.) 1991 Oxford University Press Nucleic Acids Research, Vol. 19, Supplement 2045 Site-specific methylation: effect on DNA modification methyltransferases and restriction endonucleases Michael Nelson and Michael McClelland* California Institute of Biological Research, 11099 North Torrey Pines Road, La Jolla, CA 92037 USA INTRODUCTION We present in Table I an updated list of the sensitivities of over 240 restriction endonucleases to the site-specific DNA modifications '14C, n-6C, h1"5C, and m6A, four modifications that are common in DNA prokaryotes, eukaryotes, and their viruses (Mc2,Mc5,Mc8,Mcl 1 ,Ne3,Ne4). Table II is a list of over 130 characterized DNA methyltransferases. A detailed list of cloned restrictionmodification genes has been made Wilson (Wi4). Table m lists the sensitivities of over 20 Type II DNA methyltransferases to m4C, nSC, hm5C, and m6A modification. Most DNA methyltransferases are sensitive to non-canonical modifications within their recognition sequences (Bu5,MclO,Ne3,Po4), and this sensitivity may differ from that of their restriction endonuclease partners. Finally, several restriction endonuclease isoschizomers are known to differ in their ability to cleave DNA which has been methylated. Table IV lists over 20 known isoschizomer pairs and one isomethylator pair, along with the modified recognition sites at which they differ. Effect of m5CG and m5CNG on restriction endonucleases Enzymes that are not sensitive to site-specific methylation are particularly useful for achieving complete digestion of methylated DNA. For instance, endonucleases that are unaffected by mI5CG and m5CNG are useful for digestion of plant DNA which is frequently methylated at these positions. Endonucleases that are unaffected by these two cytosine modifications include: Accll, AflH, AhaIH, AseI, Asp700I AsuH, BbuI, BclI, BspHI, BspNI, BstElI, BstNI, CviQI, DpnI, DraI, EcoRV, HinCll, HpaI, KpnI, MboH, MseI, NdeI, NdeH, Pacd, RsaI, RspXI, SpeI, SphI, SspI, Swal, TaqI, TthHBI and XmnI. CpG sequences occur infrequently and are often methylated in mammalian genomes (Mc9). Almost all the enzymes that could generate large fragments of mammalian DNA are blocked by this m5CpG modification at overlapping sites, including AatII, ApeI, AvilI, BbeI, BmaDI, BssHll, BspMU, BstBI, ClaI, CspI, Csp45I, EagI, EclXI, Eco47HI, FseI, FspI, Kpn2I MluI, Mlu9273I, Mlu9273H, MroI, NaeI, NarI, NotI, NruI, Pfid, PmlI, PpuAI, PvuI, RsrH, Sall, SaIDI, Sbol3I, SfiI, SmaI, SnaBI, Spll, SpoI, XhoI and Xorfl (see Table I). Only four enzymes suitable for pulsed field mapping of eukaryotic chromosomes are known to cut msCG-modified DNA: AcclI, AsuH, Cft9I and XinaI. It has been determined that SfiI is sensitive to n5C modification at the second cytosine of its recognition sequence, GGCm5CN5GGCC. SfiI is therefore * To whom correspondence should be addressed sensitive to overlapping m5CG methylation at GGC"5CGN4GGCC sites in mammals and overlapping dcm methylation at GGC'5CWGGNNGGCC sequences in E. coli.. m4C and "n5C Cytosine modifications In some cases, a restriction enzyme may differ with to sensitivity to m4C and m5C at a particular sequence. For example, BstNI and MvaI cut I15C, but not m4C modified CCWGG sequences. KpnI cuts GGTACm5C but not GGTACm4C. BstYI cuts RGATm5CY but not RGATm4CY. Restriction enzymes we have tested for sensitivity to m4C include: AatI, Afll, AlwI, AvaII, BanI, BglI, BstI, BstNI, BstYI, DpnI, FokI, MboI, MvaI, NarI, Ncil, PflMI, Sau3A, and ScrFI. Rate of cleavage at methylated restriction sites m4C, m5C, hm5C, and m6A are bulky alkyl substitutions in the major groove of B-form DNA. It is therefore not surprising that site-specific DNA methylation can interfere with many sequencespecific DNA binding proteins (e.g. St2,Wa8) including binding of restriction endonucleases and DNA methyltransferases. DNA methylation may cause long-range perturbations of DNA minor and major grooves, and a range of rate effects are observed when modified substrates are used in restriction-modification reactions. Results can be summarized as follows. (1) Canonical site-specific methylation always inhibits DNA cleavage by a restriction endonuclease. For example, M.BamHI methylase modifies GGATm4CC; and BamHI endonuclease cannot cut this methylated sequence. (2) In about one half of the cases tested, methylation at noncanonical sites inhibits the rate of duplex DNA cleavage at least ten-fold (Table I). However, in other cases non-canonical methylation has no effect on restriction cleavage. For example, BamHI cuts DNA which has been modified at GGATCm4C or GGATCm5C, but cannot cut DNA methylated at GGATm5CC. (3) There are a few examples in which non-canonical methylation slows the rate of cleavage or permits nicking of one strand of a hemi-methylated duplex. Examples of such rate effects are presented in footnotes to Table I. (4) Sometimes base modifications which lie outside a recognition sequence can influence the rate of DNA cleavage by a restriction enzyme. For example, NarI does not cut at overlapping M.MvaI-NarI GGCGCCO4CCWGG sites (Nel); and HaeIII cannot cut certain GGCCmT sites, where mT are modifed thymine residues (Wil). Such methylation-induced 'action at a distance' may be more common than has been 2046 Nucleic Acids Research, Vol. 19, Supplement previously appreciated. We have tested only a few enzymes for sensitivity to base modifications outside their canonical recognition sequences. Effect of site-specific methylation on DNA methyltransferases Twenty-three Type II methyltransferases have been tested for sensitivity to non-canonical DNA modifications, of which nine were blocked (MclO and Table IE). As with restriction endonucleases, rate effects are sometimes seen with DNA methyltransferases at non-canonically modified sequences. For example, E. coli Dam methyltransferase is unaffected by GAT1mC, but methylates GATn'C relatively slowly. Such data is summarized in Table II1 and footnotes to Table I. Methylase/endonuclease combinations can produce novel DNA cleavage specificities Several strategies involving combinations of modification methyltransferases and restriction endonucleases have been used to generate rare or novel DNA cleavage sites. For example, certain adenine methyltransferases may be used in conjunction with the methylation-dependent restriction endonuclease DpnI to create cleavages at eight- to twelve-basepair sequences (Mc6,Mcl2). M ClaI and DpnI have been used to cut the 2.8 million base pair Staphylococcus aureus genome into two pieces at the sequence ATCGATCGAT (Wel). Twelvebase-pair TCTAGATCTAGA M XbaI/DpnI sites in a transposon have been introduced into bacterial genomes and permit cleavage one or more times depending on the number of transposons integrated (HaS). Protection of a subset of restriction endonuclease cleavage sites by methylation at overlapping methyltransferase/endonuclease targets has been described (Hul ,Kll1,Ne6). This two-step 'crossprotection' strategy has produced over 60 new cleavage specificities, and many more are possible (Ja2,Ka2,Kll,Ne6). Extremely specific DNA cleavages may result from certain 'cross-protections.' For example, M-FnuDHINotI cleavage has been used to cut the 4.7 million base pair E. coli K12 genome into fourteen pieces (Qi2). Methylases have been used to compete with endonucleases for recognition sites in a method called methylase-limited partial digestion. This method is particularly useful for performing partial digests in agarose plugs for pulsed field gel electrophoresis (Ha6). Blocking a subset of DNA methyltransferase sites by overlapping methylation (sequential double-methylation) can expose a subset of restriction endonuclease sites for cleavage (Mc9,Ne3,Po3). For instance, M HpaH, M BamHI, and BamHI have been used in a sequential three-step methyltransferase/methyltransferase/endonuclease reaction to achieve selective DNA cleavage at the ten base pair sequence, CCGGATCCGG (McIO). Polypyrimidine oligonucleotides have been used in DNA triplexes to selectively mask restriction-modification sites. For example, polyppyrimidine triplexes which overlap M. TaqI sites have been used to enable selective restriction cleavage (Ma7). Finally, methods based on the sequential use of purified lac repressor protein, DNA methyltransferases, and restriction endonucleases have been used to achieve highly selective DNA cleavages (Ko2). target sequences: mrr (m6A), mcrA (m5CG), mcr B (Rm5C) (Br5,Dil,He3,Ral,Ra2). In vivo or in vitro modified DNA is inefficiently cloned into E. coli. For example, human DNA which is extensively methylated at "5CpG is restricted by mcrA (Wo2). Appropriate non-restricting strains of E. coli (Go2,Krl, Ral,Ra2) should be chosen for efficient transformation and cloning of methylated DNA. Other species have such restriction systems (e.g. Ma2). Engineered altered methylase specificities Many methylase gene have now been sequenced. Extensive homologies between closely related enzymes (Wi3) or common motifs (Po5,Sm3) allow new specificities to be developed (e.g. Ba4,Tr4). Data in electronic form This paper is available as a text file on a 3.5' Macintosh diskette. The data can be supplied as a Microsoft Word, Macwrite or MSDOS file. Please contact Michael McClelland at CIBR, phone 619 535 5486, FAX 619 535 5472. There are tentative plans to provide the supplement issue on a CD-ROM. ACKNOWLEDGEMENTS This work is supported by grants from the National Institutes of Health and the U.S. Dept. of Energy. We gratefully acknowledge the editorial assistance of Charlie Peterson, Mike Biros and Dotty Crosei. REFERENCES Anl. Bal. Ba2. Ba3. Ba4. BaS. Ba6. Ba7. Ba8. Ba9. Bel. Be2. Be3. Be4. BeS. Be6. Bhl. Bil. Bi2. Bi3. Bi4. BiS. Methylation-dependent restriction systems in bacteria E. coli K-12 contains at least three different methylationdependent restriction systems which selectively restrict methylated Bll Bol. Ando T., Hayase E., Ikawa S. and Shitaka T.: Microbiology-1982, D Schlessinger, Ed., Amer. Soc. Miocrobiol., Washington DC, 1982, pp66-69. Babeyron T. Kean K. and Forterre P.: J. Bacteriol. 160 (1984) 586-590. Bachi B., Reiser J. and Pirrotta V.: J. Mol. Biol. 128 (1979) 143 - 163. Backman K.: Gene 11 (1980) 167-171. Balganesh T.S., Reiners L., Lauster R., Noyer-Weidner M., Wilke K. and Trautner T.A.: EMBO J. 6 (1987) 3543-3549. Ballard B., Stephenson F., Boyer H. and P. Greene P.: (personal communication). Barbes C., Yebra M.J., Novella I.S., and Sanchez J.: (unpublished). Barra R., Chiong M., Gonzalez E. and Vasquez C.: Biochem. J. 255 (1988) 699-703. Barsomian J.M., Card C.O. and Wilson G.G.: (unpublished). Barsomian J.M., Card C.O. and Wilson G.G.: Gene 74 (1988) 5-7. Behrens B., Noyer-Weidner M., Pawlek B., Lauster R., Balganesh T.S. and Trautner T. A.: EMBO J. 6 (1987) 1137-1142. Behrens B., Pawlek B., Morelli G. and Trautner T.A.: Mol. Gen. Genet.189 (1983) 10- 16. Ben-Hatter and Jiricny J.: Nucleic Acids Res. 16 (1988) 4160. Benner J.S.: (unpublished observation). Benner J.S. and Schildkraut I.: (personal communication). Bestor T., Laudano A., Mattaliano R. and Ingram V.: J. Mol. Biol. 203 (1988) 971-983. Bhagwat A.: (personal communication). Bickle T.A.: (personal communication). Bickle, T.A.: Nucleases (1980) S.M Linn and R.J. Roberts, Eds., Cold Spring Harbor Laboratory, New York, pp85 -108. Bickle, T.A.: Gene Amplification and Analysis, Volume 1 (1980), J.Chirikjian and T.S. Papas, Eds., Elsevier, N.Y., pp1 -32. Bingham A.H.A., Atkinson T., Sciaky D. and Roberts R.J.: Nucleic Acids Res. 5 (1978) 3457-3467. Bifinaite J.B., Klimasuskas S.J., Butkus V.V. and Janulaitis A.A.: FEBS Lett. 182 (1985) 509-513. Blumenthal R.M., Gregory S.A. and Cooperider J.S.: J. Bacteriol. 164 (1985) 501-509. Bonventre J.: (unpublished results). Nucleic Acids Research, Vol. 19, Supplement 2047 Bo2. Bo3. Bo4. Bo5. Brl. Br2. Br3. Br4. Br5. Br6. Br7. Br8. Bul. Bu2. Bu3. Bu4. Bu5. Bu6. Bu7. Bu8. Bu9. Cal. Ca2. Ca3. Ca4. Chl Ch2. Cli. Col Co2. Co3. Co4. Co5. Co6. Co7. Dal. Da2. Da3. Del. Dil. Di3. Dol. Do2. Drl. Dul. Dyl. Ehl. Eh2. Borck K., Beggs J.D., Brammer W.J., Hopkins A.S. and Murray N.E.: Mol. Gen. Genet. 146 (1976) 199-207. Bougueleret L., Schwarzstein M., Tsugita A. and Zabeau M.: Nucleic Acids Res. 12 (1984) 3659-3676. Boyd A.C., Charles I.G., Keyte J.W., and Brammar W.J.: Nucleic Acids Res. 14 (1986) 5255-5274. Boyer H.W., Chow L.T., Dugaiczyk A., Hedgpeth J. and Goodman H.M.: Nature New Biol. 244 (1973) 40-43. Brennan C.A., Van Cleve M.D. and Gumport R.I.: J. Biol. Chem. 261 (1986) 7270-7278. Brennan C.A., Van Cleve M.D. and Gumport R.I.: J. Biol. Chem. 261 (1986) 7279-7286. Brenner V. Venetianer P. and Kiss A.: Nucleic Acids Res. 18 (1990) 355-359 Bron S., Murray K. and Trautner T.A.: Mol. Gen. Genet. 143 (1975) 13-23. Brooks J.E.: Methods in Enzymology 152 (1987) 113-141. Brooks J.E., Blumenthal R.M. and Gingeras T.R.: Nucleic Acids Res. 11 (1983) 837-851. Brooks J E. and Hattman S.: J. Mol. Biol. 126 (1978) 381-394. Brooks J.E. and Roberts R.J.: Nucleic Acids Res. 10 (1982) 913-934. Buhk H.J., Behrens B., Tailor R., Wilke K., Prada J.J., Gunthert U., Noyer-Weidner M., Jentsch S. and Trautner T.A.: Gene 29 (1984) 51-61. Busslinger M., deBeor E., Wright S., Grosveld F.G. and Flavell R.A.: Nucleic Acids Res. 11 (1987) 3559-3569. Butkus V.: (personal communication). Butkus V., Klimasauskas S., Kersulyte D., Vaitkevicius D., Lebionka A. and Janulaitis A.: Nucleic Acids Res. 13 (1985) 5727-5746. Butkus V., Klimasauskas S., Petrauskiene L., Maneliene Z., Lebionka A. and Janulaitis A.: Biochim. Biophys. Acta 909 (1987) 201-207. Butkus V., Petrauskiene L., Maneliene Z., Klimasauskas S., Laucys V. and Janulaitis A.: Nucleic Acids Res. 15 (1987) 7091-7102. Buryanov Ya.I., Bogdarina, I.G. and Bayev, A.A.: FEBS Lett. 88 (1978) 251-254. Buryanov, Ya.I., Nestrenko V.F. and Vagabova L.M.: Dokl. Akad. Nauk SSSR 227 (1976) 1472-1475. Buryanov Ya.I., Zakharchenko V.N. and Bayev A.A.: Dokl. Akad. Nauk SSSR 259 (1981) 1492-1495. Camp R. and Schildkraut I.: (unpublished results). Capowski E.E., Wells J.M. and Karrer K.M.: Gene 74 (1988) 103-104. Caserta M., Zacharias W., Nwankwo D., Wilson G.G. and Wells R.D.: J. Biol. Chem. 262 (1987) 4770-4777. Casjens S., Hayden M., Jackson E. and Deans R.: J. Virology 45 (1983) 864-867. Chandrasegaran S., Lunnen, K.D., Smith H.O. and Wilson G.G.: Gene 70 (1988) 387-392. Chien R., Stein D., So M. and Seifert H.: ( personal communication). Clarke C.M. and Hartley B.S.: Biochem. J. 177 (1979) 49-62. Colasanti J. and Sundaresan V. (1991) Nucleic Acids Res. 19: (in press). Cooney C.A.: Nucleic Acids Res. 18 (1990) 3667. Cooney C.A., Eykholt R.L. and Brabury E.M. J. Mol. Biol. 204 (1988) 889-901. Cornish-Bowden A.: Nucleic Acids Res. 13 (1985) 3021-3030. Coulby J. and Stemnberg N.: Gene 74 (1988) 191. Cowan G.M., Gann A.A.F. and Murray N.E.: Cell 56 (1989) 103-109. Cowan J. and Murray N.E.: (personal communication). Danaher R.J. and Stein D.C.: Gene 89 (1990) 129-132. Daniel A.S., Fuller-Pace F.V., Legge D.M. and Murray N.E.: J. Bacteriol. 170 (1988) 1775-1782. Daniel A.S. and Murray N.E.: (personal communication). De la Campa A.G., Kale P., Springhom S.S. and Lacks S.A.: J. Mol. Biol. 196 (1987) 457-469. Dila D. and Raleigh E.A.: Gene 74 (1988) 23-24. Dingman D.W.: J. Bact. 172 (1990) 6156-6159. Dobritsa A.P. and Dobritsa S.V.: Gene 10 (1980) 105-112. Doolittle M.M. and Sirotkin K.: Biochim. Biophys. Acta 949 (1988) 240-246. Dreiseikelman B., Eichenlaub R. and Wackernagel W.: Biochim. Biophys. Acta 562 (1979) 418-428. Dugaiczyk A., Hedgepeth J., Boyer H.W. and Goodman H.M.: Biochemistry 13 (1974) 503-512. Dybvig K., Swinton D., ManiloffJ. and Hattman S.: J. Bacteriol. 151 (1982) 1420-1424. Ehrlich M.: (unpublished results). Ehrlich M. and Wang R.Y.H.: Science 212 (1981) 1350-1357. Eh3. Esl. Fel. Fe2. Fil. Fll. Erl. Fol. Ful. Fu2. Fu3. Gal. Ga2. Ga3. Ga4. Gel. Ghl. Gil. Gi2. Ehrlich M., Wilson G.G., Kuo K.C. and Gehrke C.W.: J. Bacteriology 169 (1987) 939-943. Essani K., Goorha R. and Allan Granoff.: Gene 74 (1988) 71-72. Feehery R.: (personal communication). Feher Z., Kiss A. and Venetianer P.: Nature 302 (1983) 266-268. Fisherman J., Gingeras T.R. and Roberts R.J.: (unpublished results). Fliess A., Wolfes H., Seela F. and Pingoud A. Nucleic Acids Res. 16 (1988) 11781-11793. Erdmann D. and Kroger M.: (unpublished). Forney J.A. and Jack W.E.: (unpublished). Fuller-Pace F.V., Bullas L.R., Delius H. and Murray, N. E.: Proc. Natl. Acad. Sci. USA 81 (1984) 6095-6099. Fuller-Pace F.V., Cowan G.M. and Murray N.E.: J. Mol. Biol. 186 (1985) 65-75. Fuller-Pace F.V. and Murray N.E.: Proc. Natl. Acad. Sci. USA 83 (1986) 9368-9372. Gaido M., Prostko C.R. and Strobl J.S.: J. Biol. Chem. 263 (1988) 4832-4836. Gaido M. and Strobl J.S.: Arch. Microbiol. 146 (1987) 338-340. Gann A.A.F., Campbell A.A.B., Collins J.F., Coulson A.F.W. and Murray N.E.: Mol. Microbiol. 1 (1987) 13-22. Gautier F., Bunemann H. and Grotjahn L.: Eur. J. Biochem. 80 (1977) 175-183. Gelinas R.E., Myers P.A. and Roberts R.J.: J. Mol. Biol. 114 (1977) 169-180. Ghosh S.S., Obermiller P.S., Kwoh T.J. and Gingeras T.R.: Nucleic Acids Res. 18 (1990) 5063-5068. Gingeras T.R.: (unpublished observations). Gingeras T.R., Blumenthal R.M., Roberts R.J. and Brooks J.E.: In J. Zelinka and J.Balan, Eds., Metabolism, Enzymology and Nucleic Acids, 4th Proc. Int. Symp., Slovak. Sci., Bratislava, CSSR, 1982, pp329-340. Gi3. Gol. Go2. Go3. Grl. Gr2. Gr3. Gr4. Gingeras T.R. and Brooks J.E.: Proc. Natl. Acad. Sci. USA 80 (1983) 402-406. Gorovsky M.A., Hattman S. and Pleger G.L.: J. Cell Biol. 56 (1973) 697-701. Gossen J.A. and Vijg J.: Nucleic Acids Res. 19 (1988) 9343. Gough J.A. and Murray N.E.: J. Mol. Biol. 166 (1983) 1-19. Grachev S.A., Mamaev S.V., Gurevich A.L., Igoshun A.V., Kolosov M.N. and Slyusarenko A.G.: Bioorg. Khim.: 7 (1981) 628-630. Greene P.J., Gupta M., Boyer H.W., Brown W.E. and Rosenberg J.M.: J. Biol. Chem. 256 (1981) 2143 -2153. Gromova E.S., Kubareva E.A., Yolov A.A. and Nikolskaya I.I.: (unpublished observations). Gruenbaum Y., Cedar H. and Razin A.: Nucleic Acids Res. 9 (1981) Ho2. 2509-2515. Guha S.: J. Bacteriology 163 (1985) 573-579. Guha S.: Gene 74 (1988) 77-81. Gunthert, U.: (unpublished observations). Gunthert U., Lauster R. and Reiners L.: Eur. J. Biochem. 159 (1986) 485-492. Gunthert U., Reiners L. and Lauster R.: Gene 41 (1986) 261-270. Gunthert U., Strom K. and Bald R.: Eur. J. Biochem. 90 (1978) 581 -583. Gunthert U. and Trautner T.A.: Curr. Topics Microbiol. Immunol. 108 (1984) 11-22. Hattman S., Keister T. and Gottehrer A.: J. Mol. Biol. 124 (1978) 701-711. Hattman S., Brooks J.E. and Masurekar M.: J. Mol. Biol. 126 (1978) 367-380. Hattman S., Van Ornondt H. and De Waard A.: J. Mol. Biol. 119 (1978) 361 -376. Hattman S., Wilkinson J., Swinton D., Schlagman S., Macdonald P. M. and Mosig G.: J. Bacteriol. 164 (1985) 932-937. Hanish J. and McClelland M.: Nucleic Acids Res. 19 (1991) (in press). Hanish J. and McClelland M. Nucleic Acids Res. 18 (1990) 3287-3291. Heidmann S., Seifert W., Kessler C. and Domdey H.: Nucleic Acids Res. 17 (1989) 9783-9796. Heitman J. and Model P.: J. Bacteriol. 169 (1987) 3243-3250. Herman G.E. and Modrich P.: J. Biol. Chem. 257 (1982) 2605 -2612. Hofer B.: Nucleic Acids Res. 11 (1988) 5206. Hofer B. and Kuhlein B.: Nucleic Acids Res. 17 (1989) 8009. Ho3. Howard K., Card C., Gul. Gu2. Gu3. Gu4. GuS. Gu6. Gu7. Hal. Ha2. Ha3. Ha4. HaS. Ha6. Hel. He3. He2. Hol. Benner J.S., Callahan H.L., Maunus R., Silber G.G. and Brooks J.E.: Nucleic Acids Res. 14 (1986) 7939-7951. K., Wilson 2048 Nucleic Acids Research, Vol. 19, Supplement Hul. Ikl. Huang L-H., Farnet C.M., Ehrlich K.C. and Ehrlich M.: Nucleic Acids Res. 10 (1982) 1579-1591. Humbelin M., Suri B., Rao D.N., Hornby D.P., Eberle H., Pripfl T., Kenel S. and Bickle T.: J. Mol. Biol. 200 (1988) 23-29. Ikawa S., Shibata T., Ando T. and Saito H.: Mol. Gen. Genet. 177 (1980) Jal. Ja2. Ja3. Ja4. Jacobs D. and Brown N.L.: (unpublished observations). Jacobs D., and Brown N.L.: Biochem. J. 238 (1986) 613-616. Janulaitis A.: (personal communication). Janulaitis A., Klimasauskas S., Petrusyte M. and Butkus V.: FEBS Lett. Ja5. Janulaitis A., Petrusyte M. and Butkus V.: FEBS Lett. 161 (1983) 213-216. Janulaitis A., Petrusyte M., Jaskeleviciene B., Krayev A.S., Scryabin K.G. and Bayev A.A.: Dokl. Akad. Nauk SSSR 257 (1981) 749-750. Janulaitis, A., Povilionis P. and Sasnauskas K.: Gene 20 (1982) 197-204. Jentsch S.: J. Bacteriol. 156 (1983) 800-808. Jentsch S., Gunthert U. and Trautner T.A.: Nucleic Acids Res. 9 (1981) 2753-2759. Kan N.C., Lautenberger J.A., Edgell M.H. and Hutchison III C.A.: J. Mol. Biol. 130 (1979) 191-209. Kang S., Choi W.S. and Yoo O.J.: Biochem. Biophys. Res. Commun. Hu2. 359-368. 161 Ja6. Ja7. Jel. Je2. Kal. Ka2. 145 Ka3. Ka4. (1983) 131-134. (1987) 482-487. Kaplan D.A. and Nierlich D.P.: J. Biol. Chem. 250 (1975) 2395-2397. Kaput J. and Sneider T.W.: Nucleic Acids Res. 7 (1979) 2303 -2322. KaS. Karreman C. and de Waard A.: J. Bacteriol. 170 (1988) 2527-2532. Ka6. Karreman C. and de Waard A.: J. Bacteriol. 170 (1988) 2533-2536. Ka7. Karreman C., Tandeau de Marsac N. and de Waard A.: Nucleic Acids Res. 14 (1986) 5199-5205. Ka8. Karreman C. and de Waard A.: J. Bact. 172 (1989) 266-272 Ka9. Karyagina A.S., Lunin V.G. and Nikolskaya I.I.: Gene 87 (1990) 113-118. KalO. K4szubska W., Aiken C.R. and Gumport R.I.: Gene 74 (1988) 83-84. Kel. Kelly S., Kaddurah D.R. and Smith H.O.: J. Biol. Chem. 260 (1985) La4. Lacks S.A., Mannarelli B.M., Springhorn S.S. and Greenberg B.: Cell 46 (1986) 993-1000. LaS. Lacks S.A. and Springhorn S.S.: J. Bacteriol. 157 (1984) 934-936. La6. Landry D., Looney M.C., Feehery G.R., Slatko B.E., Jack W.E. and Schildkraut I.: Gene 77 (1989) 1 -10. La7. Landry D.: (unpublished observations). La8. Lange C., Noyer-Weidner M, Trautner T.A., Weinewr M., and Zahler S.A.: (submitted). La9. Larimer F.W.: Nucleic Acids Res. 15 (1987) 9087. LalO. Lautenberger J.A., Kan N.C., Lackey D., Linn S., Edgell M.H. and Hutchinson III C.A.: Proc. Nat]. Acad. Sci. USA 75 (1978) 2271 -2275. Lal 1. Lautenberger J.A. and Linn S.: J. Biol. Chem. 247 (1972) 6176-6182. Lel. Lee S.H. and Rho H.M.: Korean J. Genet. 7 (1985) 42-48. Le2. Levy W.P. and Welker N.E.: Biochemistry 20 (1981) 1120-1127. Lol. Lodwick D., Ross H.N.M., Harris J.E., Almond J.W. and Grant W.D.: J. Gen. Microbiol. 132 (1986) 3055-3059. Lo2. Loenen W.A.M., Daniel A.S., Braymer H.D. and Murray N.E.: J. Mol. Biol. 198 (1987) 159-170. Lo3. Looney M.C., Moran L.S., Jack W.E., Feehery G.R., Brenner J.S., Slatko B.E. and Wilson G.G.: Gene 80 (1989) 193-208. Lul. Lui A.C.P., McBridge B.C., Vovis G.F. and Smith M.: Nucleic Acids Res. 6 (1979) 1 - 15. Lu2. Lunnen K.D., Barsomian J.M., Camp R.R., Card C.O., Chen S.Z., Croft R., Looney M.C., Meda M.M., Moran L.S., Nwankwo D.O., Slatko B.E., Van Cott E.M. and Wilson G.G.: Gene 74 (1988) 25-32. Lu3. Lunnen K. (unpublished). Lu4. Lunnen K.D., Morgan R.D., Timan C.J., Krzycki J.A., Reeve J.N. and Wilson G.G.: Gene 77 (1989) 11-20. Lyl. Lynn S.P., Cohen L.K., Gardner J.F. and Kaplan S.: J. Bacteriol. 138 (1979) 505-509. Mal. Ma2. Ma3. 15339-15344. Ke2. Ke3. Ku2. Keshet E. and Cedar H.: Nucleic Acids Res. 11 (1983) 3571-3580. Kessler C. and Holtke H-J.: Gene 33 (1985) 1-102. Kim E.L. and Maliuta S.S.: FEBS Lett. 255 (1989) 361-364. Kiss A. and Baldauf F.: Gene 21 (1983) 111-119. Kiss A., Posfai G., Keller C.C., Venetianer P. and Roberts R.J.: Nucleic Acids Res. 13 (1985) 6403-6421. Kita K., Nobutsugu H., Oshima A., Kadonishi S. and Obayashi A: Nucleic Acids Res. 13 (1985) 8685 -8693. Klimasauskas S., Butkus V. and Janulaitis A.: Mol. Biol. (Mosk). 21 (1987) 87-92. Klimasauskas S., Timinskas A., Menkevicius S., Butkiene D., Butkus V. and Janulaitis A.: Eksperim. Biolog, Vilnius (in press). Koncz C., Kiss A. and Venetianer P.: Eur. J. Biochem. 89 (1978) 523 -529. Koob M., Grimes E., and Szybalski W.: Science 241 (1988) 1084- 1086. Korch C. and Hagblom P.: Eur. J. Biochem. 161 (1986) 519-524. Korch C., Hagblom P. and Normark S.: J. Bacteriol. 161 (1985) 1236-1237. Korch C., Hagblom P. and Normark S.: J. Bacteriol. 155 (1983) 1324-1332. Kosykh V. G., Bur'yanov Ya.l. and Bayev A.A.: Mol. Gen. Genet. 178 (1980) 717-718. Kosykh V.G., Glinskaite I., Bur'yanov Ya.l. and Bayev A.A.: Doki. Akad. Nauk SSSR 265 (1982) 727-730. Kosykh V.G., Solonin A.S., Bur'yanov Ya.l. and Bayev A.A.: Biochim. Biophys. Acta 655 (1981) 102-106. Kretz P.L, Reid C.H., Greener A., J.M.Short (1989) Nucleic Acids Res. 17: 5409. Kramarov V.M. and Smolyaninov V.V.: Biokhimiya 46 (1981) 1526-1529. Kubareva E.A., Gromova E.S., Romanova E.A., Oretskaya T.S., Shabarova Z.A.,: Bioorg. Khimiya (Russ.) 16 (1990) 501-506. Kubareva E.A., Pein C-D., Gromova E.S., Kuznezova S.A., Tashlitzki V.N., Cech D. and Shabarova Z.A.: Eur. J. Biochem. 175 (1988) 615-618. Kupper D., Jian-Guang Z., Kiss A. and Venetianer P.: Gene 74 (1988) Lal. Labbe D., Holtke H.J. and Lau P.C.K.: Mol. Gen. Genet. 224 (1990) La2. Labbe S., Xia Y. and Roy P.H.: Nucleic Acids Res.16 (1988) 7184. Lacks S. and Greenberg B.: J. Mol. Biol. 114 (1977) 153-168. Kil. Ki2. Ki3. Ki4. Kll. K13. Kol. Ko2. Ko3. Ko4. Ko5. Ko6. Ko7. Ko8. Krl. Kr2. Ku3. Kul. 33. 101-110. La3. Ma4. MaS. Ma6. Ma7. Ma8. Ma9. MalO. Mcl. Mc3. Mc2. Mc4. McS. Mc6. Mc7. Mc8. Mc9. MclO. Mc 1. McI2. Mc13. Mel. Miu. Mi2. Mol. Mo2. Mo3. Mul. Myl. Nal. Na2. Na3. Macdonald P.M. and Mosig G.: EMBO J. 3 (1984) 2863-2871. MacNeil D.J.: J. Bact. 170 (1988) 5607-5612. Mann M.B.: Gene Amplification and Analysis, Vol. 1 (1981) J. Chirikjian, Ed., Elsevier, New York, pp229-237. Mann M.B., Rao R.N. and Smith H.O.: Gene 3 (1978) 97-112. Mann M.B. and Smith H.O.: Nucleic Acids Res. 4 (1977) 4211 -4221. Mannarelli B.M., Balganesh T.S., Greenberg B., Springhorn S.S. and Lacks S.A.: Proc. Natl. Acad. Sci. USA 82 (1985) 4468-4472. Maher L.J., Wold B., and Dervan P.B.: Science 245 (1989) 725-730. Matvienko N.I., Kramarov V.M. and Irismetov A.A.: Bioorg. Khim. 11 (1985) 953-956. Matvienko N.I., Kramarov V.M., and Pachkunov D.M.: Eur. J. Biochem. 165 (1987) 565-570. May M.S. and Hattman S.: J. Bacteriol. 122 (1975) 129-138. McClelland M.: (unpublished results). McClelland M.: Nucleic Acids Res. 9 (1981) 6795-6804. McClelland M.: Nucleic Acids Res. 9 (1981) 5859-5866. McClelland M.: J. Mol. Evol. 19 (1983) 346-354. McClelland M.: Nucleic Acids Res. 10 (1983) rl69-r173. McClelland M., Kessler L. and Bittner M.: Proc. Natl. Acad. Sci. USA 81 (1984) 983-987. McClelland M., and Nelson M.: (unpublished results). McClelland M. and Nelson M.: Nucleic Acids Res. 13 (1985) r201 -r207. McClelland M. and Nelson M.: Gene Amplification and Analysis,Vol. 5 (1987) J. Chirikjian, Ed., Elsevier, NY, pp257-282. McClelland M. and Nelson M.: Gene 74 (1988) 169-176. McClelland M. and Nelson M.: Gene 74 (1988) 291-304. McClelland M., Nelson M. and Cantor C.R.: Nucleic Acids Res. 13 (1985) 7171-7182. McClelland M. and Patel Y.: (unpublished observations). Meda M.M. and Perler F.B.: (unpublished). Miner Z. and Hattman S.: J.Bacteriol. 170 (1988) 5177-5184 Miner Z., Schlagman S.L. and Hatnman S.: Nucleic Acids Res. 17 (1989) 8149-8158. Modrich P.: Quart. Rev. Biophys. 12 (1979) 315-369. Molloy P.L. and Watt F.: Nucleic Acids Res. 16 (1988) 2335. Morgan R.: (unpublished observations). Mural R.J.: Nucleic Acids Res 15 (1987) 9085. Myers P.A. and Roberts R.J.: (unpublished results). Nagaraja V., Shepherd J.C.W., Pripfl T. and Bickle T.A.: J. Mol. Biol. 182 (1985) 579-587. Nagaraja V., Shepherd J.C.W. and Bickle T.A.: Nature 316(1985) 371 -372. Nardone G.G. and Chirikjian J.G.: J. Biol. Chem. (1984) 10357-10362. Nucleic Acids Research, Vol. 19, Supplement 2049 Na4. Narva K.E., Wendell D.L., Skrdla M.P. and Van Etten J.L.: Nucleic Acids Res. 15 (1987) 9807-9823. NaS. Nathans D. and Smith H.O.: Ann. Rev. Biochem. 44 (1974) 273-293. Nel. Nelson M: (unpublished results). Ne2. Nelson M., Christ C. and Schildkraut I.: Nucleic Acids Res. 12 (1984) 5165-5173. Ne3. Nelson M. and McClelland M.: Nucleic Acids Res. 15 (1987) r219-r230. Ne4. Nelson M. and McClelland M.: Nucleic Acids Res. 17 (1987) r398-415. NeS. Nelson M. and McClelland M.: (unpublished observations). Ne6. Nelson M. and Schildkraut I.: Methods in Enzymology 155 (1987) 31-48. Ne7. Nelson J.M., Miceli S.M., Lechevalier M.P. and Roberts R.J.: Nucleic Acids Res. 18 (1990) 2061-2064. Ne8. Nesterenko V.F., Bur'yanov Ya.I. and Bayev A. A.: Dokl. Akad. Nauk SSSR 250 (1980) 1265-1267. Ne9. Newman A.K., Rubin R.A., Kim S.H. and Modrich P.: J. Biol. Chem. 256 (1981) 2131-2139. Nil. Nikolskaya I.I., Karpetz L.Z., Kartashova I.M., Lopatina,N.G., Skripkin E. A., Suchkov S.V., Uporova T.M., Gruber I.M. and Debov S.S.: Mol. Genet. Mikrobiol. i Virusol. 12 (1983) 5-10. Ni2 Nikolskaya I.I., Lopatina N.G., Antikeicheva N.V. and Debov S.S.: Nucleic Acids Res. 7 (1979) 517-528. Ni3. Nikolskaya I.I., Lopatina N.G., Suchkov S.V., Kartashova I.M. and Debov S.S.: Biochem. Int. 9 (1984) 771-781. Ni4. Nikolskaya I.I., Lopatine N.G., Sharkova E.V., Suchkov S.V., Somodi P., Foldes I. and Debov S.S.: Biochem. Int. 10 (1985) 405-413. Nol. Noyer-Weidner M., Jentsch S., Kupsch J., Bergbauer M. and Trautner T.A.: Gene 35 (1985) 143-150. No2. Noyer-Weidner M., Jentsch S., Pawlek B., Gunthert U. and Trautner T.A.: J. Virol. 46 (1983) 446-453. No3. Noyer-Weidner M., Pawlek B., Jentsch S., Gunthert U. and Trautner T. A.: J. Virol. 38 (1981) 1077-1080. Nul. Nur I., Szyf M., Razin A., Glaser G., Rottem S. and Razin S.J.: Bacteriol. 164 (1985) 19-24. Nwl. Nwankwo D.O. and Wilson G.G.: Mol. Gen. Genet. 209 (1987) 570-574. Nw2. Nwankwo D.O. and Wilson G.G.: Gene 64 (1988) 1-8. Onl. Ono A . and Ueda T.: Nucleic Acids Res. 15 (1987) 219-231. Pal. Patel Y., Schildkraut I. and McClelland M.: (unpublished observations). Pa2. Patel Y., Nelson M. and McClelland M.: (unpublished observations). Pel. Pech M., Streeck R.E. and Zachau H.G.: Cell 18 (1979) 883-893. Pe2. Petrosyte M. and Janulaitis A.: Bioorg. Khim. 7 (1981) 1885- 1887. Pil. Piekarowicz A. and Goguen J.D.: Eur. J. Biochem. 154 (1986) 295-298. Pi2. Piekarowicz A. and Stein D.C.: (personal communication). Pi3. Piekarowicz A., Yuan R. and Stein D.C.: Nucleic Acids Res. 16 (1988) 5957-5972. Pi4. Piekarowicz A., Yuan R. and Stein D.C.: Nucleic Acids Res. 16 (1988) 9868. PiS. Piekarowicz A., Yuan R. and Stein D.C.: Nucleic Acids Res. 17 (1989) 10132. Pi6. Pirrotta V.: Nucleic Acids Res. 3 (1976) 1747-1760. Pol. Posfai G., Baldauf F., Erdei S., Posfai J., Venetianer P. and Kiss A.: Nucleic Acids Res. 12 (1984) 9039-9049. Po2. Posfai G., Kiss, A., Erdei, S., Posfai, J. and Venetianer, P.: J. Mol. Biol. 170 (1983) 597-610. Po3. Posfai, G. and Szybalski W.: Nucleic Acids. Res. 16 (1988) 6245. Po4. Posfai G. and Szybalski W.: Gene 74 (1988) 179-181. PoS. Posfai J., Bhagwat A.S., Posfai G. and Roberts R.J.: Nucleic Acids Res. 17 (1989) 2421-2436. Po6. Povilonis P., Vaisvila R., Lubys A. and Janulaitis A.: (personal Prl. Pr2. Pr3. communication). Prere M.F. and Fayet O.: Ann. Inst. Pasteur Microbiol. 136A (1985) 323-338. Price C. and Bickle T.A.: (unpublished). Price C., Shepherd J.C.W. and Bickle T.A.: EMBO J. 6 (1987) 1493-1497. Qiang B-Q.: (personal communication). Qiang B-Q. and Nelson M.: (personal communication). Qiang B-Q., McClelland M., Poddar S., Spokauskas A. and Nelson M. (submitted). Qul. Quint A. and Cedar H.: Nucleic Acids Res. 9 (1981) 633-646. Ral. Raleigh E.A., Murray N.E., Revel H., Blumenthal R.M., Westaway Qil. Qi2. Qi3. D., Reith A.D., Rigby P.W.J., Elhai J. and Hanahan D.: Nucleic Acids Res. 16 (1988) 1563-1575. Ra2. Ra3. Rel. Re2. Re3. Re4. Ril. Ri2. Rol. Ro2. Ro3. Ro4. RoS. Ro6. Ro7. Rul. Sal. Sa2. Sa3. Scl. Sc2. Sc3. Sc4. ScS. Raleigh E.A. and Wilson G.: Proc. Natl. Acad. Sci. USA 83 (1986) 9070-9074. Razin A., Urieli S., Pollack Y., Gruenbaum Y. and Glaser G.: Nucleic Acids Res. 8 (1980) 1783-1792. Rees P.A. and Brenner J.S.: (unpublished). Rees P., Nwankwo D.O., Wilson G.G. and J. Benner J.S.: Gene 74 (1988) 37. Renbaum P., Abrahamove D., Fainsod A. and Wilson G.G.: Nucleic Acids Res. 18 (1990) 1145-1152. Revel H.R. and Georgeopoulos C.P.: Virology 39 (1969) 1-17. Ritchot N. and Roy P.H.: Gene 86 (1990) 103-106. Richards D.F., Linnett P.E., Oultram J.D., and Young M.: J. Gen. Micro. 134 (1988) 3151-3157. Roberts R.J.: (unpublished results). Roberts R.J.: Nucleic Acids Res. 11 (1983) rl35-rl67. Roberts R.J.: Nucleic Acids Res. 16 (1988) r271-r313. Rodicio M. and Chater K.F: Gene 74 (1988) 39-42. Rodicio M. and Chater K.F: Mol. Gen. Genet. 213 (1988) 346-353. Roy P.H. and Smith H.O.: J. Mol. Biol. 81 (1973) 427-444. Roy P.H. and Smith H.O.: J. Mol. Biol. 81 (1973) 445-459. Rubin R.A. and Modrich P.J.: J. Biol. Chem. 252 (1977) 7265-7272. Sain B. and Murray N.E.: Mol. Gen. Genet. 180 (1980) 35-46. Sano H. and Sager R.: Eur J. Biochem. 105 (1980) 471-480. Sato S., Nakazawa K. and Shinomiya T.: J. Biochem. 88 (1980) 737-747. Schertzer E., Auer B. and Schweiger M.: J. Biol. Chem. 262 (1987) 15225-15231. Schildkraut I., Morgan R. and Looney M.E.: (unpublished results). Schlagman S.L., Miner Z., Feher Z. and Hattman S.: Gene 73 (1988) 517-530. Schlagman S.L. and Hattman S.: Gene 22 (1983) 139-156. Schlagman S.L. and Hattman S.: Nucleic Acids Res. 17 (1989) 9101-9112. Sc6. Sc7. Sc8. Sc9. Sc1O. Scd 1. Schlagman S., Hattman S., May M.S. and Berger L.: J. Bacteriol. 126 (1976) 990-996. Schneider-Scherzer E., Auer B., De Groot E.J. and Schweiger M.: J. Biol. Chem. 265 (1990) 6086-6091. Schnetz K. and Rak B.: Nucleic Acids Res. 16 (1988) 1623. Schoner B., Kelly S. and Smith H.O.: Gene 24 (1983) 227-236. Schoenfeld T., and Leland D.: (pers. comm.). Schoenfeld T., Mead D.A., and Fiandt M.: Nucleic acids Res. 17 (1989) 4417. Sc12. Sel. Se2. Shl. Sh2. Sh3. Sil. Skl. Sll. S12. S13. Sml. Sm2. Sm3. Sol. So2. So3. Sti. St2. St3. St4. StS. Sciaky D. and Roberts R.J.: (unpublished results). Seeber S., Kessler C. and Gotz F.: Gene 94 (1990) 37-43. Selker E.U., Cambareri E.B., Garrett P.W., Haack K.R., Jensen B.C. and Schabtach E.: Gene 74 (1988) 109-111. Shibata T., Ikawa S. and Ando T.: Microbiology-1982, D. Schlessinger, Ed., pp7l -74. Shimizu-Kadota M. and Shibahara-Sone H.: Agric. Biol. Chem. 53 (1989) 2841-2842. Shields S.L., Burbank D.E., Grabherrr R. and Van Etten J.L.: Virology 176 (1990) 16-24 Silber K., Polisson C., Rees P., and Benner J.S.: Gene 74 (1988) 43-44. Skrzypek E. and Piekarowicz A.: (unpublished). Sladek T.L., Nowak J.A. and Maniloff J.: J. Bacteriol. 165 (1986) 219-225. Slatko B.E., Benner J.S., Jager-Quinton T., Moran L.S., Simcox T.G., Van Cott E.M. and Wilson G.G.: Nucleic Acids Res. 15 (1987) 9781-9796. Slatko B.E., Croft R., Moran L. and Wilson G.G.: Gene (1988) 45-50. Smith H.O.: Science 205 (1979) 455-462. Smith H.O. and Nathans D.: J. Mol. Biol. 81 (1973) 419-423. Smith H.O., Annau T.M. and Chandrasegaran S.: Proc. Natl. Acad. Sci. USA 87 (1990) 826-830. Som S., Bhagwat A.S. and Friedman S.: Nucleic Acids Res. 15 (1987) 313-332. Sohail A., Bhagwat A.S. and Roberts R.J.: (unpublished). Song Y-H., Rueter T. and Geiger R.: Nucleic Acids Res. 16 (1988) 2718. Stefan C., Xia Y., and Van Etten J.L.: Nucleic Acids Res. (1991) (in press). Stemnberg N.: J. Bacteriol. 164 (1985) 490-493. Streeck R.E.: Gene 12 (1980) 267-275. Striebel H.M., Schmnitz G.G., Kaluza K., Jarsch M. and Kessler C.: Gene 91 (1990) 95-100. Strobl J.S. and Gaido M.: (unpublished results). 2050 Nucleic Acids Research, Vol. 19, Supplement St6. St7. Sul. Su2. Su3. Su4. Szl. Sz2. Sz3. Sz4. Tal. Strobl J.S. and Thompson E.B.: Nucleic Acids Res. 12 (1984) 8073-8084. Sturm R.A. and Yaciuk P.: Nucleic Acids Res. 17 (1989) 3615. Sugisaki H., Maekawa Y., Kanazawa and Takanami M.: Nucleic Acids Res. 10 (1982) 5747-5752. Sullivan K.M. and Saunders J.R. (1988). In 'Gonococci and Meningococci' (1988) Thl. Tao T., Wiater J., Brennan K.J., Cotterman M.M. and Blumenthal R.M.: Nucleic Acids Res. 17 (1989) 4161-4176. Tautz N., Kaluza G., Lane F., Frey B., Schmitz G., Jarsch M., Ankenbauer W., and Kessler C.: (unpublished). Theriault G. and Roy P.H.: Gene 19 (1982) 355-359. Th2. Theriault G., Roy P.H., Howard K.A., Benner J.S., Brooks J.E., Waters Ta3. A.F. and Trl. Tr2. Tr3. Tr4. Url. Val. Va2. Va3. Va4. Va5. Va6. Vel. Vii. Wa3. Wa4. WaS. Wa6. Nucleic Acids Res. 13 (1985) 8441-8461. Tran-Betcke A., Behrens B., Noyer-Weidner M. and Trautner T.A.: Gene 42 (1986) 89-96. Trautner T.A.: Current Topics Microbiol. Immunol. 108 (1984) 11-22. Trautner T.A., Pawlek B., Gunthert U., Canosi U., Jentsch S. and Freund M.: Mol. Gen. Genet. 180 (1980) 361-367. Trautner T.A., Balganesh T.S., and Pawlek B.: Nucleic Acids Res. 16 (1988) 6649-6658. Urieli-Shoval S., Gruenbaum Y. and Razin A.: J. Bacteriol. 153 (1983) 274-280. Van Cott E.M. and Wilson G.G.: Gene 74 (1988) 55-59. Van Cott E.M. and Wilson G.G.: (unpublished). Van der Ploeg L.H.T. and Flavell R.A.: Cell 19 (1980) 947-958. Van Etten J.L.: (personal communication). Vanyushin B.F. and Dobritsa A.P.: Biochim. Biophys. Acta 407 (1975) 61-72. Vasquez C. and Vicuna R.: Arch. Biol. Med. Exp. 15 (1982) 417-421. Venetianer P. and Kiss A.: Gene and Analysis, Vol. 1 (1981) J.Chirikjian, Ed., Elsevier, New York, 1981. pp209-215. Vinogradova M.N., Gomova E.S., Uporova T.M., Nikolskaya I.I., Shabarova Z.A., Debov S.S.: Akad. Nauk. SSSR 295 (1987) Amplification Doklady Vovis G.F. and Lacks S.: J. Mol. Biol. 115 (1977) 525-538. C. and Flavell R.A.: Nucleic Acids Res. 5 (1978) 3231. Walder R.Y.: Fed. Proc. 41 (1982) A5425. Walder, R.Y., Hartley J.L., Donelson J.E. and Walder J.A.: Proc. Natl. Acad. Sci. USA 78 (1981) 1503-1507. Walder R.Y., Hartley J.L., Donelson J.E. and Walder J.A.: Gene and Analysis, Vol. 1 (1981) J. Chirikjian,Ed., Elsevier, Waalwijk Ampfliicalion New York, pp217-227. Walder R.Y., Langtimm C.J., Chatterjee R. and Walder J.A.: J. Biol. Chem. 258 (1983) 1235-1241. Walder R.Y., Walder J.A. and Donelson J.E.: J. Biol. Chem. 259 (1984) 8015-8026. Wa7. Wa8. Wel. We2. Whl. Wh2. Walter. J., Noyer-Weidner M. and Trautner T.A. EMBO J. (1990) 1007-1014. Wang R.Y.H., Zhang X-Y., Khan R., Zhou Y., Huang L-H. and Ehrlich M.: Nucleic Acids Res. 14 (1987) 9843-9860. Weil M.D. and McClelland M.: Proc. Natl. Acad. Sci. USA 86 (1989) 51-55. Weil M.D., Nelson M. and McClelland M.: (unpublished) Whitehead P.R. and Brown N.L.: FEBS Lett. 155 (1983) 97-101. Whitehead P.R. and Brown N.L.: J. Gen. Microbiol. 131 (1985) 951-958. Wh3. Whitehead P., Jacobs D. and Brown N.L.: Nucleic Acids Res. 14 (1986) 7031-7045. Wil. Wi2. Wi3. Wiatr C.L. and Witmer H.J.: Wigler M., Levy Wilke K., Rauhut Behrens B. and Wi4. Wilson Xi2. Xi3. Xi4. XiS. Xi6. Xul. Yol. Yo2. Yo3. Yo4. Gingeras T.R.: 732-736. Vol. Wal. Wa2. Wul. Xil. 329-334. Sullivan K.M. and Saunders J.R.: Nucleic Acids Res. 16 (1988) 4369-87. Sullivan K.M. Saunders J.R.: Mol. Gen. Genet. 216 (1989) 380-387. Szilak L., Venetianer P. and Kiss A.: Nucleic Acids Res. (1990) 4659-4664. Sznyter L.A. and Brooks J.E.: Gene 74 (1988) 53. Sznyter L.A., Slatko B., Moran L., O'Donnell K.H. and Brooks J.E.: Nucleic Acids Res. 15 (1987) 8249-8266. Szomolanyi E., Kiss A. and Venetianer P.: Gene 10 (1980) 219-225. Tasseron-de Jong J.G., Aker J. and Giphart-Gassler M.: Gene 74 (1988) 147-149. Ta2. Wol. Wo2. G.G.: J. Virol. 52 (1984) 47-54. (1981) 33-40. E., Noyer-Weidner M., Lauster R., Pawlek B., D. and Perucho M.: Cell 24 Trautner T.A.: EMBO Gene 74 (1988) 281-289. J. 7 (1988) 2601-2609. Yo5. Yo6. Zal. Zil. Wong K.K. and McClelland M.: Nucleic Acids Res. 19 (1991) (in press). Woodcock D.M., Crowther P.J., Diver W.P., Graham M., Batemen C., Baker D.J. and Smith S.S.: Nucleic Acids Res. 16 (1988) 4465-4482. Wu J.C. and Santi D.V.: Nucleic Acids Res. 16 (1988) 703-717. Xia Y., Burbank D.E., Uher L., Rabussay D. and Van Etten J.L.: Mol. Cell. Biol. 6 (1986) 1430-1439. Xia Y., Burbank D.E., Uher L., Rabussay D. and Van Etten J.L.: Nucleic Acids Res. 15 (1987) 6075-6090. Xia Y., Burbank D.E. and Van Etten J.L.: Nucleic Acids Res. 14 (1986) 6017-6030. Xia Y., Morgan R., Schildkraut I. and Van Etten J.L.: Nucleic Acids Res. 16 (1988) 9477-9487. Xia Y., Narva K.E. and Van Etten J.L.: Nucleic Acids Res. 15 (1987) 10063. Xia Y. and Van Etten J.L.: Mol. Cell Biol. 6 (1986) 1440-1445. Xu G., Kapfer W., Walter J. and Trautner T.A.: (unpublished). Yolov A.A., Vinogradova M.N., Gromova E.S., Rosenthal A., Cech D., Veiko V.P., Metelev V.G., Buryanov Ya.I., Bayev A.A. and Shabarova Z.A.: Nucleic Acids Res. 13 (1985) 8983-8998. Yoo O.J. and Agarwal K.L.: J. Biol. Chem. 255 (1980) 6445-6449. Yoo O.J., Dwyer-Halquist P. and Agarwal K.L.: Nucleic Acids Res. 10 (1982) 6511-6520. Yoshimori R., Roulland-Dussoix D. and Boyer H.W.: J. Bacteriol. 112 (1972) 1275-1279. Youssoufian H., Hammer S.M., Hirsch M.S. and Mulder C.: Proc. Natl. Acad. Sci. USA 79 (1982) 2207-2210. Youssoufian H. and Mulder C.: J. Mol. Biol. 150 (1981) 133-136. Zacharias W., Larson J.E., Kilpatrick M.W. and Wells R.D.: Nucleic Acids Res. 12 (1984) 7677-7692. Zieger M., Patillon M., Roizes G., Lerouge T., Dupret D. and Jeltsch J.M.: Nucleic Acids Res. 15 (1987) 3919. TABLE I: Methylation sensitivity of restriction Restriction Recogniton enzyme sequence CCWGG AacI AGGCCT Aa-d Aatill Sites cut Nucleic Acids Research, Vol. 19, Supplement 2051 endonucleases a Sites not References cut %0"16 Cm5CWGG AGGmSCCT Br8 Nel AGGCm5CT So3 AGGCm4CT Nel Nel Fol Lu2,Mc3 GACGTTm5C GACGTC GAm5CGTC A~I& GTMKAC GTMKm6AC# GTMKAm5C AccIl CGCG TCCGGA mSCGCG Tm5CCGGA Ga2 Ke3,La2,Sc2 TCCGGm6A TCmSCGGA AflI GGWCC Mc 1,Wh2 GGWCm5C?? GGWCm4C AflH ClTAAG I? m5CTrAAG Nel CIT-Am6AG Ahall ACRYGT GRCGyC b Nel Ka2,Hul Am5CRYGT GRm5CGYC GRCGYm5C AM Gr4,Mc 1 1 ,Ne2 m6AGCI AGCT AGm4CT Hul,Wol Bu5 Ne4 AGm5CT# AlwI AGhm5CT GGm6ATC GGATC GGATm4C AmaI Aosll AaI AxI ,paLI AguI AseI Asg7OOI TCGCGA GRCGYC GGGCCC ACGCGT GTGCAC CCWGG CYCGRG ATTAAT GAAN4TTC As1718I GGTACC GRm5CGYC GGGm5CCC# GTGCm6AC GGGCCm5C Am5CGCGT GTGCAm5C Cm5CWGGQ,b m5CCWGG ATpn6AAT GAm6AN4TTC Gm6AAN4TTC AvaI TTCGAA TGATCA CYCGRG Nel,Qi2 Fol ,Hol,Ho2 K11,Mcl 1 ,Ra3 Ka7,Ka8 Nel Nel m5CYCGRG# GAAN4TPm5C GGTm6Am5CC b YfmSCGAA Cm5CCGGG Mul,Ne4 GGTACm5C GGTAm5Cm5C AsuIl Ata Mc13 Eh2,Gr4,Va3 La9,Tr2 TCGCGm6A TGm6ATCA m5CYCGRG CYm5CGRG CTCGm6AG b b Nel Ro3,Scl2 Eh2,Nel Ka4,Ka7,Mcl 1 Ne2 2052 Nucleic Acids Research, Vol. 19, Restriction Recognition sequence GGWCC enzme Aal Supplement Sites cut GGWCm4C b Sites not cut References GGWm5CC Ba3,Ko3 MclO,Mcl 1 Hul Nel Gil,Tr2 GGWCm5C GGWhmSChmSC A3I BaII AGCGCT famHl GGATCC m6AGCGC TGGCCA GGATCm5C GGm6ATCC GGm6ATCm5C AGm5CGCT TGGm5CCA# TGGCm5CA b GGATmCc# Br8,Drl,Hal,Hul La7 GGATm5CC GGAltm5Chm5C GGATCm4C BpujF1 GGATCC IamK[ GGATCC GGYRCC b BanI aII BIOI Bj2eI BiHI BbrPI BbKI BbvI BclI BcnI BZI GRGCYC ATCGAT GGCGCC GGm6ATCC GGm6ATCC GGm5CGCC GGYRCm4C GRGCYm5C GGATm4CC GGATm4CC Co3,Ka2 GRGm5CYC ATCGm6AT GGCGm5CC Anl,Shl Anl,Shl GGm5CGCC Fol,Ne2,Ne6 Sul Co3,Ne2,Sh2 GGCGCm5C GRCGYC CACGTG GAAGAC GCWGC TGATCA b CCSGG CGCG GRm5CGYC m5CAm5CGTG GAAGAm5C Gm5CWGC# TGATm5CA m5CCSGG TGm6ATCA TGAThm5CA Cm4CSGG# m5CGCG m5C11AAG Co3 Wol Fol Dol,Hal,Va5 Bi4,Br8,Eh3,Ro3 Hul Ja3.,Ja6,KlI Ku2 Wol DftI B--II CTTAAG GCCN5GGC GCm5CN5GGC b Bjl AGATCT b AGm6ATCT Gm5CCN5GGC Kll,Ko3,Mcl1,Ne2 GCCN5GGm5C b GCm4CN5GGC b AGATm5CT Bi4,Br8,Drl,Dyl,Eh3 ? AGAPIm5cT GGm6ATC Hul,Pi6 Bol CGATm6CG GGWCm5C Qi2 BinI BmaDI GGATC CGATCG Bfe2l6I GGWCC BnaI GGATCC I-W BaAI BiOI BsmI BsmAI 106I GGTCTC YACGTR GATN4ATC GAATGC GTCTC ATCGAT CGm6ATCG GGm6ATCC GAATGm5C GGATm4CC GGATm5CC# GGTCPwrm5C YAm5CGTR GATN4AT5C Ma9 Nel Gm6AATGC Fol Fol Fol Fol,Nel GTCTm5C ATCGm5AT# Fol Ne5 Nucleic Acids Research, Vol. 19, Supplement 2053 Restriction Recognition enzyme sequence BS286I GDGCHC BZHI TCATGA Sites cut GDGCHm5C Sites not cut GDGmSCHC TCm6ATGA TCATGm6A SMlI ACCTGC TCCGGA ACCTGm5C SNI CCWGG m5CCWGG TCCGGm6A T'5CCGGA References Fol,Ne2,Ne6 Pa2 Mci Fol La2,Sc2 TCm5CGGA Ne4 CmSCWGG RWHII tBHll ATCGAT TGATCA GCGCGC b GGATCC LtBI ATCGm6AT T&m6ATCA zil zil GmSCGCGC Ne4,Qi3 Ne4 GGm6ATCC GGATm4CC GGATCmSC 'GGATm5CC GGATCm4C TfCGm6AA TTCGAA Trm5CGAA BstEll GGTNACC BstEfI BstGI GATC b TGATCA CCWGG b GGTNAm5Cm5C b GGTNAhm5Chm5C GGTNACm4C m5CCWGG b hmsChmsCWGG Cm5CWGG Cm4CWGG m5CmSCWGG b .-lUI BstXI BstYI CGCG CCAN6TGG RGATCY ciiI CfoI CTGCAG CGCG CCGG CTCGAG CCGG GGCC CTCGAG GGGC fr6I YGGCCR CAGCTG BsuBI BsuEI BQlFI RS-QI DaRI cft9I CCCGGG b Gm6ATC TGm6ATCA m5CGCG RGm6ATCY RGAT 5CY Ne5 m5CCAN6TGG Ne2 Ne4 Nel CTGCm6AG# Gal,Jel,St5,Shl Gal ,Jel,St5,Shl Je1 Jel Je2 Gu6,Ki2,Ki3 Nel Ehl Hul RGAP114CY m5CGCG# m5CCGG# CTm5CGAG# mCCGG GGm5CC# b CTCGm6AG Gm5CGC Ghm5CGhmsC YGGm5CCR# CmSCCGGG CCm5CGGG Nel Ne4 Wol Hu 1,Mc 11 Nel Myl,Ro3 Ro3 Gr4,Hul,Mcl 1,Ro3 Nel Kll CAGm4CTG# Bu5 CAGmSCTG m4CCCGGG Bu6 m5CCCGGG Cm4CCGGG# CCm4CGGG 2054 Nucleic Acids Research, Vol. 19, Supplement Restriction Recognition enzyme sequence £iOI RCCGGY f13I GGNCC ATCGAT Lia TGATCA CGGWCCG Cz45I CviBI CviPI £NAPI TTCGAA GATC GATC GANTC RGCY cc Sites cut CGGWCm5CG I? I? ? I? ? cm5c GTAC CTNAG DpnI Gm6ATC b Gm6ATC Gm6ATm5C b I? EareI agI CGGCCG EarI GAAGAG Bi5,K1 Bi5,Kli Ca4,Mc 1l,Mc i2,Ne4 Woi Mc3 Fil,Ro3 Mcii ATCGm6AI* TGm6ATCA CGGWmSCCG m5CGGWCCG TTCGm6AA Gm6ATC# Gm6ATC Gm6ANTC# RGmSCY# m5cc# GTm6ACG I? Xii,Xi6 Xi3 Sh3,Xi2 Xi4 YGGm5CCR# YGGCm5CR CGGm5CCG Mcii GATC GATm4C GAT5C Gm6ATc# TITA6AA I? I? Ne4,Scl 1 Ri2 Xi2,Xi5 Ho3,Ne2 Hul La3,Mc 1i,Vol Ne4 Ne5 Del,La3,La4,La5,Ma6,Vo1 Nel Sc8 Ja2,Whl m5CTNAG# b"n5CTNAG Gm6ATm4C DraI Rm5CCGGY# GGNm5CC# ')6ATCGAT DdI GATC TITAAA RGGNCCY YGGCCR References A1m5CGAT GTAm5C CviQI Sites not cut RGGNCm5CY m5CGGCm5CG Gm6AAGAG GAAGm6AG Ne4 m5C-wpn5C 1p5C Nel GGTANm6ACC GGTAm6ACC# Br2 CGGCCG m5CGGCm5CG Qi3 Eco47I GGWCC m6AGCGCT E&Q47M AGCGCT GAGN7GTCA b TGAN8TGCT b Eg&B &QDXXU TCAN7AATC b GAGN7ATGC F,&2E AACN6GTGC b F.gK E&20109I RGGNCCY AGAhm5CIh5C F&2PI AGACC b b I&P15 CAGCAG CGGm5CCG GGWCm5C AGm5CGCT Gm6AGN7GmTCA# b TGm6AN8mTGCT # b TCAN7m6AAmTC # b Gm6AGN7ATGC Am6ACN6GmTGC# b RGGNCm5CY AGm6ACC# Cm6AGCAG# Ja5 Nel,Ne4 Bi2,Co6,Fu2 Bi2,LalO,Lal 1 Pil Co6,Fu2 Bi2,Bi3,Kal Sc8 Bal,Ba2,Ha2,Re4 Hu2 Nucleic Acids Research, Vol. 19, Supplement 2055 Restriction Recognition enzyme sequence GAAITC EQQRI EQRII CCWGG Sites cut Sites not cut References GAATrhm5C Gm6AATTC b GAm6ATrrd GAATPm5C b Mci 1,Ne2,Rul m5cCwGG b m4CCWGG Brl,Br8,Dul Hul,Ka3,Tal Ku3,Yol FcoR124 GAAN6RTCG b Cm4CWGG Cm5CWGG# CCm6AGG hm5Chm5CWGG Gm6ATATC# GATm6ATC GAm6AN6RTCG GAAN6RmTCG Bo5,Mcl 1 Bu3 Hul,Ka3 Mcl 1,Ne2,Wol Fll Pr2,Pr3 Bil EcoRl24/3 GAAN7RTCG b m6A Prl,Pr2 GGCGCC Gm5CTNAGC Gm5CNGC Co2 Ne4 Ko3,Tr2 GCNGm5C m5CGCG CGm5CG Gal,Ga2,Ne2,Ne6,St6 FQRV EheI FnIuI Fnu4lH GATATC GGCGCC GCTNAGC GCNGC EnuDII CGCG EnEI GATC CATCC FokI GATATm5C b GCTNAGm5C Gm6ATC b CATmSCC CATCm5C b GGm6ATG Cm6ATCC CATCm4C GGCCGGCC FspI ki=ll TGCGCA RGCGCY b HaelII GGCC HgI agicI H.CII HgiEI HgJm lIhaI GGCm5C CCGG GACGC GRGCYC GGYRCC GGWCC GGWCC GGYRCC GCGC GRGCYm5C Bu4,Na5,Ro3 Lul,Ne2 Po3,Po4,Sc2 Nel GGm5CCGGm5CC Ne7 GGCm5CGGCC GGm5CCGGCC Ne4 TGm5CGCA Eh2,Gr4,Ka2,Ko3,Mc 1i,Pi5 RGm5CGCY RGhm5CGhm5CY Hul Ba3,Ka2,Ko3,Ma5 GGm5CC# b GGhm5Chm5C Cm5CGG# Hul Eh2,Wal GAm5CGC Nel GACGm5C GRGm5CYC GGYRCm5C GGWCm5C GGWCm5C Mcii GGYRCmSC Gm5CGC# GCGm5C Ghm5CGhm5C Fol,Ne2,Wh3 Erl Erl Erl Wh3 Eh2,Ko3,Sml Mcil, Hul 20S6 Nucleic Acids Research, Vol. 19, Supplement Restriction Recognition enzyme sequence GANTC jIll Sites cut HizcIll GTYRAC GTYRAm5C Hindll GTYRAC GANTC GANTm5C,b Sites not cut References Gm6ANTC# GTYRm6AC GTYRAwm5C GTYRm6AC* Ma5 Gr4,Ro7 Hul Ro7 Gm6ANTC Chl,Col,Ne2,Pel GANVmSC Hindf AAGCIT m6AAGC1T# AAGm5CT AAGhm5CT HinPI GCGC GTTAAC Gm5CGC G1TAm6ACt GUTAAm5C G1TAAhm5C HD-an HDhI KDn2I m4CCGG m5CCGG b CCGG Eh3,Mcl1,Ne2 GGTACm4C Nel Mcl,Nel Nel Nel GATm4C 1m5CCGGA TCm5CGGA m5CCGCGG Cm5CGCGG Am5CGT b Gm6ATN4m6ATC Gm6ATC# GATm5C b GAThmSC Mo2 St4 Br5,Gel,Mc8 Hul,Ro3 Tm5CTPm15C b GAAGm6A# Ba3,Mcl 1,Mcl2,Ne2 RGm6ATCY Onl TCACm5C GGTACC b GGTAm5CC GGTACm5C GGTAm5Cm5C b TCCGGm6A LrI CCGCGG MaeII MamI MboI MboII ACGT GATN4ATC GATC b GAAGA Br8,Gr4,Hul ,Yo3 Hul Be3,Bu6,Eh2,Ma5 Ko3,Qul,Wa5 Cm4CGG b Cm5CGG# hm5Chm5CGG PI5CACC# GGTGm6A GGTm6Am5CC TCACC TCCGGA Hul Br8,Gr4,Ro7 Ne2 Hul,Ka3 Mc 1,Ne6 Hul Fol,Mcl 1,Ne2 Qi2 Gm6AAGA mIm, RGATCY b RGATn4CY ACGCGT ?2UI9273I TCGCGA Mlu927311 GCCGGC Lu~I Mml GATC CCTC b m6ACGCGT RGATV5CY Am5CGCGT T'5CGCGA Gm5CCGGC GCm5CGGC Gm6ATC m5CCTC m5Cm5CTml5C Mcl 1,Shl,St5,Qi3 Nel Nel Bo4 Eh3,Mcll Nucleic Acids Research, Vol. 19, Supplement 2057 Restriction Recognition enzyme sequence CCWGG b MphI TCCGGA MI Sites cut TCCGGm6A Sites not cut Cm5CWGG Pm5CCGGA TCm5CGGA MseI MvaI Ms-tll TTAA CCGG b '1116AA m4CCGG Cm4CGG Cm5CGG CCTNAGG CCWGG m5CCGG# hm5Chm5CGG m5CCTNAGG Cm5CWGG b Cm4CWGG# m5CCWGG CCm6AGG b m4CWGG b msCm5CWGG b MvnI NI CGCG GCCGGC b References Ro3 Mcl,Nel Nel Nel Eh2,Je2,Va3,Wal,Wa5 Bu6,Hul Mcii Bu4,Kul Gr3,Ku3 m5CGCG Nel Nel Gm5CCGGC Eh3,K1i,Mc 1i,Ne5 GCm5CGGC GCCGGm5C NanlI Gm6ATC b Gm6ATC GATC Gm6ATm5C b GATm5C Ko3,Mc 1 l,Ne5 Nel Br8,Ko3,Mc 1 1 Kll,Ne2,Ne4 Pal,Ne5 I GGCGCC GGCGCm5C NciI CCSGG m5CCSGG GGm5CGCC GGCGCm4C Cm4CSGG CCATGG CCm6ATGG Cm5CSGG b m4CCATGG b Qil GAAGm6A Ng2BI AGATCT GAAGA CATATG GATC TCACC AGm6ATCT b NgQPI RGCGCY RGm5CGCY NgoIPl GGCC GGm5CC# NheI GCTAGC CATG GCTAGm5C Cm6ATG# Mci3 Be4,Mci 1 Mc9 Pi3,Pi4 Ko3 ,Ko5 Ko3,Ko5 Su3,Su4 Kli,Mc 1 ,Ne2 Lal,Mo3 GATC GATC Pal Pal GCGGm5CCGIC GCGGCm5CG;C Mcii NcoI m5CCATGG NcrI NcuI NdeI NdelI m5CATATG b m6A GATm5C b Gm6ATC Tm5CACC GGCm5Cb mam NmuDI NmuEI NotI Gm6ATC b Gm6ATC b GCGGCCGC NMI TCGCGA NsiI ATGCAT Gm6ATC Gm6ATC GCGGCCGm5C TCGm5CGA Tm5CGCGA St5,Qi2 Nel,Qi3 TCGCGm6A Ne2 ATGCm6AT Be5 Woi ATGm5CAT 2058 Nucleic Acids Research, Vol. 19, Supplement Restriction Recogniton enyme sequence NBII CMGCKG alM[ CCAN5TGG PfI GATC CGTACG CTCGAG nR7I P;LAI Sites not cut Cm5CGCKG Cm4CAN5TGG CmSCAN5TGG Gm6ATC CGTAm5CG CTCGm6AG# CTm5CGAG CAm5CGTG CGTAm5CG m5CTGCAG CACGTG CGTACG CTGCAG CGATCG b yIl Sites cut CGm6ATCG CGATm4CG GTCGm6AC GTAmC b CGm6ATCG m5CGGWCCG CGGWCCG SQI GAGCTC CCGCGG GTCGAC SaDI Sa3AI TCGCGA GATC b S96I GGNCC GTm6Am5C TCm6ATGA TCATGm6A Gm6AATTC GAm6ATTC# b GAATTC Gm6AGCTC CGGWm5CCG CGGWCm5CG GAGm5CTC I? m5CCGCGG GTCGAm5C GTm5CGAC TCGCGm6A Gm6ATC Br8,Bu3,Eh3 CGATm5CG CAGn4CTG# CAGm5CTG RsrI Nel Nel St7 Ro3 Nel Gi3 Ghl Fol Nel Dol ,Gr4,Mcl 1,Ne2 CTCGCm6AG# CAGCTG &B4273I GTCGAC GTAC b RsaI CGATCG RSIh TCATGA Rsj2KI References GTCGm6AC# T'5CGCGA GATm5C# b GATm4C GAThm5C GGNm5CC# GGNCm5C GGNhm5Chm5C Br8,Bu5,Dol Eh3,Ja3,Rol Ba6 Eh3,Ne4,Ne5 Lyl Pa2 Ne4 Mcli Ba5 Mc 1 ,Qi3 Mcil Kll,Ne2 Br8,Eh2,Lu2,Qil Mc3,Ro4,Ro5,Va4 Mcl3,Nel,Qi3 Drl,Eh2,Ja3,Mc3,Ro3,Se 1 Ne5 Hul Ko3,Ne2,Pel TCGCGm6A AGTAm5CT m5CCNGG T'5CGCGA SaczFI TCGCGA AGTACr CCNGG Hul Mc 1 1,Ne 1 Cm5CNGG Wol Mc 1 1,Ne2 SfaNI GATGC GATGm5C Gm6ATGC £213I Cm4CNGG ScI GGCCN5GGCC GGm5CCN5GGm5CC b GGCm5CN5GGCC Nel Mcll1,Po4 Mcl l,Qi2 GGCCN5GGCm5C Sfll ? CrGCAG CTGCm6AG Br8 Nucleic Acids Research, Vol. 19, Supplement 2059 Restiction Recognition enzyme sequence SaAI CRCCGGYG GGWCC Sid CCCGGG SmaI Sites cut Sites not cut References CRCm5CGGYG Ta3 Ka5,Ka6 Br8,Bu6,Eh2,Ga4 Ja3,Ka7,Mc3,Qul GGWm5CC# m4CCCGGG Cm5CCGGG m5yCCGGG b Cm4CCoGG b CCm4CGGG CCm5CGGG b SnaBI S~I II TAm5CGTA TACGTA GTGCAC ACTAGT GCATGC GTGm5CAm5C m6ACrAGT Am5CTAGT GCATGm5C G(n6ATGC CGTm6ACG TCGCGm6A 9 Ghm5CATGhm5C CGTACG TCGCGA S soIl CCNGG sphI GAATTC AATATT GAGCTC SQI AGGCCT m6AATATT GAGN6RTAYG b RSPI AACN6GTRC b 1m5CGA b TCGA TQI Tfun5CGA b GACCGA TaqII CACCCA m5C?CWG CCWGG IaXI TfiI Tifi IfI Th,FJ XbaI flhHI GAWTC TCGA CGCG TCGA TCTAGA T'5CGCGA TCGm5CGA Cm5CNGG m5CCNGG Gm6AA TCGm6A# Gr4,Hul,Mc3,Va3 Gm6ACCGA Hul Ne4 Grl Fol TCGm6A Tm5CGA Ne4,Qi3 Nel,Ne4 Vil Gr3 Ni4 Nel Br8,Rol GAGm5CTC GAGhm5cThm5C Hul AGGm5CCT Ca4,Mcll So3 AGGCm5CT Nel AGGCm4CT Nal,Na2 Gm6AGN6RmTAYG# b Nal,Na2 Am6ACN6GmTRC# b Cm5CWGG GAWTM5C m5CGCG Fol Ho2,Wol Hol Wol Mcl 1,Ne2,Mo3 m5CGCG Sa3,Va6 Gal,Nel hm5CGhm5CG Hul TCGm6A# Sa3 Mcl3,Wel Gr4,Hul,Ne2 TCTAGm6A# Tm5CTAGA Thm5CTAGA 2060 Nucleic Acids Research, Vol. 19, Supplement Restriction Recognition enzy-me sequence CTCGAG b XhQI ? XhoII RGm6ATCY XmaI RGATCY CCCGGG Sites cut CCm'5CGGG b Sites not References cut CTm5CGAG CTCGm6AG m5CTCGAG RGATm5Cy b m4CCCGGG Br8,Eh2,Eh3,Ka7 Mc3,Va3 Br8 Bu6,Yo5,Yo6 m5CCCGGG Cm4CCGGG CCm4CGGG XmafiE XmnI CGGCCG GAAN4TTC ? GAm6AN4YrC CGGm5CCG Gm6AAN4TI C Ne2,Tr2 Mc1l,Ne2 GAAN4TP 5C b XorII CGATCG CGm6ATCG CGATm5CG Br8,Eh2 hm5CGAThm5CG Hul FOOTNOTES a. # denotes canonical modification MTase specificity. M= A or C, K= G or T, N= A,C,G, or T, R= A or G, Y= C or T, W= A or T, S= G or C, D= A,G or T, H = A,C or T. Sequences are in 5'-3' order. m4c = N4-methylcytosine; m5C = CS-methylcytosine; hm5C =hydroxymethylcytosine; mc = methylcytosine, N4 or C5-methylcytosine unspecified; m6A= N6-methyladenine. Nomenclature is according to (Sm2) and (Co4). b. AccI nicking occurs slowly in the unmethylated strand of the hemi-methylated sequence GTMKAm5C. Afll cuts slowly at GGWCn4C. Ahai (GRCGYC) will cut GRCGCC faster if these sites are methylated at GRCGm5CC (Ne5), but will not cut GRCGYm5C sites (Ne2,Ne5). Asp718I cuts M CviQI -modified (GTm6AC) Chlorella virus NY2A DNA. Asp7l.8I does not cut GGTACm5CWGG overlapping dcm sites (Mu l) or m5C-substituted phage XP12 DNA, whereas 4Knl cuts XP12 readily (Ne4). AvaI nicking occurs slowly in the unmethylated strand of the hemi-methylated sequence CTCGm6AG/CTCGAG (NeS). AvaH cuts slowly at GGWCm4C. Bacillus species have been surveyed for Gm6ATC and Cm5CWGG specific methylases. Many species have Gm6ATC specific methylases but none had Cm5CWGG specific methylases (Di3). Ball sites overlapping dcm sites (TGGCm5CAGG) are 50-fold slower than unmethylated sites (Gil). rate effects when its recognition sequence is n4C- or m5C-methylated at different positions. BglI cleavage rate at certain GCm5CN5GGC, GCm4CN5GGC, and GCCN5GGm5C hemi-methylated sites is extremely slow. However, m5C bi-methylated M HaeIl-BglI sites are completely refractory to BglI (Ko3,Ne2). BssHIl does not cut M-HhaI-modified DNA, in which two different cytosine positions are hemi-methylated, Grm5CGCGC/GCGmICGC (Ne4). M BstI modifies the internal cytosine GGATmCC, but it is not known whether this modification is m C or m4C (Le2). BstEII cuts the fully m5C-substituted phage XP12 DNA (Ne5). BstNI cuts Cm5CWGG, n'5CCWGG and m5Cm5CWGG (Ne5). BstNI isoschizomers that are insensitive to Cm5CWGG include AorI, ApyI, BspNI, MvaI and TaqXI (Mc4). BsuRI nicking occurs in the unmethylated strand of the hemi-methylated sequence GG(m5CC/GGCC. Cfi9I, see reference Bu6 for rate effects. M CreI is from the unicellular eukaryote Chlamydomonas reinhardi (Sa2). DpnI requires adenine methylation on both DNA strands. Isoschizomers of DpnI include CfiI, NanII, NmuEI, NmuDI and NsuDI (Cal). DpnI cuts dam modified XP12 DNA (Ne6). M Eco dam modifies GATn5C at a reduced rate (NeS). Many other bacteria that modify their DNA at Gm6ATC are listed in references Bal and Lol. EcoA, EcoB, EcoD, EcoDXXI, EcoK are Type I restriction endonucleases. 'T represents a 6-methyladenine in the complementary strand. EcoPI is a Type HI restriction endonuclease (Ba2,Bal,Ha2). EcoP15 is a Type Im restriction endonuclease (Hu2). EcoRI cannot cut hemi-methylated Gm6AATTC/GAATTC sites. Bimethylated GAm6ATTC/GAm6ATTC sites are not cut by EcoRI or RsrI (NeS). EcoRI shows a reduced rate of cleavage at hemi-methylated GAATTm5C (Trl) and does not cut an oligonucleotide that contains GAATTm5C in both strands (Brl). EcoRII isoschizomers that are sensitive to Cm5CWGG include AtuBI, AtuIl, BstGH, BinSI, Cfr5I, Cfril I, EclII, EcalI, Eco27I, Eco38I and MphI (Ro3). EcoRJI shows reduced rate of cleavage at hemi-methylated m5CCWGG/CCWGG sites (Yol). EcoRV cuts the fully m5C-substituted phage XP12 DNA (NeS). EcoR124 and EcoR124/3 are Type I restriction endonucleases. mT represents a 6-methyladenine in the complementary strand. is a Type I restriction endonuclease. FokI cuts about two-fold to four-fold more slowly at CATCm5C than at unmodified sites (Ne5). M FokI in ref Po3 corresponds to M-FokIA in ref Po4. Haell show a reduction in rate of cleavage when its recognition sequence is modified at RGCGmSCY. HaeIi nicking occurs in the unmethylated strand of the hemi-methylated sequence GGm5CC/GGCC. Hinfl cuts GANTn5C, however, detectable rate differences are observed between unmethylated, hemi-methylated (GANTm5C/GANTC) and bi-methylated (GANTm5C/GANTm5C) target sequences. Hinfl does cut phage XP12 DNA, although at a reduced rate (Gr4,Ne5). Hinfl cuts unmethylated GANTC faster than hemi-methylated GANTm5C/GANTC, which is cut faster than GANTm C/GANTm C. However, the rate difference between unmethylated and fully methylated Hinfl sites is only about ten-fold (Hul,Ne5,Pel). Hpai nicking in the unmethylated strand of the hemi-methylated sequence m5CCGG/CCGG is in dispute (Be3,Bu6,Ko3). Hpall cuts hemimethylated mCCGG 50 times slower and fully methylated mCCGG 3000 times slower than unmethylated DNA (Ko3). See reference (Bu6) for HpaIl rate effects. BanI gives various Nucleic Acids Research, Vol. 19, Supplement 2061 KpnI sensitivity to hemi-methylated GGTAmSCC and GGTACm5C sites has been reported. KpnI efficiently cuts m5C-substituted phage XP12 DNA, but not Chlorella virus NY2A DNA, which carries both GTm6AC and m5CC modifications (Ne4). MaeII nicks slowly in the unmethylated strand of hemi-methylated Am5CGT/ACGT (Mo2). MboI isoschizomers that are sensitive to Gm6ATC include BssGH, BsaPI, Bsp74I, Bsp76I, BsplO5I, BstXll, BstEI1I,BssGII, CpaI, CtyI, CviAI, CviBII, CviHI, Dpnll, FnuAll, FnuCI, Had, Meul, MkrAI, Mmell, MnoIII, MosI, Msp67II, MthI, MthAI, NdeII, NflAII, NflBI, Nfl, NlaDI Nlal, NmeCI, NphI, NsiAI, NspAI, NsuI, PfaI, RlulI, SalAI, SalHI, Sau6782I, SinMI, Trull (Ro3). MboII cuts the fully m5C-substituted phage XP12 DNA (Ne5), although certain hemi-methylated m5C-containing substrates are reported not to be cut (Gr4). MflI cuts slowly at m6AGATCY sites (Onl). Mammalian methylase is the m5CG methyltransferase from Mus musculus. (mouse) (Be6). MspI cuts the hemi-methylated sequence CmSCGG/CCGG (WaS) and Cm4CGG/CCGG duplexes (Bu6). MspI cuts very slowly at GGCm5CGG (Bu2,Kel). An M MspI clone methylates m5(CG( (WaS,Wa2). However, there is a report that Moraxella sp. chromosomal DNA is methylated at m5Cm5CGG (Je2). MvaI nicking occurs in the unmethylated strand of the hemi-methylated sequence m4CCWGG/CCWGG and CCm6AGG/CCTGG (Ku3). MvaI cuts XP12 DNA very slowly at m5Cm5CWGG. NanH requires adenine methylation on both DNA strands (Cal). NanII cuts M Eco dam modified XP12 DNA (Ne5). NciI may cut m5Cm5CGG methylated DNA (Br8,Je2). Possibly the second methylation negates the effect of Cm5CGG. NcoI is blocked by M SecI (CCNNGG) (Ne5). NcrI is a BgEl isoschizomer from Nocardia carnia Beijing (Qil). NdeI cuts the fully m5C-substituted phage XP12 DNA (Ne5). NdeHl cuts the fully m5C-substituted phage XP12 DNA (Ne5). Ngo. There is some confusion about naming restriction enzymes from these strains. NgoPII, NgoII and NgoSI may be the same. NgoPIl may be NgoIII. NgoPll does not cut overlapping dcm sites (Su4). NmuDI requires adenine methylation on both DNA strands (Cal). NmuEI requires adenine methylation on both DNA strands (Cal). PaeRI cuts hemimethylated CTm5CGAG/CTCGAG sites 100 fold slower and cuts fully methylated CTm5CGAG/CTm5CGAG 2900 fold slower than unmethylated sites (Ghl). Hemi- or full methylation at m6A completely protects against PaeR7 cleavage (Ghl). RsaI cuts the fully m5C-substituted phage XP12 DNA (Ne5), but does not cut Chlorella virus NY2A DNA, which is modified at GTm6AC (Ne4,Xil). DNA from Rhodopseudomonas sphaeroides species Kaplan is cut by Asp718I, but not by RsaI or KpnI (Ne4). It is likely that M RsaI specifies GTAm4C; and high levels of m4C are present in R. sphaeroides DNA (Eh3). RsrI cannot cut hemi-methylated Gm6AATTC/GAATTC sites. Sau3AI nicking occurs in the unmethylated strand of the hemi-methylated sequence GATm C/GATC (St3). Sau3AI cuts at a reduced rate at "6AGATC (OnI). Sau3AI isoschizomers that are insensitive to Gm6ATC include Bce243I, Bsp49I, Bsp5lI, Bsp52I,Bsp54I, Bsp57I, Bsp58I, Bsp59I,Bsp6OI, Bsp6lI, Bsp64I, Bsp65I, Bsp66I, Bsp67I, Bsp72I, BspAI, Bsp91I, BsrPH, Cpfl, Csp5I, CpeI, FnuEI, MspBI, SauCI, SauDI, SauEI, SauFI, SauGI and SauMI (Ro3). SfiI cannot cut M Bgll-modified DNA (Nel). SmiaI nicking occurs in the unmethylated strand of the hemi-methylated sequence CCmSCGGG/CCCGGG (Bu6,Wa5). SmaI may cut CmSCmSCGGG methylated DNA (Br8,Je2) Possibly the second methylation negates the effect of CCm5CGGG. There are conflicting results regarding SnaI: m5CCCGGG is not cut when modified by M AquI methyltransferase (Ka7) or at overlapping M HaeIII-SmiaI sites (GGm5CCCGGG, Ne5). Other investigators have reported that SmiaI cuts at a reduced rate at hemi-methylated m5CCCGGG sites (Bu6). SplI cuts GTm6AC-modified Chlorella virus NY2A DNA, but does not cut KpnI-digested XP12 DNA (Ne4). StySBI and StySPI are Type I restriction endonucleases. mT represents a 6-methyladenine in the complementary strand. TaqI cuts very slowly at Thm5CGA (Hul). TaqI cuts the fully m5C substituted phage XP12 DNA (Hul,Ne5). M-TaqI methylates Tm5CGA at least 20 fold slower that unmodified TCGA (Mc7). XbaI will cut Tm5CTAGA/TCTAGA hemi-methylated DNA at high enzyme levels (> 100U Xba 1/ug), but will not cut this sequence in twenty to forty-fold overdigestions. XhoIl nicking occurs slowly in the unmethylated strand of the hemi-methylated sequence RGATmSCY/RGATCY. XmaI is claimed not cut CCm5CGGG in one report (Br8). See reference Bu6 for rate effects. XmnI cuts the fully m5C substituted phage XP12 DNA (Ne5). XmnI cuts slowly at some sites in DNA methylated on both strands at GAAN4TTm5C (Ne5). 2062 Nucleic Acids Research, Vol. 19, Supplement TABLE II: DNA methyltransferases and their modification specificities Cloned methylases in bold. Methylase a Specificity a GACGTC M-A=I GTMKm6AC M-AaK21 M-&R M-Alw26I A1TAAT CCSGG CYCGRG GGWCC CYCGRG TGGm5CCA Gm6ATC b GGATm4CC GmCWGC? GGYRCC GRGCYC References Lu2 Lu2 Lu2 Sli Kr2,Lu2 Bu4 Bu4 Mc8,Tr2 Ka7,Ka8 Mo3 Mo3 Lu2 Lu2 Lu3 Lu2,Mc8 Di3 Hal,Lu2,Na3 Hal Lu2 Lu2 Gm5CWGC Dol,Hal,Va5 GmCWGC Gm6AT Am6AG Cm4CSGG m5CGCG GCCN5GGC (m4C) GGWCmC GGATmCC Hal,Va5 Hal Hal Ja4,Ja6,Ja7,Pe2,Po6 Ku2 Lu2 Ma9 Kil Fe2,Ko 1 ,Po2,Qi3,S z4,Ve 1 Pa2 Ja3 Le2 Ba7 Va2 Xul CITAAG (m6A) GATiP"C AGmSCT GT'i5CTC and Gm6AGAC M ApaI MAgul Asell M*RALu, M-AvaI M M.AI M*EAwI MOAI M-BamHl M.A.=I M-BalIs M-BbvI M-BbvSI M-Bbv M-'Bb M-BI MIRa M *D..a,I M-BSRI M.B106I M.BA6I M-*I M*flVI M-LYI M-BsuBI GGGm5CCC m5CYCGRG GGm5CC ATCGm6AT GCNCG GGANPCC CTCGm6AG RGATmCY CTGCm6AG M-*MEI m5CGCG m5CCGG M*DhMI YTm5CGAR GGm5CC and Gm5CNGC M BzIFl M-'wp3T Gal,,Gu7,Lkl,Jel Gu7,Ik1,Jel,Wa7 Gul,Gu2,Gu7,Jel,Shl Bel,Gu5,Gu4,No2,No3 Nol,Trl Nucleic Acids Research, Vol. 19, Supplement 2063 Methylase a M Bslu.p lI M .lDjplls M-BMQI M-BsuRI M-BjSPf3 Specificitv a GGm5CC and Gm5CNGC GGCC and GDGCHC mCCGG GGm5CC b GGm$CC and Gm5CNGC M-ILMSPRI GGm5CC M *nSPRl91 and mSCmSCGG and Cm5CWGG m5Cm5CGG and CmCWGG M-BsuSPR83I GGm5CC M- A M*fI M. 6I M-Cfr9I M-L flOI M-2 1 3I M-ClaI M-CreI M-Ctv M CviBI M *_viBIII M*fviJI and Cm5CWGG GCAN8GTGG YGGm5CCR CAGm4CTG Cm4CCGGG Rm5CCGGY GGNm5CC ATCGm6AT Tm5CR Gm6ATC# Gm6ANTC TCGm6A RGm5Cy M CviPI m5cc M-CviQI M-CviRII GTm6AC TGCm6A GTm6AC M-DdIk M-D2gnII M-DInA m5CTNAG Gm6ATC ?Gm6ATC? M*£viRI M-EaeI MQIg M-EcaIdmIII M *EagImr M*Lg damI MEca M-Ek dcm M-Ef&A M-EQB M-EcoD YGGm5CCR CGGCCG GGTm6ACC Gm6ATC Cm5CWGG RmCCGG mCCWGG GGWCmC Gm6AGN7GmTCA b TGm6AN8mTGCr b TTAN7GTCY b Reference Gu4,Gu5,Gu7,Nol,No2 Bel Je2 Gu6,Ki2,Ki3 Gu4,Gu5,Gu7,Je2,Ki2,N16 No2,Trl ,Tr3 Bel,Gu5,Gu7,No2 Pol Be2,Bul,Gu3,Gu5,Ki2,Pol Je2,No2,Pol Gu3 Da2,Da3 Po6 Bu5 K13,Po6 Po6 Bi5 Mc3 Sa2 (Chlamydomonas) Ri2 X2 Na4 Sh3 Xi4 Xi2,Xi5 Stl Stl Ho3,Lu2,Sz3 Del,La3,La4,La5,Ma6 Del Jal,Whl Sz2 Br2 Br6,Bu9,Drl ,Gi2,Ha2,He2,Url Bo5,MalO,So2,Url Bu8,Ne8 Ni2 Mol,Ni2 Co7,Fu2 Go3 Go3 2064 Nucleic Acids Research, Vol. 19, Supplement Methylase a M-*E&DXXI Specificitv a TCAN7ATTC b GAGN7ATGC b Am6ACN6GmTGC b AGm6ACC b Gm6ATC b M*EM.cPI M-E.j Pl M.EoP1d5 M -EnRlS M-E&QRI GAm6ATTC M-EcoRII Cm5CWGG M-E.QRV Gm6ATATC GAAN6RTCG (m6A) M As2R124 M-EcoR124/3 M.fEMT1 d. M'EFs&T2 ~z M-*EUT4iln M-Eco3 lI Cm6AGCAG GAAN7RTCG (m6A) Gm6ATC Gm6AT Gm6ATC GGTm5CTC M*EwiDI MEnuDIII m5CGCG M-ESL64I M.ES&72I M -Er&98I M*E. 105I M-EM3I M-EFokI M-E&kI MTFV3 M-Ii.III M-HapII M-HdI M.kgC M-HgiEI M-lhagI M HhLIIn M*Hi,LCH Skl Fu2 Bo2,Go3,Kal,Lo2,Sal Ba2,Hu2 Co5 Hu2 Dul,Gr2,Ke2 Ne2,Ne9,Rul Bh 1 ,Bu7,Bu8,Ko6,Ko7,Ko8 MalO,Sc6,Sol,Yo4 and Gm6AGACC GGNCC CTGAAG (m6A) CTGAAG (m6A) GGYRCC CACGTG (m5C) AAGCT[ TACGTA GGTm6CTC GAGm6ACC GGCC (m5C) M-E..v..47l M-Eco5I M-Eg&57 M *coS7I References GCGC GGm6ATG and Cm6ATCC TGCGCA ??Mr?? *- * * RGCGCY GGm5CC b CmCGG GACGC (mC) GWGCWC Bo3 Pr2,Pr3 Pr2,Pr3 Scl,Sc7 Br7,Ha2,Ha3,Mi 1,Sc4,Sc5 Ha4,Mal ,Mi2,Sc3,Sc4,Sc5 Bu4 Bu4 Po6 Po6 Po6 Po6 Po6 Po6 Po6 Ja3 Lu2,Val Lu2,Nel Lu2 La6,Lo3,Lu2,Ma8,Nwl Mel EsI (Frog virus) Lu2,S13 Lu2,Ma5,S13 Wal Lu2,Nwl Lu2 GGYRCm5C Er GGWCm5C GGWCm5C Gm5CGC Gm6ANTC GTYRm6AC Erl Er Ba9,Ca3,Lu2,Sml,Wu 1 ,Zal Chl,Kel ,Ma3,Ma4,Sc9,Sml Gr4,Mc8,,Ro7 Re2 Nucleic Acids Research, Vol. 19, Supplement 2065 Methylase a M-lijndll M-JjndIH M ljfI M-ElnPI M.H2 GTYRm6AC m6AAGCIT Gm6ANTC GCGC GATATC (I6A) GTfAm6AC References Lu2,Re2,Ro6,Ro7 Lu2,Ro6Ro7 Chl,Lu2 Ba9,Lu2 Dal Br8,Yo3 Lu2,Ma5,Qul,Wi2,Yo2 Mc8,Ne2,Ne4 La8 (Bacius phage) M-MboII cm5CGG Tm5CACC GGCC GCNGC GDGCHC TCCGGA Gm6ATC Po6 Mc8 GAAGm6A Mcl2,Ne4,Ne2 M*MQll m5CG b M-HphI M-H2 M-Kpn2I M-NgQBI Gm6ATC b GmCWGC b TP5CACC b M-N2BII GTAN5m5CTC b M *laIII GGCC Cm6ATG M-NaIV Gm5CCGGC GGNNm5 CC Be6 (Mouse) Eh2,Je2,Lu2,Nw2,Wal ,Wa5 Mel K13,Po6 Lu2,Lu4 Lu2,Val Se2 Lu2,Val Sil Pi5 Ril Su2 Ko5,Ril Pi3 Su3,Su4 Ko5,Ril Ch2,Kol5,Ril Ko5,Pi2 Ko5 Ko5 Pi3 Pi3 Mo3 Lal,Lu2,Mo3 Lu2 Mo3 cTCGm6AG CTGCm6AG CAGm4CTG GTCGm6AC Gi3,Thl,Th2 Lel,Wa3,Wa4,Wa6 Bll,Ta2 Ba6 M MstIT M.MvaI m5CCGG b TGCGCA Cm4CWGG GCN7GC (m4C) GCCGGC M-*2gII M-NgoAI ??m5.?? CCATGG (mC) CATATG (m6A) GGNNCC b RGCGCY b RGmCGCY b GGm5CC b GGm5CC b M.jgZPII GGm5CC b Neurospora M .gI *I M- M-*NMVI M-.g2I M.NzgPI M*fQfi M.NgQIV MNjgqV M.NgQVI M-* VII M-EUR7 M*PaR7 M-EmIx M pvuII M-E&4273I CCGCGG b Gm5CCGGC b GGNNm5CC b Ll1 2066 Nucleic Acids Research, Vol. 19, Supplement miScitv a M-iaII M.hTI M-Ifi M*53A M*gg6I M SfjI M*5jT GAm6ATTC CCGCGG GTCGm6AC GAPm5C GGNm5CC GGCCN5GGCC (m4C) GGWmSCC Lu2,Nel,Szl Ba8 Ka5,Ka6 CCmCGGG Hel,Po6 GCATGC Gm6AATTC CmCNGG Lu2 Ka9,Bu4 M*XaI M *5a471 M'5o47II M*&MQI m5CG M*51ySBI M-T^li M*ityPI CCWWGG Gm6AGN6RmTYG b Am6ACN6GmTRC b Am6ACN6RmTAyG b Gm6AGN6GmTRC b M*TflI M-MmaQ Tetrahymena M*XmaI M XmaI Ba5,KalO Lu2 Lu2,Ro4,Ro5 Sel TCGm6A TCGm6A TCGm6A ??m6A??. TCrAGm6A CCCGGG (m4C) CGGmCCG GAAN41TC Ka9,Nil,Ni3 Nul,Pi5,Re3 Rel Ful,Fu3,Ga3,Nal,Na2 Ful,Fu3,Nal,Na2 Ful,Fu3 Ga3 Lu2,Mc3,Sa3,S12 Mc3,Sa3 Sa3,Va6 Ca2,Gol Lu2,Mcl3,Val Ba8 Mc8,Tr2 Fel NOTES a. See footnote "a" of Table I. b. See footnote "b" of Table I. Nucleic Acids Research, Vol. 19, Supplement 2067 TABLE III: Methylation sensitivity of Type 11 DNA methyltransferases. Methylase(specificity)a Not blocked by prior modification at b M*AluI (AGm5CT M-BamHI (GGATm4CC) GGm6ATCC GGm6ATCC M-BI (GGATmCC)C M.Cft6I (CAGm4CTG) m6ATCGAT M-CLaI (ATCGm6AT) ATm5CGAT Tm5CGA (TCGm6A) M-_viBIl M*EoRI (GAm6ATTC) GAATIm5C M-*gRII (Cm5CWGG) GATm5C c M-Eco dam (Gm6ATC) Blocked by prior modification at b AGm4Cr GGATCmSC CAGm5CrG References Bu5 La7,MclO Le2 Bu5 M9,Mcl 1,Wel Cm4CWGG MclO,Va4 Br2 Bu4 MclO CATm5CC Ne4 Po3,Po4,Sc2 Rol Gm6AATTC GATtm5C M--EkIA (GGm6ATG)c M-HhaI (Gm5CGC) M.iUall (Gm6ANTC) M-paIl (Cm5CGG) M-HphI (Tm5CACC) M-MboI (Gm6ATC) M*MboII (GAAGm6A) M-MsDI (m5CCGG) M-MvaI (Cm4CWGG) GATm4C CATCm5C GCGm5C GANTIm5C m5CCGG GGTGm6A GATm5C T"5c1-1Tr5c Cm5CGG Cm5CWGG Bu4 Nel m5cm5CwGG M-PvwI (CAGm4CTG) M-UT2 4am (Gm6ATY) GAThm5C M-EcoT4 dam (Gm6ATC) GAThm5C M-TaaI (TCGm6A) MclO Mc9,MclO MclO MclO MclO MclO CAGm5CTG T5CGA c Bu5 Do2,Mil Sc4 Mc7 a. See footnote "a" of Table L. b. An enzyme is classified as insensitive to methylation if it methylates the modified sequence at a rate that is at least one tenth the rate at which it methylates the unmodified sequence. An enzyme is classified as sensitive to methylation if it is inhibited at least twenty-fold by methylation relative to the unmethylated sequence. c. See footnote "b" of Table I. 2068 Nucleic Acids Research, Vol. 19, Supplement TABLE IV: Isoschizomer/isomethylator pairs that differ in their sensitivity to sequence-specific methylationr. Mcahykd sqam-ce I m4CCGG Cm5CGG Cm4CGG CCm5CGGG Cm5CWGG Gm6ATC GATm5C GAPm4C GGCm5C GGTACm5C GGTAmSCm5C GGWCm5C RLstQi iaWIKLQsAIn a,b NQJcu by Cut by M-Ri Maul MaI XmaTI (k9I) SPM3A mm I:EmiEI) MboI Sa3A HnoX Aau718I MI RGm6ATCY X2LQo]1 W&tYI) Tm5CCGGA TCm5CGGA TCCGGm6A Acc]Ill TCGCGm6A lrsoCGAA CGGWCm5CG Ban Snai .Spl SinaI LQRII MboI (deIt) h3A BsaMlI QMLQI) 13I (SaLI) As-ull Avai (E&247 mm LauMi Cau45I Rs-ril kfevnoe Nel Eh2,Mc 1i Bu6 Bu6 Bu4 Gel,LulMc9,Ro3 Ne4 Ne4 Su4 Mul Ne4 B3,Ja5,Wh2 Mc9,Ne4 La2,Sc2 Sc2 Ke3,Ne4 Mcl 1,Ne4 SclO Qi3 Methylated sequence C Resiriction iso thylator pairs de methylated by NQt mehylated by References IP5CGA M.CviB[ (TCGm6A) M-IqI We2 a. In each row the first column lists a methylated sequence, the second column lists an isoschizomer that cuts this sequence, and the third column lists an isoschizomer that does not cut this sequence. b. An enzyme is classified as insensitive to methylation if it cuts the methylated sequence at a rate that is at least one tenth the rate at which it cuts the unmethylated sequence. An enzyme is classified as sensitive to methylation if it is inhibited at least twenty-fold by methylation relative to the unmethylated sequence. c. See footnote "a" of Table I. d. In each row the first column lists a methylated sequence, the second column lists an isomethylator that modifies this sequence, and the third column lists an isomethylator that does not modify this sequence. e. An enzyme is classified as insensitive to methylation if it odifies the methylated sequence at a rae that is at least one tenth the rate at which it modifies the unmethylated sequence. An enzyme is classfied as sensitive to methylation if it is inhibited at least twenty-fold by methylation relative to the unmethylated sequence. Nucleic Acids Research, Vol. 19, Supplement 2069 TABLE V: List of restriction systems referred to in this paper.a Note: a. Restrction systems in Table V are arranged by recognition sequence length and alphabetically by recognition sequence to aid in identifying isoschizomers. CC Cvi NY RGCY CATG Nl--- CCTC AGCr CCGG CGCG Gm6ATC GATC GCGC GGCC GTAC TCGA 1TAA CCNGG CTNAG GANTC GGNCC CCWGG CCSGG GCAGC GGWCC AGACC ACCTGC CAGCAG CATCC GAAGA GAAGAG GAATGC GACCGA and CACCCA GACGC GATGC GGATC GTCTC TCACC GDGCHC CYCGRG GRCGYC GRCGYC GRGCYC GTMKAC GTYRAC AluI BsuFI, sQI, HaPI, aII, MsI AccII, eI, BUI, _B_E, h-nDII ThaI vnI, blanLL LaI, Nf uEI Br243I, RuPI, R67L BAL RPII, RPli, DGI, DEII &LXII:,sCKQj_.I,, CviAI,, 12M.Hl, fMAII, f=CI, ErmaEI, MboIL M-m-eII, I Avail,e2l I, fLIS M 6I, Eh,Q47I, hjjil, kIjgjE, SAIn S:inNff HhI PI CviQIP1 mMsI 5crFI AviBI, InI, Hitl H13I, Su96I AacI, -AorI, AYI, A=BI, AWL RiSL, Bsj2NI, BsGIII, BhNI, 51I, I,EcaII,EclII,EcoRII &g27I,, Ec3I M_I,MaI, T XI ZII Mki, Nxil BcnI, SI. BgIJi A-vaE[, B-me216I, EQ47I,, HdCIEI HgEl, SiLnl TkI)igiliJ EcoPI HnPC15 FQkI MbolII .NcuI EarI BsmI HgaI AMI BamAI H12hl, NgoQBI S12861 &UL A-vaI AbA HLCH 2070 Nucleic Acids Research, Vol. 19, Supplement GWGCWC RCCGGY RGCGCY RGATCY YGGCCR RGGNCCY AAGQT ACGCGT ACTAGT AGATCT AGCGCT AGGCCT ATCGAT ATGCAT CAGCTG CATATG CCATGG CCCGGG CCGCGG CGATCG CGGCCG CGTACG CTCGAG CTGCAG CrrAAG GAATTC GACGTC GAGCTC GATATC GCATGC GCCGGC GCGCGC GCTAGC GGATCC GGCGCC GGTACC GGGCCC GTCGAC GTGCAC GTTAAC TCATGA TCCGGA TCGCGA TCGCGA TCrAGA TGATCA TGCGCA TGGCCA rfCGAA TTTAAA CCAN6TGG CCTNAGG GAAN4TTC GATN4ATC GCCN5GGC HgiM 210 HliMI, .jgPI i, BWstYI, XMQI Dril WndIll S1I Axll, L47fI SmI Lull, LaXI h NdI SinI, ma £k911, "QI -CO Lml X-BmaDI, EnI, LhIi, XQEII Eflt SDIi BsuMI, LuRII, PR7I, XhbI BUBI, FitI, SflI Afll jQQRI, RLI, £bo47I SAQ£I EQQRV SahI Mb927311, NaeI BssHll NheI BanHfl, LmFI, BamKI iamNi RLa Bil, fbQ&It Nir As7181, KpnI A aI Rrh42731, SaI HpaI BspHI, LaXI Accl, MI, Kpa2l, II AmzI, MhuI9273l NI, SJlDI, S13I, SpQj AaCI, Li, BcIXllB BxGL -£pI aII Asall, fBLtBI, CW451 Diii WfaX, llI MStlI XmnI MimI 1503I Nucleic Acids Research, Vol. 19, Supplement 2071 GCTNAGC GGTNACC CGGWCCG GAAN6RTCG GAAN7RTCG AACN6GTGC AACN6GTRC GAGN7ATGC GAGN7GTGA GAGN6RTAYG TCAN7ATTC TGAN8TGCT TTAN7GTCY CRGCGGYG GGCCGGCC GCGGCCGC GGCCN5GGCC BEII, Ecal X4VI, R Il &QR124 &gR124/3 EcgK StSPI EcoA StySBI EcoDXXl EcoB EcoD SAI F&I NotI LiI
© Copyright 2026 Paperzz