H stands f o r the area
Figure 10b shows the fo s s il
The date o f the f o s s il de p o sit
is shown rounded o f f to the nearest 1000 years B.P. w ith
the co n ce n tra tio n class o f w hite f i r f o s s ils in parenthesis
(see fo llo w in g page f o r legend).
74
Lower limit of dovgios«fir
end white fir
Lower limit of jumper,pinyon
end eeh
MESIC
<-
XERIC
Figure 8.
MESIC
Figure 9.
XERIC
XERIC
6000-
•7000
2000
50 00-
•5000
- 1500
4000
-4 0 0 0
•5000
Figure 10a
Figure 10b
Figure 11,
The Modern and F o ssil D is trib u tio n o f Douglas F ir
( Pseudotsuga m e n z ie s ii). — Figure 11a shows the modern
d is tr ib u tio n o f Douglas f i r .
classes.
Numbers are modern coverage
Figure l i b shows the fo s s il d is tr ib u tio n o f
Douglas f i r .
The date o f the fo s s il d e p o s it is shown
rounded o f f to the nearest 1000 years w ith the concen­
tr a tio n class in p a re n th e sis.
Figure 12,
The Modern and F o ssil D is trib u tio n o f Utah ju n ip e r
( Juniperus c f . osteosperma)♦ — Figure 12a shows the
modern d is tr ib u tio n w h ile fig u re 12b shows the fo s s il
d is t r ib u t io n .
Legend f o r Figures 10 through 32.
Coverage Classes f o r modern
Concentration Classes f o r
Re1eves.
Fossil Deposits
R = ra re a t s ite (<1% cover)
R = 1 fo s s il/k g
C = common a t s it e (<1% cover)
1 = 2 to 5/kg
1 = 1 % cover
2 = 6 to 12/kg
2 = 2 to 3% cover
3 = 13 to 30/kg
3 = 4 to 6% cocer
4 = 31 to 100/kg
4 = 7 to 10% cover
5 = 101 to 500/kg
5 = 11 to 25% cover .
6 = 501 to 2000/kg.
6 = 26 to 50% cover
7 = >2000/kg
7 = >50% cover
75
Lower limit of douglos«fir
end white fir
Lower limit of juniper,pmyon
ond o»h
MESIC
ME5IC
XERIC
-
8 0 00 -
f
XERIC
2500-
7000 -
-70 00
60 00 -
1500
-
40 00 -
-40 00
3000 -
•3000
Figure 11b.
Figure 11a
MESIC
XERIC
MESIC
2500
8000 -
XERIC
-8 0 0 0
7000 -
-7000
6000 -
5000 -
\
-5 0 0 0
40 00 -
•4000
3000 -
-30 00
F ig ure 12a
Figure 12b
Figure 13,
The Modern D is trib u tio n and Concentration o f
Douglas F ir ( Pseudotsuga m e n z ie s ii) F o s s ils in the
Late Holocene, E arly Holocene, and Late P leistocene
Middens. —
Figure 13a shows the modern d is tr ib u tio n
o f Douglas f i r .
Numbers are coverage classes.
Figure
13b shows the con centratio n classes o f Douglas f i r
fo s s ils in Late Holocene middens.
Middens w ith o u t
Douglas f i r fo s s ils are shown as d o ts.
Figure 13c
shows the con centratio n classes o f Douglas f i r
fo s s ils in E a rly Holocene middens.
Arrows i l l u s t r a t e
a 330 m depression o f Douglas f i r below i t s modern
lim it.
Figure 13d shows the con centratio n classes o f
Douglas f i r f o s s ils in Late P leistocene middens.
Arrows i l l u s t r a t e a 760 m depression o f the low er
l i m i t o f douglas f i r below i t s modern range.
p r io r fa c in g page fo r legend.
See
76
Lower limit of douglos*fir
omd white fir
Lower limit of jumper,pinyon
end oeh
MESIC
MESIC
XERIC
XERIC
8000-
-7 0 0 0
6000-
-6 0 0 0
5000
4000'
-4 0 0 0
3000-
Figure 13a, Modern Coverage
Figure 13b, Late Holocene
f o s s ils
MESIC
XERIC
XERIC
- 2500-
8000-
-8 0 0 0
7000-
-7 000
-
2000-
6 0 00-
5 0 00-
-5 0 0 0
- 1500
4000'
-4 0 0 0
-
1000 -
3000-
Figure 13c,
f o s s ils
E s rly Holocene
Figure 13d, Late P leistoce ne
f o s s ils
Figure 14,
The F o ssil D is tr ib u tio n o f Spruce ( Picea engelmanni
and P_. pungens).
Figure 15,
The F ossil D is trib u tio n o f Limber Pine ( Pinus f le x -
ilis ) .
Figure 16,
The F o ssil D is trib u tio n o f Rosa c f . s t e l l a te .
Figure 17,
The F o ssil D is trib u tio n o f Shadscale (A tr ip le x
c o n f e r t if o l i a ) .
77
Lower limit of douglot-fir
ond white fir
Lower limit of juniper,pinyon
ond osh
MESIC
< ----------------------------- )
XERIC
£
w
w
2
MESIC
<-
->
XERIC
w
w
u.
2500
6 0 00-
-6 000
7000-
-7 0 0 0
'S ,
2000
i(0
6000-
5.3(5)
1 (0
-5 0 0 0
1500
t<(R)
! 'B m”
4000'
-4 0 0 0
1000
3000-
-3 000
Figure 14
MESIC
Figure 15.
XERIC
MESIC
2500
80 00-
XERIC
-8000
7000-
-7 000
2000
6 0 00-
5000-
6000
MR) nM
__
5000
1500
4000-
3000-
-3000
Figure 16
F i g u r e 17
Figure 18,
The Modern and F ossil D is trib u tio n s o f Know!ton
Hop Hornbeam ( Ostrya k n o w lto n i). —
Figure 18a shows the
modem d is tr ib u tio n and fig u re 18b shows the fo s s il d i s t r i ­
b u tio n .
Figure 19,
The Modern and F ossil D is trib u tio n s o f Snowberry
( Symphoricargos s p .) . —
The modern d is tr ib u tio n is shown
in fig u re 19a and the fo s s il d is tr ib u tio n in fig u re 19b.
78
Lowtf limit of douglos«fir
end white f i r
Lower limit of juniper,pinyom
end oih
MESIC
MES1C
XERIC
<■
XERIC
booo H
L bo OO
7000-
h7000
2000
•6000
50 00H
|-5 0 0 0
4000*
U4000
3000*
[-5000
Figure 18a.
MESIC
Figure 18b.
XERIC
XERIC
MESIC
BOOO
2500
80004
7000*
[-7000
2000
[-6 0 6 0
50004
5000
16(3) 13(3) „
.auw**" “TVdO
4000
‘4000
3000-
3000
F i g u r e 19a
F i g u r e 19b
Figure 20,
The Modern D is trib u tio n s o f Garobel Oak ( Quercus
g a m b e lii, Wavy Leaf Oak (Q.. unduTata),
and Scrub Live
Oak (2. tu rb in e !T a ) and F ossil D is trib u tio n s o f Oak
Species. —
The modern d is tr ib u tio n o f Gambel oak
is shown in fig u re 20a.
The modern d is tr ib u tio n o f
wavy le a f oak is shown in 20b.
The modern d is tr ib u tio n
o f scrub liv e oak is shown in 20c.
butions o f oaks are shown on 20d.
u = 2.. undulata
The fo s s il d i s t r i ­
t = Q.. t u r b in e lla .
A ll o th e r records are o f Q.* o f. g a m b e lii.
79
Lower limit of dougloi-fir
ond white fir
Lower limit of juniper,pinyon
ond esh
MEStC
MESIC
XERIC
f
2500
6000'
XERIC
\-B 0 0 0
7000
7000'
2000
6000
5000
-5 0 0 0
4000-
•4000
3000-
3000
Figure 20a
MESIC
Figure 20b
MESIC
XERIC
2500
8000-
XERIC
8000
7000'
-7 000
2000
6000-
6000
5000-
5000
4000'
•4000
3000-
3000
Figure 20c
F i g u r e 20d
Figure 21,
The Modern and F o ssil D is trib u tio n s o f Hop Tree
( Ptelea t r i f o l i a t e v a r. p a llid a ) . —
The modern d i s t r i ­
bution o f hop tre e is shown in fig u re 21a.
The fo s s il
d is tr ib u tio n o f hop tre e is shown in fig u re 21b.
Figure 22,
The Modern and F o ssil D is trib u tio n s o f S in g le
Leaf Ash ( Fraxinus anomala). - is shown in fig u re 22a.
in fig u re 22b.
The modern d is tr ib u tio n
The f o s s il d is tr ib u tio n is shown
80
Lower limit of douglos«fir
end white fir
Lower limit of junipe^p'myon
ond oth
MESIC
4
XERIC
MESIC
^
XERIC
2500
8000'
-6 000
7000-
-7 000
2000
6000*
6000
5000-
5000
4000
-4 000
3000-
Figure 21a.
Figure 21b.
MESIC
£
tu
hUJ
Z
->
XERIC
a
UJ
2500-
-8000
6(5)
- "
-
-7000
100
2000
9 (A
-6 000
50$)
-5 0 0 0
1(f)
1500
(0(%) 1(3)
1000
13(6
-4 000
1(5)
-
m
Figure 22a
io m
F i g u r e 22b
-3 0 0 0
Figure 23,
The Modern and F o s s il D is trib u tio n s o f Big Sage­
brush (A rte m isia t r id e n t a t a ) . —
The modern d is t r ib u t io n o f
b ig sagebrush is shown in Figure 23a w h ile the fo s s il d is ­
t r ib u t io n o f big sagebrush is shown in Figure 23b.
F ig u re 2 4 ,
The Modern and F o s s i l
(A gave u t a h e n s i s ) .
is
shown i n
—
shown i n
o f U tah Agave
The modern d i s t r i b u t i o n
F i g u r e 2 4a w h i l e
U ta h ag ave i s
D is trib u tio n s
th e
fo s s il
F ig u re 24b.
o f U ta h a g ave
d is trib u tio n
of
81
________
____ e. _
MES1C
^
Lower limit of douglos-fir
end while fir
Lower limit of Juniper,pinyen
end oeh
XERIC
XERIC
MESIC
ti
u.
H
W
w
6000-
-8 0 0 0
7000-
-7 0 0 0
6000-
-6 0 0 0
5 0 00 -
5000
4000
-4 0 0 0
3000
-3 0 0 0
Figure 23a
MESIC
£
Figure 23b
XERIC
MESIC
XERIC
8000-
-8 0 0 0
7000 -
-7000
-6 0 0 0
5000 -
?ft) I‘tli) .
?'(sY
_ 2 (S { • —
|0(A
IM R )
Figure 24a
l+'.l)
IUR)
IHli)
Figure 24b
i is)
I0IR)
1V 3)
-4 0 0 0
Figure 25,
The Modern D is tr ib u tio n o f Squawbush ( Rhus t r ilo b a t e
va r. s im p lic if o lia ) and f o s s il d is t r ib u t io n o f Sumac ( Rhus s o .) .
The modern d is t r ib u t io n o f squawbush is shown in Figure 25a
w h ile the f o s s il d is t r ib u t io n o f sumac (in c lu d in g squawbush)
is shown in Figure 25b.
F ig u re 2 6 ,
The Modern and F o s s i l
n e v a d e n s is G r e e n e .
e s ia
is
shown i n
shown in
—
D is trib u tio n s
The modern d i s t r i b u t i o n
F i g u r e 26a w h i l e
F ig u re 26b .
o f F o rs e lle s ia
th e
fo s s il
o f F o rs e ll-
d is trib u tio n
is
82
Lower limit of douQlos»fir
end white fir
Lower limit of jumper.pinyen
end oeh
MESIC
^
MESIC
XER1C
<■
XERIC
-7 0 0 0
7000-
-2000
6000-
9 K -4 000
4000-
Figure 25a
MESIC
Figure25b
XERIC
MESIC
2500
60 00-
XERIC
•8000
-7000
7000-
2000
-6 0 0 0
6 0 00-
50 00-
-4 000
4000-
3000
Figure 26a
Figure 26b
F ig u re 2 7 ,
The M o d em and F o s s i l
( Pinus e d u lis ) . —
D is trib u tio n s
o f Pin yo n
P in e
The modern d is tr ib u tio n o f pinyon is shown
in fig u r e 27a w h ile the f o s s il d is t r ib u t io n o f pinyon is shown
in Figure 27b.
Figure 28,
The Modern and F o s s il D is trib u tio n s o f L i t t l e Leaf
Mountain Mahogany ( Cercocarpus i n t r ic a t u s ) . —
d is t r ib u t io n o f l i t t l e
The modern
le a f mountain mahogany is shown in
Figure 28a w h ile the f o s s il d is t r ib u t io n is shown in Figure
28b.
83
Lower limit of douglos-fir
ond white fir
Lower limit of juniper,pinyon
ond oth
MES1C
XERIC
f
MESIC
£
XERIC
8000
8000
-7 0 0 0
70 00 -
2000
-6 0 0 0
6000 -
5000
4000
4000
3000 -
3000
F ig u r e
Figure 27b
27a
MESIC
XERIC
MESIC
2500
6000 -
XERIC
8000
7000 -
-7000
6000 -
-60 00
5000 -
-5 0 0 0
4000
-4 0 0 0
30 00 -
3000
Figure 28a
Figure 28b
F ig u re 2 9 ,
The Modern and F o s s i l
D is trib u tio n s
o f C a t c la w A c a c i a
(Acacia g r e g g ii) . —
The modern d is t r ib u t io n o f catclaw is
shown in Figure 29a.
Two fo s s il records o f catclaw are shown,
in Figure 29b, however the o ld e r record is suspect.
F ig u re
30,
The Modern and F o s s i l
( C o leo g yn e r a m o s i s s i m a ) . —
b la c k b ru s h
is
o f b la c k b ru s h
shown in
is
D is trib u tio n s
The modern d i s t r i b u t i o n
F i g u r e 30a w h i l e
shown in
o f B la c k b r u s h
F ig u re
30b.
th e f o s s il
of
d is trib u tio n
84
„w
M E 5 IC
Lower limit of dougloi-fir
end white fir
Lower limit of juniper,pinyon
ond oih
XERIC
6000-
MESIC
XERIC
2500
-8 0 0 0
-7 0 0 0
2000
6000-
6000
5000
4000
•4000
30 00 *
•3000
Figure 29b
MESIC
8000 -
XERIC
MESIC
2500
XERIC
8000
-7000
6000 -
-6 0 0 0
5000 -
5000
4000
3000 *
3000
Figure 30a
Figure 30b
F ig u re 3 1,
The Modern and F o s s i l
a tr a c ty lo id e s . —
D is trib u tio n s
o f B ric k e l 1 ia
The modern d is t r ib u t io n o f B r ic k e llia
is shown in Figure 31a w h ile the lo c a tio n o f one Late
Holocene fo s s il d e p o sit is shown in Figure 31b.
Figure 32,
The Modern and F o ssil D is trib u tio n s o f E ncelia
fru te s c e n s . —
The Modern d is tr ib u tio n o f E ncelia fru te sce n s
is shown in Figure 32a w h ile the fo s s il d is t r ib u t io n is
shown in Figure 32b.
Only the Late Holocene record is o f
s u f f ic ie n t magnitude to remove doubt about i t s occurence.
85
Lower limit of dougloe-fir
end white fir
Lower limit of juniper,pinyon
ond oeh
MESIC
<-
XERIC
MESIC
<■
XERIC
8000
2500
6000-
-7 0 0 0
2000
-6 0 0 0
6000-
-5 000
<000
4000
sooo-
Figure 31a
MESIC
Figure 31b
XERIC
MESIC
2500
8000-
XERIC
•6000
7000'
-7000
2000
•6000
4000'
-4 000
3000-
3000
Figure 32a
Figure 32b
86
Species Abundant in the P leistoce ne
but Rare o r Absent Today
Limber Pine (Pinus f l e x i l i s ) .
Limber pine needles are an abun­
dant component o f nine h ig h -e le v a tio n P le isto ce n e middens.
The fo s s ils
are the most concentrated in f u l l g la c ia l middens from x e r ic slopes
around 1800 m in e le v a tio n .
F o ssil needles and seeds were found in
seven o th e r middens as low as 1450 m (F igure 15 ).
The needles o f th is tre e are id e n t if ie d by the presence o f fiv e
n e e d le s /fa s c ic le , one va scu la r bundle in each needle, two re s in ducts
near the dorsal s u rfa c e , and the presence o f stomates on the dorsal s u r­
face o f the needles (Harlow 1931).
Complete needles range from 3 to 5
cm in le n g th .
The c lo s e s t modern occurrence o f lim b e r pine to the study area
is 75 km to the south on the San Francisco Peaks.
Limber pine is d is ­
tr ib u te d between 2400 and 3200 m e le v a tio n on these m ountains.
The ma­
j o r i t y o f lim b e r p in e 's modern d is t r ib u t io n is to the n o rth o f the study
area a t m id d le - to h ig h -e le v a tio n s ite s throughout Utah, Nevada, Colo­
rado, and in to A lb e rta .
The f u l l g la c ia l displacem ent o f the low er l i ­
m it o f lim b e r pine was a t le a s t 850 m.
The 16 needles and seven seeds
found w ith in f iv e P le isto ce n e middens a t 1450 m in d ic a te a displacem ent
o f 1000 m below the modern lim i t s o f lim b e r p in e .
However, in view o f
the hundreds to thousands o f needles present in the h ig h e r e le v a tio n
middens, the presence o f such a small number o f fo s s ils may o n ly re p re ­
sent a few s tra y in d iv id u a l p la n ts o r perhaps even contam inants c a rrie d
down the c l i f f s
by rodents o r b ird s .
87
Two Holocene records f o r lim b e r pine seem q u e s tio n a b le .
No. 8, dated a t 7870 ± 140 B .P ., co n ta in s a few needles.
Chuar
However, the
P leistoce ne se ctio n s o f Chuar No. 8, w ith in a meter o f No. 8a, c o n ta in
tens o f thousands o f lim b e r pine needles per k ilo g ra m , many o f which are
p ro tru d in g from the middens w ith in easy c o lle c tin g range f o r a modern
p a ckra t.
Bida No. 3 represents a s im ila r s itu a tio n .
This midden, dated
a t 10,290 ± 150 B .P ., con tains one lim b e r pine needle.
Because the m id­
den was c o lle c te d from a cave w ith P leistoce ne m a te ria l present on the
modern f lo o r s u rfa c e , the in c lu s io n o f o n ly one Timber pine needle prob­
a b ly does not re p re se n t the presence o f the species a t th a t d a te .
A
s im ila r problem is presented by the s ix lim b e r pine needles present in
Bida No. 8a a t 11,530 ± 290 B.P.
re sent contam inants.
This small number o f needles may re p ­
These problems w i l l o n ly be solved through the
d a tin g o f s in g le needles.
The youngest d e f in it e record o f lim b e r pine
w ith in the canyon is in Nankoweap No. 7a a t 12,170 ± 2 1 0 B.P.
Spruce (Picea s p p .) .
Needles o f Engelmann and blue spruce are
abundant in P leistoce ne middens above 2000 m.
Needles c h a r a c te r is tic o f
both species in terms o f le n g th , stomata! rows, and acuteness o f apex
are present in every midden, but the m a jo r ity o f needles cannot be d i f ­
fe r e n tia te d to the s p e c ific le v e l w ith o u t numerous th in s e c tio n s .
For
th is reason, the r e s u lts are re p o rte d sim ply as spruce.
Both species o f spruce are present today o u ts id e the canyon on
the Kaibab P lateau.
Picea engelm annii is present on a l l aspects above
2530 m on the Kaibab P la te a u , alth oug h in ra re instances i t occurs as
88
lo w as 2 3 5 0 m (K .
1981).
R e i c h h a r d t and P. W a r r e n ,
p erso n al
c o m m u n ic a t io n ,
Both species are d is tr ib u te d today a t high e le v a tio n s in A riz o n a ,
New Mexico, Colorado, Utah, and Wyoming.
Engelmann spruce extends n o rth ­
ward w e ll in to Canada.
The P leistoce ne middens re cord a f u l l g la c ia l displacem ent o f a t
le a s t 500 m below the modern spruce d is t r ib u t io n .
Spruce probably was
not depressed more than 760 m because o f i t s absence in m id -e le v a tio n
middens (F igure 14).
Conmon Jun iper (Juniperus communis).
Common ju n ip e r is recog­
nized by i t s a n g u la r, s c a le - lik e leaves not d e c u rre n t on the branches.
A h o la r c tic spe cies, th is shrub has a Grand Canyon f o s s il record s im ila r
to spruce except f o r several needles in a f u l l g la c ia l midden a t 1450 m.
This s it e is very p ro te cte d from in s o la tio n and is on a mesic s u b s tra te
(sa n d sto n e ).
Common ju n ip e r is o n ly present in P leistoce ne middens.
could fin d no common ju n ip e r w ith in the canyon today.
I
Today common j u ­
n ip e r is abundant above 2530 m on th e Kaibab Plateau and extends as low
as 2420 m on fa v o ra b le aspects (K. R eichhardt and P. Warren, personal
communication, 1981).
In A rizona t h is p la n t is present o n ly in Coconino
and Apache C ounties.
Mountain Lover (Pachystima m y r s in ite s ) .
F o s s il leaves o f moun­
ta in lo v e r are present in fo u r P le isto ce n e middens from above 2000 m
e le v a tio n .
These f o s s il leaves are the most abundant in middens from
the less in s o la te d slo p e s.
Although th is shrub is re p o rte d from the
89
N ational Park, i t is r a r e ly found, and I know o f no records o f i t o ccu r­
rin g w ith in the canyon today.
Today mountain lo v e r is found a t m id-mountain to s u b -a lp in e e le ­
va tio n s in shady places w ith in mixed c o n ife r o r s p r u c e - fir fo r e s ts .
It
is d is tr ib u te d from Canada south to C a lifo r n ia , A rizo n a , and New Mexico.
Holodiscus dumosus.
Seeds, tw ig s , and leaves o f H olodiscus du-
mosus are present in seven h ig h - a ltitu d e P leistoce ne middens.
The fo s ­
s i l s o f t h is shrub are the most abundant in f u l l g la c ia l middens from
exposed s ite s .
No fo s s ils are present in middens below 1770 m.
I d id encounter several H olodiscus shrubs above 2000 m along the
North Rim, but the species was no t common enough to appear in my re le v d s .
Today Holodiscus is d is tr ib u te d on h ig h -e le v a tio n rocky s ite s from
Wyoming south to Texas and Mexico.
B la ckb e rry (Rubus s p . ) .
B la ckb e rry seeds and tw igs are present
in fiv e P le isto ce n e middens spread between 1100 and 2050 m e le v a tio n .
No f o s s ils are present in any Holocene middens.
Only one modern s p e c i­
men o f Rubus was encountered a t a high e le v a tio n along the North Rim.
Today species o f Rubus extend from Alaska south to Mexico.
I d id not
attem pt to id e n t if y the fo s s ils to a s p e c ific le v e l because o f an incom­
p le te modern seed c o lle c t io n .
B u ffa lo B erry (Shepherdia c a n a d e n sis).
Leaf buds o f B u ffa lo B er­
ry are present in f iv e P le isto ce n e middens from above 1450 m on the North
Rim.
cence.
The le a f buds from t h is shrub have a d is t in c t iv e shape and pubes­
Two specimens o f t h is p la n t have been c o lle c te d from above 2600 m
90
on the Kaibab P lateau, but none from w ith in the canyon (F o re st S ervice
Herbarium ).
Today th is species grows on s u b -a lp in e s ite s from Alaska
south to New Mexico.
Rosa c f . s t a l l a t a .
S tr a ig h t, s to u t tho rns o f a rose are present
in 14 P le isto ce n e middens ranging from 1100 to 2050 m e le v a tio n .
The
thorns are the most abundant in middens from ro c k y , x e r ic lim estone
s ite s near 1500 m e le v a tio n (F ig u re 16).
W hile the tho rns resemble
Rosa s t e l l a t e , they are in d is tin g u is h a b le from Rosa w oodsii and Rosa
nutkana which occur n o rth o f the Grand Canyon in Nevada and Utah.
Leaves
from fo u r o f these middens are o f Rosa s t e l l a t e .
Only one th o rn was found in a Holocene midden.
As is the case
w ith the one lim b e r pine needle from the same midden, the record is du­
bious since the midden comes from deep w ith in a d e b r is - f ille d cave w ith
rose tho rns exposed on the modern s u rfa c e .
Today, Rosa s t e lla t e is ra re
on both rim s o f the canyon and is d is tr ib u te d southeast o f the Grand
Canyon to western Texas.
Fern Bush (Chamaebatiaria m ille f o liu m ) .
Buds and leaves o f fe rn
bush are present in ten P le isto ce n e middens between 1100 and 2020 m e le ­
v a tio n and one e a rly Holocene midden a t 1900 m.
nized by i t s d is t in c t iv e s trip e d le a f buds.
This p la n t is recog­
Although I encountered none
w ith in the canyon d u rin g my s tu d y , fe rn bush is present today in hig h e r
e le v a tio n p in y o n -ju n ip e r woodlands.
Fern bush is d is tr ib u te d today from
Oregon to Wyoming south to C a lifo r n ia and n o rth e rn A rizo n a .
91
Snowberry (Symph o ric a rpos s p . ) .
Seeds o f snowberry are present
in ten P leistoce ne middens ranging from 1100 to 2050 m e le v a tio n .
Snow­
b e rry is a lso present in one e a rly Holocene midden a t 1900 m (F ig u re
19).
An incom plete seed c o lle c t io n o f the s ix modern species in the
area prevented s p e c ific id e n t if ic a t io n .
Snowberry is found today on
mesic slopes above 2000 m w ith in the study area.
Species o f snowberry
are present throug ho ut North America.
Shadscale ( A tr ip !e x c f . c o n f e r t i f o l i a ) .
Shadscale seeds are
present in ten P leistoce ne middens ranging from 1460 m on down to the
low est middens a t 970 m.
The seeds o f th is shrub are most abundant in
f u l l g la c ia l middens from x e r ic slopes bordering the Tonto P la tfo rm
(F igure 17 ).
Shadscale may be found throughout n o rth e rn A rizona between 750
and 1700 m.
I t s range extends south to Chihuahua and n o rth to Oregon
and N orth Dakota.
I t appeared in o n ly one o f my 131 re !e v e s .
This r e -
levd is on a small Tonto P la tfo r m - lik e area a t 1000 m e le v a tio n in the
open in n e r gorge near Chuar Lava Rapids.
This p la n t is the o n ly species which may have been d is tr ib u te d
a t s l i g h t ly hig her e le v a tio n s in th e P leistoce ne than today.
Shadscale
is abundant today between 900 and 1400 m along the Tanner T r a il a t the
eastern edge o f the study area (K. R eichhardt and P. Warren, personal
communication, 1981).
In view o f the stands o f shadscale present east
o f the study a rea, i t is e a s ie r to imagine th is species as having r e ­
sponded to Holocene c lim a te s by moving u p - r iv e r ra th e r than upslope.
i
92
Six shadscale seeds are present in an e a rly Holocene midden from
1900 m.
T his is n o t o n ly i t s h ig h e s t e le v a tio n a l re c o rd , but a ls o i t s
on ly record younger than 12,000 B.P.
This record o f shadscale a t such a
high e le v a tio n is v e ry unusua l.
The Late P le isto ce n e abundance o f shadscale in th is study is in
agreement w ith , i t s record in the western Grand Canyon where i t
is most
abundant in the f u l l g la c ia l and is no t found a f t e r 12,000 B.P. ( P h illip s
1977).
Species Present throug ho ut the Record
Utah Ju n ip e r (Juniperus c f . osteosperma) and One-seed Ju n ip e r
(J . c f . monosperma).
study.
Ju n ip e r tw ig s are the most abundant f o s s il in th is
At le a s t one tw ig o f ju n ip e r is present in most middens.
The
ju n ip e r seeds and tw ig s are the most concentrated in P leistoce ne middens
below 1500 m (F ig u re 1 2 ).
Ju n ip e r was d is tr ib u te d a minimum o f 730 m
below i t s modern range in the la te g la c ia l co n s id e rin g the low est P le is ­
tocene record near the study area (Shinumo Creek, Van Devender and Mead
1976).
Jun iper must have extended to the r iv e r le v e l (820 m) w ith in the
study area.
In the e a rly Holocene, ju n ip e r was present a t le a s t 270 m
below i t s present d is t r ib u t io n .
The s p e c ific id e n t if ic a t io n o f ju n ip e r tw ig s is not an easy ta s k .
This became obvious upon c o lle c t in g the tw igs o f modern ju n ip e rs .
Using
the published keys o f Munz (1974) and McDougall (1973), d if f e r e n t branch­
es on a s in g le modern tre e o fte n co n ta in tw ig s th a t key to both Juniperus
osteosperma and Juniperus c a l if o r n ic a .
Because Utah ju n ip e r is dominant
93
w ith in the area today, I am r e fe r r in g to these f o s s il tw igs as Juniperus
c f . osteosoerma.
The seeds present in most middens are la rg e r than
those o f one-seed ju n ip e r (*L monosperma) , which a lso has s im ila r tw ig s .
Two p r e - f u ll g la c ia l middens c o n ta in small seeds which most c lo s e ly re ­
semble those o f one-seed ju n ip e r .
Twigs o f J^. scopulorum o r J^. deppeana
are d is tin g u is h e d by the la c k o f a d e n tic u la te le a f margin ( scopulorum)
and g la n d u la r p itte d leaves ( deppeana) .
N e ith e r o f these species were
present in the fo s s il assemblages.
Today Utah ju n ip e r is d is tr ib u te d from n o rthe rn A rizona n o rth
through Utah and Nevada to southern Idaho.
One-seed ju n ip e r has been
re ported from Grand Canyon N ational Park, although I found none.
The
d is t r ib u t io n o f one-seed ju n ip e r is shown in L i t t l e ' s a tla s (1971) to be
to the south o f the canyon to southern Arizona in to Mexico and eastward
throughout New Mexico to Texas.
Douglas F ir (Pseudotsuga m e n z ie s ii) .
Needles, seeds, and buds
o f Douglas f i r are present in 28 middens (F igure 11).
These f o s s ils
document a 760 m P leistoce ne depression o f the low er l i m i t o f Douglas
fir
(F igure 13d).
Three e a rly Holocene middens document s ig n if ic a n t
amounts o f Douglas f i r 330 m below i t s modern low er l i m i t (F ig u re 1 3 c ).
One e a rly Holocene midden from Bida Cave and two middens from the Tonto
P latfo rm each c o n ta in one seed.
I t is unreasonable to in te r p r e t these
meager records as evidence o f a vigorous growth o f Douglas f i r a t these
s ite s .
A s in g le seed could e a s ily be disbursed by a b ir d .
The modern d is t r ib u t io n o f Douglas f i r w ith in the study area is
shown in Figure 13a.
I t is abundant on mesic s ite s above 2000 m
94
e le v a tio n .
Today Douglas f i r
is d is tr ib u te d across western North America
from B r it is h Columbia to Mexico.
I t is excluded from the d r ie s t areas
o f the in te rm o u n ta in plateau in Nevada.
White F ir (Abies c o n c o lo r).
The f o s s il and modern records o f
w hite f i r are s im ila r to those o f Douglas f i r w ith w hite f i r abundant a t
s l i g h t ly h ig her e le v a tio n s (F igure 1 0 ).
White f i r needles are d i s t i n ­
guished from Douglas f i r needles by t h e ir s to u t bases, rounded t i p s ,
th ic k bo dies, and the presence o f 12-14 stom ata! rows on the v e n tra l
side (as opposed to 8-10 on Douglas f i r ) .
White f i r is d is tin g u is h e d
from Abies la s io c a rp a by i t s glabrous needles and tw ig s .
White f i r needles and seeds are present in most middens which
c o n ta in Douglas f i r
but in s l i g h t ly le s s e r amounts.
The P le isto ce n e
low er l i m i t o f w h ite f i r was 760 m below i t s present l i m i t .
The e a rly
Holocene l i m i t may have been 330 m below i t s modern l i m i t — a co n clu sio n
supported by o n ly th re e needles in one midden (as opposed to over 1000
Douglas f i r needles in th re e m iddens).
Today w h ite f i r is d is tr ib u te d in mixed c o n ife r fo re s ts south
through New Mexico and A rizona in to Mexico and n o rth in to southern Colo­
rado, Utah, Nevada, and C a lifo r n ia .
I t is excluded from th e d r ie s t po r­
tio n o f the in te rm o u n ta in p la te a u .
Gambel Oak (Quercus c f . g a m b e lii).
Two P leistoce ne middens r e ­
cord tw ig s , buds, and decayed leaves o f oak, probably Gambel oak.
The
low est P leistoce ne midden could record Gambel oak 850 m below i t s present
occurrence on a s im ila r slope (F ig u re 2 0 ).
However, t h is midden
95
(Grapevine No. 1) is lo c a te d 35 m above a creek.
C onsidering the r ip a r ­
ian area as a source f o r the oak f o s s ils , then the P leistoce ne lo w ering
is 600 m.
The o n ly o th e r P le isto ce n e record f o r Gambe! oak (Chuar No.
2) is 100 m from an a c tiv e cre ek.
Because Gambe! oak reaches i t s g re a t­
e st d e n s ity in Raparian areas on th e Tapeats Sandstone to d a y, i t is
reasonable th a t s im ila r areas could have been P leistocene sa n ctu a rie s
fo r th is now more widespread species.
Three Holocene middens record
Gambe! oak w ith in i t s modern range.
Hop Tree (P tele a t r i f o l i a t a
v a r. p a l li d a ) .
on mesic slopes w ith in the area tod ay.
s i l le a ve s, tw ig s , and seeds.
midden.
Hop tre e is abundant
I t is e a s ily recognized by fo s ­
I t is present in o n ly one P leistoce ne
This midden (Grapevine No. 1) is lo c a te d 35 m above a creek and
co n ta in s abundant stems o f Equisetum c f . hiem ale, most c e r ta in ly a r i ­
parian p la n t.
Like Gambe! oak, hop tre e was probably r e s tr ic te d to the
r ip a r ia n areas d u rin g the P le is to c e n e .
However, the s ix small le a f
fragments present in th is midden should not be e n t ir e ly accepted as a
P leistocene occurrence u n t il the re cord can be d u p lic a te d .
In the. e a rly Holocene, hop tre e is recorded in f iv e middens rang­
ing from 1100 to 1920 m.
d is t r ib u t io n
This e le v a tio n a l range is s im ila r to i t s modern
(F ig u re 2 1 ), except f o r the fo s s ils present in fo u r middens
on more x e ric slopes than i t p re s e n tly occupies.
These re s u lts in d ic a te
th a t the d is t r ib u t io n o f t h is p la n t was s ig n if ic a n t ly d if f e r e n t in the
e a rly Holocene; however, the s h i f t was along the in s o la tio n a l a x is ra th e r
than in e le v a tio n .
96
T h is v a r i e t y o f hop t r e e
a lth o u g h th e
to
s p e c ie s e x t e n d s
is
known o n l y fro m n o r t h e r n A r i z o n a ,
s o u th t o
Oaxaca, e a s t to
F l o r i d a , and n o r t h
t h e G r e a t Lakes t o d a y .
S in g le Leaf Ash (F raxinus anom ala).
F o ssil seeds and tw igs o f
ash ( Fraxinus s p .) are present in s ix P leistoce ne middens.
These have
been id e n t if ie d as s in g le le a f ash, although they p o s s ib ly could re p re ­
sent fra g ra n t ash ( Fraxinus cusp idata v a r. macropetal a ).
I d e n t if ic a t io n
on these P leistoce ne seeds was d i f f i c u l t because o f poor p re s e rv a tio n .
Fragrant ash is present a t higher e le v a tio n s and probably h y b rid iz e s
w ith s in g le le a f ash.
Ash is not present in f u l l g la c ia l assemblages
and increases in frequency from 14,000 to 11,000 B.P. (F ig u re 2 2 ).
In the e a rly Holocene, ash is one o f the dominant f o s s ils re cov­
ered.
These seeds, tw ig s , and leaves are much more complete than the
P leistoce ne f o s s ils and d e f in it e ly re pre sent s in g le le a f ash.
A fte r a
conspicuous P leistoce ne absence, ash appears in a l l the e a rly Holocene
Tonto P la tfo rm middens (Table 9 ).
I t is depressed a t le a s t 225 m and
s h ifte d toward more x e r ic slopes from i t s modern d is t r ib u t io n .
The f o s s il record o f s in g le le a f ash from t h is area is c o n s is ­
te n t w ith the r e s u lts obtained by P h illip s (1977) downstream.
In the
low er Grand Canyon re c o rd , ash is present in low c o n c e n tra tio n s du rin g
the f u l l g la c ia l
(p o s s ib ly contam inants) and becomes in c re a s in g ly abun­
dant from the la te g la c ia l p e riod to the e a rly Holocene.
Today s in g le le a f ash is d is tr ib u te d along the Mogollon Rim in
c e n tra l A rizo n a , throughout the Grand Canyon, and up the Colorado and
Green R ivers throug ho ut ea stern Utah.
97
Knowlton Hop Hornbeam (O strya k n o w lto n i).
Seeds o f hop hornbeam
are present in fo u r la te g la c ia l middens and th re e Holocene middens.
The P leistoce ne records are a l l younger than 14,050 B.P. and record a
300 m depression from i t s
present d is t r ib u t io n between 1500 and 2500 m
on mesic slopes o f lim esto ne (F ig u re 1 8 ).
The species may have been de­
pressed fu r th e r ; u n fo rtu n a te ly , th e re are no low er middens on mesic lim e ­
stone slopes s im ila r to those where i t
is found today in th is study area.
F o ssil seeds o f Knowlton hop hornbeam have been recovered from
near Rampart Cave, 170 km to the west o f t h is study area ( P h illip s 1977).
These la te P le isto ce n e f o s s ils were recovered from mesic exposures a t
645 m e le v a tio n .
These fo s s il s ite s are s im ila r to the areas where
Knowlton hop hornbeam occurs today in the eastern Grand Canyon except
th a t the y are 900-1800 m low er in e le v a tio n .
Today Knowlton hop hornbeam is d is tr ib u te d up the Colorado R iver
almost to the s ta te o f Colorado and has d is ju n c t p o pula tions in New
Mexico and western Texas.
Gooseberry (Ribes s p . ) .
F o s s ils o f gooseberry are present in 15
P leistoce ne and th re e Holocene middens.
A ll o f the fo s s ils are sp in y
nodes (u s u a lly th re e spin es) from gooseberry tw ig s and could be one o f
several sp in y gooseberry species.
spread in the P le isto ce n e
Gooseberry was e v id e n tly more w ide­
than i t is today.
I t was encountered o n ly
fiv e tim es d u rin g t h is stud y and is not represented in any middens young­
er than 5500 B.P.
On the basis o f my few modern o b s e rv a tio n s , Ribes was
depressed a t le a s t 600 m below i t s modern low er l i m i t d u rin g the P le is to ­
cene and was depressed a t le a s t 240 m d u ring the e a rly Holocene in my
98
study area.
F o s s ils o f gooseberry were a ls o found a t 670 m in the w est­
ern Grand Canyon ( P h illip s 1977).
In view o f these re c o rd s , th is p la n t
was probably depressed in excess o f 900 m.
Today s im ila r species o f
gooseberry occur a t high e le v a tio n s throughout western North America
and extend n o rth to Canada.
Big Sagebrush (A rte m is ia c f . t r id e n t a t a ) .
sagebrush species are present in 12 middens.
Leaves and wood o f a
The leaves are tr id e n ta te
and could belong to any o f several species o f the sub-genus trid e n ta ta e .
The f l o r a l taxonomy o f t h is complex group makes them very d i f f i c u l t to
study on the basis o f a few le a v e s .
These fo s s ils have been id e n t if ie d
as big sagebrush because th e y are in d is tin g u is h a b le from t h is sp e cie s,
the most w e ll known and widespread member o f the group.
Sagebrush m a c ro fo s s ils are present in nine P leistoce ne assem­
blages u s u a lly in low d e n s itie s (F ig u re 2 3 ).
A rte m isia sp. was the
dominant component o f the p o lle n assemblage taken from Nankoweap No. 9c.
The absence o f m a c ro fo s s ils from the same midden suggests th a t w h ile
A rte m isia was predominant nearby, i t grew beyond the c o lle c tin g range o f
a p a ckra t.
I t s lo c a tio n is suggested by the m a c ro fo s s il record o f Chuar No.
2.
This assemblage co n ta in s the g re a te s t c o n c e n tra tio n o f big sagebrush
leaves found in t h is stu d y.
o th e r f o s s il s ite s .
The f o s s il s ite is on a more g e n tle slope than
Because the g re a te s t d e n s itie s o f big sagebrush in
the study area today occur on g e n tle slo p e s , i t is f a i r l y easy to imagine
th is p la n t cove ring the Tonto P la tfo rm y e t being r e la t iv e ly p o o rly re p re ­
sented in th e f o s s il c o lle c tio n s from stee p, ro cky slo p e s.
99
A lthough i t is present in th re e modern middens a t high e le v a ­
tio n s , big sagebrush is not represented in any e a rly o r mid-Holocene as­
semblages.
I t is w ell represented w ith in modem assemblages in p ro p o rtio n
to i t s modern abundance a t the s it e s , in d ic a tin g th a t i t is not avoided
by fo ra g in g p a ckra ts.
Today big sagebrush is d is tr ib u te d throughout the canyon, reach­
ing high d e n s itie s on the f l a t Chuar sediments in Chuar V a lle y and on
the f l a t plateaus a d jo in in g the canyon.
from Canada to Baja
I t s modern d is t r ib u t io n spreads
C a lifo r n ia and New Mexico.
I t s g re a te s t development
occurs w ith in the in te rm o u n ta in plateau re g io n .
Mormon Tea (Ephedra s p . ) .
Three species o f Mormon tea are abun­
dant w ith in the study area — Ephedra v i r i d i s , £ . nevadensis, and E_. t o r reyana.
Ephedra fa s c ic u la ta and £ . t r i f u r c a have a ls o been re p o rte d from
the area.
D is tin g u is h in g these species based upon a s h o rt stem s e c tio n
w ith o u t nodes o r f r u i t is d i f f i c u l t , and these have a l l been sim ply id e n ­
t i f i e d as Eghedra_ sp.
Ephedra tw ig s and f r u i t s were id e n t if ie d from 16 middens.
P leistoce ne middens c o n ta in a to t a l o f s ix f r u i t s and one tw ig .
Three
These
are probably not contam inants, although th e y c o n tra s t s h a rp ly w ith the
hundreds o f Mormon tea f o s s ils present in Holocene samples.
Mormon tea became abundant in the e a rly Holocene on the Tonto
P la tfo rm .
Bida Cave.
By 8500 B .P ., i t had moved upslope and became abundant a t
The f i r s t re cord o f Mormon tea above 1500 m comes a t 5510 ±
70 B.P. in Grandview P o in t No. 4 a t 2200 m e le v a tio n .
sented in modern assemblages.
I t is w e ll re p re ­
1 00
T o d ay Mormon t e a
S o u th Rim ( 2 2 5 0 m ) .
C a lifo rn ia
grows t h r o u g h o u t t h e can yo n e x t e n d i n g up t o t h e
S p e c ie s o f Mormon t e a a r e
and n o r t h w a r d
in to
Nevada, U tah ,
Utah Agave (Agave u ta h e n s is ).
middens (F ig u re 2 4 ).
the re co rd .
below 1500 m.
s p re a d fro m T exas t o
and C o l o r a d o .
Utah agave is represented in 28
I t was d e f in it e ly present in the area throughout
In the P leistoce ne i t was p re s e n t, although not abundant,
Above th is e le v a tio n i t is represented o n ly by th re e i n ­
f e r t i l e seeds in two middens, but a t low er e le v a tio n s epidermal fragments
and m arginal spines in d is tin g u is h a b le from Utah agave, the o n ly agave in
the area to d a y, are p re se n t.
Agave seeds and spines are more fre q u e n t
in the e a rly Holocene, but are not abundant u n t il the m id-Holocene.
A ll
mid-Holocene middens d a tin g between 6800 and 8500 B.P. c o n ta in abundant
seeds, le a ve s, and m arginal and te rm in a l spines o f agave.
I t is also
w ell represented in s ix modern middens spanning the e n tir e e le v a tio n a l
range o f the stu d y.
Today Utah agave is present on exposed rocky slopes from 800 to
2280 m e le v a tio n .
I t s d is t r ib u t io n extends in to Utah along the V irg in
R iver and west in to southern Nevada and C a lifo r n ia .
Desert Almond ( Prunus fa s c ic u la t e ) .
Seeds o f d e s e rt almond were
found in fo u r middens on the Tonto P la tfo rm d a tin g a t le s s than 1000;
10,150; 29,400; and 34,300 B.P.
This age d is t r ib u t io n , present in a l l
but the f u l l and la te g la c ia l p e rio d s , is unique in t h is stu d y.
The seeds o f d e s e rt almond are s im ila r in siz e to seeds o f J u n iperous osteosperma (9 mm lo n g , 6 iron wide) but are d is tin g u is h e d by a
101
more oblong shape and an in d e n ta tio n along one side o f the endocarp
(Schopmeyer 1974).
Desert almond is probably present below 1200 m in the study area
tod ay, although i t was not recorded a t any modern s it e s , many o f which
were stud ied when the p la n ts would have had no fo lia g e .
Today d e se rt
almond extends in to Utah, Nevada, and C a lifo r n ia .
Sumac (Rhus c f . t r i l o b a t a v a r. s i m p ! ic i f o l i a ) .
are present in 16 middens.
Seeds o f sumac
Although many species o f sumac are present
in western North America, squaw bush ( Rhus t r ilo b a t a ) is the o n ly one
present w ith in the Grand Canyon to d a y .
A ll o f the modern sumac s ig h te d
was s in g le -le a v e d squaw bush (v a r. simp! i c i f o l i a ) .
records are probably o f t h is species.
A ll o f these fo s s il
Fragmented fo s s il seeds prevented
complete id e n t if ic a t io n .
Sumac is recorded in o n ly th re e P le isto ce n e middens, a l l below
1500 m e le v a tio n (F ig u re 2 5 ).
mid-Holocene.
I t is not recorded above 1500 m u n t il the
Five modern middens record sumac throughout i t s modern
range between 800 and 2400 m e le v a tio n .
The fo s s il record records a
700 m minimum P le isto ce n e depression o f the upper l i m i t o f sumac.
Sumac
d id not invade the h ig her p o rtio n o f i t s modern h a b ita t u n t il a f t e r 8500
B.P.
Squaw bush is d is tr ib u te d throughout the western U nited S tates
today.
Grease Bush (F o rs e lle s ia nevadensis Greene).
Seed's and tw ig s o f
grease bush are present in 14 assemblages ranging in age from the f u l l
102
g la c ia l to modern d e b ris p ile s .
The tw ig s o f grease bush are re c o g n iz ­
able by the presence o f a rid g e running along the tw ig below each le a f
attachm ent (G. S paulding, personal communication, 1979).
A ll o f the
fo s s ils are w ith in th e modern d is t r ib u t io n o f grease bush (F igure 2 6 ).
Today grease bush is d is tr ib u te d from Idaho to n o rth e rn A rizona and
western C a lifo r n ia .
P ric k ly Pear (Opuntia e rin a c e a . O', c h lo r o tic a , and 0. phaeac a n th a ).
Many species o f p r ic k ly pear cactus are present w ith in the
study area.
Opuntia erinacea and ()• phaeacantha are the most abundant,
being d is tr ib u te d from the South Rim (2250 m) down to the r i v e r .
The seeds o f Opuntia erinacea are ir r e g u la r ly d is c o id , 5-9 mm
w ide, and have a prominent bony rid g e ( a r i l ) p ro tru d in g 1-2 mm from the
sid e o f the seed.
The seeds o f Opuntia phaeacantha are ir r e g u la r ly d is ­
c o id , 3-4 mm w ide, and have a m oderately p ro tru d in g a r i l
The seeds o f Opuntia c h lo ro tic a are n e a rly e l l i p t i c
.5-1 mm wide.
but asym m etrical,
smooth, 2-3 mm w ide, and have a reduced a r i l .
Seeds o f Opuntia erinacea and Opuntia spines have s im ila r d i s t r i ­
b u tio n s through tim e .
They are p re s e n t, although not abundant, in P le is ­
tocene middens below 1580 m.
By th e m id-H olocene, Opuntia spines and
Opuntia erinacea seeds are found throughout the area up to t h e ir modern
upper l i m i t .
During the m id-H olocene, both o f these f o s s ils become es­
p e c ia lly abundant.
Opuntia phaeacantha f o s s il seeds fo llo w a s im ila r
p a tte rn but are more in fre q u e n t.
Opuntia c h lo ro tic a seeds are found in
several mid-Holocene and modern middens and have been id e n t if ie d from a
103
P leistocene midden near Bass Canyon c o lle c te d a t 735 m e le v a tio n (Van
Devender and Mead 1976).
Black Brush (Coleoqyne ram osissim a ).
Three middens, two P le is to ­
cene and one modern, c o n ta in seeds o f black brush.
rounded glabrous akenes 3-5 n*n lo n g .
Blackbrush seeds are
Although t h is shrub is abundant
today on f l a t p o rtio n s o f the Grand Canyon ( i . e . , the Tonto P la tfo rm ),
i t does not reach high d e n s itie s on steep, ro cky s ite s .
fo s s il d is tr ib u tio n s are shown in Figure 30.
I t s modern and
I t is present today a t the
one s it e where i t s th re e records o c c u r, and i t is reasonable th a t i t d id
occur on t h is low , exposed s it e d u rin g the P le is to c e n e , although i t is
represented by o n ly nine seeds.
Black brush became abundant a t low e le v a tio n s in th e western
Grand Canyon d u rin g the P leistoce ne ( P h illip s 1977).
This re co rd c o rre ­
la te s w e ll w ith depression o f black brush below a l l but the low est s it e
in my study area.
Today black brush is d is tr ib u te d between the Mohave
Desert and the Great Basin D ese rt.
I t is sometimes considered a Mohave
Desert spe cies.
Compositae spp.
lu c re s .
Most assemblages c o n ta in a few composite in v o ­
These f o s s ils grade from f u l l in v o lu c re s w ith seeds to heads
w ith o n ly one o r two p h y lla ry s s t i l l a tta c h e d .
these f o s s ils fo r much fu r th e r work.
There is p o te n tia l in
I d e n t if ic a t io n is d i f f i c u l t , as few
o f these heads are in a fre s h c o n d itio n , and they are not e a s ily compar­
able to herbarium specimens.
I t is p o s s ib le th a t those species abundant
in the P leistoce ne middens no lo n g e r grow w ith in the a re a .
104
I t is also p o s s ib le th a t some o f these f o s s ils re p re se n t new
species.
Many have been t e n t a t iv e ly id e n t if ie d as Haplopappus and Gu-
t i e r r e z i a , but id e n t if ic a t io n s in these complex groups are d i f f i c u l t on
the basis o f a few p h y lla r ie s .
Future work w ith these fo s s ils may be
f r u i t f u l , but is beyond the scope o f t h is stu d y.
Graminae spp.
in the assemblages.
A few lemmas, pa leas, and grass seeds are present
These were r a r e ly id e n t if ie d even to a ge n e ric le v e l.
The e xte n sive range o f species w ith in a s in g le graminae genus is d is c o u r­
aging f o r paleoenvironm ental re c o n s tru c tio n .
The low d e n s ity o f Graminae sp. fo s s ils w ith in these middens
probably does not in d ic a te a la c k o f P leistoce ne grassland com m unities.
Most o f these assemblages were c o lle c te d from steep (>35°) slo p e s.
Grassland communities do not fa v o r such topography.
Grassland may have
e x is te d on the f l a t p o rtio n s o f the canyon not represented in these
samples.
Species Not Recorded
u n t il the Holocene
Pinyon Pine (Pinus e d u lis ) .
Pinyon p in e , one o f the modern domi­
nants in the a rea, is recorded in 13 Holocene middens (F ig u re 2 7 ).
is f i r s t recorded a t 10,290 B.P. in Bida Cave No. 3.
It
I t is present in
fo u r e a rly Holocene middens, a l l w ith in i t s modern range.
T his record
c o n tra s ts w ith th a t o f Douglas f i r and Utah ju n ip e r , which were s i g n i f i ­
c a n tly depressed d u rin g t h is p e rio d .
105
At Bida Cave, the c o n c e n tra tio n o f pinyon decreased from 100
needles/kg a t 10,290 B.P. to o n ly one needle a t 8470 B.P. (p o s s ib ly a
co n ta m in a n t).
dens.
Pinyon is contained o n ly in two o th e r mid-Holocene m id- .
Grandview P o in t No. 4 c o n ta in s numerous f o s s ils a t 2200 m, and
Chuar No. 8 co n ta in s fo u r needles a t 1770 m e le v a tio n .
Pinyon pine seems
to have re tre a te d upslope from i t s modern range d u rin g t h is p e rio d .
The
abundance o f pinyon in s ix modern middens is in good agreement w ith i t s
dominance in th e modern community (Table 3 ).
represented in any modern sample.
Pinyon is not under-
Because o f t h i s , I b e lie v e th a t the
absence o f pinyon from 30 P leistoce ne middens is not an a r t i f a c t o f the
method.
Also the mid-Holocene s c a r c ity o f pinyon is a genuine event
ra th e r than a chance d is t r ib u t io n .
Pinyon is represented in two P le is to ­
cene middens from the western Grand Canyon, but was a p p a re n tly ra re in
the area ( P h illip s 1977).
Today Pinus e d u lis is d is tr ib u te d n o rth o f the Mogollon Rim in
A rizo n a ,
northward through the southeastern h a lf o f Utah, and eastward
in to Colorado and New M exico.
I t b a re ly e n ters in to C a lifo r n ia , Wyoming,
and Texas.
A few f o s s il needles from the e a rly Holocene resembled oneneedle pinyon (£_. m onophylla) and th re e -n e e d le pinyon (P_. cem broides).
These were id e n t if ie d as £_. e d u lis because o f the fa c t th a t many tre e s
w ith in the canyon today have a m ix tu re o f one- tw o -, and thre e -n e e d le
fa s c ic le s .
This is e s p e c ia lly tru e along the low er e le v a tio n a l boundary
o f pin yon, where many tre e s c o n ta in both one- and tw o-needle fa s c ic le s .
These have been id e n t if ie d as h y b rid s (banner 1974).
106
L i t t l e Leaf Mountain Mahogany (Cercocarpus I n t r ic a t u s ) .
and a few seeds o f l i t t l e
Leaves
le a f mountain mahogany are present in nine
Holocene assemblages, th e e a r lie s t a t 8900 B.P. (F ig u re 2 8 ).
A ll o f
these fo s s ils are w ith in i t s modern d is t r ib u t io n a l range in the study
area.
Today l i t t l e
le a f mountain mahogany is d is tr ib u te d throughout
A rizo n a , southern Utah, C olorado, Nevada, and C a lifo r n ia .
C l i f f Rose (Cowania m exicana).
C l i f f rose leaves are present in
three mid-Holocene and two modern middens.
One le a f is present in Bida
Cave No. 4 a t 8470 B .P ., w h ile several leaves are present in two middens
dated a t 7870 and 6800 B.P.
These records are unim pressive when compared
to the f i f t y to hundreds o f leaves contained in the modern middens Grand­
view P o in t No. 6a and Supai No. 1 .
Because o f the abundance o f leaves
w ith in the modern middens and t h e ir c o r r e la tio n w ith the modern f l o r a , I
must conclude th a t species is not s u b je c t to u n d e r-re p re s e n ta tio n .
This
record in d ic a te s th a t c l i f f rose invaded th e study area by 8470 B .P .,
but d id not become abundant u n t il sometime a f t e r 7000 B.P.
Today c l i f f
rose is most concentrated in the study area on m id -e le v a tio n exposed
slopes in a p a tte rn v e ry s im ila r to l i t t l e
le a f mountain mahogany.
C liff
rose extends from c e n tra l Mexico in to Arizona and New Mexico tod ay.
Its
d is t r ib u t io n is continuous n o rth in to c e n tra l Utah, w h ile i t is more r e ­
s tr ic te d in southern C olorado, n o rth e rn Utah, Nevada, and C a lifo r n ia .
%
P o in t!e a f Manzanita (A rc to s ta p h y lo s punqens).
Manzanita is an
abundant component o f the modern p la n t community on many o f the x e r ic
m id -e le v a tio n slop es.
One f o s s il le a f o f manzanita was recovered from
107
Nankoweap No. 4 dated a t 1220 B.P.
age o f manzanita a t the s it e .
The modern re le v e records
9%
co ve r­
From th is lim ite d d a ta , i t would appear
th a t manzanita is under-represented in Grand Canyon middens.
Shrub Live Oak (Quercus. t u r b in e lla ) and Wavy Leaf Oak (Quercus
u n d u la ta ).
Shrub l i v e oak and wavy le a f oak are represented in seven
Holocene middens by f o s s il le a v e s , tw ig s , and acorns.
A ll o f these re c ­
ords are w ith in th e modern d is t r ib u t io n a l ranges o f the species (F igure
2 0 ).
These shrub oaks f i r s t appear a t 8900 B.P.
The taxonomic s ta tu s
o f wavy le a f oak is u n c e rta in , as i t is p o s s ib ly a h yb rid between
g a m b e llii and Q.. t u r b in e lla
p a tte rn , f i l l i n g
(Tucker and Bogert 1973).
I t s d is t r ib u t io n a l
in th e gap between the o th e r two sp e cie s, and g ra d a tio n s
in le a f m orpholo gy between t u r b in e lla and u n d u la ta , suggest t h is hypoth­
e s is .
Both these shrub oak species are d is tr ib u te d from Colorado and
western Texas west to C a lifo r n ia and south in to Mexico.
Shrub l i v e oak
extends under 100 km in to southern Utah.
Ponderosa Pine (Pinus ponderosa).
F ossil needles, fa s c ic le s , and
seeds re p re se n t Ponderosa pine in fo u r Holocene middens.
Three e a rly
Holocene middens re cord t h is species below i t s modern d is t r ib u t io n a t
9070, 8900, and 8590 B.P.
These records are extrem ely unusual, as Pon­
derosa pine seldom grows w ith in the canyon tod ay.
encountered o n ly fo u r specimens in s id e th e canyon.
During t h is s tu d y , I
A lthough dense fo re s ts
o f th is tre e are present on the rim s , some fa c to r ( i . e . , c lim a te , la c k o f
s o i l , la c k o f f i r e ) prevents t h is species from spreading in to the canyon.
The occurrence o f Ponderosa pine in these th re e f o s s il assemblages a t
1 08
s im ila r dates and e le v a tio n s (1770-1900 m) is s ig n if ic a n t .
Some c lim a t­
ic and/or e co lo g ic fa c to r allow ed t h is species to grow where i t is not
found today.
The mid-Holocene occurrence o f Ponderosa pine in Grandview P o in t
No. 4 is not u n usua l, since t h is midden is on the rim ad jacen t to the
modern pine fo r e s t ra th e r than w ith in the canyon.
Today Ponderosa pine is spread across western North America,
form ing abundant fo re s ts from Mexico to Canada.
I t is excluded from the
d r ie s t areas o f the in te rm o u n ta in ^plateau.
New Mexican Locust (R obinia neomexicana).
Thorns o f New Mexico
lo c u s t are present in two e a rly Holocene assemblages from 1600 m e le v a ­
t io n .
Locust is abundant today on the North Rim above 2100 m.
Because
no modern m idd ens were c o lle c te d w ith in i t s modern range, no data e x is t
on packrat s e le c t iv it y f o r o r a g a in s t the p la n t.
and fo u r
However, the two tw ig s
spines present a t 8900 and 8590 B.P. do seen to in d ic a te an
e a rly Holocene in va sio n in to a h a b ita t below i t s modern (n o n -rip a ria n )
range.
New Mexico lo c u s t is present today s c a tte re d throughout New
Mexico, C olorado, and A rizo n a .
I t extends le s s than 100 km northward
in to Utah.
Net Leaf Hackberry ( C e ltis r e t i c u l a t a ) .
d is t in c t and occur in th re e Holocene assemblages.
Hackberry seeds are v e ry
Twenty seeds are pres­
ent in two middens from 1600 m e le v a tio n dated a t 8900 and 8590 B.P.
One
seed is present in a midden from 1770 m e le v a tio n dated a t 7110 B.P.
The
109
presence o f hackberry in o n ly these th re e middens suggests th a t i t was
an e a rly Holocene m ig ra n t in to the area.
Today hackberry is ra re in the study area and is found m o stly
along streams.
I t has a s p o tty d is t r ib u t io n from Washington south to
more continuous occurrences in southern A riz o n a , Texas, and Mexico.
It
occurs along the le n g th o f th e Colorado R iver from the Grand Canyon Wash
C l i f f s to Colorado.
Catclaw Acacia (Acacia g r e g g ii) .
ca tcla w a c a c ia .
Two middens c o n ta in th o rn s o f
Several th o rn s are present in the assemblage from Cot­
tonwood Canyon No. 1 a t 12,900 B.P.
I am h e s ita n t to accept the P le is to ­
cene presence o f ca tcla w acacia in th e area on the basis o f a few tho rns
in one midden, e s p e c ia lly since t h is midden seems to be o u t o f sequence
w ith the temporal changes o c c u rrin g in a ll o f the o th e r Tonto P latfo rm
middens.
However, t h is midden is the c lo s e s t to the in n e r gorge and
could p o s s ib ly show P le isto ce n e to Holocene changes e a r lie r than the
r e s t.
Catclaw is a ls o present in a modern assemblage from 1400 m e le v a ­
tio n (F ig u re 2 9 ).
Today ca tcla w grows m o s tly on exposed slopes below 1500 m.
claw is d is tr ib u te d from southern Texas to southern C a lifo r n ia .
Cat­
I t is
near i t s n o rth e rn l i m i t in the study area.
B r ic k e llia a tr a c ty lo id e s .
One le a f o f B r ic k e llia is present in
Chuar No. 5 from 970 m e le v a tio n and dated a t 1345 B.P.
Today B r ic k e llia
a tr a c ty lo id e s is d is tr ib u te d up to 1500 m on d ry exposed slop es.
I t is
no
found in the ju n ip e r woodland on Horseshoe Mesa, although i t is most
abundant w e ll below the p in y o n -ju n ip e r woodland (F ig u re 3 1 ).
E ncelia fru te s c e n s .
fo u r middens.
Seeds o f E ncelia fru te s c e n s are present in
The e a r lie s t re cord o f E_. fru te s c e n s is in Cottonwood
Canyon No. 1 , dated a t 12,900 B.P.
Two o th e r middens, dated a t 10,110
and 8900 B .P ., c o n ta in one seed each.
A modern d e b ris p ile co n ta in s
several thousand seeds/kg from a s ite w ith a ra re
modern occurrence o f
E_. fru te s c e n s .
Today £ . fru te s c e n s is d is tr ib u te d on exposed slopes up to 1500 m
in e le v a tio n .
The 8900 B.P. record o f one seed a t 1900 m is the o n ly
f o s s il ou t o f th is p la n t's modern range (F ig u re 3 2 ).
Modern seeds o f
E ncelia are o fte n present w ith in small c re v ic e s in P le isto ce n e middens
found near modern p o p u la tio n s o f the p la n t.
On the o th e r hand, Holocene
middens found near E ncelia p o p u la tio n s u s u a lly have c o n c e n tra tio n s o f
over 500 seeds/kg.
In view o f these fa c t s , I am h e s ita n t to accept the
presence o f th is p la n t in a fo s s il assemblage based upon o n ly a few o f
i t s w in d -d isb u rse d , p a p e r-th in seeds.
Today t h is species is d is tr ib u te d
from Utah to C a lifo r n ia , A riz o n a , and New M exico.
B ritt!e b u s h (E n ce lia f a r in o s a ) .
B ritt!e b u s h seeds are d i s t i n ­
guished from the preceding species by the g re a te r in d e n ta tio n a t the
top o f the achene.
Several seeds are present in Chuar No. 5 a t 1345 B.P.
B rittle b u s h is present a t the s ite to d a y.
Today b r ittle b u s h is d is tr ib u te d a t low er e le v a tio n s than E ncelia
fru te sce n s and is more abundant w ith in th e in n e r gorge.
The species is
m
near i t s
upstream l i m i t
d o w n s tre a m .
It
in
th e
stu d y area
i s more f r o s t - s e n s i t i v e
but is
e s p e c ia lly p le n tifu l
t h a n E_. f r u t e s c e n s .
B e a v e rta il Cactus (O puntia b a s i la r i s ) .
Seeds o f b e a v e rta il cac­
tu s are present in one lo w -e le v a tio n modern midden.
e a s ily d is tin g u is h e d by t h e ir alm ost round shape.
and 3-5 mm t h ic k .
These seeds are
They are 6-8 mm wide
The a r i l is o fte n reduced to the p o in t where i t blends
in to the round shape o f the seed.
Today b e a v e rta il cactus is present a t the edges o f the Tonto
P latfo rm (1100 m) and below.
B e a v e rta il cactus is d is tr ib u te d from
southern C a lifo r n ia in to Nevada and A rizona and extends a s h o rt d is ta n c e
in to southern Utah.
F o ssil Assemblages and Communities
F o ssil assemblages can be grouped to g e th e r in to s im ila r classes
depending upon age and e le v a tio n .
This grouping can be performed by
n o tin g c h a ra c te r species in the f o s s il assemblages.
The a n a ly s is is
id e n tic a l to the grouping o f modern re le v d s in to communities as was done
on Table 1, except th a t average f o s s il c o n c e n tra tio n has replaced average
percent cove r.
T h is a n a ly s is has been performed fo r two tim e p e rio d s .
Late P leistoce ne (12,000-24,000 B .P .) and e a rly Holocene (8500-10,760
B .P .) on Table 11.
These tim e pe riod s and the e le v a tio n a l li m i t s o f
groups were chosen because o f the s i m i l a r it y o f assemblages w ith in the
lim its .
A fte r assemblages have been c h a ra c te riz e d , i t is p o s s ib le to
speculate upon the na ture o f the p la n t conm unities which produced them.
112
T a b le
.
F o s s i l A ssem blages
(s e le c te d
c o n c e n tra tio n o f f o s s i l s
c h a ra c te r s p e c ie s ).
AC = a v e r a g e
/ k g ) ; CO = p e r c e n t c o n s t a n c y i n
m id d en .
Early Holocene
8500 to 10,760 B.P.
Lite Pleistocene
12,000 to 24,000 B.P.
2000 to
2100 m
middens In class
5
AC
CO
1600 to
1770 m
1440 to
1470 m
5
AC
AC
8
CO
950 to
1450 to
1900 m
970 to
1100 m
1220 m
4
AC
CO
5
CO
AC
CO
LATE PLEISTOCENE
(12,000 to 24,000 B.P.)
Picea spp.
390 100%
Junlperus communis
36
100%
Pachystlma nyrsinites
14
80%
1600 to 1770 m
Plnus fle x llls
4700 100%
Pseudotsuga menziesii
1500 100%
302 100% R
Abies concolor
440 100%
R
Holodlscus dumosus
6
80%
Rlbes sp.
3
100%
20 X
17
88%
50% - -
Rosa cf. stellata
—
—
60%
146
88%
25% - -
Symphorlcarpos sp.
1
40%
5.2
63%
25% —
20%
25% -
1440 to 1470 m
BOX
970 to 1100 m
Junlperus osteosperma
1700 88%
7300 100%
690 100% 1200 100%
5
50:
73
86%
R
Fraxinus anoraala
63%
38
24%
78
100%
Ephedra sp.
25%
R
14%
70
60%
R
14%
36
60%
Atrip!ex confertifolia
36
100%
25% --
EARLY HOLOCENE
(8500 to 10,760 B.P.)
1450 to 1900 m
Plnus edulis
Plnus ponderosa
Quercus turbine!!a
950 to 1200 ra
Ptelea trifo lla ta ssp.
pa!1Ida
113
Late P leistoce ne Assemblages
Late P leistoce ne (12,000-24,000 B .P .) middens between 2000 and
2100 m e le v a tio n are c h a ra c te riz e d by the occurrence o f spruce, common
ju n ip e r , and mountain lo v e r .
Other species such as lim b e r p in e , Douglas
f i r , and w h ite f i r are abundant.
A dense fo r e s t cover is in d ic a te d by
the abundance o f arboreal species and the presence o f common ju n ip e r and
mountain lo v e r , both lim ite d to shady h a b ita ts today.
Some openings in
the fo r e s t canopy are in d ic a te d by the hig h-co m po site, cheno-am, and
gramineae p o lle n counts (Table 4 ) .
These openings were probably lim ite d
to the stee p, rocky outcrops ( h a lf o f the slopes near these s ite s are
g re a te r than 3 0 °).
These assemblages seem to re p re se n t the low er eco-
tone o f a s p r u c e - fir fo r e s t.
Coverage was probably high on slopes o f
le s s than 30°.
Assemblages between 1600 and 1700 m in e le v a tio n are c h a ra c te r­
ized by the h ig h e st co n c e n tra tio n s o f lim b e r p in e , Douglas f i r , w h ite
fir ,
and H olodiscus dumosus.
These middens seem to re p re se n t a mixed
c o n ife r fo r e s t w ith lim b e r pine dom inating the h ig h e r exposed s lo p e s ,
and Douglas f i r and w h ite f i r dom inating low er mesic slo p e s.
Coverage
was probably le s s dense than a t h ig h e r e le v a tio n s , although some shadeto le r a n t species ( i . e . , snowberry) are presen t.
Between 1440 and 1470 m in e le v a tio n , assemblages are c h a ra c te r­
ized by gooseberry, snowberry, and Rosa c f . s t e l l a t a .
Utah ju n ip e r is
abundant, w h ile lim b e r p in e , Douglas f i r , and w h ite f i r are present in
small amounts.
These assemblages seem to re p re se n t the ecotone between
the mixed c o n ife r assemblages above and the ju n ip e r-d o m in a te d low er
114
assemblages.
The mixed c o n ife r species are present on the mesic s lo p e s,
w h ile the x e r ic slope assemblages are dominated by Utah ju n ip e r and shadsca le .
The abundance o f shrubby species in d ic a te s an open h a b ita t.
The Late P leistoce ne assemblages between 970 and 1100 m are
c le a r ly dominated by Utah ju n ip e r and shadscale.
The abundance o f j u n i ­
per probably does not re p re se n t a dense canopy, as many shrub and herba­
ceous f o s s ils are p re se n t.
E a rly Holocene Assemblages
Two d is t in c t types o f assemblages are present w ith in e a rly Holo­
cene middens.(8500-10,760 B .P .).
Between 1450 and 1900 m in e le v a tio n ,
the assemblages are c h a ra c te riz e d by the presence o f Douglas f i r ,
p in e , Ponderosa p in e , and shrub l i v e oak.
pinyon
Douglas f i r is recorded below
i t s modern d is t r ib u t io n , w h ile the o th e r th re e species are f i r s t recorded
d u ring th is p e rio d .
These assemblages are s im ila r to the modern, h ig h -
e le v a tio n p in y o n -ju n ip e r assemblages except fo r the in c lu s io n o f Douglas
fir ,
Ponderosa p in e , and hackberry.
At low er e le v a tio n s (950-1220 m ), the e a rly Holocene assemblages
are c h a ra c te riz e d by high c o n c e n tra tio n s o f Utah ju n ip e r , s in g le le a f
ash, and hop tr e e , a l l depressed below t h e ir modern l i m i t s , and an abun­
dance o f Mormon te a .
Except fo r the occurrence o f hop tre e and ash on
very x e r ic slopes and the absence o f pin yon, these assemblages are s im i­
la r to a modern, lo w -e le v a tio n p in y o n -ju n ip e r woodland.
1 15
F o s s il V e rte b ra te s
An a n a ly s is o f the faunal components o f th e middens in th is
study enabled th e id e n t if ic a t io n o f fo u r species o f liz a r d s and nine
species o f mammals (Table 1 2 ).
Oreamnbs h a rrin g to n i
A ll o f the recovered animal taxa except
(H a rrin g to n 's e x tin c t mountain goat) are p re s e n tly
liv in g w ith in the Grand Canyon (Cole and Mead in p re s s ).
The e x tin c t
mountain goat remains i l l u s t r a t e th a t Oreamnos h a rrin g to n i was probably
widespread throughout the Grand Canyon on both sides o f the r iv e r d u rin g
the Late P le isto ce n e .
The Late P le isto ce n e fauna o f the study area was s ig n if ic a n t ly
d if f e r e n t from the modern fauna.
Small horses, camels, H a rrin g to n 's
mountain g o a ts, and ground s lo th s in h a b ite d the P le isto ce n e Grand Canyon
(Mead in p re s s ).
I have ignored th e p o s s ib le in flu e n c e o f t h is h e rb i­
vore fauna on P le isto ce n e v e g e ta tio n .
My experience in the canyon areas
h e a v ily populated by fe r a l burros have le d me to b e lie v e th a t he rb ivo re s
have l i t t l e
e ff e c t on the d is t r ib u t io n o f dominant species on the ste e p ,
rocky slopes sampled in t h is stud y.
Five species o f packrats are present w ith in the area today.
I
have been unable to determ ine pa ckra t species based on midden s tr u c tu re .
At le a s t two species o f Neotoma were id e n t if ie d from te e th in these m id­
dens (Table 1 2 ).
U n fo rtu n a te ly , even i f the f o s s il te e th were always
id e n t if ia b le to a s p e c ific le v e l, we could not be sure i f th a t species
b u i l t th e midden or sim p ly died nearby.
tr ib u t e to the same d e p o s it.
More than one species may con­
Molars ty p ic a l o f both Neotoma le p id a and
N_. cinerea are present in Nankoweap No. 9 .
116
Table 12.
Midden
NORTH RIM
Chuar
V a lle y 4
V e rte b ra te Remains Id e n tifie d from Packrat D eposits in the
Eastern Grand Canyon.— Id e n tific a tio n s by J. I . Mead.
E lev.
14C Age B.P.
(m)
Lab No.
Id e n tifie d Animals
970
12,015±365
Gx—6303
8b
1760
18,800±8Q0
Rl-1178
8c 1
1760
9
1760
23,350±1110
A-2026
1215
9,400+270
Wk-177
Sceloporus c f . undulatus
(E astern fence liz a r d ) R.
dentary
Nankoweap
Canyon 7a
2070
12,170±210
A - l 993
9a
9b
2050
2050
7,870±140
17,950±600
A-1994
Rl-1180
9c
9d
2050
2050
18,130±350
23,385+770
A - l964
A - l965
Neotoma c f . le p id a RM3
M icro tus sp. (Meadow v o le )
Mx fra g .
Sceloporus sp. scales (3 )
c f . Reithrodontomys (H arv e s t mouse) M^
A rtio d a c ty la to o th fra g .
Neotoma sp. RM2
Eutamias sp. (Chipmunk) LM3
Neotoma c f . le p id a RMi_?
Ovis o r Odocoileus (sneep
o r deer) dung p e lle ts ( 10)
SOUTH RIM
Bass
Canyon 2
1885
8,590±110
Wk-147
3a
1885
8,430+400
Wk-149
3a
1885
8,900+340
Wk-150
Peromyscus sp. (Deer mouse)
L. mandible M1 3
1095
10,150=120
Wk-146
Sceloporus c f . undulatus
R. d e n ta ry
C lear
Creek 1
Hance
Canyon 1
>27,700
Rl-1179
C rotaphytus c f . c o lla r is
(C o lla re d liz a r d ) L.
d e n ta ry
Oreamnos h a rrin g to n i (e x t i n e t mountain g o at) horn
sheath
c f . Oreamnos h a rrin g to n i
m etata rsal
Neotoma c f . cine rea (Bushyt a ile d p a c k ra t) RM3
. Neotoma c f . le p id a (D esert
p a c k ra t) LM3
M icrotus sp. R. m andible
M i-2
Neotoma sp. L. m andible M-,;
rm3
117
Table 12, continue d.
E lev.
Midden
14C Aqe B.P.
. (m)
Hance
1095
13,800*330
Canyon 3
8
Lab No.
Id e n tifie d Animals
Wk-180
Neotoma sp. L. de n ta ry u n id e n tifia b le b ird long bone
fragment
c f . Sceloporus v e r t . ; L.
m a x illa
Sceloporus sp. scales ( 3 ) ;
d e nta ry
Cnemidophorus sp. (W h ip ta il
L iz a rd ) R. m a x illa
12,030*220
A-2186
•
Tse an
Bi da
Cave
1c
1430
13,3401150
• 12,600*540
A-1806
A-1794
2c
1430
13,780*240
14,170*470
A-1790
A-1789
3
1460
10,290*150
A-1808
4
5
1460
1430
8,470*100
no date
Wk-145
6b
1460
6,800+220
Rl-1175
Neotoma sp. RMo
Thomomys sp. (Pocket gopher)
Mx
Sceloporus sp. scale u n id e n tifia b le b ird fe a th e r
Neotoma sp. LM^
c f . S ono rella (Land s n a il)
s h e ll fragment
Neotoma sp. RM^
Peromyscus sp. L. m andible
Peromyscus sp. Mg
Oreamnos h a rrin q to n i horn
sheath
Neotoma sp. LM^: LM?
M icro tu s sp. RM^
Peromyscus sp. RM*
Coleonyx v a rie q a tu s (Banded
gecko) R. de nta ry
118
I
have assumed th a t pa ckra t species do not d i f f e r g r e a tly in
t h e ir c o lle c tin g h a b its .
This assumption is supported by the c o lle c tio n
o f modern middens over an 1100 m e le v a tio n a l range.
to re pre sent the surrounding v e g e ta tio n .
Each midden seems
However, the s u b je c t o f i n d i ­
v id u a l species' c o lle c tin g h a b its remains an im p o rta n t unexplored
s u b je c t.
DISCUSSION AND CONCLUSIONS
Chronology o f V e q e ta tio n a l Change
Table 3 l i s t s
species th a t c h a ra c te riz e d va rio u s a s s o c ia tio n s
d u ring the Late P leistoce ne and e a rly Holocene; however, these u n its
should not be in te rp re te d as d is c re te s t a t ic in te r v a ls .
change may have been continuous d u rin g the e n tir e re c o rd .
I b e lie v e th a t
The tim e
u n its were chosen o n ly because o f the many s im ila r fo s s il records re p re ­
senting them and t h e ir apparent r e la t iv e s t a b i l i t y .
Below is a d is c u s ­
sion o f the v e g e ta tio n a l chronology represented w ith in the e n tir e record
(see Table 2 f o r dates and m ajor c o n te n ts ).
P r e - fu ll G la c ia l Middens
Five middens o ld e r than 23,000 B.P. r e f le c t c o n d itio n s more s im i­
l a r to the f u l l g la c ia l extreme than modern c o n d itio n s , but w ith e x tr a ­
lo c a l species a t low er c o n c e n tra tio n s than in the f u l l g la c ia l middens.
These middens c o n ta in some unusual species not found in o th e r middens,
such as one-seed ju n ip e r ( Juniperus c f . monosperma) , r a r e ly found w ith in
th e area tod ay.
Cottonwood Canyon Nos. 2 and 3 (34,300 and 29,400 B .P .) and Chuar
No. 9 (>27,700 B .P .) re p re se n t r e la t iv e ly m ild in te r s ta d ia l c o n d itio n s .
These middens are comparable in t h e ir c o n c e n tra tio n o f e x tra lo c a l spe­
c ie s to V u ltu re Cave No. 9 (29,810 B .P .) c o lle c te d a t 640 m e le v a tio n 170
km to the west o f t h is study ( P h illip s 1977).
The m a jo r ity o f W isconsin
age ch ro n o lo g ie s support th e p la c in g o f these fo u r middens in to an
1 19
120
in te r s ta d ia l tim e period ( F l in t 1971 "M iddle W isconsin," Richmond 1965).
This pe riod co in cid e s w ith the p r e - f u ll g la c ia l p o lle n record from Tule
S p rin g s, Nevada (M ehringer 1967) and the Farmdalian In t e r s ta d ia l (W right
1971) in I l l i n o i s .
Nankoweap No. 9d and Chuar No. 9 (23,385 and 23,350 B .P .) record
c o n d itio n s much more s im ila r to th e f u l l g la c ia l extreme than the p re ­
ceding middens, but do not c o n ta in as high a c o n c e n tra tio n o f e x tra lo c a ls
as the f u l l g la c ia l middens.
More middens spanning th is tim e pe riod are
necessary before th e chronology between 23,000 and 35,000 B.P. can be
more f u l l y understood.
F u ll G la c ia l Middens
Ten middens d a tin g between, 15,800 and 21 ,000 B.P. seem to re p re ­
sent a c o n s is te n t v e g e ta tio n a l regim e.
ta in s im ila r assemblages.
Middens from s im ila r s ite s con­
T his tim e period c o in cid e s w ith what most
authors assume to be the maximum e x te n t o f Late W isconsin g la c ia tio n ,
the f u l l g la c ia l period (Climap 1976, W right 1971).
During t h is i n t e r ­
v a l, e x tra lo c a l species such as lim b e r p in e , Rosa c f . s t e l l a t a , and shadscale reached t h e ir g re a te s t c o n c e n tra tio n s .
This chronology is in agreement w ith th a t developed by P h illip s
(1977, stage I I ) a t a low er e le v a tio n downstream.
His chronology is a l ­
so dominated by Juniperus sp. and shadscale ( A tr ip !e x c o n f e r t i f o l i a ) d u r­
ing t h is p e rio d , but co n ta in s some low er e le v a tio n species which have
a p p a re n tly been depressed below the lim i t s o f my study area ( i . e . ,
Coleoqyne ramosissima and Ephedra s p . ) .
121
Late G la cia l Middens
I have placed 14 assemblages (11,000-15,000 B .P .) in to a p o s tf u l l g la c ia l cate go ry because th e y c o n ta in low er c o n c e n tra tio n s o f ex­
tr a lo c a l species than those o f the f u l l g la c ia l.
I must emphasize th a t
the boundary between t h is p e riod and the f u l l g la c ia l is g ra d a tio n a l and
perhaps n o n e x is te n t.
In d iv id u a l f u l l g la c ia l e x tra lo c a ls drop out o f
the record a t d if f e r e n t tim es a t d if f e r e n t s ite s .
The record is most
c o n s is te n t w ith a g ra d a tio n a l change between 15,000 and 11,500 B.P.
Limber pine ( Pinus f l e x i l i s ) is recorded in Clear Creek No. 2 a t
15,840 B.P. but not in c le a r Creek No. 3 a t 14,050 B.P.
abundant in lo w -e le v a tio n middens u n t il 12,015 B.P.
Shadscale is
Rosa c f . s t e lla t e
is abundant in m id -e le v a tio n middens u n t il 11,530 B.P. when lim b e r pine
is la s t recorded in th e study area.
A lthough lim b e r p in e , Douglas f i r , and w h ite f i r are a l l present
in both f u l l g la c ia l and la te g la c ia l middens above 1770 m, the domi­
nance o f species s h if t s between the two p e rio d s .
Limber pine is more
abundant d u rin g th e f u l l g la c ia l, w h ile Douglas f i r and w hite f i r are
more prominent in th e la te g la c ia l.
U n fo rtu n a te ly , the f u l l g la c ia l m id­
dens occur on more exposed aspects than those o f the la te g la c ia l, and i t
is not p o ssib le to separate the tim e and aspect v a ria b le s in these h ig h ­
e st middens.
This in te rm e d ia te p e riod between the f u l l g la c ia l and Holocene
d u p lic a te s th e fin d in g s o f P h i l l i p 's stage I I I downstream.
His r e s u lts
in d ic a te th a t from 11,000 to 14,000 B.P. modern species in te rm ix e d w ith
e x tr a lo c a ls .
The boundaries o f t h is stage are in d is t in c t ( P h illip s 1977).
122
E a rly Holocene Middens
Nine middens d a tin g between 8590 and 10,760 B.P. seem to form a
d is c re te u n it , which I have termed the e a rly Holocene.
A ll o f these
middens c o n ta in e le v a tio n a lly depressed sp e cie s, y e t they la c k th e
P leistoce ne species which are ra re o r absent from the Grand Canyon today.
Limber p in e , Rosa c f . s t e l l a t e , shadscale, and spruce ( Picea sp p .) are
not recorded.
p re se n t:
New spe cies, absent from the P leistoce ne re c o rd , are
Ponderosa pine ( Pinus ponderosa) , pinyon pine (£ . e d u lis ) , New
Mexican lo c u s t ( Robinea neomexicana), and hackberry ( C e ltis r e t ic u la t a )
are a l l f i r s t recorded in these middens.
Species which were in fre q u e n t
d u rin g the P le isto ce n e such as s in g le le a f ash ( Fraxinus anomala) , Mor­
mon tea ( Ephedra s p .) and hop tre e ( Ptelea t r i f o l i a t a
abundant in these middens.
v a r. p a l li d a ) , are
S c le ro p h y llo u s shrubs such as shrub oak
( Quercus t u r b in e lla ) and l i t t l e
le a f mountain mahogany ( Cercocarpus in -
t r i c a t u s ) are f i r s t recorded in these assemblages.
Although species
such as Douglas f i r and Utah ju n ip e r are s t i l l e le v a tio n a lly low ered, a
m ajor change in community com position has occu rre d.
I t is d i f f i c u l t to place the tim e boundary between these e a rly
Holocene assemblages and those o f th e Late P le is to c e n e .
middens occur in the in te r v a l from 10,290 to 12,015 B.P.
Only two dated
The o ld e r m id­
den, Bida Cave No. 8a (11,530 B .P .) , seems to re cord P le isto ce n e c o n d i­
tio n s w ith high c o n c e n tra tio n s o f Douglas f i r ,
lim b e r p in e , and Rosa c f .
s t e l l a t a ; however, t h is s n a il sample could e a s ily have been contaminated
by the abundant P le isto ce n e d e b ris on the cave f lo o r w ith in a few meters
o f the d e p o s it.
123
Bass Canyon No. 1 (10,760 B .P .) records an e a rly Holocene-type
assemblage.
U n fo rtu n a te ly t h is d e p o s it is a t a low e le v a tio n (950 m)
downstream from th e m a jo r ity o f the f o s s ils .
I t is p la u s ib le th a t a
P Ieistocene-H olocene change could have occurred a t t h is s it e e a r lie r
than a t the o th e rs .
W ithout a d d itio n a l re c o rd s , I cannot p o s itio n the
P Ieistocene-H olocene boundary more c lo s e ly than somewhere between 10,290
and 12,015 B.P.
In the western end o f the canyon P h illip s (1977) puts th e boun­
dary a t 11 ,000 B..P. but stre sses th a t t h is is a g ra d a tio n a l change ra th e r
than an a b rup t boundary.
My re cord also has g ra d a tio n a l q u a lit ie s .
S in ­
g le le a f ash, abundant in th e e a rly Holocene, had a lre a d y become more
numerous toward the end o f the P le is to c e n e .
o f the flo r a do not a r r iv e a l l a t once.
Modern dominants con tinue to be
represented throughout the Holocene re c o rd .
cana) is not represented u n t il 8470 B.P.
Invading modern components
C l i f f rose ( Cowania m exi-
Many o th e r species ( p a r tic u ­
l a r l y d e se rt species) are represented o n ly in the modern assemblages
( i . e . , B r ic k e llia a t r a c ty lo id e s , B ernardia inca na) .
A gradual change
from P leistoce ne to modern p la n t communities is suggested.
The P Ieistocene-H olocene boundary has re ceived much a tte n tio n .
Some g la c io lo g is ts place the boundary in excess o f 12,000 B.P. on g la c io lo g ic a l grounds (Mercer 1972).
M a rtin (1963) and M a rtin and M ehringer
(1965) recognize a m ajor v e g e ta tio n a l change a t 12,000 B.P. in southern
Arizona and southern Nevada based on p o lle n p r o f ile s .
Many s c ie n tis ts
place the boundary a t 11,000 on not o n ly p a le o b o ta n ica l grounds (Van
Devender and Spaulding 1979), but a ls o because o f th e North American
124
megafaunal e x tin c tio n s which c o r re la te w ith th a t date (M a rtin 1973).
I
am using th a t date sim ply because o f the lo s s o f P leistoce ne dominants
and in va sio n o f Holocene dominants which takes place between 10,290 and
12,015 B.P. in my re c o rd .
A m ajor v e g e ta tio n a l change occurred a t some tim e a f t e r 10,000
B.P.
Van Devender (1977a) re p o rts e x tra lo c a l woodland species in d e se rt
h a b ita ts w ell in to the Holocene.
My record is in accord w ith th is view .
The youngest midden c o n ta in in g e x tra lo c a l species was dated a t 8590 B.P.
Four middens w ith o u t e x tra lo c a l species date between 6800 and 8470 B .P .,
in d ic a tin g a m ajor s h i f t to modern c o n d itio n s a t 8500 B.P.
is in agreement w ith P h i l lip s '
lo c a ls (8540 B .P .).
This record
(1977) youngest midden c o n ta in in g e x tr a ­
This boundary need not be used as a P le is to c e n e -
Holocene boundary, because the f o s s il re cord presents a continuum o f
tim e -tra n s g re s s iv e changes between 12,000 and 8000 B.P. (Watson and
W right 1980).
Mid-Holocene Middens
Middens re fe rre d to as mid-Holocene in t h is re p o rt cover the
tim e in te r v a l between 5500 and 8470 B.P.
Between 6800 and 8470 B.P.
these middens are c h a ra c te riz e d by high c o n c e n tra tio n s o f Agave utahe nsis
and Opuntia sp. and have abnorm ally low values o f pinyon and ju n ip e r .
One midden, c o lle c te d from an in s e n s itiv e s it e and dated a t 5510 B .P .,
seems to re p re se n t the modern f lo r a .
The years between 6800 and 2300
B.P. are not represented in t h is chronology except by t h is one midden.
Because o f these sparse re c o rd s , no con clusion s can be made about the
chronology between 6800 and 2300 B.P.
125
Presumably the gap in the record between 2300 and 6800 is a r e ­
s u lt o f in s u f f ic ie n t sampling o f Holocene middens.
An e f f o r t was made
to c o lle c t the o ld e s t lo o k in g middens w ith o u t e x tra lo c a l sp e cie s.
This
was done in order to determ ine when the e x tra lo c a l species had l e f t the
community.
The re s u lts are in agreement w ith the youngest middens w ith
e x tra lo c a l species.
8470 B.P.
No n o n -e x tra lo c a l middens were recorded before
An e f f o r t was a lso made to c o lle c t the youngest appearing
middens in o rder to analyze the p a c k ra t's c o lle c tin g h a b its .
The in te r v a l recorded between 6800 and 8470 B.P. is in accord
w ith the concepts o f the A ltith e rm a l
(Antevs 1948), Xerotherm ic
(A xelrod 1979), and Hypsitherm al periods (Deevey and F lin t 1957).
These
c o r re la tio n s w i l l be fu r th e r discussed in the c lim a tic a n a ly s is o f t h is
p e rio d .
Late Holocene (Modern) Middens
A ll o f the middens younger than 2300 B.P. re cord v e g e ta tio n very
s im ila r to the modern com m unities.
Sane changes undoubtedly occurred
over the la s t 2300 ye a rs, but these changes were m inor when compared to
the magnitude o f e a r lie r flu c tu a tio n s .
I could decipher no c o n s is te n t
p a tte rn o f change among these few young re c o rd s .
No e x tra lo c a l species
were present in any o f the middens.
V e g e ta tio n a l In e r tia
I have assumed th a t th e v e g e ta tio n represented in these d e p o sits
was in e q u ilib riu m w ith the c lim a te e x is tin g a t th a t tim e .
A sudden c l i ­
m atic change may not be represented in the re cord because o f the slow
126
m ig ra tio n ra te s f o r some p la n ts .
This fa c to r is considered im p o rta n t in
the eastern U n ite d "S ta te s (D avis 1969).
I t has not been considered in
the western U nited S tates because th e mountainous topography could p ro ­
vid e numerous re fu g ia and m ig ra tio n d ista n ce s would not be as g re a t.
This concept deserves more c o n s id e ra tio n .
The displacem ent o f a clim ax v e g e ta tio n in v o lv e s much more than
species m ig ra tio n .
Many communities tend to be s e lf- p e r p e tu a tin g .
Exam­
ples are a f i r e c lim a x , which produces flam able l i t t e r , and an edaphic
c lim a x , which may produce secondary chem icals in h ib it in g the growth o f
o th e r p la n ts .
These clim ax communities w i l l not be disp la ce d sim ply be­
cause another v e g e ta tio n type is more s u ite d to the c lim a te .
A c lim a tic
s h i f t must be severe enough to d is lo c a te th e o r ig in a l v e g e ta tio n before
the invading type can become dom inant.
This type o f reasoning can be a p p lie d to the upslope m ig ra tio n
o f Douglas f i r
between the la te g la c ia l period and the mid-Holocene.
Throughout the 50,000 year d u ra tio n o f the W isconsin G la c ia l p e rio d , a
deep a c id ic s o il would develop in th e f i r
fo r e s t.
This s o il and the
shady h a b ita t are most s u ite d to the p e rp e tu a tio n o f the f i r
fo r e s t.
In
o rd e r to remove t h is f o r e s t , a c lim a tic change must be severe enough to
a llo w the inva ding v e g e ta tio n to out-compete the fo r e s t l i t e r a l l y on i t s
own t u r f .
I t could be argued th a t t h is fa c to r allow ed the e a rly Holocene
re te n tio n o f some species below t h e ir modern li m i t s several thousand
years a f t e r th e end o f the P le is to c e n e .
T his hypothesis deserves f u r ­
th e r c o n s id e ra tio n , alth oug h lim it a t io n s o f tim e and space prevent me
from undertaking i t
in t h is d is s e r ta tio n .
127
Bioqeography and
In fe rre d P aleoclim ates
An o u tsta n d in g c o n tr ib u tio n o f f o s s il p a ckrat midden a n a ly s is
is i t s r ic h data on paleogeography.
These records provide in fo rm a tio n
on past p la n t d is t r ib u t io n s which were p re v io u s ly o n ly a s u b je c t f o r
s p e cu la tio n based upon modern d is t r ib u t io n s .
I t is a ls o p o s s ib le to i n ­
fe r past c lim a te s based on these f o s s il re c o rd s .
The re c o n s tru c tio n o f p a le o clim a te s from fo s s ils re q u ire s th a t
we not o n ly assume th a t present c lim a tic li m i t s o f modern species are
a p p lic a b le to the f o s s ils , but a ls o th a t we understand these modern c l i ­
m atic l i m i t s .
The autoecology o f most modern species has sim ply not y e t
been worked o u t.
The c o m p le x itie s o f seasonal c lim a tic v a ria b le s (e s­
p e c ia lly ra re c lim a tic events such as a 100-year d roug ht) and p la n t com­
p e titio n are not w e ll understood.
r e ly on modern analogs.
Because o f these problem s, we must
The past c lim a te o f a fo s s il s it e must be as­
sumed to have been l i k e th a t o f a l o c a l i t y w ith s im ila r modern
v e g e ta tio n .
F u ll G la c ia l P lant
Geography and Clim ate
Middens d a tin g between 15,800 and 21,000 B.P. c o n ta in th e g re a te s t
c o n c e n tra tio n o f f o s s ils th a t are ra re o r absent in the area tod ay.
F ig ­
ure 33 presents an e le v a tio n a l p r o f ile o f the f u l l g la c ia l f o s s il depos­
i t s and compares them to a modern p r o f ile o f percent coverage o f domi­
nants.
The most s t r ik in g d iffe re n c e s between the f u l l g la c ia l fo s s il
d e p o sits and th e modern p la n t d is t r ib u t io n s a re :
1) the e le v a tio n a l
128
F U L L G LA C IA L D O M IN AN TS
(15,800 TO 18,800 BP)
MODERN DOM INANTS
8000-
70 0 0 -
L IM B E R
P IN E
DOUGLAS-FIR
p sooo-
JUNIPER
4000-
•
•
— •
Pseudotsugo menziesii
— •
Juniperus osteospermo
»-
» Pinus ed u lis
— •
■
0
10 20
30 40
50
60
70
80
90
Pinus flexilis
Picso spp.
< 0 .01%
100
PER CENT
PER CENT
GYMNOSPERMS
MODERN PERCENTAGE COVER
(PER CENT OF FOSSILS IN MIDDEN)
Figure 33,
The Content o f F u ll G la c ia l Middens vs. E le va tio n and
the Modern Percentage Cover f o r Dominant Species vs. E le v a tio n .
— Modern coverage values are averages o f a l l s ite s in 500'
in te rv a ls w ith o u t regard to slope aspect.
1 29
depression o f ju n ip e r , spruce, and Douglas f i r ; 2) the presence o f lim ­
ber p in e ; and 3) the absence o f pinyon p in e .
The abundance o f pinyon in modern assemblages and i t s absence in
30 P leistoce ne middens is stro ng evidence th a t i t was e ith e r absent or
ra re in the area d u rin g t h is p e rio d .
Table 13 l i s t s the m ajor f o s s il
taxa described in the re s u lts s e c tio n , along w ith maximum and minimum
e le v a tio n a l depression estim ates and t h e ir d is tr ib u tio n s in the i n t e r ­
mountain plateau re g io n .
Ten o f the 11 species abundant in the f u l l g la ­
c i a l , but ra re to d a y, occur throughout the in te rm o u n ta in p la te a u .
The
o n ly o th e r sp e cie s, Rosa c f . s t e l l a t a , is s im ila r to species o c c u rrin g
on the in te rm o u n ta in p la te a u .
Of the 12 species present in both the f u l l
g la c ia l and th e Holocene, a l l occur on the in te rm o u n ta in p la te a u ; fo u r
o f the 13 are r e s tr ic te d to the southern p a rt o f the area o r the southern
r iv e r drainages.
None o f t h e -13 species absent from the f u l l g la c ia l re cord reach
the no rth e rn p a rt o f the in te rm o u n ta in p la te a u .
E ig h t are r e s tr ic te d to
the southern areas, and f iv e do not occur in the in te rm o u n ta in plateau
re g io n .
The presence o f many species ty p ic a l o f the n o rth e rn interm oun­
ta in plateau and the absence o f a l l but fo u r species r e s tr ic te d south o f
t h is area today lead me to the co n clu sio n th a t c lim a te s were s im ila r to
the c e n tra l to n o rth e rn in te rm o u n ta in plateau to d a y.
The s i m i l a r it y o f a rboreal flo r a s in the f u l l g la c ia l Grand Can­
yon and in modern Utah mountain ranges are shown on Figure 34.
The mod­
ern data are from Erdman (1 970 ), who l i s t s the tre e s o f Utah mountain
T a b le 1 3 .
D is trib u tio n
and e l e v a t i o n a l
130
d e p r e s s io n o f m a j o r s p e c i e s .
A = absent from the inte rm o unta in plateau -R - r e s tr ic te d to the low
e le v a tio n drainages; S.= present o n ly on the southern p o rtio n o f the
interm ountain p la te a u .
Restrictions on
intermountain
plateau today
Full Glacial
elevational
depression (m).
lo ^ r (L)
or upper (u)
boundary
Species present In the Full
Glacial but rare today
Sheperdla canadensis
—
1000 to 1300
L
Plnus fle x llls
—
850 to 1000
L
Rosa cf. stellate
A
700 to 900
L
Junlperus communis
—
500 to 1000
L
PI eta enqelmanhtl
—
500 to 760
L
Chamaebatlarla mil 11 folium
--
> 700
L
Holodlscus dumosus
—
> 250
L
Rubus sp.
—
7
--
7
--
Symphonicarocs so.
—
Pachystlma myMini tes
—
Atrip!ex confertlfolta
—
6o o t*iio o
0 to +100
-U
Species present In the Full
Glacial and today
Junlperus osteospenma
—
> 730
L
Opuntla sp.
—
700 to 900
U
Pseudotsuoa roenzlesll
—
720 to 800
L
Abies concolor
—
720 to 800
L
(Xiercus c f. ganbel 11
S
600 to 850
L
Forsellesla nevadensls Greene
--
Agave utahensls
R
500 to 800
U
Ephedra so.
—
> 750
U
Ptelea pallida
R
7
—
Fraxlnus anomala
S
7
—
Rites so.
0 to
600
U
7
--
480 to 730
Plnus ponderosa
s
-
—
Plnus tdulis
s
—
—
Cercocarpus Intricatus
s
—
—
Cowanla mexlcina
s
-
—
Quercus turblnella
R
—
—
RoblnVa neomexlcana
R
—
—
Celtls reticulata
R
—
—
Encella frutescens
R
—
—
Arctostaphylos pungens
A
—
—
Opuntla basllaris
A
—
-
Brlckellta atractyloldes
A
—
—
Acacia gregqll
A
—
—
Encella farinose
A
—
—
Artemisia cf. trldentate
u
Modem species not recorded In
Full Glacial
131
71 Raft
River Mts.
Bear
River
Mts.
67
Uinta
Mts.
Stonsbury
Mts.
6 7 Wasatch Mts.
60%
7 5 Deep Creek
33 Tintic and
Sheeprock Mts.
San Pitch Mts. 45
Canyon Mts. 4 7
Pavant
Mts.
Wah Wah
6 7 Roan Plateau
(west)/^
71 Wasatch
Plateau
.. / 'l e a s t )
40
/
La Sal Mts. 57
6 3 Tushar Mts.
Aquarius ~ Plateau b :
4 0 Henry Mts.
5 6 Morkagunt
Plateau
Aba jo
47
4 0 pine Valley Mts.
Figure 34,
S im ila r ity o f F u ll G la c ia l F lora in the Grand Canyon above
1500 m w ith the contemporary f lo r a o f Utah Mountain Ranges. —
Values are percent s i m ila r it y as measured by Sorensen's Index.
132
ranges based upon records in Utah h e rb a ria .
Mountain ranges under 2300
m or w ith le s s than 12 recorded species were not con sidered.
Only those
modern species I would have recognized in f o s s il assemblages were con­
s id e re d ; fo r example, Populus tre m ulo id es was not includ ed because t h is
t r e e i s r a r e ly represented in Neotoma middens.
S a lix were not in c lu d e d .
R ip a ria n taxa such as
F u ll g la c ia l f o s s ils below 1500 m were not
considered, since many Utah mountain ranges reach base le v e l a t t h is
e le v a tio n .
The modern flo r a s w ith the g re a te s t s im ila r it y to the f u l l g la ­
c ia l Grand Canyon above 1500 m occur along th e Wasatch fr o n t and in
no rth e rn Utah.
Douglas
This is due m o s tly to the presence o f spruce, w h ite f i r ,
f i r , and lim b e r p in e , and th e absence o f pinyon, Ponderosa p in e ,
Gambel oak, and s in g le le a f ash in these modern areas.
Assemblages s im ila r to those o c c u rrin g below 1500 m e le v a tio n in
th e f u l l g la c ia l Grand Canyon can be found today a t the N ational Reactor
T esting S ta tio n in southern Idaho. Utah ju n ip e r , Douglas f i r , shadscale,
and b ig sagebrush a l l occur in th e area between 1580 and 1950 m in e le ­
v a tio n (AWood 1970).
Recorded r a in f a l l in the area is under 25 cm /yr
(A llre d 1 9 6 8 ),.although i t is proba bly 25-36 cm /yr a t the h ig h e r s ite s
(R. B rig h t, personal com munication, 1981).
A 16 20 -ye a r-o ld p a ckrat mid­
den from the area is s im ila r to the f u l l g la c ia l middens c o lle c te d from
the Tonto P latfo rm (East B u tte , B r ig h t, D avis, and Eikum 1978).
T h is
midden co n ta in s abundant Opuntia needles, Utah ju n ip e r tw ig s , Chrysothamnus b ra c ts , shadscale b ra c ts , and big sagebrush le a v e s .
Minor
components o f the Grand Canyon middens such as Agave are not p re s e n t;
133
however, the dominants o f th e assemblage are q u a n t it a tiv e ly s im ila r to
those in the f u l l g la c ia l middens from th e Tonto P la tfo rm .
F u rthe r
a n a ly s is o f modern middens may produce even more analogous assemblages
elsewhere.
An e co lo g ic a n a ly s is leads to the same con clusion s o f a modern
analog f o r the f u l l g la c ia l Grand Canyon in the c e n tra l to n o rth e rn i n ­
term ountain p la te a u .
As shown in Figure 35, the species abundant in the
f u l l g la c ia l middens c o lle c te d on x e r ic slopes (lim b e r p in e , ju n ip e r ,
and shadscale) are abundant today on x e ric slopes on the in te rm o u n ta in
p la te a u .
These species seem to be lim ite d by co m p e titio n (Lepper 1974,
C ronquist 1978).
They dominate where m o isture is d e fic ie n t and w in te r
cold lim i t s o th e r species (West, Rea, and Tausch 1975; B eatle y 1975).
Douglas f i r and w h ite f i r dominate mesic slopes in t h is f o s s il record and
today in the n o rth e rn in te rm o u n ta in p la te a u .
Today th e c e n tra l to n o rth e rn in te rm o u n ta in plateau has a c lim a te
which is c o ld e r than th e Grand Canyon.
W inter tem peratures are ve ry
much lo w e r, w h ile summer tem peratures a t e q u iv a le n t e le v a tio n s are the
same to s l i g h t l y c o ld e r.
The range between maxima and minima is g re a te r,
c re a tin g a more c o n tin e n ta l c lim a te than is present in the Grand Canyon.
Annual p r e c ip ita tio n is s im ila r to th e stud y area, except th a t i t is
w in te r and sp rin g p r e c ip ita tio n ra th e r than biseasonal (R u ffn e r 1978).
As an example, I w i l l c o n s id e r the c i t y o f P ric e which is lo c a te d
on the east side o f the Wasatch P lateau a t 1700 m e le v a tio n .
p r e c ip ita tio n is s l i g h t l y le s s than 31 c m /y r.
Mean annual
I would expect a 1700 m
s it e in my study area to re c e iv e a t le a s t th a t much r a i n f a l l , since the
Figure 35,
Contents o f Neotoma middens d a tin g between 12,100
and 21,000 B.P. — Dot represents the lo c a tio n o f the
f o s s il d e p o sit on the environmental g ra d ie n t.
The
modern low er lim it s o f several species are shown fo r
comparison.
The radiocarbon date (in years B .P .) is
shown beneath each fo s s il d e p o s it.
134
LATE WISCONSIN VEGETATIONAL GRADIENT
_______ SCALE
Macrofossils per
kilogram of
amberof
> 1 0 ,0 0 0
1 0 0 0 to
1 0 ,0 0 0
100 to 1000
10 to 1001
I to 10 | I
MES1C
N E - P R O T E C T E D
IN T H E GRAND CANYON
‘ XER1C
S W * E X P O S E D
S L O P E S
•
12.130
13.110
ELEVA
ELEVATION
•
S L O P E S
13,540
16,165
13,780
13,470
•
•
•
•
©
18,630
2 0 ,6 3 0
16,400
•
12 ,9 00
•
13,800
•
17,400
•
12,380
13,660
t
T
\
SPRUCE
COMMON
JUNIPER
A
T
LIMBER
PINE
DOUGLAS
FIR
(S
I
UTAH
JUNIPER
SHADSCALE
9
M
|
SINGLE
LEAF ASH
•
135
South Rim (a t 2125 m) re ceives 36 cm /yr.
is 31°C.
This value is s im ila r to the 29°C average fo r the South Rim,
425 m h ig her in e le v a tio n .
-11°C.
The mean J u ly maximum in P rice
The mean January minimum f o r P rice is under
T h is value is much le s s than the -7°C average fo r the South Rim,
which is h ig her in e le v a tio n .
P rice has a 42°C d iffe re n c e between i t s
January and J u ly means, w h ile th e South Rim has o n ly a 36°C d iffe re n c e .
Even Phantom Ranch, which is noted f o r i t s searing summer h e at, has o n ly
a 39°C d iffe re n c e between these means.
example.
The c i t y o f P rice is a moderate
Other areas fu r th e r n o rth on the in te rm o u n ta in plateau are
c o ld e r, ju s t as d ry , and ju s t as c o n tin e n ta l.
Using th e c lim a te o f the c e n tra l to n o rthe rn in te rm o u n ta in p la ­
teau as an analog to f u l l g la c ia l c lim a te s in the Grand Canyon, the e le v a tio n a l depressions o f species appear to be m o s tly the r e s u lt o f c o ld e r
tem peratures.
Mean annual p r e c ip ita tio n was clo se to modern values but
could p o s s ib ly have been 10-20% g re a te r than modern va lu e s.
These p re ­
c ip it a t io n estim ates are in sharp c o n tra s t to many d e s c rip tio n s o f " p lu ­
v i a l " c lim a te s which have in fe rre d as much as a 200-300% increase in
p r e c ip ita tio n (Brooks 1951).
The d e riv a tio n o f more p re cise fig u re s on tem perature and p re c ip
i t a t io n values is not p o ssib le u n t il more f i e l d work is done on the mod­
ern e le v a tio n a l d is tr ib u tio n s o f im p o rta n t species on the in te rm o u n ta in
p la te a u ; however, I fe e l th a t th e co n clu sio n o f le s s equable c lim a te s
fo r the P leistoce ne Grand Canyon is inescapable.
Species which are not
found in more c o n tin e n ta l areas today were e ith e r absent or t h e ir ranges
were depressed below the le v e l o f th e in te rm o u n ta in p la te a u .
136
The c o n tin e n ta l c lim a te s which I have discussed on the modern
in te rm o u n ta in plateau and in the f u l l g la c ia l Grand Canyon should not be
confused w ith more c o n tin e n ta l c lim a te s on the Great P la in s .
Because o f
th e b a r r ie r to A r c tic a ir movement created by the Rocky M ountains, these
areas are le s s c o n tin e n ta l than the modern Great P la in s .
The same r e la ­
tio n s h ip probably e x is te d in the P le isto ce n e .
The f u l l g la c ia l environment has been described as c o n tin e n ta l,
c o ld , and as d ry as i t is today.
The d is t r ib u t io n o f species along the
in s o la tio n a l g ra d ie n t a lso supports th is c o ld /d ry hyp oth esis.
The f u l l
g la c ia l d is tr ib u tio n s o f Douglas f i r , w hite f i r , and Utah ju n ip e r were
s im ila r to t h e ir modern d is tr ib u tio n s along the mesic to x e r ic slope
g ra d ie n t.
In c o n tra s t, lim b e r pine and shadscale dominated the high and
low x e r ic exposures during t h is p e rio d .
I f th e f u l l g la c ia l p e rio d was
" p lu v ia l" (w ith g re a te r r a i n f a l l ) , the f u l l g la c ia l x e r ic slope domi­
nants should have responded to d r ie r Holocene c lim a te s by m ig ra tin g to
the more mesic aspects.
In s te a d , they e ith e r disappeared a t the end o f
the P leistocene or became ra re .
These conclusions are c o n s is te n t w ith p o lle n records in the Grand
Canyon and on th e southern Colorado Plateau which show high le v e ls o f
A rte m isia sp. and Pinus sp. d u rin g th e f u l l g la c ia l p e rio d (W right e t a l .
1973, W hiteside 1965, Robbins e t a l . in p re p a ra tio n ).
Most packrat midden analyses in the southwest ( P h illip s 1977, Van
Devender and Spaulding 1979) have supported s im ila r conclusions o f less
summer p r e c ip ita tio n and more w in te r p r e c ip ita tio n than a t p re s e n t.
e ve r, these s tu d ie s have emphasized the mixed a s s o c ia tio n s o f p la n t
How­
137
species which do not occur in the immediate area even a t higher e le v a ­
tio n s today.
As a r e s u lt , they have hypothesized m ild w in te r c o n d itio n s
w ith c o o le r summers in c re a s in g th e e q u a b ility o f the c lim a te (W ells 1979)
in o rder to a llo w unusual a s s o c ia tio n s .
The to t a l absence o f evergreen
s c le ro p h y llo u s shrubs, abundant today in m ild w in te r r a in f a l l regim es,
makes such a f u l l g la c ia l c lim a te u n lik e ly fo r th is study area.
Under a
more tem perature w in te r r a in f a l l c lim a te I would expect fo s s ils o f shrub
oak, pinyon, A rc to s ta p h y lo s , Cowania, Cercocarpus, Ceanothus, Coleogyne,
and G arrya, a l l present in the area today.
Two species recorded in t h is study could be used to advance the
m ild w in te r argument:
Rosa c f . s t e lla t e and Agave u ta h e n s is .
These
species are p re s e n tly d is tr ib u te d to the south o f the study area in to
more tem perate, warmer c lim a te s .
However, both o f these species are
found on th e Coconino Plateau today and the y were s ig n if ic a n t ly depressed
in to the canyon d u rin g the f u l l g la c ia l.
Coconino Plateau have been as low as -18°C
Recorded tem peratures on the
(S e lle rs and H ill 1974).
These two species could more c o n v in c in g ly be used to support the
presence o f summer r a in f a l l in th e f u l l g la c ia l.
T h e ir modern ranges
seem to c o r re la te more w ith the summer monsoon r a in f a l l then w ith tem­
p e ra tu re .
However, i f much summer r a in f a l l was present in the study
area in the f u l l g la c ia l, I would expect to have f o s s il records o f Ponderosa p in e , New Mexican lo c u s t, and net le a f hackberry and a g re a te r
abundance o f ash, oak, and hop tr e e .
The low e le v a tio n s a t the western end o f the canyon (<700 m) and
the in s u la tin g e ff e c t o f the canyon topography (Malm 1974) could a llo w
138
the p e rsiste n ce o f d e se rt species throughout the P leistoce ne in these
low est and warmest p o rtio n s o f th e canyon ( P h illip s 1977).
A g ra d ie n t e x is ts today along the Colorado R iver in the canyon.
Mohave Desert species such as cre osote bush ( Larrea t r id e n t a t a ) and b r i t tle b u sh ( E ncelia fa r in o s a ) extend upstream u n t il some c lim a tic fa c to r
l im it s t h e ir d is t r ib u t io n .
Because o f t h is , the eastern Grand Canyon
supports m o stly Great Basin Desert species and very few Mohave Desert
species.
The la c k o f c lim a tic s ta tio n s along the r iv e r makes i t d i f f i ­
c u lt to de scrib e the nature o f the g ra d ie n t; however, one probably a lso
e x is te d d u ring the P le isto ce n e .
Pinyon and Cercocarpus i n t r ic a t u s , both
absent from the P leistoce ne eastern Grand Canyon, are recorded a t 16,580
± 460 B.P. near Peach Springs wash (Van Devender and Spaulding 1979).
The d e p o s it is 230 km downstream (135 a i r km) from th is study area.
E a rly Holocene Climates
The dominant p la n t types found in e a rly Holocene middens in the
Grand Canyon are shown in Figure 36.
Except fo r some s ig n if ic a n t d is ­
placements from modern d is t r ib u t io n s , the v e g e ta tio n represented w ith in
these middens is more s im ila r to the modern v e g e ta tio n than to the f u l l
g la c ia l v e g e ta tio n .
Ponderosa p in e , w h ite f i r , and Douglas f i r are d is ­
placed 300 m below t h e ir modern low er l i m i t s .
Ju n ip e r and ash ( Fraxinus
anomala) are d isp la ce d a minimum o f 340 m below t h e ir modern l im it s un­
til
a t le a s t 8957 B.P.
In c o n tra s t, pinyon seems to be lim ite d to i t s
modern range d u rin g t h is tim e p e rio d .
Species ty p ic a l o f summer r a in ­
f a l l areas such as Ponderosa p in e , New Mexican lo c u s t, and hackberry are
recorded f o r the f i r s t tim e .
Figure 36,
Contents o f Neotoma middens d a tin g between 10,700
and 8500 B.P. —
Dot represents the lo c a tio n o f fo s s il on
environmental g ra d ie n t.
B.P.
Date o f d e posit is shown in years
The modern lower lim it s o f several species are shown
f o r comparison.
139
EA R LY
HOLOCENE
V E G E T A T IO N
SCALE
IN
THE
G RAND CANYON
>1000
Macrofossils per
M ogrem o f
amber of
100 to 1 0 0 0
10 to 1001
MESIC
XERIC-
I le 101 I
H E - P R O T E C T E D
S W
S L O P E S
E X P O S E D
S L O P E S
ELEVATION
1
9070
•
10.150
•
10,760
•4 0 0
DOUGLAS
FIR
PINYON
PINE
UTAH
JUNIPER
PONDEROSA
PINE
^
HOP
I
TREE
SINGLE
ASH
V ; LEAF
140
The e le v a tio n a lly depressed communities o f th is period seem to
re pre sent a c lim a te much l i k e th a t o f today except f o r a g re a te r abun­
dance o f m o is tu re .
This could be the r e s u lt o f low er tem peratures
and/or more p r e c ip ita tio n .
The growth o f Ponderosa pine w ith in the can­
yon a t th re e s ite s ( i t r a r e ly e n ters the canyon today) suggests more
summer p r e c ip ita tio n .
Ponderosa pine does w e ll today on steep, rocky
slopes along the Mogollon Rim where i t re ceives g re a te r summer r a in f a l l
than in the canyon.
The abundance o f ash and hop tre e on exposed slopes d u rin g t h is
period a lso suggests more a v a ila b le summer m o istu re than was present
e ith e r in the P leistoce ne o r today.
A cool summer model o f temperate
clim a te s l i k e th a t proposed by Van Devender and Spaulding (1979) f o r the
southwestern P leistoce ne could a ls o increase summer a v a ila b le m o is tu re .
Mid-Holocene Climates
Mid-Holocene p la n t assemblages are shown in Figure 37.
The as­
semblages dated between 6800 and 8500 B.P. suggest hot and/or d ry c o n d i­
tio n s .
A ll o f these middens are in the modern p in y o n -ju n ip e r community.
Pinyon is absent from most o f these middens but is represented by low
co n ce n tra tio n s in the two h ig h e st middens.
Ju n ip e r is recorded in low er
co n ce n tra tio n s than in modern middens from the same s ite s .
In c o n tra s t, agave and p r ic k ly pear ( Opuntia sp p .) are recorded
in v e ry high c o n c e n tra tio n s .
These a b e rra tio n s are m inor when compared
to the v e g e ta tio n a l changes from P le isto ce n e to Holocene, but I am con­
fid e n t th a t these changes in r a tio s are th e re s u lts o f a re a l event
ra th e r than a chance s e le c tio n o f the p a c k ra t.
These assemblages record
141
MID
HOLOCENE
SCALE
>1000
M A C R O ? O S S lL S
tO O
PER
K IL O G R A M
O F
A M B E R A T
10
IO O O
T O
100
<10
MES1C
H E -P R O T E C T E O
T O
71
XERIC
S W -E X P O S E O
S L O P E S
S L O P E S
m eters
8000-
3310 •
7 000-
•7 8 7 0
2000
6000
•7110
5000
T
8470
6830 •
4000
3000
I
t
Figure 37,
UTAH
JUNIPER
DOUGLAS
FIR
PINYON
PINE
w
HOP
TREE
W SINGLE
LEAF ASH
\
y SHRUB
T LIVE OAK
Contents o f Neotoma Middens Dating between 8400
and 5500 B.P
142
a c lim a te w ith less m o isture a v a i l a b i l i t y than a t present.
Temperatures
were e ith e r h o tte r or th e re was le s s p r e c ip ita tio n than a t presen t.
The in te r v a l recorded here corresponds w ell w ith the mid-Holocene
h o t/d ry period termed the A ltith e rm a l by Antevs (1948) and the Xerothermic by A xelrod (1979).
In c o n tra s t, M a rtin (1963) in te r p r e ts th is period
as being w e tte r because o f an increased summer monsoon.
are not n e c e s s a rily c o n tra d ic to ry .
These th e o rie s
A northward s h i f t o f both summer and
w in te r storm tra c k s would r e s u lt in more monsoon ra in in southern Arizona
(M a rtin 's m o ist A ltith e r m a l) , le s s p r e c ip ita tio n in the n o rth e rn Great
Basin (A n te v's h o t/d ry A ltith e r m a l) , and le s s ra in in coa stal C a lifo r n ia
(A x e lro d 's X e ro th e rm ic).
As a r e s u lt o f my d a ta , I conclude th a t the
e a rly A ltith e rm a l (6800-8400 B .P .) was hot and/or d ry in the Grand Can­
yon r e la t iv e to modern c o n d itio n s .
Zonation o f V egetation
d u rin g the Last 25,000 Years
The in fe rre d low er lim it s o f the dominant species in the Grand
Canyon d u rin g the la s t 25,000 years are shown in Figure 38.
Each o f the
species shown on the fig u r e was probably the dominant p la n t in i t s zone.
An estim ate o f the P leistoce ne e le v a tio n a l depression o f zones, one o f
my main o b je c tiv e s when I began t h is stu d y, is not p o s s ib le .
The P le is ­
tocene zones are not sim ply depressed modern zones, but are community
types not o c c u rrin g in the canyon today.
Because o f t h i s , I can r e fe r
o n ly to the e le v a tio n a l displacem ent o f in d iv id u a l species.
As is shown on Table 13, the f u l l g la c ia l depressions o f species
range from 0 to over 1000 m w ith an average o f 750 m displacem ent.
The
Figure 38,
Zonation o f Dominant Species du ring the Last 24,000 Years in the
Eastern Grand Canyon. —
Lines re pre sent the low er e le v a tio n a l lim it s
o f dominant species in fe rre d f o r western fa c in g , m oderately p rotected
slopes.
Lines are dashed where conclusions are te n ta tiv e .
LATE QUATERNARY ZONATION IN THE GRAND CANYON
SPRUCE FOREST
4000
ELEVATION
SOOO
1300
ELEVATIO N
(ft)
PINYONUUNIPER
WOODLAND
(m>
2000
6 0 0 0 ______ 7 0 0 0 ______ 8 0 0 0
FIR FOREST
(PONDEROSA PINE)
2300
•-RADIOCARBON DATED PLANT ASSEMBLAGES
O-ARCHEOLOGICALLY DATED PLANT ASSEMBLAGES
DESERT SCRUB
3000
#
20,000
19,000
10,000
,4C YEARS BEFORE PRESENT
9,0 0 0
MODERN ZONES
F ig u re 33.
C
O
144
depressions o f species were measured by e ith e r t h e ir low er o r upper l i ­
m its .
Measurements made on low er l im it s are more r e lia b le , as the re c ­
ords cannot be contaminated by Holocene d e b ris .
Galloway (1970) argued f o r a very co ld and d ry f u l l g la c ia l in
the southwest, as in fe rre d by a 1300 m low ering o f p la n t zones.
A d is ­
placement o f th is magnitude is not supported by my d a ta .
Brakenridge (1978) used a "te le s c o p in g " hypothesis introdu ced by
W right e t a l . (1973) to support h is arguments fo r a c o ld , d ry f u l l g la ­
c ia l in the southwest.
In such a scheme, upper v e g e ta tio n zones were
depressed more than low er zones.
Although B ra ke n rid g e 1s scenario is
more p la u s ib le than th a t o f Galloway, i t leaves much to be d e s ire d .
He
d isre g a rd s e le v a tio n a l depressions o f 1000 m in the low er canyon because
o f "th e uniqueness o f edaphic and c lim a tic e ffe c ts in the canyon" (p. 3 6 ).
Supposedly, e le v a tio n a l depression estim ates from the Grand Canyon are
exaggerated.
I f th is is tru e and the "te le s c o p in g " phenomenon is r e a l i s ­
t i c , I should have recorded e le v a tio n a l depressions w e ll over the 1000 m
value fo r ju n ip e r a t Rampart Cave.
m arkedly le s s .
My values f o r spruce and f i r are
A determined sup porter o f the "te le s c o p in g " hypothesis
could use my data to support the id e a , since the species w ith the h ig h e s t
estim ated depressions, lim b e r pine and Sheperdia canadensis, are h ig h e le v a tio n species.
However, to do so would be to ign ore the fa c t th a t
m id -e le v a tio n species would not be represented in the fo s s il record i f
they were depressed more than 900 m.
The lo w -e le v a tio n fo s s il s e rie s a t
Rampart Cave a llo w s us to study th is p o s s ib ilit y .
Comparing f u l l g la c ia l
fo s s ils ( P h illip s 1977) w ith the d is t r ib u t io n s in my study area (many
145
o f the fo s s il species are not now present in the Rampart Cave a re a ),
minimum e le v a tio n a l depressions o f g re a te r than 1000 m can be c a lc u la te d
fo r Ostrya know!torn* and Ribes sp.
These r e s u lts in d ic a te th a t some
h ig h - and m id -e le v a tio n species were depressed in excess o f 900 m, a l ­
though the average e le v a tio n a l depression was 750 m.
I t is in te r e s tin g to note th a t i f the re g io n a l tr e e lin e was de­
pressed 750 m d u rin g the f u l l g la c ia l, much o f the Kaibab Plateau would
have been above t r e e lin e .
These re s u lts can be te s te d in fu tu re palyno-
lo g ic a l stu d ie s on the Kaibab P lateau.
The past movements o f in d iv id u a l species along the e le v a tio n a l
g ra d ie n t seems to r e f le c t la t it u d in a l changes ra th e r than a sim ple de­
pression o f modern zones.
The modern a lt it u d in a l sequence o f v e g e ta tio n
zones on mountains o f the southwest is o n ly a r e f le c t io n o f la t it u d in a l
zo n a tio n .
p le ,
V egetation zones change in c h a ra c te r w ith la t it u d e ; f o r exam­
zones dominated by big sagebrush and shadscale are present on the
in te rm o u n ta in plateau but not in the southern d e s e rts .
Because o f the
change in species throughout my f o s s il re c o rd , I b e lie v e th a t the record
r e f le c t s more o f a la t it u d in a l change in c lim a te than an e le v a tio n a l
change.
The past e le v a tio n a l ranges o f species seem to have been i n ­
d iv i d u a l i s t i c ,
ju s t as t h e ir modern e le v a tio n a l ranges v a ry in d iv id u -
a l i s t i c a l l y w ith la t it u d e .
APPENDIX
146
147
Key to Tables A-1 to A-12
P lant Coverage Classes
X = present a t s it e (coverage not noted)
R = ra re a t s ite (le s s than 1% cover)
C = common a t s ite (le s s than 1% cover)
1 = 1% cover
2 = 2 o r 3% cover
3 = 4-6% cover
4 = 7-10% cover
5 = 11-25% cover
6 = 26-50% cover
7 = g re a te r than 50% cover •
Slope Aspect
N = n o rth , NE = n o rth e a s t, NW = n o rth w e st, E = e a s t, W = w est,
SE = sou the ast, SW = southw est, SSW = south-southw est
Slope Exposure
Pr = p rotected
Ex = exposed
S = semi
V = very
148
T a b le A - l .
H ig h e l e v a t i o n
s ite s
on R edw all
L im e s to n e in
s o u th e rn
Nankoweap and Kwagunt Canyons (6 0 0 0 to 6800 f e e t ) .
Mesic
Xeric
Site number
89
99
87
123
90
95
91
122
88
98
Site elevation (m)
1830
2040
1950
2020
1870
1950
1860
2070
1950
2070
Slope aspect
HE
NW
HE
$
SU
H
S
--
SU
SW
Slope exposure
Y.Pr
Pr
S.Ex
Pr
Pr
S.Ex
S.Ex
--
S.Ex
Ex
Slope angle
25°
20°
15°
20°
20°
70°
25°
fla t
20°
20°
Abies concolor
4
R
Agave utahensis
C
2
c
c
C
R
C
PLANT SPECIES
Amelanchier utahensis
2
2
Arctostaphylos punqens
Cercis occidental is
R
Cercocarpus intricatus
C
C. montanus
2
2
2
1
1
3
C
1
5
R
3
4
5
1
3
C
R
R
R
2
C
4
C
Ephedra viridis
R
R
Fallugia paradoxa
3
1
R
Fend!era rupicola
1
C
C
Forsellesia nevadensis
1
2
4
C
2
2
R
3
C
R
3
3
2
4
C
1
Juniperus osteosperma
4
Mammillaria sp.
1
C
C
4
3
3
R
Ostrya knowltehi
1
5
Petrophytum caespitosum
C
1
•c
3
R '
4
6
Pseudotsuga menziesii
3
4
R
Ptelea trifo liate ssp.
pallida
C
3
C
Ouercus gambelii
1
4
5
5
4
3
C
C
2
3
2
C
5
5
2
5
R
R
3
0. turbinella
C
C
R
Pinus edulis
4
3
3
3
3
Q. undulata
Rhus trilobata var.
slmplicifolia
2
R
3
Galium sp.
Symphoriocarpos sp.
2
1
2
Fraxinus sp.
Phlox austromontana
3
1
Echinocereus triglochidiatus
Gutierrezia sp.
1
4
Chrysothamnus nauseosus
Fendlerella utahensis
R
1
2
3
1
3
R
2
149
T a b le A - 2 .
M id -e le v a tio n
C re e k Canyons
s ite s
on R e d w a ll L im e s to n e in C huar and C le a r
(5 2 0 0 t o 6000 f e e t ) .
Xeric
Mesic
129
130
Site number
113
128
114
81
Site elevation (m)
1720
1780
1720
1585 1815
1780
Slope aspect
NE
NE
SW
NE
—
SW
Slope exposure
Pr
Pr
Pr
Pr
—
S.Ex
Slope angle
35°
60°
25°
40°
fl at
40°
R
R
C
C
C
PLANT SPECIES
Agave utahensls
R
Acourtla wrightil
Amelanchler utahensls
c
C
3
Arctostaphylos pungens
2
3
c
A. ludovlclana
C
R
Bernardla Incana
C
R
Artemisia (trldentate)
Ceanothus greggll
1
Cercocarpus intricatus
Ephedra viridls
1
Fendlera ruplcola
2
Fendlerella utahensls
2
Forsellesla nevadensls
Fraxlnus anomala
1
Garrya wrightil
4
Gutlerrezla sp.
Junlperus osteosperma
1
3
2
1
3
1
2
1
4
5
1
1
2
2
2
R
3
1
2
3
4
R
2
2
2
2
3
C
Opuntla chlorotica
R
0. erinacea
R
0. phaeacantha
Ostrya knoltoni
2
R
Pinus edulls
2
4
Pseudtosuqa menziesli
R
Ptelea trlfo lla ta ssp. pallida
2
Ouercus gantelli
7
0. turbinella
2
Rhus trilobata var.
simp)icifolia
1
Yucca baccata
C
2
R
4
2
2
3
4
1
C
C
1
5
2
6
R
R
150
T a b le A - 3 ,
Low e l e v a t i o n
Canyon
(4 6 5 0 t o
R e d w a ll L im e s to n e in H o rseshoe Mesa and Hance
4900 f e e t ) .
Mesic
Xerlc
40
35
1495
1460
W
W
5
1430
1420
1495
NW
W
10
126
Site elevation (m)
1460
Slope aspect
NNE
Slope exposure
Y.Pr
S.Pr
S.Pr
S.Ex
Ex
—
Ex
20°
30°
35°
f la t
40°
R
1
X
1
R
X
R
2
Slope angle
60°
26
125
Site number
20°
--
1450
sw
PLANT SPECIES
Acacia gregqll
C
Acourtla wrlqhtll
Aqave utahensls
C
C
c
Artemisia (trldentata)
3
1
Artemisia ludovlclana
3
2
C
C
1
Brlckellla atractyloldes
Ceqnothus qreqqll
2
Cercls occidental Is
C
Cercocarpus Intrlcatus
4
Chrysothamnus nauseosus
R
X
X
1
1
C
C
1
X
X
4
R
X
1
1
C
Cowania mexlcana
3 .
Echlnocactus polvcephalus
C
X
R
Encella frutescens
Ephedra torreyana
E. vlrld ls
4
Falluqla paradoxa
R
Fend!era ruplcola
R
Forsellesla nevadensls
Greene
2
Fraxlnus anoma!a
1
Junlpenis osteosperma
3
3
2
1
2
1
R
X
X
X
2
2
C
2
3
1
R
1
5
4
c
R
1
Lyclum andersonll
X
R
X
X
X
C
X
R
C
X
c
Opuntla cf. clorotlca
0. erlnacea
C
1
4
4
C
Plnus edulls
X
Plnus edulls X
monosperma
R
Ptelea tr ifo lia ta sso.
pallida
3
R
R
Rhus trllobata var.
sim plicifolia
2
R
1
Rlbes cf. montlqenum
Yucca baccata
X
X
R
Atrip!ex canescens
Bernardla Incana
0. phaeocantha
X
R
Aloysla wrlqhtll
1
X
R
R
X
X
151
Table A-4.
Kaibab and Toroweap Limestones on South Rim (Grandview
P o in t, S inking Ship, and Red Canyon).
Xerlc
Heslc
Site number
49
48
46
43
21
47
20
34
Site elevation (m)
2150
2135
2165
2250
2105
2135
2135
2135
Slope aspect
N
HE
HE
W
NW
SW
--
W
Slope exposure
Y.Pr
Pr
S.Pr
S.Pr
S.Ex
S.Ex
—
Ex
Slope angle
40°
40°
40°
25°
50°
40°
fla t
40°
2
R
1
1
C
5
2
PLANT SPECIES
Abies concolor
4
Agave utahensls
Amelanchler utahensls
2
4
4
2
Artemisia (trldentata)
1
2
2
3
1
R
A. ludovlclana
1
Berberls sp.
2
Cercocarpus Intricatus
C
1
2
C
1
C
3
2
R
Chrysothamnus sp.
Cowanla mexlcana
Echlnocereus sp.
C
3
5
3
R
Ephedra vlrldls
Fend!era ruplcola
R
R
2
1
1
2
1
3
2
Galium sp.
R
Junlperus osteosperma
R
2
Opuntla erlnacea
2
* C
0. phaeocantha
C
Ostrya knoltonl
1
Plnus edulls
3
3
Pseudotsuga menzlesll
6
3
Quercus gambel11
1
4
3
6
5
3
3
1
1
2
C
Yucca angustlsslma
Y. baccata
4
4
Q. turblnella
Symphorlocarpos sp.
6
C
R
152
T a b le A - 5 .
H ig h e l e v a t i o n
s ite s
(> 8 0 0 0
fe e t).
San Francisco Peaks
(Basalt)
North Rim
(Kalbab Limestone)
Site number
105a
105b
106
104
109
51
108
107
50
Site elevation (m)
2850
2710
2710
2470
2530
2470
2500
2560
2470
HE
W
Slope aspect
W
E
SW
SW
N
Slope exposure
Ex
Ex
Ex
Ex
S.Ex
S.Ex
S.Ex
--
Ex
Slope angle
10°
10°
5°
5°
20°
40°
15°
fla t
45°
—
SE
PLANT SPECIES
Abies concolor
Abies laslocarpa
Amelanchler utahensls
Artemisia dracunculoldes
A. ludovlclana
Berberls repens
Cercocarpus Intrlcatus
C. roontanus
Chareaebatlarla ml 111 folium
Chrysothamnus sp.
Fendlerella utahensls
Garrya wrlghtll
Junlperus osteosperma
Phlladelphus mlcrophyllus
Plcea engelmannl
P. punqens
Plnus edulls
P. flexllls
£. ponderosa
Polypodlaceae
Populus tremuloldes
Pseudotsuga menzlesll
Quercus gambelil
Rlbes vlscosslsslmuia
Roblnla neomexlcana
Rosa arlzonlca
Sambucus sp.
Symphorlocarpos sp.
Thallctrum fendlerl
Yucca baccata
R
R
T a b le A ^6.
C oconino S andstone s i t e s
( > 6300 f e e t )
North Rim (Chuar
Valley)
South Rim (Hance Canyon)
Site number
112
n o
37
Site elevation (m)
2285
2285
Slope aspect
NE
NW
Slope exposure
Pr
Pr
S.Pr V.Pr
Slope angle
15°
25°
25°
50°
Abies concolor
6
5
3
R
Acer qrandldentatum
5
4
33a
22
2285 1950
2070
1935
2070
W
N
NW
S
V.Pr
S.Ex
S.Pr
30°
50°
30°
m
N
33b
PLANT SPECIES
Agave utahensls
R
Amelanchler utahensls
3
1
4
X
Artemisia (trldentata)
Berberls repens
1
2
X
Cercocarpus intricatus
3
Cercocarpus montanus
C
3
2
Chrysothamnus
vlcidiflorus
1
Cowania mexlcana
C
1
R
Ephedra viridis
2
Fendlera ruplcola
3
Fendlerella utahensls
1
1
C
Junlperus osteosperma
J. scopulorum
X
Opuntla erinacea
Pseudotsuga menzlesli
3
5
Ptelea trifo lia te ssp.
pal 11 da
3
4
Quercus gambel11
1
2
Rlbes cf. montlgenum
R
R
Rlbes vlscosslmum
1
2
RobIni a neomexlcana
1
4
Sambucus so.
C
Symphorlocarpos sp.
Yucca baccate
X
R
X
5
Plnus edulls
Thallctrum sp.
5
5
3
X
2
5
X
4
R
X
3
.
X
C
2
C
C
R
X
154
Table A-7.
M id -e le ya tto n Tapeats Sandstone .s ite s (4500 to 5200
fe e t), in South Nttrrkovreap and Chudr V a lle y s .
X e r ic
M e s ic
S ite
116
number
117
131
97
93
115
1535
1585
1370
S i t e e l e v a t io n
1450
1430
1400
S lo p e a s p e c t
N
W
sw
SW
S lo p e e x p o s u re
S .P r
Pr
S .P r
S .P r
5 . Ex
S .E x
10°
20°
15°
fla t
20°
25°
S lo p e a n g le
—
S
PLANT SPECIES
2
A c a c ia g r e g g ii
A c o u r t ia w r i g h t i i
Agave u ta h e n s is
R
R
C
C
c
C
A m e la n c h ie r u ta h e n s is
2
A r c to s t a p h y lo s pungens
A r t e m is ia lu d o v ic ia n a
C
A. t r id e n ta ta
4
B r lc k e llla
3
2
2
4
2
5
a t r a c ty lo id e s
R
B. c a lifo r n ic a
R
C e rc o c a rp u s m ontanus
C hryso tham nus d e p re s s u s
1
1
R
Cowania m e x ic a n a
2
E c h in o c e re u s s p .
R
E phedra v i r i d i s
F a llu g ia
4
2
2
2
p a ra d o x a
G u t ie r r e z ia s p .
R
1
1
J u n ip e n is o s te o s p e rm a
5
5
5
M a m m illa ria s p .
R
O p u n tia c h l o r o t i c a
R
0 . e r in a c e a
R
O s try a k n o lt o n i
C
1
2
3
1
3
5
5
P in u s e d u lis
5
2
C
1
C
2
4
R
4
2
4
3
s s p . p a ll i d a
3
4
Q uercus t u r b i n e l l a
6
5
Rhus t r i l o b a t a v a r .
s im p lic if o lia
R
1
5
2
C
c
Thamnosma m ontana
Yucca b a c c a ta
4
R
P ro s o p is j u l i f l o r a
P te le a t r i f o l i a t a
C
3
3
F r a x in u s anom ala
R
R
R
C
155
Table A -8. .
Low e le v a tio n Tapeats Sandstone s ite s (3300 to
4000 fe e t)*
Neslc
Xerlc
Site number
72
42
71
85
84
127
120
8
80
Site elevation (m)
1050
1100
1100
1100
1130
1100
1100
1005
1220
Slope aspect
SE
W
NW
E
SE
w
w
S
SSW
Slope exposure
S.Pr
S.Pr
S.Ex
S.Ex
S.Pr
S.Ex
V.Ex
Ex
V.Ex
Slope angle
80°
60°
25°
15°
Acacia greggll
2
C
Acourtia wrlghtil
C
Agave utahensls
R
25°
30°
40°
50°
20°
C
2
1
R
C
C
C
R
2
C
PLANT SPECIES
R
Aloysla wrlghtil
1
Amslnkla Intermedia
Anemone tuberosa
1
R
R
Artemisia ludovlclana
1
A. (trldentata)
1
Astragalus
2
1
Atrip!ex canescens
1
R
Bromus rubens
t
2
4
2
1
C
C
2
2
4
2
R
3
R
3
4
2
C
1
R
R
C
Cryptantha pterocarya
C. barblgera
C. sp.
R
C
Calochortus fl exuosus
Coleogyne ramoslsslma
R
C
Bernardla Incana
C
2
R
Baccharls serglloldes
Brlckellla atractyloldes
1
R
R
C
c
2
R
C
C
Descuralnla pinnate
1
1
C
C
1
Echinocactus polycephalus
Echlnocereus sp.
C
Encella farlnosa
R
C
R
C
C
C
C
c
C
5
2
3
1
2
3
E. frutescens
Ephedra nevadensls/vlrldls
E. torreyana
3
Erlogonum Inflatum
C
1
2
C
1
C
4
c
R
C
3
3
2
R
C
156
Table A -8 ,
continued
R
Fallugla paradoxa
Galium spp.
2
Gramlnae spp. (Bromus)
1
Gutlerrezia sp.
2
2
3
Hawnllarla sp.
1
5
4
3
4
3
1
5
4
2
3
3
2
C
2
2
R
Mentzella pumi1a
C
Opuntla basllarls
2
C
C
0. chlorotlca
C
C
C
1
R
0. erlnacea
C
0. fragllls
R
Ptelea trlfollata ssp. pallida
R
1
C
Phacella crenulata
R
Rhus trllobata var. slmpllclfolia
R
C
Yucca angustlsslma
R
Y. baccata
R
C
R
1
Sphaeralcea sp.
Thamnostna montana
R
1
2
R
R
3
C
Lepldlum Iasiocarpum
C
1
C
1
Lyclum andersonll
c
2
C
c
R
2
T a b le A - 9 .
M id -e le v a tio n
s ite s
on A r g illa c e o u s
ro c k s
(5 2 0 0 to
6000 fe e t) .
Meslc
Xeric
19
68
129
1705 1585
1615
1800
1815
NNE
NE
W
sv
S.Pr
S.Ex S.Ex
S.Pr
S.Ex
Site number
38
69
124
Site elevation (m)
1830
1830
Slope aspect
N
Slope exposure
Y.Pr
Slope angle
40°
20°
15°
15°
30°
20°
Substrate
Su
Su
BA
BA
Su
Su
Su
C
C
1
C
92
E
—
Ex
—
PLANT SPECIES
Aqave utahensls
X
Amelanchler utahensls
2
2
Arctostaphylos punqens
Artemisia ludovlclana
C
A. (trldentate)
R
2
1
1
5
4
1
1
C
Baccharls serqlloldes
Berberls sp.
3
1
C
Ceanothus qreqll
5
C
2
Cercocarpus Intrlcatus
X
1
3
X
1
C. montanus
Chrysothamnus nauseosus
C
X
R
1
C
1
X
3
1
R
R
1
3
1
1
Erlogonum sp.
1
c
X
Falluqla paradoxa
R
Cowanla mexlcana
Echlnocereus sp.
X
Ephedra nevadensls/
vindls
1
Fend!era ruplcola
X
c
3
Fraxlnus anomala
1
1
2
6
Gramlnae spp.
1
C
1
R
4
3
3
X
R
Gutlerrezla sp.
5
4
5
3
Opuntla chlorotlca
erinacea
c
Ostrya knoltonl
4
Plnus edulls
3
1
C
C
3
3
R
1
4
3
4
C
Ouercus turblnella
.
3
4
1
R
Shepherd!a rotundifolia
Thanrosma montane
Yucca baccate
C
2
Ouercus gambeltl
Rhus trilobate var.
simplicifolia
C
4
Plnus edulIs/monophylla
Ptelea trifo lia te ssp.
pallida
C
X
Garrya wri oht il
0.
2
X
X
1
Galium sp.
Junlperus ostecspema
R
C
Forsellesla nevadensls
X
C
X
C
158
Table A-10.
Tonto P latfo rm s ite s (3400 to 4200 fe e t) .
repeats
Sandstone
Bright Angel Shale
Meslc
Xerlc
Site number
16b
18
Site elevation (m)
mo
1140
Slope aspect
W
Slope exposure
Slope angle
83
76
75
82
121
1130
1220
1280
1110
1190
1035
NW
E
N
S
—
SSW
—
Pr
S.Pr
S.Ex
V.Ex
Ex
V.Ex
Ex
30°
15°
5°
15°
5°
—
4°
70
Ex
—
PLANT SPECIES
Agacla qreqqll
1
Agave utahensls
c
Aloysla wrightll
c
Artemisia ludovlclana
c
C
C
R
1
Astragalus sp.
Atrip!ex canescens
3
1
2
3
A. confertlfolia
3
Bromus rubens
Chrysothamnus nauseosus
C
1
Calochortus flexuosus
1
2
1
2
C
2
2
4
3
1
3
4
Coleogyne ramoslsslma
6
Cryptantha pterocarya
C
C
C. barblqera
C
C
c
C
C. sp.
C
Descuralnla plnnata
C
Echinocactus polycephalus
C
C
C
Echlnocereus sp.
R
2
1
1
Encella frutescens
R
R
R
C
2
3
C
Ephedra nevadensls/vlrldls
3
3
R
4
E. torreyana
C
1
Erlogonum Inflaturn
c
2
Erodium clcutarlum
2
1
E. texanum
c
Galium sp.
Gramlnae spp.
G u tle rre zla sp.
3
5
4
2
1
1
C
2
159
T a b le A - 1 0 ,. c o n t i n u e d
Lepldtum laslocarpuro
C
Lyclum andersonli
C
Mammal aria sp.
2
R
C
3
R
Mentzelia albicaulls
R
MirablUs biqelovii
C
Opuntia basilaris
R
0. chlorotlca
R
0. erinacea
3
0. phaeocantha
R
C
C
3
2
2
C
0. whipplei
R
Parthenlum incanum
R
Ptelea trifoliata ssp. pallida
C
Rhus trilobate var. simpUcifolia
1
1
Sphaeralcea sp.
C
Thamnosma roontana
C
Yucca angustissima
C
Y. baccata
R
R
1
1
160
Table A - l l .
Low e le v a tio n s ite s on Pre-Cambrian rocks
(2950 to 3900 fe e t) .
Chuar
Group
Vishnu
Shist
Shinumo
Q uartzite
Dox
Sandstone
S ite .number
119
118
45
79
31
29
32
S ite elevation (in)
1175
1190
1080
1160
900
1065
1050
Slope aspect
N
S
NE
S
NE
W
W
Slope exposure
Ex
Ex
Pr
S.Ex
S.Ex
Pr
Ex
Slope angle
20°
15°
45°
15°
5°
20°
30°
4
1
4
1
PLANT SPECIES
Acacia greggii
Agave utahensis
1
Aloys la w rig h tii
Artemisia (trid e n ta ta )
6
R
Astragalus nuttallianus
R
Bernard!a incana
R
B ric k e llia atractyloides
R
Bromus rubens
3
Calochortus flexosus
C
C
Chrysothamnus nauseosus
1
R
Coleogyne ramosissima
R
•
c
C
C
5
Cryptantha sp.
1
Descurainia pinnata
C
Dyssodia acerosa
C
C
D. pentachaeta var.
belenidium
c
C
Echinocereus sp.
Encelia farinosa
Ephedra nevadensis/
v ir id is
1
1
3
3
3
E. torreyana
Eriogonum inflatum
C
4
3
C
3
C
3
C
4
5
3
161
T a b le A - l l ,
c o n t in u e d .
Erloneuron pulchellum
C
Erodium texanum
X
c
1
E. cicutarium
C
Fallugia paradoxa
Fraxinus anoraala
c
R
Galium Stellaturn
1
G ilia hutch !n sifoil a
1
Graminae sp.
G utlerrezla sp.
3
Juniperus osteosperma
1
3
C
1
R
4
3
6
3
3
Lyclum andersonii
Mentzelia a lb ica u lis
1
Opuntia b a s ila ris
R
R
1
0. phaeocantha
3
C
Phacelia crenulata
C
P. ro tu n d ifo lla
C
Porophyllum g ra clle
R
Sphaeralcea sp.
1
Thysanocarpus laciniatu s
C
C
1
1
C
C
C
c
1
C
1
0. erlnacea
Yucca baccata
4
C
C
162
Table A-12.
Bass Canyon T r a il (2400 to 6500 fe e t) .
S ubstrate:
Ki = Kaibab Limestone; Co = Coconino Sandstone; Su = Supai
Group; R = Redwall Limestone; BA = B rig h t Angel Shale; H =
Hakatai Shale; D = Dox Sandstone; T = Mixed Talus.
59
66
65
64
62
63
61
1705 1675
1495
1370
1130
975
945
840
730
W
W
SE
N
W
NW
N
S
NE
Pr
S.Pr Ex
S.Ex
S.Pr
Pr
S.Pr
V.Pr
S.Ex
S.Pr
40°
20°
40°
8°
50°
40°
20°
Su
R
BA
BA
H
0
T
C
C
Site number
55
67
56
57
Site elevation (m)
1980
1890
1800
Slope aspect
N
SW
Slope exposure
S.Ex
S.Pr
Slope angle
35°
40°
40°
25°
Site substrate
KI
Co
Co
Su
58
—
—
Su
PLANT SPECIES
Acacia greggl1
C
R
1
3
4
3
Artemisia blgelovll
1
1
A. ludovlclana
C
Agave utahensls
Amelanchler utahensls
3
A. trldentata
5
C
R
C
3
C
1
C
C
1
1
C
Baccharls slrglloldes
Berberls haematocarpa
C
3
R
R
1
C
1
1
R
Bernardla Incana
Brlckellla atractyloldes
EL callfornlca
R
Ceonothus greggli
Cercocarpus Intricatus
C. montanus
Chrysothamnus nauseosus
Coleogyne ramoslsslma
Cowanla mexlcana
C
6
R
Echlnocactus
polycephaTus
Echlnocereus sp.
C
Encella farlnosa
5
4
5
3
C
1
Ephedra virldis/
nevadensis
3
Erloneuron pulchellum
Fend!era ruplcola
Fendlerella utahensls
2
2
3
1
1
1
2
3
163
T a b le A - 1 2 ,
c o n t in u e d .
Forsellesla nevidensls
R
Fraxlnus anomala
2
Galium sp.
C
Gramlnae spp.
5
6
Gutierrezla sp.
Junlperus osteosperma
3
1
3
1
1
R
1
1
Qpuntia erinacea
C
4
3
1
1
0. phaeocantha
R
R
C
Pinus edulis
6
4
4
5
3
C
1
3
Ptelea trilobata ssp.
pallida
R
Q. turbinella/
undulata
R
1
C
1
c
Rhus trilobata var.
simpllei folia
R
Trixis califomlca
R
Yucca angustissima
C
Y. baccata
1
1
Molina microcarpa
Symphorlocarpos sp.
4
1
Lyclum andersoni
Quercus gambelli
1
1
C
1
1
R
C
R
C
1
REFERENCES
A gassiz, L . , 1840, Etudes sur le s g la c ie r s :
lis h e d , 346 p.
Neuchatel p r iv a te ly pub­
A llr e d , D. M ., 1968, T icks o f the N ational Reactor T e sting S ta tio n :
B.Y.U. S c i. B u l l . , v . 10, no. 1, p. 1-29.
Antevs, E ., 1948, The Great B asin, w ith emphasis on G la c ia l and P ost­
g la c ia l tim e s: U niv. Utah B u l l . , v . 38, no. 20, p. 168-191.
Atwood, D. N ., 1970, Flora o f the N ational Reactor T e sting S ta tio n :
B.Y.U. S c i. B u l l . , v . 11, no. 4, p. 1-46.
A xelro d, D. I . , 1979, Age and o r ig in o f Sonoran Desert v e g e ta tio n :
casional papers, C a lif . Acad. S c i., no. 132, 72 p.
Oc­
B e a tle y, J. C ., 1975, Clim ates and v e g e ta tio n p a tte rn s across the Mojave/
Great Basin Desert tr a n s it io n o f southern Nevada: Amer. Mid.
N a tu r., v . 93, p. 53-70.
B e rh a rd i, A ., 1832, Wie kamen d ie aus dem Norden stammenden Felsbruenstru cke und Geschiebe, welche man in Morddenlschland und den
fenachbarten L a n d e rnfin dte an ih re gegenwartigen Fundante?:
J a h rf fu r M eneralogie, Geognosie und Petrefaktenkunde (H e id e l­
berg ) , v . 3 , p. 257-267.
B rakenridge, R. G ., 1978, Evidence fo r a c o ld , d ry f u l l - g l a c i a l c lim a te
in the American southw est: Quat. R es., v . 9, p. 22-40.
B rig h t, R ., 1981, Personal communication, U n iv e rs ity o f M innesota,
James Ford B e ll Museum o f N atural H is to ry .
B rig h t, R. C ., D avis, 0. K ., and Eikum, B. K ., 1978, P aleontology o f the
Idaho N ational E ngineering Laboratory S ite , i_n^ E colog ical Stud­
ie s on the Idaho N ational Engin. Lab. s it e 1978 Progress R eport,
0 . D. Markham ( e d .) : E nviron. S c i. Branch, U. S. Dept. Energy,
Idaho F a lls , Idaho.
Brooks, C .E .P ., 1951, G eological and h is to r ic a l aspects o f c lim a tic
change, in^ Compendium o f M eteorology: Am. Met. S o c ., Boston,
p. 1004-18.
Clements, F. E ., 1905, Research Methods in Ecology:
L in c o ln , Nebraska, p. 199.
164
U n iv e rs ity Pub. C o.,
165
Climap p ro je c t members, 1976, The su rfa ce o f the ic e age e a rth :
v . 191, p. 1131-1137.
Science,
C lis b y , K. H. and Sears, P. B ., 1956, San Augustin PI ain s r-P le is to c e n e
c lim a tic changes: Science, v . 124, p. 537-539.
Cole, K. L. and Mead, J. I . , in press. Late Quaternary animal remains
from pa ckrat middens in th e eastern Grand Canyon, A rizon a: J o u r­
nal o f the Arizona-Nevada Academy o f Science.
C ro n q u ist, A ., 1978, The b io ta o f the in te rm o u n ta in re gion in g e o h is to ric a l c o n te x t, i_n Great Basin N a tu r a lis t Memoirs #2: K. T. Harper
and J. L. Reveal, o rg a n iz e rs o f in te rm o u n ta in biography: a sym­
posium, p. 1-15.
C ro n q u ist, A ., Holmgren, A. H ., Holmgren, N. H ., and Reneal, J . , 1972,
An Interm ountain F lo ra : V o l. I , New York B otanical Garden.
D avis, M. B ., 1966, D eterm ination o f absolute p o lle n frequency:
v. 47, p. 310-311.
Ecology,
________ i 1969. Palynology and environm ental h is to r y d u rin g the Quater­
nary p e rio d : Amer. S c i. , v . 57, no. 3, p. 317-332.
Deevey, E. S. and F l i n t , R. F . , 1957. Post g la c ia l Hypsithermal i n t e r ­
v a l: Science, v. 125, p. 182.
D e lo r it, R. J . , 1970, I llu s t r a t e d taxonomy manual o f weed seeds:
Pub., R iver F a lls , Wis. , 175 p'.
Agron.
E lle n b e rg , H ., 1956, Aufgaben und methoden der ve g eta tionsh kund:
Ulmer, S tu ttg a r t, 136 p.
Eugen
Elmore, F. H ., 1976, Shrubs and Trees o f the Southwest Uplands w ith draw­
ings by Jeanne R. Jan ish: Southwest Parks and Monuments A s s o c .,
Globe, A rizo n a , 212 p.
Erdman, K. S ., 1970, D is tr ib u tio n o f the n a tiv e tre e s o f Utah:
S c i. B u ll. , v . 11, no. 3, p. 1-33.
B.Y.U.
E u le r, R. C ., 1979, W ritte n communication. Research A n th ro p o lo g is t,
Grand Canyon N ational Park.
F in le y , R. B ., 1958, The wood ra ts o f C olorado: d is t r ib u t io n and ecology:
U n iv e rs ity o f Kansas P ub., v . 10, no. 6, Lawrence, Kansas, p.
213-552.
F l i n t , R. F ., 1971, G la c ia l and Quaternary Geology:
New York, 892 p.
W iley and Sons, I n c . ,
166
Galloway, R. W., 1970, The f u l l - g l a c i a l c lim a te in the southwestern
U nited S ta te s: Ann. Ass. Am. G eogr., v. 60, no. 2 , p. 245-256.
Gleason, H. A ., 1926, The in d iv id u a lis t ic concept o f the p la n t a sso cia­
t io n : B u ll. T orrey Bot. Club, v . 53, p. 7-26.
Hanson, D. D ., 1971, The food h a b its and energy dynamics o f Neotoma
s te p h e n s i: M. S. T h e sis, Northern Arizona U n iv e r s ity , F la g s ta ff.
Harlow, W. M ., 1931, The id e n t if ic a t io n o f the pines o f the U nited S ta te s ,
n a tiv e and in tro d u c e d , by the needle s tru c tu re : New York S tate
College o f F o re stry a t Syracuse U n iv e r s ity , Tech. Pub. No. 32
( B u ll. v . XX, no. 2 ), 19 p . , 19 p la te s .
Houghton, S. G ., 1975, Nevada's weather and c lim a te :
and Geol. , U n iv e rs ity o f Nevada, Reno.
Nevada Bur. Mines
Kearney, T. H. and Peebles, R. H ., 1960, A rizona F lo ra : U n iv e rs ity o f
C a lifo r n ia Press, B e rke le y, Los Angeles, London, 1084 p.
King, T. J . , 1976, Late P le is to c e n e -E a rly Holocene h is to r y o f c o n ife ro u s
woodlands in the Lucerne V a lle y re g io n , Mohave D esert, C a lifo r n ia :
Great Basin N a tu r a lis t, v . 36, p. 227-238.
Kramer, S. N ., 1957, The Sumerians:
48.
S c ie n t if ic American, v . 169, p. 38-
Lanner, R. M ., 1974, N atural h y b rid iz a tio n between Pinus e d u lis and Pinus
monophylla in the American southw est: S ilv a e G enetica, v. 23,
no. 4, p. 99-134.
Lehr, J. H ., 1978, A catalogue o f the f lo r a o f A rizo n a :
Garden, Phoenix, A rizo n a , 203 p.
Desert Botan.
Lepper, M. G ., 1974, Pinus f l e x i l i s James and i t s environm ental r e la t io n ­
s h ip s : Ph.D. D is s e rta tio n , U n iv e rs ity o f C a lifo r n ia , D avis,
210 p.
L ib b y, W. F ., 1955, Radiocarbon D a tin g :
2nd e d ., 175 p.
U n iv e rs ity o f Chicano Press,
L i t t l e , E. L . , 1971, A tla s o f U nited S tates tre e s , V o l. 1 - c o n ife rs and
im p o rta n t hardwoods: M isc. Pub. No. 1146, U.S.D.A. Forest Ser­
v ic e , Washington, D.C.
Malm, W. C ., 1974, A ir movement in the Grand Canyon:
125-132.
P latea u, v . 46, p.
M a rtin , A. C. and B a rkle y, W. D ., 1961, Seed id e n t if ic a t io n m anual:
U n iv e rs ity o f C a lifo r n ia Press, B erkeley and Los Angeles, 221 p.
M a rtin , P. S ., in p re p a ra tio n , Trees and shrubs o f the Grand Canyon:
U n iv e rs ity o f A rizo n a , Tucson.
________ , 1963, Geochronology o f P lu v ia l Lake Cochise, southern A rizon a.
I I . p o lle n a n a ly s is o f a 42-meter c o re : Ecology, v. 44, p. 436444.
________ , 1973, The d isco ve ry o f America:
Science, v . 179, p. 969-973.
M a rtin , P. S. and M ehringer, P ., 1965, P leistoce ne p o lle n a n a ly s is and
biogeography o f the southw est, i j i Quaternary o f the United
S ta te s : P rinceton U n iv e rs ity Press, p. 433-453.
McDougall, W. B ., 1964, Grand Canyon w ild flo w e rs :
B u ll. 43, 259 p.
________ , 1973, Seed p la n ts o f n o rthe rn A riz o n a :
F la g s ta ff, 594 p.
Museum N orthern A r iz .
Museum N orthern A r iz . ,
Mead, J. I . , in press, The la s t 30,000 years o f faunal h is to r y w ith in
the Grand Canyon, A riz o n a : Quat. Res.
M ehringer, P. J . , J r . , 1967, P ollen a n a ly s is o f the Tule Springs area,
Nevada: Nev. S tate Mus. A nth ro. Pap. 13 (p a rt 3 ) , p. 130-200.
M ercer, J. H ., 1972, The low er boundary o f the Holocene:
v. 2, p. 38.
Quat. Res.,
Merriam, C. H ., 1890, R esults o f a b io lo g ic a l survey o f the San Fran­
c isco Mountain re gion and d e s e rt o f the L i t t l e Colorado o f
A rizo n a : U .S .D .A ., North American Fauna, v . 3 , p. 1-136.
M ik s ic e k , C ., 1980, Personal communication. Dept. A rid Lands S tu d ie s ,
U n iv e rs ity o f A rizon a.
M ueller-Dom bois, D. and E lle n b e rg , H ., 1974, Aims and Methods o f Vegeta­
tio n Ecology: W iley and Sons.
Munz, P. A ., 1974, A Flora o f Southern C a lifo r n ia : U n iv e rs ity o f C al­
if o r n ia Press, B erke ley, Los Angeles, London, 1084 p.
P h illip s , A. M ., 1977, P a ckra ts, p la n ts , and the P leistoce ne in the low er
Grand Canyon: Ph.D. D is s e rta tio n , U n iv e rs ity o f A riz o n a , Tucson.
Richmond, G. M ., 1965, G la c ia tio n o f the Rocky M ountains, i_n The Quater­
nary o f the U nited S ta te s : H. E. W rig h t, J r . and D. G. Erey
(e d s .), P rin ce to n U n iv e rs ity Press, P rin c e to n , p. 217-230.
168
R eichh ard t, K. and Warren, P ., 1981, Personal communication. Dept. A rid
Lands S tu d ie s, U n iv e rs ity o f A rizo n a , Tucson.
Robbins, E. I . , M a rtin , P. S ., and Long, A ., in p re p a ra tio n , Paleoecology
o f S ta n to n 's Cave, Grand Canyon, A rizo n a : Lab. o f P aleoenvironmental S tu d ie s , U n iv e rs ity o f A riz o n a , Tucson.
R u ffn e r, J. A ., 1978, Clim ates o f the S ta te s :
D e tr o it, M ichigan.
N .O .A .A ., Gale Res. Co.,
Schopmeyer, C. S. ( e d .) , 1974, Seeds o f woody p la n ts in the U nited
S ta te s : U.S.D.A. Forest S e rv ic e , A g ric . Handbook No. 450, Wash­
in g to n , D .C ., 883 p.
S e lle rs , W. D. and H i l l , R. H ., 1974, Arizona C lim ate 1931-1972:
v e r s it y o f Arizona Press, Tucson.
U n i­
S hackleton, N. J. and Opdyke, N. D ., 1973, Oxygen iso to p e and paleomagn e tic s tra tig ra p h y o f e q u a to ria l P a c ific c o re , V 28-238* oxygen
iso to p e tem peratures and ic e volumes on a 10^ and 10° year
s c a le s : Quat. R es., v . 3, p. 39-55.
Sdrensen, T . , 1948, A method o f e s ta b lis h in g groups o f equal am plitude
in p la n t so cio lo g y based on s im ila r it y o f species c o n te n t: Det.
Kang. Danske Vidensk. S elsk. G io l. S kr. (Copenhage), v . 5, no.
4, p. 1-34.
S paulding, G. W., 1978, Personal communication. C ollege o f Forest Re­
sources, U n iv e rs ity o f Washington.
Tauber, H ., 1965, D iffe r e n tia l p o lle n d is p e rs io n and the in te r p r e ta tio n
o f p o lle n diagrams: Dan. G eol. unders. 2. r k . 89.
Tucker, I . M. and B oge rt, B. B ., 1973, A n a ly s is o f a progeny te s t o f a
h yb rid oak, Quercus gam belii x Q.- t u r b i n e l la : Madrono, v . 22,
no. 1, p. 1-40.
Van Devender, T. R ., 1973, Late P leistoce ne p la n ts and anim als o f the
Sonoran D ese rt: a survey o f a n c ie n t pa ckrat middens in so u th ­
western d e s e rts : Ph.D. D is s e rta tio n , U n iv e rs ity o f A riz o n a ,
Tucson.
, 1977a, Holocene woodlands in the southwestern d e s e rts :
v . 198, p. 189-192.
Science,
_________, 1977b, Comment on m a c ro fo s s il a n a ly s is o f woodrat middens as a
key to the Quaternary v e g e ta tio n a l h is to r y o f a r id North America
by P. V. W ells: Quat. Res., v . 8 , p. 236-237.
169
Van Devender, T. R. and Mead, J. I . , 1976, Late P le isto ce n e and modern
p la n t communities o f Shinumo Creek and Peach Springs Wash, lower
Grand Canyon, A rizo n a : Jou r. A fiz . Acad. S c i. , v . 11, p. 16-22.
Van Devender, T. R ., P h illip s , A. M ., and Mead, J . I . , 1977, Late P le is ­
tocene and small mammals from th e low er Grand Canyon o f A riz o n a :
Southwestern N a tu r a lis t, v . 22, no. 1, p. 49-66.
Van Devender, I . R. and S pau lding, W. G ., 1979, Development o f vegeta­
tio n and c lim a te in the southwestern U nited S ta te s : Science,
v . 204, p. 701-710.
Von Post, L . , 1916, Om s ko g stra d p o lle n i sydsvenska to r fm o s s la g e r fo ljd e r:
Geol. fo r Stockholm f o r h d l. , v . 38, p. 384.
Watson, R. A. and W rig h t, H. E. , O r., 1980, The end o f the P le is to c e n e :
a general c r it iq u e o f c h ro n o s tra tig ra p h ic c la s s if ic a t io n : Bore­
as, v . 9, p. 153-163.
W ells, P. V ., 1976, M a cro fo ssil a n a ly s is o f woodrat ( Neotoma) middens as
a key to the Quaternary v e g e ta tio n a l h is to ry o f a r id Am erica:
Quat. R es., v . 6, p. 223-248.
________ , 1977, Reply to comment by Tom Van Devender on m a c ro fo s s il
a n a ly s is o f woodrat middens as a key to the Quaternary vegeta­
tio n a l h is to r y o f a r id North America: Quat. R e s., v . 8 , p. 237238.
-_____ , 1979, An equable g la c io p lu v ia l in th e w est: P le n ig la c ia l e v i­
dence o f increased p r e c ip ita tio n on a g ra d ie n t from the Great
Basin to the Sonoran and Chihuahuan D eserts: Quat. R es., v . 12,
p. 311-325.
W e lls, P. V. and Jorgensen, C. D ., 1964, P le isto ce n e woodrat middens and
c lim a tic change in th e Mohave D ese rt: a record o f ju n ip e r wood­
la n d s : Science, v . 155, p. 1640-1647.
Wendorf, F ., S c h ild , R ., El H a d id i, N ., C lose, A. E ., Kobusiewica, M .,
Wieckowska, H ., Is s a w i, B ., and Haas, H ., 1979, Use o f b a rle y in
the Egyptian Late P a le o lit h ic : Science, v . 205, no. 4413, p.
1341 -1347.
West, E. N ., Rea, K. H ., and Tausch, R. J . , 1975, Basic synecolog ical
re la tio n s h ip s in ju n ip e r-p in y o n woodlands, i_n_ The P-J ecosystem:
a symposium: Utah S tate U n iv e r s ity , Logan.
W hitesid e, M. C ., 1965, P aleo ecolo gical s tu d ie s o f Potato Lake and i t s
environm ents: Ecology, v . 46, p. 807-816.
170
W h itta k e r, R. H ., 1967, G radient a n a ly s is o f v e g e ta tio n :
Review, v . 42, p. 207-264.
B io lo g ic a l
________ ( e d .) , 1973, O rd in a tio n and c la s s if ic a t io n o f com m unities:
Dr. W. Junk b .v . , The Hague.
W h itta k e r, R. H. and N ie rin g , W. A ., 1973, V egetation o f the Santa Cata­
lin a M ountains, A rizo n a : a g ra d ie n t a n a ly s is o f the south
slop e: Ecology, v . 46, no. 4 , p. 429-451.
W rig h t, H. E ., J r . , 1971, Late Quaternary v e g e ta tio n a l h is to r y o f North
America, jn^ The Late Cenozoic G la c ia l Ages: K. K. Turekian
( e d .) , Yale U n iv e rs ity Press, New Haven, p. 425-464.
W rig h t, H. E ., J r . , Bent, A. M ., Hansen, B. S ., and Maher, L. J . , 1973,
Present and past v e g e ta tio n Of the Chuska M ountains, n o rthw e st­
ern New Mexico: Geol . Soc. America B u l l . , v . 84, p. 1155-1179.
y £>
333