Name: _________________________________________ Table #: ___ Period: _______ Date: __________ Algebra II: Chapter 7 Exam Practice 1 Find the inverse of y = 4x 2 − 8 . 4 Solve. Check for extraneous solutions. 1 1 (3x + 10) 3 = (4 + 9x) 3 A B C D x−8 4 x−8 y2 = 4 y = ± x = y = ± A B -1 1 7 6 1 2 C y+8 4 D x+8 4 5 Solve. Check for extraneous solutions. 3 2 Let f(x) = −4x − 2 and g(x) = 3x − 7. Find f(x) + g(x). A B C D 3 (x + 4 ) 5 = 8 A B C D –7x – 9 –x + 5 –7x + 5 –x – 9 6 Solve. Check for extraneous solutions. Simplify. 18 x − 7 − 9 = −5 28 36 4 12 1 1 2 ⋅ 18 2 A B 1 18 C D 18 4 18 1 A B C D 23 9 11 16 1 Practice Practice Practice Practice Practice Practice Practice Practice Practice Practice Practice 7 Solve the equation. Check for extraneous solutions. 3 10 B C D 11 Let f(x) = 5x + 2 and g(x) = −6x + 7. Find f ⋅ g and its domain. A C D D 9 −30x 2 + 23x + 14; all real numbers 10x 2 + 47x − 42; all real numbers −30x 2 + 23x + 14; all real numbers except x 7 = 6 10x 2 + 47x − 42; all real numbers except x = 2 − 5 12 B C D 1 25 1 5 25 5 Simplify. 2 4 6x + 5 4 6x A B C D Simplify 3 135a 10 b 6 . Assume that all variables are positive. A 56 2 122 2 11 11 2 Which is equivalent to 125 −2/3 ? B A B C 72 x − 8 = −5 A 8 50 + Simplify: 3a 3 b 2 3 5a 5a 3 b 2 3 3a 3a 3 b 3 a none of these 2 42 4 6x 7 4 12x 7 4 6x not possible to simplify 13 Simplify: (5 4 / 5 ⋅ 5 4 / 5 ) −10 14 Simplify: 25 1 / 6 25 2 / 3 Practice Practice Practice Practice Practice Practice Practice Practice Practice Practice Practice C 15 Find the inverse of the relation (0, –5), (–5, 0), (1, 9). 16 Graph the relation and its inverse. Use open circles to graph the points of the inverse. x –3 –1 1 2 y –9 7 7 7 D A 17 B 3 Write an equation for the inverse of the relation y = −22x − 7. Practice Practice Practice Practice Practice Practice Practice Practice Practice Practice Practice 18 Rationalize the denominator of the expression. Assume that all variables are positive. 3 A B C D 2 3 2 23 3 3 108 3 3 2 A B C D Simplify the expression. Assume all variables are positive. 20 3 6x 3 y 7 ⋅ 3 23 4x 5 A B C D 42 + 12 −6 − 6 42 − 12 36 + 12 6 6 6 6 −3x 2 − 2x − 1 −3x 2 − 2x − 7 2x 2 − 2x + 10 2x 2 − 2x − 14 Let f(x) = 3x + 5 and g(x) = 4x + 7. Find (f û g)(5). A B C D Simplify. ÊÁ ˆ2 ÁÁ −6 + 6 ˜˜˜ Ë ¯ 24 21 Let f(x) = x 2 + 2x − 1 and g(x) = 2x − 4. Find 2f(x) – 3g(x). 108 3 19 22 27 86 87 20 Rationalize the denominator of the expression. Assume that all variables are positive. 3 6 3 2 Simplify 27 2 / 3 . A B C D A 27 18 1 3 9 2 3 12 3 B 3 C D 4 24 2 12 2 none of these Practice Practice Practice Practice Practice Practice Practice Practice Practice Practice Practice 25 Simplify. ÁÊÁ 4 − 6 ˜ˆ˜ ÁÊÁ 6 + ÁË ˜¯ ÁË 27 ˆ 6 ˜˜˜ ¯ Rationalize the denominator of the expression. Assume that all variables are positive. 6x 8 y 9 5x 2 y 4 A B C D 26 6 6 6 6 C D A B 3 2x 3 ⋅ 2x 3 ⋅ 8x 7 ⋅ 3 3 4x 11 4x 2 30x 10 y 13 3 5x 2 y 4 5x 3 y 2 30y none of these C D 28 Rationalize the denominator of the expression. Assume that all variables are positive. 2+ 3 3 D 3 A 2 3 6 + 9 3 18 6 B 2 3 36 + 3 3 4 6 C 23 6 + 9 3 4 6 D 2 3 36 + 3 3 4 6 32x 11 none of the above 5 3 6 4x 4 . Assume that all variables are positive. C 30y 5 B 7x − 49x x 7 − x 49 − 42x Simplify x3y2 A Multiply and simplify if possible. Ê ˆ 7x ÁÁÁ x − 7 7 ˜˜˜ Ë ¯ A x 7 − 49 x B 29 30 + 24 4 + 10 18 + 24 18 − 2 ID: A Algebra II: Chapter 7 Exam Practice Answer Section 1 D 2 D 3 A 4 B 5 A 6 B 7 –117 8 A 9 A 10 D 11 A 12 15 C 1 5 16 1 5 (–5, 0), (0, –5), (9, 1) 16 B 17 y=− 18 D 19 2x 2 y 2 3 3x 2 y 20 C 21 D 22 C 23 B 24 D 25 D 26 A 27 A 28 D 29 B 13 14 x+7 22 1
© Copyright 2026 Paperzz